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Summary. We propose a projection-based cross-validation method for estimating a low-

dimensional parameter in the presence of a high-dimensional nuisance parameter in the Cox

regression model. We show that the proposed estimator is asymptotically normal, which

enables us to conduct hypothesis test for the parameter of interest with high-dimensional

nuisance parameters. Three decision rules are presented to avoid the influence of random

splitting of samples. Simulation studies indicate that our method is more powerful than

that of Fang et al. (2017, JRSSB) when the coefficients of predictors are high-dimensional

and not very sparse. As an illustrative example, we apply our procedure to a breast cancer

study.
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1 Introduction

Statistical analysis of censored survival data with high-dimensional covariates is of great prac-

tical importance. For example, in cancer genetic studies, an important problem is to identify

genetic elements that are potentially related to patient’s survival from high-throughput and

high-dimensional genomic data. A critical issue is how to estimate their effects on the survival

and make statistical inference about their significance. This problem can be formulated as

that of estimating treatment effects in the presence of a large number of nuisance parameters.

Here we interpret a treatment effect parameter broadly as any low-dimensional parameter
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in the model. Therefore, it is interesting to propose an approach to statistical inference in

high-dimensional Cox regression (Cox, 1972) because of its central role in the analysis of

censored survival data and its wide applications (Fleming and Harrington,1991; Kalbfleisch

and Prentice, 2002).

Several penalty-based variable selection approaches, including the lasso (Tibshirani, 1996)

and the smoothly clipped absolute deviation (SCAD; Fan and Li, 2001) methods, have been

adapted to survival models. For example, Tibshirani (1997) and Fan and Li (2002) applied

the lasso and SCAD methods to the partial likelihood for the Cox model. Zhang and Lu

(2007) and Zou (2008) considered the weighted lasso for low-dimensional Cox model. Huang

et al. (2013) and Kong and Nan (2014) derived error bounds for the lasso in sparse and

high-dimensional Cox model.

However, penalized procedures only yield point estimates but do not provide inferential

statements such as confidence interval and hypothesis testing about a parameter of interest.

To deal with this problem, Zhang and Zhang (2014) proposed a regularized projection ap-

proach for constructing asymptotically normal estimators of low-dimensional parameters in

high-dimensional linear models. van de Geer et al. (2014) extended the approach of Zhang

and Zhang (2014) and proposed a novel method by “inverting” the Karush-Kuhn-Tucker

conditions for the lasso to construct estimators of low-dimensional parameters in linear and

generalized linear models. Javanmard and Montanari (2014) constructed confidence intervals

and p-values for high-dimensional linear models based on a “de-biased” version of regularized

M-estimators. Wasserman and Roeder (2009) and Meinshausen et al. (2009) constructed

p-values for high-dimensional regression via sample-splitting based methods. However, these

authors did not consider the statistical inference problem in the high-dimensional Cox model.

In the context of survival analysis, Zhong et al. (2015) considered hypothesis testing for low-

dimensional coefficients in the high-dimensional additive hazards model, but it is unclear

how to extend their method to the Cox model. Another closely related work is Fang et al.

(2017), who have proposed a method for hypothesis test and confidence interval construction

for the high-dimensional Cox model based on projection of score functions. However, their

method is conservative and suffers from inefficiency when the coefficients of predictors are

high-dimensional and not very sparse (See page 24 of online supplementary materials of Fang
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et al., 2017).

In this paper, we propose a projection-based cross-validation approach to inference about

a low-dimensional parameter of interest in the Cox model in the presence of a high-dimensional

nuisance parameter. There are three important aspects of our proposed approach that are

different from the above-mentioned methods. First, we use a weighted lasso estimator as the

initial estimator. With this estimator, we only penalize the nuisance parameters, but not

the parameter of interest. This is different from the methods of Zhang and Zhang (2014)

and Fang et al. (2017) in which they used a fully penalized estimator as an initial estimator.

Second, our method only needs to calculate the least favorable direction related to the scores

of the selected nuisance parameters rather than the whole set of the nuisance parameters as

in Fang et al. (2017). Third, our two-stage projection-based cross-validation technique is

different from the sample splitting method in Meinshausen et al. (2009). Roughly speaking,

we randomly split the sample into two halves, and obtain a weighted lasso estimator using

the first half of the sample. Then we fit the Cox model using the variables selected based on

the first half of the sample and use the second half of the data to estimate the parameter of

interest; and vice versa. The proposed estimator is then the average of these two estimators.

To avoid the influence of random splitting of samples, we further provide three decision rules

for the hypothesis test of interest.

The remainder of this article is organized as follows. In Section 2 we describe the Cox

model and propose a projection-based cross-validation estimator. In Section 3 we first state

an oracle inequality for the weighted lasso in the high-dimensional Cox model. We then

establish the asymptotic normality of the proposed estimator, which provides a theoretical

basis for making statistical inference. In Section 4 we conduct simulation studies and demon-

strate the proposed method on a breast cancer gene expression dataset. In Section 5 we give

concluding remarks. All proofs are deferred to the Appendix.
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2 Model and method

2.1 Model

Consider an n-dimensional counting process N (n)(t) = (N1(t), · · · , Nn(t)), t > 0 on a time

interval [0, τ ] with τ > 0, where Ni(t) counts the number of observed events for the ith

individual in the time interval [0, t], i = 1, · · · , n. Let Ft be the filtration representing all

the information available up to time t > 0. Following Andersen and Gill (1982), we assume

that for {Ft, t ≥ 0}, N (n) has a predictable compensator Λ(n) = (Λ1, · · · ,Λn) with

dΛi(t) = Yi(t) exp{βTXi(t) + ηTZi(t)}dΛ0(t), i = 1, . . . , n, (2.1)

where β ∈ Rd is a parameter vector of interest, η ∈ Rq is a vector of nuisance parameters,

Λ0(t) =
∫ t
0
λ0(s)ds is an unknown baseline cumulative hazard function, and Yi(t) ∈ {0, 1} is

predictable. We assume the dimension d of the parameter vector of interest β is fixed and

small, but the dimension q of the nuisance parameter η can be large or even larger than the

sample size.

