
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

PDMA: Probabilistic Service Migration Approach for
Delay-aware and Mobility-aware Mobile Edge Computing

Minxian Xu1 | Qiheng Zhou*1 | Huaming Wu2 | Weiwei Lin3 | Kejiang Ye1 | Chengzhong Xu4

1Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences,
Shenzhen, China

2Center for Applied Mathematics, Tianjin
University, Tianjin, China

3School of Computer Science and
Engineering, South China University of
Technology, Guangzhou, China

4State Key Lab of IOTSC, Department of
Computer Science, University of Macau,
Macau SAR, China
Correspondence
*Qiheng Zhou (Email:
zhouqh7@outlook.com)

Summary

As a key technology in the 5G era, Mobile Edge Computing (MEC) has developed
rapidly in recent years. MEC aims to reduce the service delay of mobile users, while
alleviating the processing pressure on the core network. MEC can be regarded as an
extension of cloud computing on the user side, which can deploy edge servers and
bring computing resources closer to mobile users, and provide more efficient interac-
tions. However, due to the user’s dynamic mobility, the distance between the user and
the edge server will change dynamically, which may cause fluctuations in Quality of
Service (QoS). Therefore, when a mobile user moves in the MEC environment, cer-
tain approaches are needed to schedule services deployed on the edge server to ensure
the user experience. In this paper, we model service scheduling in MEC scenarios
and propose a delay-aware and mobility-aware service management approach based
on concise probabilistic methods. This approach has low computational complexity
and can effectively reduce service delay and migration costs. Furthermore, we con-
duct experiments by utilizing multiple realistic datasets and use iFogSim to evaluate
the performance of the algorithm. The results show that our proposed approach can
optimize the performance on service delay, with 8% to 20% improvement and reduce
the migration cost by more than 75% compared with baselines during the rush hours.
KEYWORDS:
Mobile Edge Computing, Edge Service Allocation, Service Migration, Latency, User Mobility

1 INTRODUCTION

Driven by the fast growth of the Internet of Things (IoT) applications, low latency has become a major concern for service
providers to ensure user experience. Traditionally, the services can be supported via cloud computing platforms, however, due
to the increase in network loads, accessing resources from remote servers in Clouds can lead to higher transmission costs and
delays, which can also degrade the user experience1. To improve the user experience, computing resources can bemoved in close
proximity to the end-users. Therefore, as a new paradigm complementing cloud computing, Mobile Edge Computing (MEC)
has been proposed to enable efficient management of applications with low latency and constrained energy2.
The motivation of MEC is to extend the cloud computing capabilities to the edge of the network3. The services and appli-

cations can be deployed on the edge servers, and the part of the tasks on users’ devices can be offloaded to the edge servers.
Therefore, services can be executed coordinately based on the resources provisioned by both local mobile devices and edge

ar
X

iv
:2

10
6.

05
58

4v
1

 [
cs

.D
C

]
 1

0
Ju

n
20

21

2 M. Xu ET AL

servers4. This feature has made MEC an attractive paradigm for many delay-sensitive applications, e.g., Internet of Vehicles
(IoV), Augmented Reality (AR), and Virtual Reality (VR)5.
However, how to deploy the services to the specific edge servers is a challenge, since deploying the service to an edge server

with a long distance to the user’s device can still cause high latency and the edge servers can be heterogeneous6. Failing to support
the users with satisfactory Quality of Service (QoS) will undermine the benefits of the MEC paradigm. In addition, compared
with the traditional cloud computing paradigm,MECbrings a new challengewhenmobile users (e.g., cars) move among different
geographical locations7. The distance and the latency between the users and edge devices keep changing dynamically due to
the movement of users. Therefore, the services are required to be redeployed or migrated to suitable locations for the users to
ensure QoS.
To address the above challenges, some key questions should be answered, including how to place the edge services in the

initial phase as well as when and where to migrate the edge services according to the system running status. Trade-offs can exist
when selecting the moment and locations to migrate services. For example, too frequent migrations can lead to communication
overheads, while not migrating services can produce service response delay when a user is moving from the original location to
another location that is far away from the original one. The running and network status of edge servers change with time, which
may also affect the service delay. When it comes to developing efficient service allocation algorithms for the MEC environment,
it is significant to take the delay and user mobility into consideration. However, an optimal deployment solution for edge services
can become inefficient if the deployment takes a few minutes to complete. Therefore, an efficient service allocation algorithm
that can be executed within a short time would support the MEC environment in a better manner8.
In this work, we use the probabilistic-based approach to study the service allocation in MEC. Benefiting from the low

algorithm complexity, our approach can be easily extended to the realistic environment. The main contributions are as below:
• We formulated the optimization problem as a service allocation decision problem to minimize the overall delay and cost,

thereby reducing the service delay and migration costs. User mobility related to service delay is also considered in our
problem. We prove that the optimization problem is NP-hardness.

• We proposed a delay-aware and mobility-aware approach based on Bernoulli trial to determine the decision of deploying
services. Through the theoretic analysis, we prove that our approach can be bounded with 1 + (2+"+�)JR

(1+"+�)(J+R)
.

• We conducted experiments in iFogSim9 with the base station dataset and the taxi movement dataset derived from realistic
traces10 to evaluate the performance of our proposed algorithm. The results demonstrate that our approach can achieve
better performance compared with baselines in terms of overall delay and costs with significant reduction, e.g., 8% to 20%
reduction in overall delay and over 75% decrease in migration cost.

The remainder of this paper is organized as follows: Section 2 discusses and compares the related work. Sections 3 presents
the system model and the target problem. Section 4 introduces our proposed approach for edge services management. Section 5
demonstrates the results based on realistic datasets by simulating the taxi movement scenario in iFogSim. Finally, the conclusions
and future research directions are provided in Section 6.

2 RELATEDWORK

Edge service allocation management in MEC has been investigated by some research work. The related work can be categorized
with 1) delay-aware management and 2) mobility-aware management.

2.1 Delay-Aware Edge Service Management
Several articles based on Markov Decision Process (MDP) have been proposed. Wang et al.11 investigated service coordination
among edge clouds to support delay-aware service migration for mobile users. A reinforcement learning approach based on
the MDP model is also applied to find the optimal decisions on migrating services. Wang et al.12 presented a dynamic service
migration approach for MEC based onMDP to find the optimal solution. An approach based on service migration by usingMDP
to capture costs to design service migration policy was also proposed in13. However, the solution space of these approaches grow
fast when the number of edge devices and users increase, the scalability can be the limitation for these approaches to be applied

M. Xu ET AL 3

TABLE 1 Comparison of related work

Approach Algorithm Complexity User Mobility Service Management Service Amount
High Low Yes No Initial Placement Migration Single Multiple

Wang et al.11
√ √ √ √

Wang et al.12
√ √ √ √

Wang et al.13
√ √ √ √

Samanta et al.14
√ √ √ √

Samanta et al.15
√ √ √ √

Poularakis et al.16
√ √ √ √

Pasteris et al.17
√ √ √ √

Zhang et al.18
√ √ √ √

Wan et al.19
√ √ √ √

Gao et al.20
√ √ √ √

Yu et al.21
√ √ √ √

Badri et al.8
√ √ √ √

Ouyang et al.22
√ √ √ √

Wu et al.23
√ √ √ √

Ghosh et al.24
√ √ √

Shi et al.25
√ √ √

Yu et al.26
√ √ √

Our approach √ √ √ √ √

to the realistic scenario. Therefore, some assumptions need to be relaxed when applying in a practical scenario. Different from
these works, our proposed work can be performed with much lower complexity.
Samanta et al.14 studied a dynamic microservice scheduling scheme for MEC-enabled IoT to improve the network through-

put and ensure the QoS for users. A distributed and latency-aware microservice scheduling policy was also introduced to reduce
service latency while ensuring transmission rate to minimize microservices completion time15. Poularakis et al.16 investigated
an algorithm to jointly optimize service placement and request routing to support multi-cell networks in MEC under multiple
resource constraints. The proposed algorithm can achieve near-optimal performance for utilizing available resources to maxi-
mize the number of requests and reducing latency. Pasteris et al.17 considered service placement in MEC with heterogeneous
resources. Their objective is to maximize the total reward by using an approximate algorithm. The designed algorithm can be
applied to both small scale and large scale environments with two subroutines. Unfortunately, user mobility is not considered in
these works, and most of them focused on the initial placement of services. In contrast, both the initial service placement and
dynamic service migration are considered in our work.

2.2 Mobility-Aware Edge Service Management
Mobility-aware service management in MEC has attracted the attention of researchers. Zhang et al.18 presented a deep Q-
network based approach for task migration in the MEC system, which can obtain the optimal migration policy without knowing
the information of user mobility. Wan et al.19 introduced a joint optimization methodology to assign resources to tasks based on
evolutionary computation by considering power usage and latency in MEC environment. Gao et al.20 introduced an approach to
jointly optimize the access network selection and service placement inMEC. The long-term optimization problem is decomposed
into a set of one-shot problems to reduce computation time. Yu et al.21 investigated collaborative service placement in MEC
to relieve the limited capacity of base stations by collaboratively utilize the resources from adjacent base stations. To solve this
optimization problem, a decentralized algorithm based on matching theory was also proposed. Badri et al.8 considered energy-
aware service placement in MEC as a multi-stage stochastic program, which can maximize the QoS under the constraint of
limited energy. A parallel sample average approximate algorithm was also proposed to solve the energy-aware problem. These
works consider multiple objectives optimization, while the service migration is not modelled in these articles. In contrast, we
consider service migration in our proposed approach.
Ouyang et al.27 proposed a mobility-aware service placement framework for cost-efficient MEC. In this approach, the latency

is reduced under the constraint of long-term migration cost based on Lyapunov optimization. An adaptive service placement
mechanism aimed at improving latency and service migration cost was also presented22, which was modelled as a contextual
multi-armed bandit problem and solved by an online algorithm based on the Thompson-sampling approach. Wu et al.23 formu-
lated the mobility-aware service selection problem in MEC as an optimization problem and solved it by a heuristic algorithm

4 M. Xu ET AL

that combines the genetic algorithm and simulated annealing algorithm. The proposed approach can reduce the response time
of service and the algorithm execution time is one order of magnitude lower than the baselines. Our work differs from these
studies by considering multiple services management rather than single service management.
Ghosh et al.24 proposed a mobility-driven cloud-fog-edge collaborative real-time framework. The framework considers user

mobility and performs location prediction of users using the Hidden Markov model. It enables efficient information process-
ing and reduces delay. Although considering user mobility, these approaches focus on computation offloading, in mobile edge
computing. Shi et al.25 introduced a mobility-aware computation offloading decision method. It takes user mobility into consid-
eration and adopts an adaptive genetic algorithm for offloading decisions. The proposed method can achieve a better offloading
success rate and lower energy consumption of mobile users. Yu et al.26 presented a dynamic mobility-aware partial offloading
algorithm to investigate the amount of data to be offloaded, which is based on location prediction to minimize energy consump-
tion and service delay. Different from the service management approach in our approach, they perform location prediction and
optimize the service delay via offloading decision instead of service placement among edge servers.

2.3 Critical Analysis
Our proposed work and the related work is compared in Table 1. As a summary, our work contributes to the growing body
of research in service allocation in MEC. To address the delay-aware and mobility-aware challenges of MEC, we apply a
probabilistic-based algorithm for both service initial assignment and dynamic service migration with low computation com-
plexity. We also consider the user mobility and multiple service management during our service allocation process. In addition,
the performance of our approach is validated based on the data derived from realistic traces.

3 SYSTEMMODEL AND PROBLEM STATEMENT

In this section, the system model is introduced for the key components of service scheduling in the typical MEC system. The
model provides mechanisms for abstracting various functions and operations into an optimization problem. A case study is also
provided to clarify the process of service scheduling in the MEC scenario.

3.1 MEC System Model
As shown in Figure 1, the typical MEC systemmodel can provide support for various applications, e.g., health monitoring, smart
city, and smart mobile applications. The model contains several key components include mobile users and edge servers. Mobile
users can utilize mobile devices and applications to request services from the edge servers via wireless access points (APs).
The edge servers are generally small-scale data centers deployed by cloud and telecom operators near mobile users, which can
connect to data centers through a gateway via the Internet. The edge servers and mobile users are separated by the air interface
based on the advanced wireless communication and networking technologies.
From the communication perspective, in MEC systems, communications are typically between mobile users and APs with the

possibility of the device to device (D2D) communications. The edge servers can be co-located with wireless APs, such as base
stations andWiFi routers, which can significantly reduce the capital expenditure. Apart from providing the wireless interface for
edge servers, the wireless APs can also support access to resources from remote data centers via backhaul links. The computation
tasks can be offloaded between the edge serves and remote data centers. If the mobile device cannot connect to edge servers due
to the limited wireless interfaces, the D2D communications with neighboring devices can be complementary. To improve user
experience, the content delivery networks (CDNs) provide the cached data that enable the users to access the data efficiently.
Currently, different commercial technologies can be utilized for mobile communications, e.g., 5G network based on the

combination of long-term evolution (LTE) and new radio-access technologies has been standardized and put into commercial
use. These technologies can support efficient wireless communication from mobile users to APs for varying data rates and
transmission ranges. Bluetooth can be used for short-rangeD2D communications in theMEC system.AndWiFi, LTE, and 5G are
more powerful technologies for long-range communications between mobile users and edge servers, which can be dynamically
switched based on the link reliability.

M. Xu ET AL 5

FIGURE 1MEC System Model

3.2 Problem Definitions
In this subsection, we will introduce the objectives that our approach aims to achieve, including the overall delay and migration
cost, which present the costs from the perspectives of user and service provider respectively.

3.2.1 Basic Entities
In our model, we use U to represent a set of users with sizeN , where ui ∈ U and i ∈ {1, 2,… , N}. Let E to represent a set of
edge servers with size J , where Ej ∈ E and j ∈ {1, 2,… , J} and BS to represent base stations with size L, BSl ∈ BS and
l ∈ {1, 2,… , L}. Let S denote the set of services with size R, where Sr ∈ S and r ∈ {1, 2,… , R}.
For each user ui ∈ U , we denote geographic location at time t by pi(t) = (lati, lngi), specifically in latitude lati and longitude

lngi. Each user utilizes one edge service represented as Sui , which needs to be deployed on edge servers. We denote the edge
server by Ej ∈ E, which is attached to a base station BSl. Therefore, the geographical location of the edge server is the same as
that of the base station, denoted as pl = (latl, lngl). The resource capacity of each edge server is represented by CEj (aj , mj , nj),where aj , mj , and nj represent the CPU, memory, and network capacity respectively, and the capacity will affect the computation
latency of the services. User ui accesses the services Sui from the edge servers Ej is denoted as Eui,j .At time t, user ui connects to the nearest base station BSl, we denote the distance between the user ui and the base sta-
tion BSl as Di,l = ‖

‖

pi(t) − pl‖‖, that is the Euclidean distance between the user and the base station. The nearest base station
is denoted as current base station, and as the user moves, current base station of the user will automatically switch. And,
selected base station denotes the base station on which the edge server that hosts ui’s service is deployed. Because of the switch
of current base station and the variation of the edge server’s workload, the latency of the edge service may increase, which
are modelled as parameters in our model. Therefore, a scheduling algorithm is required to determine if the service should be
migrated to another edge server and to choose a destination server to perform the service migration.

3.2.2 Overall Delay
In our model, the overall delay mainly consists of three parts, namely, communication delay, computation delay and
migration delay. We will explain these three parts of delay in the following sections, which can determine the user experience.

6 M. Xu ET AL

Communication delay can be split into two parts, including the delay of the data transmission from user ui to its
current base station and the delay of current base station forwarding data to the base station that hosts the edge server.
Users perform the first part through the wireless channel. Here, we apply Eq. (1) for calculating the maximum transmission

rate (tr) of the wireless channel based on Shannon Theory28.
tr = W log2 (1 +

Sp
gNp

), (1)
where W denotes the channel bandwidth, Sp denotes the transmission power of the mobile device and Np denotes the noise
power. Besides, channel gain between the location of the user and its current base station is denoted as g, varying as the user
moves from one place to another.
The second part of the communication delay is the transmission delay between current base station (BSc) and

migrated base station (BSm). We use a matrixMc,m to represent the delay between BSc and BSm.Mc,m is infinite if BSc and
BSm are not connected directly. Therefore, the second part of the communication delay can be computed by finding the shortest
path with the minimum transmission delay, which we denote as D(BSc , BSm).
Then, we can get the communication delay Tcm by:

Tcm(ui, Ej , Em) =
ci
tr

+D(BSc , BSm). (2)
where ci is the task size of ui.
Computation delay is the task execution time of services deployed on the edge server. Since each edge server can host several

services and execute multiple tasks at the same time, the execution time of each task varies due to the available resources of the
edge server. The task execution time Tcp can be calculated by:

Tcp(ui, Ej) =
ci
wj
. (3)

where wj is the computational workload allocated to the task by edge server Ej .
Migration delay is the downtime of service migration. During the migration, the service needs to be suspended for a period of

time and then the in-memory state of the service will be transferred to the destination edge server. Then, the service will restart
on the new edge server and process service requests from mobile users. Therefore, the migration will also increase the service
delay due to the downtime, which should also be considered in the overall delay. The migration delay Tm can be modelled as:

Tm(BSc , BSm) =
{

0, if BSc = BSm,
Mc , if BSc ≠ BSm,

when the migration is not triggered, the migration delay is 0, andMc can be a constant, indicating the migration delay.
Therefore, the overall delay can be calculated based Tcp and Tcm. One of our objectives is to minimize the overall delay to

assure user experience that can be represented as:

min ∶ 1
P ×N × J

P
∑

t

N
∑

i

J
∑

j

{

Tcp(ui, Ej) + Tcm(ui, Ej , Em) + Tm(BSc , BSm)
}

, (4)

where t ∈ {1, 2,… , P } represents the observed time interval.