Denote Vi(t) = (Xi(t)
T , Zi(t)

T)T and let θ0 = (βT0 , η
T
0 )T ∈ Rp be the true values of the

regression coefficients, where p is possibly much bigger than n. Define S0 = {j : θj0 6= 0}

with its complement denoted by Sc0 = {j : θj0 = 0}. Let d0 = |S0| be the cardinality of S0

with d0 � n.

To estimate the parameter θ in the fixed-dimensional settings with p < n, Cox (1975)

proposed the partial likelihood method. The negative log-partial likelihood function for (2.1)

is

`(θ) =
1

n

[∫ τ

0

log
[ n∑
i=1

Yi(t) exp{θTVi(t)}
]
dN̄(t)−

n∑
i=1

∫ τ

0

{θTVi(t)}dNi(t)

]
, (2.2)

where N̄ =
∑n

i=1Ni. The maximum partial likelihood estimator can be obtained by min-

imizing `(θ). However, in high-dimensional settings with p � n, the maximum partial

likelihood estimator is not well defined. Thus statistical inference cannot be based on the

partial likelihood directly.

For any given set I ⊂ {1, · · · , n} and S ⊂ {1, · · · , p}, define

Φk(t, θ; I, S) =
1

|I|
∑
i∈I

V ⊗kiS (t)Yi(t) exp{θT

SViS(t)}, for k = 0, 1, 2; (2.3)
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Σ(θ; I, S) =
1

|I|
∑
i∈I

∫ τ

0

[
Φ2(t, θ; I, S)

Φ0(t, θ; I, S)
−
{

Φ1(t, θ; I, S)

Φ0(t, θ; I, S)

}⊗2]
dNi(t),

and

`(θ; I, S) =
1

|I|

[∫ τ

0

log
[∑
i∈I

Yi(t) exp{θT

SViS(t)}
]
dN̄(t; I)−

∑
i∈I

∫ τ

0

{θT

SViS(t)}dNi(t)

]
,(2.4)

where for any vector a, a⊗0 = 1, a⊗1 = a and a⊗2 = aaT; aS denotes the subvector of a

with components whose indices are in S; |I| denotes the cardinality of set I, and N̄(t; I) =∑
i∈I Ni(t). Hereafter, for notational simplicity, we assume that |I| = n/2 if n is even and

|I| = (n+ 1)/2 if n is odd. We partition the matrix Σ(θ; I, S) into

Σ(θ; I, S) =

 Σ11(θ; I, S) Σ12(θ; I, S)

Σ21(θ; I, S) Σ22(θ; I, S)

 , (2.5)

where Σ11(θ; I, S) ∈ Rd×d, Σ21(θ; I, S) ∈ R(|S|−d)×d, and Σ22(θ; I, S) ∈ R(|S|−d)×(|S|−d). Let

Σβ|η(θ; I, S) = Σ11(θ; I, S) − Σ12(θ; I, S)Σ−122 (θ; I, S)Σ21(θ; I, S), we denote the population

versions of the quantities in (2.3) as

φk(t, θ;S) = E[V ⊗kS (t)Y (t) exp{θT

SVS(t)}], for k = 0, 1, 2;

Σ∗(θ;S) = E

{∫ τ

0

[
φ2(t, θ;S)

φ0(t, θ;S)
−
{
φ1(t, θ;S)

φ0(t, θ;S)

}⊗2]
dN(t)

}
.

We partition the matrix Σ∗(θ;S) according to (2.5) as

Σ∗(θ;S) =

 Σ∗11(θ;S) Σ∗12(θ;S)

Σ∗21(θ;S) Σ∗22(θ;S)

 , (2.6)

and let Σ∗β|η(θ;S) = Σ∗11(θ;S)− Σ∗12(θ;S)Σ∗−122 (θ;S)Σ∗21(θ;S).

2.2 Projection-based cross-validation method.

In this section, we describe the proposed two-stage projection-based cross-validation ap-

proach to statistical inference for the high-dimensional Cox model. Our basic idea is to split

the data randomly into two halves I1 and I2, and perform model selection using the first

half of the data I1. Then we fit the Cox model on the basis of the variables selected in the

first stage, and calculate a projection-based estimator β̂1 using the second half of the data
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I2. We then switch the roles of I1 and I2 and use the same procedure to obtain an estimator

β̂2. Below we describe the proposed method in details.

Stage 1. We split the data randomly into two halves I1 and I2. Using the first half of

the data I1, we obtain a weighted lasso estimator, which is defined as

θ̆ = (β̆, η̆) = argmin
β,η

{
`(θ; I1, Sp) + λ

q∑
j=1

wj|ηj|

}
, (2.7)

where `(θ; I1, Sp) is defined in (2.4), Sp = {1, · · · , p}; λ > 0 is a tuning parameter, and

wj ≥ 0 are weights for the nuisance parameters ηj, j = 1, · · · , q. Let S1 = {j : θ̆j 6= 0} be

the index set of the nonzero estimated coefficients. Our goal is to make statistical inference

about β, we only penalize η while β is not penalized. Thus, the estimator θ̆ can be referred

as a “semi-penalized” estimator.

Stage 2. Consider a sub-model based on the variables selected in the first stage (S1),

using the second half of the data I2,

dΛi(t) = Yi(t) exp{θT

S1
ViS1(t)}dΛ0(t), i ∈ I2, (2.8)

where Yi(t) and Λ0(t) are given in (2.1). The negative log-partial likelihood function based

on (2.8) is

`(θ; I2, S1) =
1

|I2|

[∫ τ

0

log
[∑
i∈I2

Yi(t) exp{θT

S1
ViS1(t)}

]
dN̄(t; I2)−

∑
i∈I2

∫ τ

0

{θT

S1
ViS1(t)}dNi(t)

]
,(2.9)

where N̄(t; I2) =
∑

i∈I2 Ni(t). Let Mi(t) = Ni(t) −
∫ t
0
Yi(u) exp{θT

S1
ViS1(u)}dΛ0(u) be the

martingales with predictable variation processes 〈Mi,Mi〉(t) =
∫ t
0
Yi(u) exp{θT

S1
ViS1(u)}dΛ0(u),

and 〈Mi,Mj〉 = 0 for i 6= j. The gradient of `(θ; I2, S1) is

˙̀(θ; I2, S1) =
∂`(θ; I2, S1)

∂θS1

= − 1

|I2|
∑
i∈I2

∫ τ

0

{ViS1(t)− V̄ (t, θ; I2, S1)}dNi(t),

and the Hessian matrix of `(θ; I2, S1) is

῭(θ; I2, S1) = Σ(θ; I2, S1) =
1

|I2|

∫ τ

0

[
Φ2(t, θ; I2, S1)

Φ0(t, θ; I2, S1)
−
{

Φ1(t, θ; I2, S1)

Φ0(t, θ; I2, S1)

}⊗2]
dN̄(t; I2),

where V̄ (t, θ; I2, S1) = Φ1(t, θ; I2, S1)/Φ0(t, θ; I2, S1), and Φk(t, θ; I, S) is defined in (2.3),

k=0 and 1. For notational simplicity, we partition the gradient ˙̀(θ; I2, S1) into ˙̀(θ; I2, S1) =
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( ˙̀
β(θ; I2, S1), ˙̀

η(θ; I2, S1)
T)T, where ˙̀

β(θ; I2, S1) ∈ Rd is the score function for the low-

dimensional parameter of interest β, and ˙̀
η(θ; I2, S1) ∈ R|S1|−d is the score function of the

nuisance parameters.

To remove the effects of the nuisance parameters, we project ˙̀
β(θ; I2, S1) onto the linear

span of the partial score function ˙̀
η(θ; I2, S1) and consider the projected partial score function

for β,

U(θ0, h0; I2, S1) = ˙̀
β(θ0; I2, S1)− hT

0
˙̀
η(θ0; I2, S1), (2.10)

where h0 = arg minhE{ ˙̀
β(θ0; I2, S1)− hT

0
˙̀
η(θ0; I2, S1)}⊗2 with an explicit expression

h0 = E{ ˙̀
η(θ0; I2, S1) ˙̀T

η (θ0; I2, S1)}−1E{ ˙̀
η(θ0; I2, S1) ˙̀

β(θ0; I2, S1)}

= Σ∗−122 (θ0;S1)Σ
∗
21(θ0;S1). (2.11)

To better understand (2.10), we focus on the geometric interpretation for U(θ0, h0; I2, S1).

The linear spaceH spanned by the score function ˙̀(θ; I2, S1) is the closure of {aT
θ

˙̀
β(θ; I2, S1)+

bTθ
˙̀
η(θ; I2, S1) : aθ ∈ Rd, bθ ∈ R|S1|−d}. As indicated by the notation, aθ and bθ can depend on

θ. By Small and McLeish (1994), the space H is a Hilbert space with an inner product given

by 〈g1(θ; I2, S1), g2(θ; I2, S1)〉 = E{g1(θ; I2, S1)g2(θ; I2, S1)} for any g1 ∈ H and g2 ∈ H. We

further consider the linear spaceHN spanned by the nuisance score functions {bTθ ˙̀
η(θ; I2, S1)}

with bθ ∈ R|S1|−d, and its orthogonal complement H⊥N = {g ∈ H, 〈g, f〉 = 0,∀f ∈ HN}. Since

˙̀
β(θ0; I2, S1) ∈ H, and HN is a closed space, the projection of ˙̀

β(θ0; I2, S1) to HN is well

defined and identical to U(θ0, h0; I2, S1).

In what follows, we need an initial consistent estimator θ̃ for estimating h0. First, we

obtain a weighted lasso estimator

θ̃ = arg min
θ

{
`(θ; I2, Sp) + λ

p∑
j=1

wj|θj|

}
, (2.12)

where Sp = {1, · · · , p}, and `(θ; I, S) is defined in (2.9); λ > 0 is the penalty parameter, and

wi is a weight. In view of (2.11), we can estimate h0 by its sample version and plug-in the

weighted lasso estimator θ̃ for θ. The resulting estimator has an explicit expression:

h̃ = Σ−122 (θ̃; I2, S1)Σ21(θ̃; I2, S1), (2.13)
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where Σ and θ̃ are defined in (2.5) and (2.12), respectively. We construct an estimated

projected partial score function

U(β, η̃, h̃; I2, S1) = ˙̀
β(β, η̃; I2, S1)− h̃T ˙̀

η(β, η̃; I2, S1),

where η̃ and h̃ are defined in (2.12) and (2.13), respectively. Note that U(β, η̃, h̃; I2, S1) can

be regarded as an approximately unbiased estimating function for β. We define an estimator

β̂1 as the solution to U(β, η̃, h̃; I2, S1) = 0, which can be solved by the Newton-Raphson

algorithm. In practice, we use the weighted lasso estimator β̃ in (2.12) as the initial value

to start the algorithm.

Similarly, we first select variables using the second half of the data I2 and denote the

active set as S2 = {j : θ̆j 6= 0}. We then consider the sub-model based on the variables

whose indices are in S2,

dΛi(t) = Yi(t) exp{θT

S2
ViS2(t)}dΛ0(t), i ∈ I1. (2.14)

Based on (2.14), we obtain a projected partial score estimator β̂2 parallel to the estimation

procedure for β̂1. The two-stage projection-based cross-validation (TPCV) estimator of β is

defined as

β̂ =
β̂1 + β̂2

2
. (2.15)

We use a diagram to illustrate the above two-stage estimation procedure in Figure 1.

There are three attractive features of our method. First, it has effectively handled the

uncertainty due to variable selection via cross-validation, because we use one half of data

to do model selection, and fit the selected variables using another half of the data. In

addition, the martingale theory is still applicable in deriving the theoretical properties, since

the selection of active variables in Stage 1 is independent of the samples used in Stage 2.