3.2.3 Migration Cost
The migration cost is applied as another important metric in our model. From the perspective of service providers, it represents
the cost formigrating services and the placement of services. Themigration cost of serviceSr is denoted asCSr

j,m = F (Sr, Ej , Em),
where F is the function to calculate the transmission cost and computation cost of service migration.
As a user keeps moving in a period of time, its service may be migrated many times to reduce the delay and ensure the quality

of experience. Thus, we can compute the sum of the cost of all service migration and obtain the migration cost by Eq. (5):

min ∶ Co =
R
∑

r=1

|SM r
|

∑

k=1
Cr
SM r

k,j ,SM
r
k,m
, (5)

s.t. ∶ ∑

i
ci ≤ cj ,∀Eui,j , (6)

M. Xu ET AL 7

where SM r is the set of all services to be migrated, SM r
k,j and SM r

k,m denote the source edge server Ej and the destination
edge server Em of the ktℎ migration of SMr, respectively.
Our objective function is to minimize the migration cost Co in Eq. (5), while satisfying the constraint in Eq. (6) that the

requested resources of services should be no more than the maximum capacity of Ej .

3.3 Case Study

BS3BS1

BS2

u1

u2

E1

E2

Mobile Core Network

Base Station

Service Allocation Controller

Edge Server

Cloud Platform

Mobile Users

User Location Collector

General Edge Service

FIGURE 2 Case Study

As shown in Figure 2, we consider a case study consisting of a set of base stations, each co-located with an edge server
deployed with multiple edge services, and a group of mobile users moving around among different areas covered by different
base stations. To handle the service scheduling process and ensure service continuity, the entities in this case study include:
(1) a MEC platform containing edge servers, (2) edge services execute users’ requests, (3) user location collector, (4) service
migration controller, and (5) a virtualization infrastructure.
Each mobile user is associated with a specific edge service, which handles users’ requests and can be migrated to another

edge server by tracking the mobile user’s movements. For example, as a mobile user approaches the edges of a base station
that can be covered, the user location collector running on edge servers informs the nearby edge servers that the mobile user
is about to perform the handover to a new area covered by another base station. The information is then used by the service
allocation controller to decide whether to migrate the edge service to the other edge server, and in that case, which edge server
is to be performed the migration. The service allocation controller has an overview of the entire MEC system and server as
the orchestration. Finally, the virtualization infrastructure provides computation, storage, and network resources to provision
resources for edge services. It can also manage the migration process by collecting information about the remaining resources
of edge servers.
In this use case, as shown in Figure 2, we consider the following situation: first, user u1 connects to the base station BS1, but

the service required by u1 is deployed on E1 built aside BS2. Thus, to access the service deployed on E1, u1 should transmit
message to BS1 first, and then BS1 forwards the message to BS2, which sends the packet to E1. On the other hand, user u2
connects to the base station BS3, attached by the edge server E2 hosting the service of u2, so the message transmission between
u2 and E2 does not need other base stations. Our objective is to optimize the allocation of edge services on edge servers to avoid
the high delay for users.
Although the use case can be applied to both live and static service migrations, we focus on live and stateful service migration

processes. Service migration is ensured between edge servers through the backhaul links that have sufficient data rate, thus the

8 M. Xu ET AL

performance of service migration performance is not undermined by network traffics. This assumption can be relaxed, but in
this paper, we restrict the analysis to this case, which also conforms with the powerful capability of the 5G scenario.
To realize our proposed approach, at each time interval, mobile user locations should be gathered to calculate the delay between

the user and edge servers. The utilization of edge servers is given as the probability to perform the service allocation between
edge servers. The probability is then used in the service scheduling algorithm to compute the possibility of edge servers accepting
migrated services. To be noted, the mobile user location collector and the scheduling algorithm in the service allocation allocator
are independently executed. Therefore, when the service allocation controller decides which edge service to be migrated and
where should be migrated, the mobile user location collector sends the most updated location data for each mobile user.

3.4 Proof of NP-hardness
In this subsection, we prove that the problem we aim to solve is an NP-hardness problem, and the proof is as below:
Proof:We consider the decision version of the set cover problem17, which is NP-complete. We have set , a set of subset

, and a number k ∈ ℕ. The objective is to find if a set , which is subset of, can exist to satisfy || ≤ k and⋃ = .
We define the Service Migration with Set Constraints (SMSC) problem as follows: We assume that we have ||−k+1 types

of services. And each type of service can have multiple services. Each type of service will only be deployed on a single node,
which means one node will not have more than one service with the same type. One of the service types is special and denoted
as i′. Let S′ ≜ S∖{i′}. We also define V ≜ . Every node is a subset of . For every normal service type i, we have a user ui
that needs to connect with this type of service. For this user, we define Sui ≜ i and Eui ≜ V . For every z ∈ , there is a user u′z.For the user, let Su′z ≜ i′ and Eu′z ≜ {Y ∈  ∶ z ∈ Y }.
We consider that the solution to the set cover problem is , and the servicemigration solution is defined asM . For each service

i ∈ S′, it chooses an node ji in∖ and ji ≠ ji∗ . For i∗ ∈ S′ with i∗ ≠ i. This can be assured as |∖| ≥ ||− k = |S′
|. For

each service i ∈ S′, we can defineMi ≜ ji andMi′ =  . This migration operation is feasible as a single node is only deployed
with one instance of the same type of service. The objective that every user can be satisfied with QoS can be denoted as: consider
a service i ∈ S′, the user ui can be satisfied ifMSui

⋂

Eui = Mi
⋂

V = Mi ≠ ∅. For every z ∈ , the user u′z can be satisfied
if there is a set Y ′ ∈  with z ∈ Y , therefore,MS

u′i

⋂

Ek′z =Mi′
⋂

{Y ∈  ∶ z ∈ Y } =M
⋂

{Y ∈  ∶ z ∈ Y } ⊇ {Y ′}. The
above proof shows that a solution exists to satisfy the QoS of users in SMSC problem.
If all the users are satisfied as defined in the above SMSC problem, we have for every i ∈ S′, the user ui is satisfied with the

QoS requirement. Therefore service Sui = i must be placed on some nodes. Let be the set of all edge nodes j that services in
S′ are deployed. Since only one service of the same type will be placed on the same node, we can have || ≥ |S′

|, which is
bounded below by || − k = |V | − k. Define = V ∖ which has cardinality at most k. For any z ∈ , if user u′z is satisfied,there must be at least one node in Eu′z = {Y ∈  ∶ z ∈ Y } that service Su′z = i′ is placed. We denote this node as Y ′ and
Y ′ ∉ . The reason is i′ is already deployed there. We consider that a single node only hosts a single instance of the same type
of service, no need to deploy services on nodes in S′. Then we can have Y ′ ∈  and z ∈ ⋃

 . Since it holds every z ∈ , we
can have⋃ = , which means  is the solution to the set cover problem.
The above proves that the SMSC is NP-hard.

4 PROBABILISTIC DELAY-AWARE AND MOBILITY-AWARE APPROACH FOR EDGE
SERVICE MANAGEMENT

In this section, we introduce Probabilistic based Delay-aware and Mobility-aware Approach (PDMA) for edge service man-
agement. We focus on two service scheduling procedures, Service Assignment and Service Migration. We present our
probabilistic-based algorithms to perform service scheduling while reducing service latency and migration costs. The proposed
approach is inspired by the probabilistic method proposed in [26] for VM consolidation in the cloud computing environment,
and revisions have been made to adapt to the scenario of MEC.