Second, the TPCV estimator β̂ makes use of all the information in the data by using cross

validation twice. Third, the estimated projection vector h̃ has an explicit expression and its

dimension is much smaller than p. Therefore, our method is easy to implement for practical

applications.
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3 Theoretical results

3.1 Non-asymptotic oracle inequality

For the two-stage projection-based cross-validated estimation procedure, we adopt the weighted

lasso to select active variables. Similar to Fang et al. (2017), we need to prove that the

weighted lasso estimator θ̃ has the convergence rate ‖θ̃−θ0‖1 = OP (λd0), which ensures esti-

mation consistency under some regularity conditions. In addition, the non-asymptotic oracle

inequality for the weighted lasso has its independent interest. For example, the convergence

rate for penalty-based estimator plays an important role in establishing distributional re-

sults for confidence interval and hypothesis testing in high-dimensional models (Zhang and

Zhang, 2014; Fang et al., 2017; Ning and Liu, 2017; Neykov et al., 2018). Huang et al.

(2013) and Kong and Nan (2014) considered oracle inequalities for the lasso in the high-

dimensional Cox model. Zhang et al. (2017) studied oracle inequalities for weighted lasso

estimator in the high-dimensional additive hazards model. Below, we present some general

convergence results for weighted lasso estimator in the high-dimensional Cox model (2.1),

which are suitable for the estimator given by (2.12) in Stage 2. Let w ∈ Rp be a (possibly

estimated) weight vector with nonnegative elements wj, 1 ≤ j ≤ p and W = diag{w}. For

any vector a ∈ Rp and matrix A ∈ Rp×p, we define ‖a‖1 =
∑p

i=1 |ai|, ‖a‖∞ = max1≤i≤p |ai|,

and ‖A‖∞ = max1≤i,j≤p |aij|. The weighted L1 loss function is

Q(θ) = `(θ) + λ‖Wθ‖1,

where λ ≥ 0 is a penalty parameter, and `(·) is defined in (2.2). The weighted lasso estimator

is given by

θ̃ = arg min
θ
Q(θ). (3.1)

Note that if the variables in S ⊂ {1, · · · , p} are of primary interest, it is not necessary to

penalize θS, which leads to “semi-penalized” estimators with wj = 0 for j ∈ S and wj 6= 0

for j ∈ Sc. In what follows, it is sufficient to require min{wSc} > 0. A vector θ̃ is a global

minimizer of (3.1) if and only if it satisfies the Karush-Kuhn-Tucker (KKT) conditions ˙̀
j(θ̃) = −λwjsgn(θ̃j), if θ̃j 6= 0,

| ˙̀j(θ̃)| ≤ λwj, if θ̃j = 0.
(3.2)
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Theorem 1 Let θ̃ be the weighted lasso estimator defined in (3.1), and R̃ = θ̃ − θ0. Then

the following inequality holds:

(λ− z0)‖WScR̃Sc‖1 ≤ D(θ̃, θ0) + (λ− z0)‖WScR̃Sc‖1 ≤ (λ‖wS‖∞ + z0)‖R̃S‖1,

where z0 = max{‖ ˙̀(θ0)S‖∞, ‖W−1
Sc

˙̀(θ0)Sc‖∞}, and D(θ̃, θ) = (θ̃ − θ)T{ ˙̀(θ̃) − ˙̀(θ)} is the

Bregman divergence. Furthermore, for any ξ > ‖wS‖∞, we have ‖WScR̃Sc‖1 ≤ ξ‖R̃S‖1 in the

event {z0 ≤ (ξ−‖wS‖∞)/(ξ+1)λ}, where WSc denotes the submatrix of W with components

in Sc.

By Theorem 1, in the event {z0 ≤ (ξ − ‖wS‖∞)/(ξ + 1)λ}, for any ξ > ‖wS‖∞, the

estimation error θ̃ − θ0 belongs to the cone

G(ξ, S) = {b ∈ Rp : ‖WScbSc‖1 ≤ ξ‖bS‖1}. (3.3)

To control estimation error of the weighted lasso in the Cox model, for the cone in (3.3)

and the Hessian matrix ῭(θ0), we use a compatibility factor as Huang et al. (2013),

κ(ξ, S) = inf
0 6=b∈G(ξ,S)

d
1/2
0 {bT ῭(θ0)b}1/2

‖bS‖1
.

In fact, the κ(ξ, S) is a direct extension of the compatibility factor in linear models (van

de Geer, 2007; van de Geer and Bühlmann, 2009; Huang and Zhang, 2012) by taking the

Hessian of the log-partial likelihood at the true θ0.

We make the following assumptions:

(C.1)
∫ τ
0
λ0(t)dt <∞.

(C.2) The covariates are uniformly bounded: sup
0≤t≤τ

max
1≤i≤n

max
1≤j≤p

|Vij(t)| = O(1), where Vij(t) is

the jth component of Vi(t).

(C.3) The compatibility factor κ(ξ, S) is strictly bounded away from zero.

Condition (C.1) has been similarly used by Andersen and Gill (1982) and Bradic et al.

(2011) in their analysis of the partial likelihood estimator in the Cox model. Condition (C.2)

was required by Huang et al. (2013) and Fang et al. (2017) in deriving the error bounds
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for the lasso in the Cox model, which is reasonable in most practical situations. Condition

(C.3) was provided by Huang et al. (2013) under some regular assumptions.

The following result provides an upper bound of the estimation error for the weighted

lasso estimator. For two positive sequences an and bn, we write an � bn if c ≤ an/bn ≤ c′ for

some c, c′ > 0.

Theorem 2 Assume that Conditions (C.1) − (C.3) hold, and λ �
√
{n−1 log(p)}. Let

θ̃ be the weighted lasso estimator defined in (3.1), K is some positive constant and ρ =

Kλd0(1 + ‖wS‖∞)(ξ + min{wSc})2/[4 min{wSc}κ2(ξ, S)(ξ + 1)] with ρ ≤ 1/e. Then for

ξ > |wS|∞, in the event {z0 ≤ (ξ − ‖wS‖∞)/(ξ + 1)λ},

‖θ̃ − θ0‖1 ≤
eδλd0(1 + ‖wS‖∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S)(ξ + 1)
, (3.4)

where δ ≤ 1 is the smaller solution of δe−δ = ρ.