M. Xu ET AL 9

4.1 Service Assignment
In the service assignment procedure, when a mobile user sends a service request, the service assignment algorithm assigns a
suitable edge server to host the service. In most service assignment algorithms, cloud coordinators need to perform computation-
intensive calculations to determine an allocation decision, which requires massive computing resources and long processing
time. Additionally, in MEC, the edge-to-cloud communication delay is much higher than the edge-to-edge delay. Therefore,
performing the scheduling algorithms by the cloud coordinator will greatly increase the service delay.
To address this, our approach leaves the decisions to each edge server. The mobile user sends the request for a service assign-

ment to the edge servers. And, instead of sending this request to the cloud, each edge server decides whether to host new services
based on the current resource utilization and network status.
For example, we consider the CPU utilization of edge servers as the metric when making a service assignment decision. If

the CPU utilization is close to or even exceeds the utilization threshold, the edge server is very likely to be overloaded after
deploying a new service, which will decrease the processing capability of the edge server and thus lead to higher service latency.
To avoid performance degradation, the edge server should not accept the service assignment request. On the other hand, those
idle servers can be shut down to reduce energy consumption by migrating services to other servers. Other edge servers with
moderate CPU utilization will have a higher success rate when making assignment decisions. However, different from the VM
scheduling in the cloud data center, the service scheduling in MEC involves the data transmission of mobile services over long
distances via wireless channels. Therefore, edge servers should also take the transmission cost into consideration when making
service assignment decisions.
In our approach, the edge server performs a Bernoulli trial to make the service assignment decision. A successful trial indicates

that the server can host a new service. We utilize an assignment function to determine the probability of a successful trial. The
assignment function is defined as follows:

f (x, p, T) = 1
Mp

xp(T − x), 0 ≤ x ≤ 1, (7)

Mp =
pp

(p + 1)p+1
T p+1, (8)

where x is the utilization of a certain resource of the edge server, T is the upper threshold of the utilization of this type of
resource, e.g., CPU, and p is the shape parameter that can adjust the probability distribution. If x > T , the value of the assignment
is 0, which means rejecting the service assignment request. Mp is a regularization parameter used to adjust the value of the
assignment function f to the maximum value of 1.

0.0 0.2 0.4 0.6 0.8 1.0
Resource utilization

0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue
 o

f a
ss

ig
nm

en
t f

un
ct

io
n

p=1
p=2
p=3
p=4
p=5

FIGURE 3 Assignment Function, T = 0.9

Figure 3 shows the distribution of the assignment functionwith varied p value. Assuming that the resource utilization threshold
T is 0.9, the resource utilization x changes within the range of [0,T]. As shown in the figure, under different shape parameters, the
probability value of the assignment function first increases with the growth of resource utilization x, and reaches the maximum
value when x = pT

p+1
. This trend conforms to the basic idea of our service assignment. For different shape parameters, the value of

10 M. Xu ET AL

this function is also very low when the resource utilization is close to the threshold, which avoids the allocation of new services
to the server that is prone to be overloaded. We can also observe that when the shape parameter is larger, the highest acceptance
probability is closer to the threshold. Therefore, we can alter the shape parameter based on the average resource utilization to
adjust the probability of service assignment.
If the trial is successful, it means the edge server agrees to accept the deployment of the new service and responses with an

acceptance message. The coordinator is responsible for collecting all the messages and selecting the most suitable edge server
to host the service. Specifically, the most suitable one can be the server with the least migration cost to minimize the impact of
service migration on user service experience. If all the edge servers reject the assignment request, the coordinator should scale
the edge data center (e.g., deploy a new edge server), and allocate the new edge services.
The pseudocodes of the service assignment algorithm are described in Algorithm 1. The algorithm focuses on assigning the

associated edge service for a mobile user to a specific edge server. The service assignment algorithm can be utilized for both
initial service assignment or service assignment in the service migration process. First, the mobile user connects to the nearest
base station and sends the service request to the edge server. If initial is true, it means that the approach is performing the
initial placement of a mobile service, so the algorithm sets the location of the service the same as the mobile user (lines 1-2).
The algorithm attempts to collect assignment decisions from all edge servers that satisfy the delay threshold at the current time
slot. ES_Candidate includes all edge servers that accept the service assignment request (lines 4-9). If the candidate list is not
empty, we select an edge server that is nearest to the current location of service to assign the service. Otherwise, if no available
edge server is in the candidate list, the algorithm should perform scaleUp to switch on an idle edge server to host the service
(lines 10-14).

Algorithm 1: Service Assignment Algorithm
Input:Mobile User Uk, Edge Service Sk, Edge Server List ES_List, Initial Assignment initial, Delay Threshold Td

1 if initial == T rue then
2 Sk.location← Uk.location

3 ES_Candidate = []
4 for ESi in ES_List do
5 delay ← getDelay(Uk, Sk, ESi) according to Eq. (2)
6 if delay < Td then
7 decision← getAssignmentDecision(ESi) based on Eq. (7)
8 if decision == Accept then
9 ES_Candidate = ES_Candidate ∪ ESi

10 if ES_Candidate is empty then
11 newES ← scaleUp()
12 else
13 newES ← getNearest(Sk, ES_Candidate)
14 Assign(Sk, newES)

Complexity analysis of Algorithm 1: the decision of whether the service is an initial assignment or not (lines 1-2) takes
a time of O(1); the candidate edge servers collection process (lines 4-9) takes a time of O(J), where J is the number of edge
servers; the edge server selection from the candidate list (lines 10-14) takes a time of O(Jlog(J)), which is based on sorting
algorithm; and the final assignment operation takesO(1) time. Therefore, we can conclude that the time complexity of Algorithm
1 is O(Jlog(J)).

4.2 Service Migration
Since the mobile user moves in real-time, it may move away from the edge server, leading to higher communication latency
and affecting the service experience. At the same time, the running status of mobile services can also change dynamically. For

M. Xu ET AL 11

example, the load of edge servers may exceed the upper threshold and make the edge servers become over-utilized, resulting
in performance degradation. Over-utilized edge servers may not be able to process tasks efficiently, which leads to increase in
the service delay. Therefore, it is required to detect the overloaded situation and perform dynamic service migration to optimize
the deployment of services and reduce the delay. In the following part of this section, we will introduce our service migration
algorithm.
We divide the service migration into two situations for consideration, and the pseudocodes are shown in Algorithm 2.
(1) Delay violates the threshold (lines 3-9). The service delay is monitored during the runtime of the service. When the delay

exceeds the predefined threshold, the service needs to be migrated to ensure the QoS. The current edge server needs to find the
other edge servers that can meet the communication delay requirements, and add them to a candidate list. Afterwards, another
round of service allocation should be performed based on the candidate list.
(2) Edge server becomes over-utilized (lines 14-22). Under this scenario, although the service delay can satisfy the delay

requirement, the edge server becomes over-utilized. Therefore, service migration is also required to optimize the resource uti-
lization of edge servers and avoid performance degradation. To achieve this, a high migration function fℎm is required for the
migration decision.

fℎm =
(

1 + x − 1
1 − Tℎ

)�
, (9)

where x is the resource utilization of edge server, Tℎ is the upper threshold in resource utilization, and � is the shape parameter.

0.5 0.6 0.7 0.8 0.9 1.0
Resource utilization

0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue
 o

f m
ig

ra
tio

n
fu

nc
tio

n

Th = 0.95
Th = 0.9
Th = 0.8
Th = 0.7
Th = 0.6

FIGURE 4Migration function, � = 0.25

Figure 4 shows the distribution of themigration function with varied Tℎ value. Similar to the service assignment procedure, the
edge servers use the high migration function to decide whether to perform service migration. If the Bernoulli trial is successful,
it means the edge server agrees to migrate the services currently running on the server to a new edge server. After the service
migration decision is made, it is also necessary to select the services to be migrated, and then the algorithm performs a new
round of service assignment for the selected services.
For the over-utilized edge servers, the service migration algorithm sorts all services in descending order based on resource

utilization. Then we sequentially deallocate services from the server until the resource utilization of the edge server is lower
than the upper threshold. For the services in the T oMigrate list, the algorithm performs the service assignment procedure to
assign them to new edge servers (lines 23-24).
Complexity analysis of Algorithm 2: the service migration triggered by delay violation (lines 3-9) takes a time ofO(Rm ⋅J),

where Rm is the maximum number of edge services allocated on edge servers, and J is the number of edge servers; allocating
the migrated services (lines 10-12, lines 23-24) takes a time of O(R ⋅ J log(J)), where R is the maximum number of services in
the whole system; the service migration triggered by over-utilized edge servers (lines 14-22) takes a time of O(J ⋅R2

m log(Rm)).Therefore, the time complexity of Algorithm 2 is O(Rm ⋅ J + 2R ⋅ J log(J) + J ⋅ R2
m log(Rm)).To be noted, our approach supports the smooth connection of services by applying service replication, which is quite similar

to the VM migration process in cloud computing. When an edge service is going to be migrated, a copy of edge service will

12 M. Xu ET AL

be first replicated to another edge while the original edge service is still running and connecting with mobile user. When the
replicated edge service is ready, the connection will be switched from the original one to the migrated one. After the mobile
user connects to the migrated edge service, the original edge service can be destroyed if no user connects to it.