By Huang et al. (2013) the term κ(ξ, S) in (3.4) can be directly treated as a positive

constant. Moreover, since the oracle inequality in Theorem 2 holds only within the event

{z0 ≤ (ξ − ‖wS‖∞)/(ξ + 1)λ}, it is necessary to derive a probabilistic upper bound of z0.

It follows from Lemma 3.3 of Huang et al. (2013) that P{z0 > Kx} ≤ 2pe−nx
2/2. In order

to better interpret the upper bound of the estimation error in (3.4), the conclusion can be

simplified to the case that the convergence rate for the weighted lasso estimator is of order

OP (λd0), which is used to establish the asymptotic properties in Theorem 3. Moreover, for

the estimation error ‖θ̃ − θ0‖1 to be small with high probability, we need to ensure that

λd0 → 0 as n → ∞. This requires the condition p = exp{o(n/d20)}. For bounded d0, the

dimension p can be as high as eo(n), which is in line with the lasso estimator of Huang et al.

(2013).

3.2 Asymptotic normality

Let

Σ̂1 = [Σ11(θ̃; I2, S1)− Σ12(θ̃; I2, S1)Σ
−1
22 (θ̃; I2, S1)Σ21(θ̃; I2, S1)]

−1,

= Σ−1β|η(θ̃; I2, S1) (3.5)

11



and

Σ̂2 = [Σ11(θ̃; I1, S2)− Σ12(θ̃; I1, S2)Σ
−1
22 (θ̃; I1, S2)Σ21(θ̃; I1, S2)]

−1,

= Σ−1β|η(θ̃; I1, S2) (3.6)

where Σij is defined in (2.5) and θ̃ is the weighted lasso estimate in Stage 2. The following

theorem establishes the asymptotic normality of β̂.

Theorem 3 Suppose that Conditions (C.1)−(C.3) hold, λ �
√
{n−1 log(p)} and n−1/2d0 log(p) =

o(1). Then as n→∞ we have

√
nΣ̂−1/2(β̂ − β0)

D−→ N(0, Id),

where Id is a d× d identity matrix, Σ̂ = (Σ̂1 + Σ̂2)/2 with Σ̂1 and Σ̂2 being defined in (3.5)

and (3.6), respectively.

The conditions λ �
√
{n−1 log(p)} and n−1/2d0 log(p) = o(1) are also required in Fang

et al. (2017) to ensure the asymptotic properties of their estimators. As an application,

Theorem 3 provides a theoretical basis for conducting hypothesis test for a one-dimensional

parameter β0 ∈ R in the high-dimensional Cox model. Consider

H0 : β0 = 0 versus HA : β0 6= 0, (3.7)

we use the Wald statistic Tw =
√
nΣ̂−1/2(β̂ − β0), which is asymptotically distributed as

N(0, 1) under H0. We reject H0 if the p-value Pw < 0.05, where

Pw = 2
{

1− Φ
(√

nΣ̂−1/2|β̂|
)}

, (3.8)

and Φ(x) is the cumulative distribution function of N(0, 1). To remove the potential influence

of random splitting of samples, we repeat our proposed TPCV procedure B times. Denote

the resulting p-values in (3.8) as P
(1)
w , · · · , P (B)

w . For the hypothesis test (3.7), we propose

the following three decision rules:

• TPCV1: Reject H0 if B−1
∑B

b=1 P
(b)
w < 0.05.

• TPCV2: Reject H0 if the median of P
(1)
w , · · · , P (B)

w is smaller than 0.05.
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• TPCV3: RejectH0 if B−1
∑B

b=1 I(P
(b)
w < 0.05) > 0.5, where I(·) is an indicator function.

Of note, the TPCV1 is coming from the mean of B p-values, and it may be affected by

potential outliers. The TPCV2 is based on the median, so it has the property of robustness.

The TPCV3 is from the idea of “majority voting”, and it also owns the robustness. The

performances of these decision rules will be evaluated via numerical simulation.

4 Numerical studies

In this section, we conduct simulation studies to evaluate the finite-sample performance of

the proposed method. We also illustrate the application of the proposed method on a breast

cancer gene expression dataset.

4.1 Simulation studies

We generate failure times (T1, · · · , Tn) from the Cox model with an exponential hazards

function exp(θT
0Vi), where θ0 = (β0, η

T
0 )T, and Vi = (Vi1, · · · , Vip)T, i = 1, · · · , n. First, we

assume that the parameter of interest β0 is one-dimensional and the nuisance parameter

vector η0 is chosen as follows:

� Case I: η0 = (1, · · · , 1︸ ︷︷ ︸
10 times

, 0, · · · , 0)T,

� Case II: η0 = (1, · · · , 1︸ ︷︷ ︸
15 times

, 0, · · · , 0)T,

where the dimension p =500 and 1000, respectively. The covariates Vij = min(Zij, 103), and

Zi = (Zi1, · · · , Zip)′ are generated from multivariate normal distribution with mean zero and

covariance matrix ΣZ = (0.15|i−j|). The censoring times Ci are generated from the uniform

distribution on [0, 5], which leads to about 40% censoring rate. The results presented below

are based on 200 replications with sample size n = 300.

We use the R package glmnet (Simon et al., 2011) to compute the weighted lasso esti-

mator. The tuning parameter λ is determined by 10-folds cross-validation. For comparison,

we consider the decorrelated score (DS) method in Eq. (3.8) of Fang et al. (2017). The DS

method was implemented with R codes at http://www.personal.psu.edu/xxf13/Code/CoxHDInference.R.
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As suggested by a reviewer, we also consider the two-stage projection-based (TP) method

using the whole sample, i.e., I1 = I2 = I in Stages 1 and 2 of our method. In Tables 1 and

2, we report the estimated bias (Bias) given by the sample mean of the estimates minus the

true value, the sample mean of the estimated standard errors (ESE), the sample standard

error (SSE) of the estimates, and the empirical coverage probability of the 95% confidence

interval (CP). Tables 1 and 2 indicate that the proposed TPCV estimator is unbiased, and

its ESE is close to SSE. The DS method leads to a biased estimator, especially for larger

parameters (β = 0.5). Moreover, the ESE and SSE do not agree well for TP method, which

uses the same dataset twice in Stages 1 and 2. Hence, the overall performance of TPCV is

better than those of the DS and TP methods.