Algorithm 2: Service Migration Algorithm
Input:Mobile User U , Edge Service S, Edge Server List ES_List, Delay Threshold Td

1 T oMigrate = []

2 // (1) Delay violates the threshold.
3 for ESi in ES_List do
4 for Sj in ESi.Service_List do
5 U ← Sj .user
6 delay ← getDelay(U,Sj , ESi) according to Eq. (2)
7 if delay >= Td then
8 T oMigrate← T oMigrate ∪ Sj
9 Deallocate Sj from ESi

10 for Si in T oMigrate do
11 ServiceAssignment(Si) by using Algorithm 1
12 T oMigrate.clear()

13 // (2) Migrate services from over-utilized edge servers.
14 for ESi in ES_List do
15 if overUtilized(ESi) == true then
16 result ← getMigrationDecision(ESi) based on Eq. (9)
17 if result == Accept then
18 Sort ESi.Service_List by CPU Utilization
19 while overUtilized(ESi) == true do
20 S ← getService(ESi)
21 T oMigrate ← T oMigrate ∪ S
22 Deallocate S from ESi

23 for Si in T oMigrate do
24 ServiceAssignment(Si) by using Algorithm 1

4.3 PDMA Competitive Analysis
We apply competitive analysis to analyze our proposed approach based on probabilistic management for services on edge servers.
We assume that there are J heterogeneous edge servers, and R heterogeneous services. The communication time between the
user and edge server from the original connection and new connection (after migration) is denoted as tc and t′c . The correspondingconnection cost per unit time are denoted as Ce and C ′

e. The processing time of the original edge server is tp, and the processing
time of the migrated edge server is t′p. The processing cost per unit time for the original edge server and migrated edge server
are denoted as Cp and C ′

p. Let tm be the migration time and Cm be the migration cost per unit time. Without loss of generality,
we can define tcCe = 1, tpCp = " and tmCm = �. Let � be the times of migration that happens during the observation time.
Theorem 1. The upper bound of the competitive ratio of PDMA algorithm for the edge service migration is PDMA(U)

OPT (U)
≤

1 + (2+"+�)JR
(1+"+�)(J+R)

.

M. Xu ET AL 13

Proof. Under the normal status, the number of services deployed on edge servers is R∕J , while in QoS violated or overloaded
situation, at least R∕J + 1 services are deployed to a single edge server. Thus, the maximum number of QoS violated nodes is
Jo = ⌊

R
R∕J+1

⌋, which is equivalent to Jo = ⌊R∕J + R⌋.
For a set of users U , the optimal offline algorithm for problem only keeps the services on edge servers and migrates minimum

services, thus the total cost of an optimal offline algorithm is defined as:
OPT (U) = �(tcCeJ + tpCpJ + tmCmJ). (10)

For our proposed approach, the total cost with migration can be defined as below:
PDMA(U) = �{tcCe(J + Jo) + t′cC

′
eJo + tpCpJ + t′pC

′
pJo + tmCm(J + Jo)}. (11)

According to our proposed approach, the communication cost that user connect with the migrated node should be no more
than the orignal node, thus t′cC ′

e ≤ tcCe . And the processing cost of migrated node is no more than the orignal node, thus
t′pC

′
p ≤ tpCp. Then we have:

PDMA(U) ≤ �{tcCe(J + 2Jo) + tpCp(J + Jo) + tmCm(J + Jo)}. (12)
Therefore, the competitive ratio of an optimal deterministic algorithm as:

PDMA(U)
OPT (U)

≤
�{tcCe(J + 2Jo) + tpCp(J + Jo) + tmCm(J + Jo)}

�(tcCeJ + tpCpJ + tmCmJ)

=
tcCeJ + tpCpJ + tmCmJ + (2tcCe + tpCp + tmCm)Jo

tcCeJ + tpCpJ + tmCmJ

= 1 +
(tcCe + tpCp + tmCm)Jo + tcCeJo

(tcCe + tpCp + tmCm)J

= 1 +
Jo
J

+
tcCeJo

(tcCe + tpCp + tmCm)J
.

(13)

As Jo = ⌊

JR
J+R

⌋, we have Jo ≤ JR
J+R

The competitive ratio is defined as:
PDMA(U)
OPT (U)

≤ 1 +
Jo
J

+
Jo

(1 + " + �)J

= 1 +
(2 + " + �)Jo
(1 + " + �)J

≤ 1 +
(2 + " + �)JR

(1 + " + �)(J + R)
.

(14)

5 PERFORMANCE EVALUATIONS

To evaluate algorithm performance, we simulate the service migration scenario in MEC based on iFogSim9 and conduct exper-
iments with several baselines. To carry out the experiments, three datasets are utilized for our experiments, including (1) the
location of the base stations, (2) the mobility traces of users, and (3) the workload data of edge services. We will first introduce
these three datasets in this section, and then explain the configurations and procedures of our experiments. At the end of the
section, we will present the evaluation results of our algorithms.

5.1 Datasets Description
We use three real-world datasets mentioned above to carry out our experiments.
First, we get the base station dataset from antenna distribution dataset29, which consists of the location information of 422

base stations in San Francisco. Figure 5 shows the distribution of the base station dataset. It can be observed that the density of
edge servers varies in different areas, e.g., more base stations are deployed in the central business district.

14 M. Xu ET AL

FIGURE 5 Base station dataset

To simulate a real-world MEC scenario, we obtained realistic mobility traces of 536 taxis in San Francisco10. The dataset
records the locations of each taxi (represented by the latitude and longitude) every 60 seconds on May 31, 2008. Each taxi in
this dataset acts as a mobile user in our simulation and runs one mobile service that needs communications with edge servers
while traveling around the city. The distance between base stations and mobile users can be calculated by Euclidean distance.
This combines the first two datasets and also helps us to simulate an Internet of Vehicles (IoV)30 scenario. Figure 6 depicts the
trace of one taxi in the whole day. We can notice that the location of the taxi can be changed significantly during the day, which
also demonstrates the need for service migration to support the user in a delay-aware and mobility-aware manner.
We also simulate the workload of each service running on the edge servers based on the dataset derived from PlanetLab

workload31 that includes CPU utilization data of thousands of VMs allocated to servers. We utilize the CPU utilization of VMs
to represent the CPU utilization of edge services. The utilization of edge servers will be influenced by the utilization of edge
services deployed on them.

5.2 Rush Hour Simulation
Nowadays, the population in the large city is quite concentrated, especially during the rush hour, e.g., 8:00 am to 9:00 am on
the weekday’s morning. When a large volume of mobile users rush into certain roads and areas in the city, resulting in serious
traffic congestion. During the rush hour, the edge servers in the crowded areas are more prone to be overloaded compared with
non-rush hours. If the edge services are not properly scheduled, the delay of the services will be greatly increased, which will
affect the quality of experience of users. Therefore, attention should be paid to the edge service management in rush hour.
To simulate the service scheduling in rush hours, based on the original workloads, we select a period of time as rush hour

and a crowded area to simulate the scenario of the city during the rush hour, and evaluate the effectiveness of our scheduling
algorithm. We first utilize the K-means clustering algorithm32 on the mobility traces of taxis to select a location with the highest
density of taxis. Then, we use this location as the center to frame a square (4km × 4km) as the congested area in the rush hour.

M. Xu ET AL 15

FIGURE 6 Taxi traces

We then extract the data of 147 base stations in this area from the whole dataset. The red square in Figure 5 shows the selected
area, which represents a much more dense distribution of mobile users than other areas. Afterwards, to choose the rush hour, we
count the number of taxis in this area in different time periods and pick three hours of May 31, 2008 with the maximum number
of taxis. After that, we extract the mobility traces of taxis moving in this congested area during the rush hour.
For this part of the experiment, we generate new workload traces for edge services derived from the original PlanetLab

dataset. As the original resource utilization is low in PlanetLab dataset, we consider multiple edge services are connected so
that they should be deployed together, in order to increase the resource utilization of edge servers and thus simulating the heavy
workloads during the rush hour. This assumption conforms to the motivation of microservice architecture33 that can be applied
to the MEC environment. Based on the above steps, we can perform simulations for the rush hour scenario, and the results will
be demonstrated in the following sections.

5.3 Experiment Configurations
We conducted all our experiments on the same computer with iFogSim. The experimental configurations are as below:
For Eq. (1), we set the channel bandwidthW to be 20 Mhz and transmitted power of taxi Sp to be 0.5W, and the noise power

Np to be 2 × 10−13 W. Besides, the wireless channel gain g is set as 127 + 30 log d. We generate the delay matrix at every
scheduling interval, and the delay of each link mi,j ∈M is randomly generated between 5ms and 50ms.
For the configurations of edge servers, each server has 8 CPU cores with Millions of Instructions Per Second (MIPS) of 2000,

3000, and 4000, 80GB of RAM, and 10TB of storage. Each edge service is randomly configured to request 1000, 1500, 2000,
2500 of MIPS, respectively, and 8 GB of RAM. The instructions of the task executed by each edge service are configured as 60
million.
For the algorithms, the scheduling interval is configured to 60 seconds. The delay threshold of PDMA is configured as 75ms.

To evaluate the performance of our service migration algorithm, we focus on two metrics to evaluate the performance, including
the Migration Cost and the Overall Delay based on the optimization objectives. In addition, we also record the Number of
Overloaded Servers to evaluate the overloaded situation, especially for the rush hours. The descriptions of the metrics are as
below:

• Overall delay represents the average delay of all services during the experiments as represented in Eq. (4).
• Migration cost is the sum of the cost of all service migrations as represented in Eq. (6). In our simulation, the function
F calculates the distance between the source server and destination server.

16 M. Xu ET AL

• Average number of overloaded edge servers is applied to evaluate the effect of algorithms to relieve the overloaded
situation. The overloaded hosts are identified based on the predefined utilization threshold. In our experiments, we set the
utilization threshold as 0.9, as this value has been used widely to identify overloaded hosts in data centers.

We also compare our approach with three scheduling algorithms.
• Nearest edge server first (NF): it assigns the edge service to the edge server closest to the mobile user based on distance,

which can reduce communication costs.
• Never migrate (NM): it never migrates the edge services, thus the migration costs can be reduced.
• Top-K: it sorts all the edge servers by their CPU utilization and selects one randomly from the top K busiest servers to host

a new coming or migrated edge service randomly. Here, K is configured as 0.1 × J , where J is the size of edge servers.
• CHERA34: it is a clustering-based heuristic algorithm for edge resource allocation. It adopts a clustering procedure to

allocate applications to suitable edge servers and minimizes the average service response time.

5.4 Experiments and Results
We divide the experiments into two parts, including the experiments on PlanetLab traces and the experiments on Rush Hour
traces. In each part, we investigate two parameters on algorithms performance. The first one is distance tℎresℎold to represent
the coverage of base stations. If the distance between a mobile user and a base station exceeds the distance threshold, the user
will not be able to access the base station and thus the service connection should be switched to another base station, which
will affect the service delay. The second one is ratio of clients and servers number to demonstrate the scalability of scheduling
algorithms. Since the PlanetLab traces specify the number of clients, we reduce the number of edge servers to modify the ratio.
And, for the Rush Hour simulations, we increase the volume of mobile users in the crowded area to simulate the scenario.

5.4.1 Results with PlanetLab Traces
We first present the experiment results based on PlanetLab traces by varying the coverage of the base station and number of
edge servers.
(a) Varied coverage of base stations
We configure the number of mobile users to be 1000 and vary the distance threshold from 200m to 2000m. As shown in

Figure 7, the distance threshold has a slight impact on the three metrics. Figure 7a shows the results of overall delay. CHERA
achieves close delay with PDMA and performs lower delay than NF and others. The overall delay of PDMA is lower than 62ms
when the coverage of the base station is longer than 200m. The migration cost of PDMA is much lower than that of CHERA,
indicating that PDMA can decrease the communication overhead during the service migration. Since the CPU utilization of
PlanetLab and the ratio of mobile clients to edge servers is low, very few edge servers become overloaded during the simulation.
(b) Varied number of edge servers
The average volume of mobile users in PlanetLab traces is 1000. To modify the ratio of clients and servers number, we

configure the number of edge servers to be from 100 to 400. As shown in Figure 8, we can notice that PDMA is able to maintain
good performance when there are fewer servers. When there are 100 edge servers, the overall delay of PDMA is close to that
of CHERA and is 13.5ms lower than that of NM. The migration cost of PDMA is only 4.3%, 15.8% and 30.3% compared with
Top-K, CHERA and NF, respectively. For the number of overloaded edge servers, less than 5 servers are over-utilized when
using PDMA, while CHERA can lead to more than 12.

5.4.2 Results with Rush Hour Traces
We present the experiment results of rush hour traces in this part. First, we only use the data of base stations in the selected
area and deploy one edge server on each base station. Then, we configure the two parameters with varied values and run several
rounds of simulations.
(a) Varied coverage of base stations
We configure the number of mobile users to be 1000 and vary the distance threshold from 200m to 2000m. As shown in

Figure 9a, except for NM, other algorithms can perform better on overall delay when increasing the distance threshold. It results

M. Xu ET AL 17

0.2 0.4 0.6 0.8 1.0 1.5 2.0
Distance threshold (km)

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

D
el

ay PDMA
NF
NM

Top-K
CHERA

(a) Overall delay
0.2 0.4 0.6 0.8 1.0 1.5 2.0

Distance threshold (km)

0.0

0.5

1.0

1.5

2.0

M
ig

ra
tio

n
C

os
t

1e9

PDMA
NF
NM

Top-K
CHERA

(b)Migration cost

0.2 0.4 0.6 0.8 1.0 1.5 2.0
Distance threshold (km)

1

2

3

4

5

N
o.

 o
f O

ve
rl

oa
de

d
Se

rv
er

s

PDMA
NF
NM

Top-K
CHERA

(c) Number of Overloaded Servers
FIGURE 7 PlanetLab: Performance comparison of algorithms with varied distance thresholds

100 150 200 250 300 350 400
Number of Edge Servers

0.060

0.065

0.070

0.075

D
el

ay

PDMA
NF
NM

Top-K
CHERA

(a) Overall delay
100 150 200 250 300 350 400

Number of Edge Servers

0.0

0.5

1.0

1.5

2.0

M
ig

ra
tio

n
C

os
t

1e9
PDMA
NF
NM

Top-K
CHERA

(b)Migration cost

100 150 200 250 300 350 400
Number of Edge Servers

0

5

10

15

N
o.

 o
f O

ve
rl

oa
de

d
Se

rv
er

s

PDMA
NF
NM

Top-K
CHERA

(c) Number of Overloaded Servers
FIGURE 8 PlanetLab: Performance comparison of algorithms with varied number of edge servers

from the decrease in the number of service migrations, which can also be observed in Figure 9b. The migration cost of PDMA
is the closest to that of NM (the cost is zero). The NF always chooses the nearest edge server to the mobile user to migrate
the service and thus leading to more migration cost. Top-K performs the worst on migration cost because the top K busiest
servers may be far away from the current edge server. Figure 9c shows the number of overloaded servers when utilizing different
algorithms. PDMA controls the number of overloaded servers to be less than 20 while CHERA incurs nearly 40 overloaded
edge servers and other algorithms incur more than 50. The reason is that PDMA will not select those edge servers that are likely
to be overloaded and thus avoiding more overloaded situations.
(b) Varied volume of mobile users
In order to evaluate the performance of scheduling algorithms in the rush hours, we increase the number of mobile users to

simulate weekday’s morning when more mobile users enter the crowded area. We fix the distance threshold as 1000m and vary
the volume of clients from 200 to 1000. As shown in Figure 10c, the higher volume of mobile clients causes more edge servers
to be overloaded, leading to performance degradation and higher computation delay. Therefore, it can be noticed in Figure 10a
that the overall delay also becomes higher when the number of clients increases. In addition, a higher service delay that exceeds
the delay threshold will trigger more migrations, increasing the migration cost and the migration downtime.
When the number of clients increases to be more than 400, PDMA achieves better overall delay than NF. The overall delay

of PDMA is 64ms, which is 2ms more than that of CHERA, and 6ms, 16ms less than that of NF and NM, respectively, when
the volume of clients is 1000. The migration cost of PDMA is also maintained at a very low level. For example, when there are
1000 clients, CHERA produces 4.6 times more migration cost than PDMA. Compared with other algorithms, PDMA is able to
prevent edge servers from becoming overloaded. As we can observe from Figure 10c, less than 20 edge servers become over-
utilized when there are 1000 mobile clients, which is 55% lower than that of CHERA and is 75% lower than those of NM and
Top-K. Less over-loaded servers can reduce edge servers’ energy consumption and also prevent edge servers from performance
degradation during the rush hour. In addition, PDMA has the lowest increase rate in terms of the three adopted metrics among

18 M. Xu ET AL

0.2 0.4 0.6 0.8 1.0 1.5 2.0
Distance threshold (km)

0.065

0.070

0.075

0.080

D
el

ay

PDMA
NF
NM

Top-K
CHERA

(a) Overall delay
0.2 0.4 0.6 0.8 1.0 1.5 2.0

Distance threshold (km)

0.0

0.2

0.4

0.6

0.8

1.0

M
ig

ra
tio

n
C

os
t

1e8

PDMA
NF
NM

Top-K
CHERA

(b)Migration cost

0.2 0.4 0.6 0.8 1.0 1.5 2.0
Distance threshold (km)

20

40

60

80

N
o.

 o
f O

ve
rl

oa
de

d
Se

rv
er

s

PDMA
NF
NM

Top-K
CHERA

(c) Number of Overloaded Servers
FIGURE 9 Rush Hour: Performance comparison of algorithms with varied distance thresholds

200 400 600 800 1000
Number of Clients

0.060

0.065

0.070

0.075

0.080

D
el

ay

PDMA
NF
NM

Top-K
CHERA

(a) Overall delay
200 400 600 800 1000

Number of Clients

0

2

4

6

8

M
ig

ra
tio

n
C

os
t

1e7
PDMA
NF
NM

Top-K
CHERA

(b)Migration cost

200 400 600 800 1000
Number of Clients

0

20

40

60

N
o.

 o
f O

ve
rl

oa
de

d
Se

rv
er

s

PDMA
NF
NM

Top-K
CHERA

(c) Number of Overloaded Servers
FIGURE 10 Rush Hour: Performance comparison of algorithms with varied volume of clients

all algorithms, which validates the scalability of PDMA that it can be adapted to the scenarios with clients rushing into the MEC
system while ensuring user experience.