Tables 3 and 4 present the sizes and powers on testing H0 : β0 = 0 vs. HA : β0 6= 0

under Cases I and II, respectively. We consider the performances of our methods (TPCV1,

TPCV2 and TPCV3), the DS and TP methods. Due to the computation burden, we set the

times of splitting as B = 50 (the conclusions are similar for a larger B). It can be seen from

the tables that TPCV2 and TPCV3 have outstanding advantages over TPCV1. One possible

explanation is that TPCV1 is based on the mean of p-values, which could be affected by

potential outliers. The TPCV1 still performs slightly better than the DS method. In brief,

the proposed TPCV2 and TPCV3 methods are more powerful than the DS method when

the coefficients of predictors are high-dimensional and not very sparse. Moreover, the TP

method has an inflated type I error, which could leads to higher false positive rate than the

prespecified nominal level.

We conduct the second simulation to assess the performance of the proposed estimation

method for a two-dimensional vector β0 = (β10, β20)
′. The data are generated as in the first

simulation, except that β0 = (0.15, 0.30)′. In Table 5, we report the Bias, ESE, SSE and

CP for the estimates of β10 and β20, respectively. It can be seen that the proposed method

works well for estimating multiple parameters of interest.

4.2 Breast cancer gene expression data

Breast cancer is one of the most commonly diagnosed malignancy for women. Biomedical

studies indicate that genomic measurements may have independent predictive power for
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breast cancer prognosis (van’t Veer et al., 2002; Cheang et al., 2008). We apply the proposed

method to a publicly available breast cancer gene expression data set (van’t Veer et al.,

2002). The data set consists of 295 tumor samples of breast cancer patients with expression

measurements for 4919 genes. Among these patients, 79 died during the follow-up time and

the remaining 216 observations are censored. We define the event time as the time from

diagnosis to death. We first use the marginal Cox model to select top 500 genes, which are

used as the covariates Vi = (Vi1, · · · , Vip)′ in model (2.1) with p = 500.

We first take Vi1 as the covariate of interest, and the remaining covariates Vi2, · · · , Vip are

regared as confounding variables. We apply the TPCV method to make inference on the first

parameter of interest in the Cox model. We repeat this process for the other covariates and

conduct inference about each coefficient using the proposed method. In Table 6, we report

the estimated coefficient (Est), the corresponding standard error (SE), the 95% confidence

interval (CI) on five genes with Bonferroni adjusted p-value Padj < 0.05. Among these genes,

the NM 001168 was shown to be biologically related to breast cancer (Goeman, 2010), which

supports the effectiveness of our proposed approach.

5 Concluding remarks

We have considered the problem of statistical inference about a low-dimensional parameter

of interest in the Cox model when the number of nuisance parameters is possibly greater

than the sample size. A two-stage projection-based cross-validated estimation approach

was proposed. Simulations and a gene-expression data example from a breast cancer study

were used to illustrate the proposed method. Of note, we actually do not know beforehand

which is the parameter of interest in many practical applications. For example, in the breast

cancer gene expression data example, we are interested in finding the genes that are related

to cancer in clinical research (van’t Veer et al., 2002). In this setting, we need to conduct

statistical inference about all the regression coefficients in the model. We can apply the

proposed method to each coefficient in turn. This approach was also adopted in the real

data analysis of Fang et al. (2017).

There are several questions that are of interest to be considered in the future. First, the
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weighted lasso estimator in our proposed method can be replaced with the SCAD or the

minimax concave penalty estimator (Zhang, 2010). This usually involves a high dimensional

nonconvex optimization problem and is more difficult to implement. The theoretical and

computational aspects of using a concave penalty deserve further study. Second, a theoretical

analysis of the test in (3.7) is desirable, such as its local asymptotic power behavior. Third,

the proposed method can be extended to other survival models, such as the additive hazards

model (Lin and Ying, 1994) and the accelerated failure time model (Huang et al., 2006).
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6 Appendix

Proof of Theorem 1. Because `(θ) is a convex function, it follows thatD(θ̃, θ0) = R̃T{ ˙̀(θ0+

R̃)− ˙̀(θ0))} ≥ 0, and the first inequality holds. Note that R̃j = θ̃j for j ∈ Sc. By the KKT

condition (3.2), we have

R̃T{ ˙̀(θ0 + R̃)− ˙̀(θ0)}

=
∑
j∈Sc

R̃j
˙̀
j(θ0 + R̃) +

∑
j∈S

R̃j
˙̀
j(θ0 + R̃) + R̃T(− ˙̀(θ0))

≤
∑
j∈Sc

θ̃j
(
− λwjsgn(θ̃j)

)
+
∑
j∈S

|R̃j|λwj + R̃T

Sc(− ˙̀
Sc(θ0)) + R̃T

S(− ˙̀
S(θ0))

= −λ‖WScR̃Sc‖1 + λ‖WSR̃S‖1 + (WScR̃Sc)T
(
−W−1

Sc
˙̀
Sc(θ0)

)
+ R̃T

S(− ˙̀
S(θ0))

≤ (z0 − λ)‖WScR̃Sc‖1 + (z0 + λ‖wS‖∞)‖R̃S‖1.
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Due to R̃j = θ̃j − θ0j = 0 when j ∈ Sc and θ̃j = 0, the first inequality above shows that

˙̀
j(θ0 + R̃) = −λwjsgn(θ̃j) only in the set Sc ∩ {j : θ̃j 6= 0}. This completes the proof. �

Proof of Theorem 2. Let R̃ = θ̃−θ0 6= 0 and b = R̃/‖R̃‖1. It follows from the convexity

of `(β0+xb) (as a function of x) and Theorem 1 that in the event {z0 ≤ (ξ−‖wS‖∞)/(ξ+1)λ},

bT{ ˙̀(θ0 + xb)− ˙̀(θ0)}+
λ(1 + ‖wS‖∞)

ξ + 1
‖WScbSc‖1 ≤

ξλ(1 + ‖wS‖∞)

ξ + 1
‖bS‖1, (6.1)

where x ∈ [0, ‖R̃‖1] and b ∈ G(ξ, S). For any nonnegative x satisfying (6.1), due to δxb =

max0≤s≤τ maxi,j |xbTVi(s) − xbTVj(s)| ≤ Kx‖b‖1 = Kx and Lemma 3.2 in Huang, et al.