5.5 Scalability Discussions
In this part, we discuss the scalability of our proposed approach. The problem of optimally allocating edge services to edge
servers can be modelled as a bin-packing problem with varied bin sizes and prices, where bins represent the edge servers and
items are the edge services to be allocated, bins sizes are the available resources of edge servers, and prices correspond to the
communication costs and migration costs when allocating edge services to the edge server. As the problem is very complex and
proved to be NP-hard, achieving the optimal solution to the problem can be quite time-consuming, especially for a large MEC
system with a huge number of edge servers. We have compared our approach with some deterministic algorithms, e.g., NF and
Top-K, which are variants of the classical Best Fit Decreasing (BFD) algorithm that allocates services to the server with the
least increased costs. The BFD algorithm is a polynomial algorithm and has been proved to use no more than 11∕9 ⋅ OPT + 1
bins35, where OPT is the minimum theoretical number of edge servers.
The centralized and deterministic algorithms, like BFD, can function well for the MEC system with a limited number of edge

servers but can be inefficient for large-scale MEC systems considering the NP-hardness of migrating multiple edge services
simultaneously. Conversely, given the probabilistic nature of PDMA, it is suitable for large-scale MEC systems. We argue that
it is not necessary to send allocation requests to all the edge servers in a large MEC system, as the edge server far away are not
prone to be deployed with edge services considering the mobile users are with low probability to move to the distant location
within the short time. With the Bernoulli trails in our proposed approach that send allocation requests to part of servers in the
system, the traffic overheads can be reduced compared with the BFD-based approaches, and edge servers are added only when
strictly needed. Therefore, the required number of edge servers is close to the required number of the BFD algorithm. In addition,
PDMA fits well with the large MEC system with distributed edge servers, as each service allocation request can be forwarded

M. Xu ET AL 19

to the edge servers in a specific area. This allows the leverage of system heterogeneity by choosing the most cost-efficient edge
edges.
To evaluate the scalability of PDMA, we performed simulations with MEC with different user scales as shown in Figure 10.

The results confirm that as the number of users increases, the migration cost will only increase slightly. The good scalability
is also confirmed by the other performance metrics. For example, the number of overloaded edge servers increases slowly with
the growth of the number of users.

6 CONCLUSIONS AND FUTUREWORK

This paper addresses the NP-hardness problem of delay-aware andmobility-aware servicemanagement in theMEC environment,
which is sensitive to the communication costs generated in this environment. The aim is to allocate edge services to the suitable
edge servers through the initial assignment and dynamic service migration to satisfy the users in terms of response time when
they are moving around. With PDMA proposed in this work, the assignment and migration of edge services are based on
Bernoulli trials that decide whether the edge server will accept the deployment of a specific service based on the running status.
The probabilistic and low-complexity nature of our proposed approach makes it to be efficient in an environment with a large
number of edge servers and rather short execution time. Especially compared with the online learning-based approaches, which
can have significant computational complexity growth when the number of servers and services increases.
A theoretical proof has been provided to illustrate that our proposed approach can be bounded to the optimal solution. Simu-

lation results based on iFogSim also demonstrate that our proposed approach can reduce the communication delays for users and
transmission costs due to the service migration. For rush hours in the urban city, the proposed approach can efficiently improve
the user experience.
As for future work, we would like to 1) investigate the proposed approach into a prototype system, 2) apply learning-based

approach to predict the mobility of users, and 3) integrate offloading techniques into our model to further improve algorithm
performance.

ACKNOWLEDGMENT

This work is supported by Key-Area Research and Development Program of Guangdong Province (NO. 2020B010164003),
National Natural Science Foundation of China (No. 62072451, 62072187s), and SIAT Innovation Program for Excellent Young
Researchers.

References

1. Xu M, Buyya R. Brownout Approach for Adaptive Management of Resources and Applications in Cloud Computing
Systems: A Taxonomy and Future Directions. ACM Comput. Surv. 2019; 52(1). doi: 10.1145/3234151

2. Galloway JM, Smith KL, Vrbsky SS. Power aware load balancing for cloud computing. In: Proceedings of the World
Congress on Engineering and Computer Science. ; 2011: 19–21.

3. Xu M, Buyya R. BrownoutCon: A software system based on brownout and containers for energy-efficient cloud computing.
Journal of Systems and Software 2019; 155: 91 - 103. doi: https://doi.org/10.1016/j.jss.2019.05.031

4. Wu H, Zhang Z, Guan C, Wolter K, Xu M. Collaborate Edge and Cloud Computing With Distributed Deep Learning for
Smart City Internet of Things. IEEE Internet of Things Journal 2020; 7(9): 8099-8110.

5. Brogi A, Forti S, Guerrero C, Lera I. How to place your apps in the fog: State of the art and open challenges. Software:
Practice and Experience 2020; 50(5): 719-740. doi: 10.1002/spe.2766

6. Shahidinejad A, Ghobaei-Arani M. Joint computation offloading and resource provisioning for edge-cloud computing
environment: A machine learning-based approach. Software: Practice and Experience 2020. doi: 10.1002/spe.2888

http://dx.doi.org/10.1145/3234151
http://dx.doi.org/https://doi.org/10.1016/j.jss.2019.05.031
http://dx.doi.org/10.1002/spe.2766
http://dx.doi.org/10.1002/spe.2888

20 M. Xu ET AL

7. Guo Y, Wang S, Zhou A, Xu J, Yuan J, Hsu CH. User allocation-aware edge cloud placement in mobile edge computing.
Software: Practice and Experience 2020; 50(5): 489-502. doi: 10.1002/spe.2685

8. Badri H, Bahreini T, Grosu D, Yang K. Energy-Aware Application Placement in Mobile Edge Computing: A Stochastic
Optimization Approach. IEEE Transactions on Parallel and Distributed Systems 2020; 31(4): 909-922.

9. Gupta H, Vahid Dastjerdi A, Ghosh SK, Buyya R. iFogSim: A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing environments. Software: Practice and Experience 2017;
47(9): 1275–1296.

10. crawdad. A Community Resource for Archiving Wireless Data At Dartmouth; 2009. http://crawdad.org/epfl/mobility/.
11. Wang S, Guo Y, Zhang N, Yang P, Zhou A, Shen XS. Delay-aware Microservice Coordination in Mobile Edge Computing:

A Reinforcement Learning Approach. IEEE Transactions on Mobile Computing 2019: 1-1.
12. Wang S, Urgaonkar R, Zafer M, He T, Chan K, Leung KK. Dynamic Service Migration in Mobile Edge Computing Based

on Markov Decision Process. IEEE/ACM Transactions on Networking 2019; 27(3): 1272-1288.
13. Wang S, Urgaonkar R, Zafer M, He T, Chan K, Leung KK. Dynamic service migration in mobile edge-clouds. In: 2015

IFIP Networking Conference (IFIP Networking). ; 2015: 1-9.
14. Samanta A, Tang J. Dyme: Dynamic Microservice Scheduling in Edge Computing Enabled IoT. IEEE Internet of Things

Journal 2020; 7(7): 6164-6174.
15. Samanta A, Li Y, Esposito F. Battle of Microservices: Towards Latency-Optimal Heuristic Scheduling for Edge Computing.

In: 2019 IEEE Conference on Network Softwarization (NetSoft). ; 2019: 223-227.
16. Poularakis K, Llorca J, Tulino AM, Taylor I, Tassiulas L. Joint Service Placement and Request Routing in Multi-cell Mobile

Edge Computing Networks. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. ; 2019: 10-18.
17. Pasteris S, Wang S, Herbster M, He T. Service Placement with Provable Guarantees in Heterogeneous Edge Computing

Systems. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. ; 2019: 514-522.
18. Zhang C, Zheng Z. Task migration for mobile edge computing using deep reinforcement learning. Future Generation

Computer Systems 2019; 96: 111 - 118. doi: https://doi.org/10.1016/j.future.2019.01.059
19. Wan L, Sun L, Kong X, Yuan Y, Sun K, Xia F. Task-Driven Resource Assignment in Mobile Edge Computing Exploiting

Evolutionary Computation. IEEE Wireless Communications 2019; 26(6): 94-101.
20. Gao B, Zhou Z, Liu F, Xu F. Winning at the Starting Line: Joint Network Selection and Service Placement for Mobile Edge

Computing. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. ; 2019: 1459-1467.
21. Yu N, Xie Q, Wang Q, Du H, Huang H, Jia X. Collaborative Service Placement for Mobile Edge Computing Applications.