(2013),

xbT{ ˙̀(θ0 + xb)− ˙̀(θ0)} ≥ x2 exp(−δxb)bT ῭(θ0)b ≥ x2 exp(−Kx)bT ῭(θ0)b. (6.2)

The (6.2) together with κ(ξ, S) and (6.1) yields

xe−Kxκ2(ξ, S)‖bS‖21/d0 ≤ xe−KxbT ῭(θ0)b

≤ ξλ(1 + ‖wS‖∞)

ξ + 1
‖bS‖1 −

λ(1 + ‖wS‖∞)

ξ + 1
‖WScbSc‖1

≤ ξλ(1 + ‖wS‖∞)

ξ + 1
‖bS‖1 −

λ(1 + ‖wS‖∞)

ξ + 1
‖bSc‖1 min{wSc}

=
λ(1 + ‖wS‖∞)(ξ + min{wSc})

ξ + 1
‖bS‖1 −

λmin{wSc}(1 + ‖wS‖∞)

ξ + 1

≤ λ(1 + ‖wS‖∞)(ξ + min{wSc})2

4 min{wSc}(ξ + 1)
‖bS‖21.

For any nonnegative x satisfying (6.1), we have

Kx exp(−Kx) ≤ Kλd0(1 + ‖wS‖∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S)(ξ + 1)
= ρ. (6.3)

Notice that bT{ ˙̀(θ0 +xb)− ˙̀(θ0)} is an increasing function of x. All nonnegative x satisfying

(6.1) are a closed interval [0, x∗] for some x∗ > 0. By (6.3), we know that Kx∗ ≤ δ, where δ

is the smallest solution of δe−δ = ρ. Thus,

‖R̃‖1 ≤ x∗ ≤ δ

K
=
eδλd0(1 + ‖wS‖∞)(ξ + min{wSc})2

4 min{wSc}κ2(ξ, S)(ξ + 1)
.

This completes the proof. �
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Proof of Theorem 3. The proof consists of three steps.

Step 1: Based on the second half sample I2 and the active variables in S1, we fit a

sub-model as

dΛi(t) = Yi(t) exp{θT

S1
ViS1(t)}dΛ0(t), i ∈ I2, (6.4)

where S1 is the selected active index set using the first half sample I1. The projected partial

score function for β is

U(θ0, h0; I2, S1) = ˙̀
β(θ0; I2, S1)− hT

0
˙̀
η(θ0; I2, S1)

= (1,−hT

0 )T ˙̀(θ0; I2, S1),

where

˙̀(θ0; I2, S1) = − 1

|I2|
∑
i∈I2

∫ τ

0

{ViS1(t)− V̄ (t, θ; I2, S1)}dMi(t),

and Mi(t) = Ni(t) −
∫ t
0
Yi(u) exp{θT

S1
ViS1(u)}dΛ0(u) are martingales with 〈Mi,Mi〉(t) =∫ t

0
Yi(u) exp{θT

S1
ViS1(u)}dΛ0(u), and 〈Mi,Mj〉 = 0 for i 6= j. The martingale theory is

applicable to model (6.4), due to the selection of S1 is independent of I2. By Lemma G.3 of

Fang et al. (2017), we can obtain

√
|I2| · {vTΣ∗(θ0;S1)v}−1/2vT ˙̀(θ0; I2, S1)

D−→ N(0, Id), (6.5)

where v is similarly given in Lemma G.3 of Fang et al. (2017). Note that |I2| = n/2,

U(θ0, h0; I2, S1) = vT ˙̀(θ0; I2, S1) and vTΣ∗(θ0;S1)v = Σ∗β|η(θ0;S1). Then,√
n

2
· {Σ∗β|η(θ0;S1)}−1/2U(θ0; I2, S1)

D−→ N(0, Id). (6.6)

Step 2. It follows from the mean value theorem that

U(β̂1, η̃, h̃; I2, S1) = U(β0, η̃, h̃; I2, S1) + U̇β(β̄, η̃, h̃; I2, S1)(β̂1 − β0),

where β̄ is on a line segment between β̂1 and β0. Because U(β̂1, η̃, h̃; I2, S1) = 0,

β̂1 − β0 = −U̇−1β (β̄, η̃, h̃; I2, S1)U(β0, η̃, h̃; I2, S1) (6.7)
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= −Σ∗−1β|η (θ0;S1)U(β0, η̃, h̃; I2, S1)︸ ︷︷ ︸
R1

+U(β0, η̃, h̃; I2, S1)[Σ
∗−1
β|η (θ0;S1)− U̇−1β (β̄, η̃, h̃; I2, S1)]︸ ︷︷ ︸

R2

To derive the asymptotic distribution of β̂1, we start with decomposing U(β0, η̃, h̃; I2, S1) as

U(β0, η̃, h̃; I2, S1) = ˙̀
β(β0, η̃; I2, S1)− h̃T ˙̀

η(β0, η̃; I2, S1)

= ˙̀
β(θ0; I2, S1) + (η̃ − η0)T ῭

βη(β0, η̄; I2, S1)− h̃T ˙̀
η(θ0; I2, S1)

− h̃T ῭
ηη(β0, ¯̄η; I2, S1)(η̃ − η0)