In: 2018 IEEE Global Communications Conference (GLOBECOM). ; 2018: 1-6.
22. Ouyang T, Li R, Chen X, Zhou Z, Tang X. Adaptive User-managed Service Placement for Mobile Edge Computing: An

Online Learning Approach. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. ; 2019: 1468-
1476.

23. Wu H, Deng S, Li W, et al. Mobility-Aware Service Selection in Mobile Edge Computing Systems. In: 2019 IEEE
International Conference on Web Services (ICWS). ; 2019: 201-208.

24. Ghosh S, Mukherjee A, Ghosh SK, Buyya R. Mobi-iost: mobility-aware cloud-fog-edge-iot collaborative framework for
time-critical applications. IEEE Transactions on Network Science and Engineering 2019.

25. Shi Y, Chen S, Xu X. MAGA: A mobility-aware computation offloading decision for distributed mobile cloud computing.
IEEE Internet of Things Journal 2017; 5(1): 164–174.

26. Yu F, Chen H, Xu J. DMPO: Dynamic mobility-aware partial offloading in mobile edge computing. Future Generation
Computer Systems 2018; 89: 722-735. doi: https://doi.org/10.1016/j.future.2018.07.032

http://dx.doi.org/10.1002/spe.2685
http://crawdad.org/epfl/mobility/
http://dx.doi.org/https://doi.org/10.1016/j.future.2019.01.059
http://dx.doi.org/https://doi.org/10.1016/j.future.2018.07.032

M. Xu ET AL 21

27. Ouyang T, Zhou Z, Chen X. Follow Me at the Edge: Mobility-Aware Dynamic Service Placement for Mobile Edge
Computing. IEEE Journal on Selected Areas in Communications 2018; 36(10): 2333-2345.

28. Wyner A. Recent results in the Shannon theory. IEEE Transactions on information Theory 1974; 20(1): 2–10.
29. Antennasearch. Antenna Distribution; 2020. www.antennasearch.com.
30. Ding Z, Xu J, Dobre OA, Poor HV. Joint Power and Time Allocation for NOMA–MEC Offloading. IEEE Transactions on

Vehicular Technology 2019; 68(6): 6207-6211.
31. Park K, Pai VS. CoMon: a mostly-scalable monitoring system for PlanetLab. ACM SIGOPS Operating Systems Review

2006; 40(1): 65–74.
32. Wang S, Zhao Y, Xu J, Yuan J, Hsu CH. Edge server placement in mobile edge computing. Journal of Parallel and

Distributed Computing 2019; 127: 160 - 168. doi: https://doi.org/10.1016/j.jpdc.2018.06.008
33. Xu M, N. Toosi A, Buyya R. A Self-adaptive Approach for Managing Applications and Harnessing Renew-

able Energy for Sustainable Cloud Computing. IEEE Transactions on Sustainable Computing 2020: 1-1. doi:
10.1109/TSUSC.2020.3014943

34. Zhao L, Wang J, Liu J, Kato N. Optimal edge resource allocation in IoT-based smart cities. IEEE Network 2019; 33(2):
30–35.

35. Beloglazov A, Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in Cloud data centers. Concurrency and Computation: Practice and
Experience 2012; 24(13): 1397-1420. doi: https://doi.org/10.1002/cpe.1867

www.antennasearch.com
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2018.06.008
http://dx.doi.org/10.1109/TSUSC.2020.3014943
http://dx.doi.org/10.1109/TSUSC.2020.3014943
http://dx.doi.org/https://doi.org/10.1002/cpe.1867

22 M. Xu ET AL

AUTHOR BIOGRAPHY

Minxian Xu is currently an assistant professor at Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences. He received the BSc degree in 2012 and theMSc degree in 2015, both in software engi-
neering from University of Electronic Science and Technology of China. He obtained his PhD degree from
the University of Melbourne in 2019. His research interests include resource scheduling and optimization in
cloud computing. He has co-authored 20+ peer-reviewed papers published in prominent international jour-
nals and conferences, such as CSUR, T-SUSC, T-ASE, JPDC, JSS, ICSOC. His Ph.D. Thesis was awarded the
2019 IEEE TCSC Outstanding Ph.D. Dissertation Award. More information can be found at: minxianxu.info.
Qiheng Zhou received his BSc degree from Sun Yat-sen University. He is currently a master student at
National University of Singapore. His research interests include cloud computing and blockchain.

Huaming Wu received the B.E. and M.S. degrees from Harbin Institute of Technology, China in 2009 and
2011, respectively, both in electrical engineering. He received the Ph.D. degree with the highest honor in
computer science at Freie Universität Berlin, Germany in 2015. He is currently an associate professor in
the Center for Applied Mathematics, Tianjin University, China. His research interests include model-based
evaluation, wireless and mobile network systems, mobile cloud computing and deep learning.

Weiwei Lin received his B.S. and M.S. degrees from Nanchang University in 2001 and 2004, respectively,
and the PhD degree in Computer Application from South China University of Technology in 2007. He has
been serving as visiting scholar at Clemson University from 2016 to 2017. Currently, he is a professor in the
School of Computer Science and Engineering, South China University of Technology. His research interests
include distributed systems, cloud computing, big data computing and AI application technologies. He has
published more than 100 papers in refereed journals and conference proceedings. He has been the reviewers
for many international journals, including TPDS, TC, TMC, TCYB, TSC, TCC, etc.
Kejiang Ye received his BSc and PhD degree in Computer Science from Zhejiang University in 2008 and
2013, respectively. He was also a joint PhD student at The University of Sydney from 2012 to 2013. After
graduation, he works as Post-Doc Researcher at Carnegie Mellon University from 2014 to 2015 and Wayne
State University from 2015 to 2016. He is currently a Professor at Shenzhen Institutes of Advanced Technol-
ogy, Chinese Academy of Science. His research interests focus on the performance, energy, and reliability of
cloud computing and network systems.
ChengzhongXu (Fellow, IEEE) is theDean of Faculty of Science and Technology and the InterimDirector of
Institute of Collaborative Innovation, University of Macau, and a Chair Professor of Computer and Informa-
tion Science. Dr. Xu’s main research interests lie in parallel and distributed computing and cloud computing,
in particular, with an emphasis on resource management for system’s performance, reliability, availability,
power efficiency, and security, and in big data and data-driven intelligence applications in smart city and self-
driving vehicles. He published two research monographs and more than 300 peer-reviewed papers in journals
and conference proceedings; his papers received about 10K citations with an H-index of 52. He serves or

served on a number of journal editorial boards, including IEEE Transactions on Computers (TC), IEEE Transactions on Cloud
Computing (TCC), IEEE Transactions on Parallel and Distributed Systems (TPDS), Journal of Parallel and Distributed Com-
puting (JPDC), Science China: Information Science and ZTE Communication. Dr. Xu has been the Chair of IEEE Technical
Committee on Distributed Processing (TCDP) since 2015. He obtained BSc and MSc degrees from Nanjing University in 1986
and 1989 respectively, and a PhD degree from the University of Hong Kong in 1993, all in Computer Science and Engineering.

	PDMA: Probabilistic Service Migration Approach for Delay-aware and Mobility-aware Mobile Edge Computing
	Abstract
	1 Introduction
	2 Related Work
	2.1 Delay-Aware Edge Service Management
	2.2 Mobility-Aware Edge Service Management
	2.3 Critical Analysis

	3 System Model and Problem Statement
	3.1 MEC System Model
	3.2 Problem Definitions
	3.2.1 Basic Entities
	3.2.2 Overall Delay
	3.2.3 Migration Cost

	3.3 Case Study
	3.4 Proof of NP-hardness

	4 Probabilistic Delay-aware and Mobility-aware Approach for edge service management
	4.1 Service Assignment
	4.2 Service Migration
	4.3 PDMA Competitive Analysis

	5 Performance Evaluations
	5.1 Datasets Description
	5.2 Rush Hour Simulation
	5.3 Experiment Configurations
	5.4 Experiments and Results
	5.4.1 Results with PlanetLab Traces
	5.4.2 Results with Rush Hour Traces

	5.5 Scalability Discussions

	6 Conclusions and Future Work
	Acknowledgment
	References
	Author Biography