= ˙̀
β(θ0; I2, S1)− hT

0
˙̀
η(θ0; I2, S1) + (h0 − h̃)T ˙̀

η(θ0; I2, S1)︸ ︷︷ ︸
E1

+ (η̃ − η0)T{῭βη(β0, η̄; I2, S1)− ῭
ηη(β0, ¯̄η; I2, S1)h̃}︸ ︷︷ ︸

E2

= U(θ0; I2, S1) + E1 + E2, (6.8)

where η̄ = η0 + u(η̃− η0) and ¯̄η = η0 + u′(η̃− η0) for some u, u′ ∈ [0, 1]. By Lemmas 1 and 4

of Fang et al. (2017), together with ‖η̃ − η0‖1 = Op(λd0), we get

‖h̃− h0‖1 = OP

(
d0

√
log(p)

n

)
and ‖ ˙̀

η(θ0; I2, S1)‖∞ = OP

(√
log(p)

n

)
.

Hence E1 = OP{n−1d0 log(p)}. For the term E2,

E2 = (η̃ − η0)T{῭βη(β0, η̄; I2, S1)− ῭
ηη(β0, ¯̄η; I2, S1)h0}︸ ︷︷ ︸

E21

+ (h0 − h̃)T ῭
ηη(β0, ¯̄η; I2, S1)(η̃ − η0)︸ ︷︷ ︸

E22

.

From the Lemma E.4 in Fang et al. (2017) and ‖η̃ − η0‖1 = Op(λd0), we know that

E21 = (η̃ − η0)T ῭
βη(β0, η̄; I2, S1)− (η̃ − η0)T ῭

ηη(β0, ¯̄η; I2, S1)h0 = OP{n−1d0 log(p)}. (6.9)

By the Cauchy-Schwarz inequality and (A.6) of Fang et al. (2017),

|E22| ≤
1

2
(h0 − h̃)T ῭

ηη(β0, ¯̄η; I2, S1)(h0 − h̃) +
1

2
(η̃ − η0)T ῭

ηη(β0, ¯̄η; I2, S1)(η̃ − η0)

= OP{n−1d0 log(p)}. (6.10)

It follows from (6.9) and (6.10) that E2 = OP{n−1d0 log(p)}. From (6.8),

U(β0, η̃, h̃; I2, S1) = U(θ0, h0; I2, S1) +OP{n−1d0 log(p)}
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= U(θ0, h0; I2, S1) + oP (n−1/2), (6.11)

where the last equality holds by the assumption that n−1/2d0 log(p) = o(1). Thus,

R1 = −Σ∗−1β|η (θ0;S1)U(θ0, h0; I2, S1) + oP (n−1/2).

By (6.7), (6.11) and Lemma 2 of Fang et al. (2017), together with the assumption n−1/2d0 log(p) =

o(1), we can deduce that R2 = oP (n−1/2). Note that

β̂1 − β0 = −Σ∗−1β|η (θ0;S1)U(θ0, h0; I2, S1) + oP (n−1/2). (6.12)

Then, √
n

2
· Σ∗1/2β|η (θ0;S1)(β̂1 − β0) =

√
n

2
· {Σ∗β|η(θ0;S1)}−1/2U(θ0; I2, S1) + oP (1).

Based on (6.6), together with the Slutsky’s theorem, we obtain√
n

2
· Σ̂−1/21 (β̂1 − β0)

D−→ N(0, Id), (6.13)

where Σ̂1 is defined in (3.5).

Step 3. Based on the first half sample I1 and the active variables with the index set S2,

we can fit a sub-model as

dΛi(t) = Yi(t) exp{θT

S2
ViS2(t)}dΛ0(t), i ∈ I1.

Following similar arguments as in Steps 1 and 2, we have

β̂2 − β0 = −Σ∗−1β|η (θ0;S2)U(θ0, h0; I1, S2) + oP (n−1/2), (6.14)

and √
n

2
· Σ̂−1/22 (β̂2 − β0)

D−→ N(0, Id), (6.15)

where Σ̂2 is defined in (3.6).

Note that the selections of S1 and S2 are determined by two independent datasets in I1

and I2, respectively. Then, Σ∗β|η(θ0;S1) and Σ∗β|η(θ0;S2) are independent. From (2.10), we

know that U(θ0, h0; I1, S2) and U(θ0, h0; I2, S1) are formulated with two independent datasets
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in I1 and I2, respectively. Under mild conditions on the weights for the weighted Lasso to

have the oracle property, for example, taking the weights to be the inverse of the an initial

Lasso estimate (Zhang and Lu, 2007 and Huang and Zhang, 2012), we have P (S1 = S0)→ 1

and P (S2 = S0) → 1, where S1 and S2 are given in Stage 1 of our method, and S0 =

{1, · · · , d} ∪ {j : θj0 6= 0, j = d+ 1, · · · , p}. The U(θ0, h0; I1, S2) and U(θ0, h0; I2, S1) are two

asymptotically independent terms. Moreover, Σ∗β|η(θ0;S1) is independent of U(θ0, h0; I1, S2),

and Σ∗β|η(θ0;S2) is independent of U(θ0, h0; I2, S1). In view of (6.12) and (6.14), β̂1 and β̂2

can be regarded as asymptotically independent. Thus, it follows from (2.15), (6.13) and

(6.15) that

√
nΣ̂−1/2(β̂ − β0)

D−→ N(0, Id).

This completes the proof. �
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Figure 1. A scenario of two-stage projection-based cross-validation procedure.
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Table 1. Estimation results on the parameter of interest β with Case I†.

β = 0 β = 0.5

Methods Bias ESE SSE CP Bias ESE SSE CP

p = 500 TPCV −0.0047 0.0866 0.0885 0.940 0.0232 0.0909 0.0930 0.940

DS 0.0098 0.0749 0.0503 0.990 −0.1475 0.0753 0.0771 0.520

TP −0.0023 0.0799 0.0839 0.935 0.0201 0.0839 0.0862 0.950

p = 1000 TPCV 0.0031 0.0873 0.0994 0.925 0.0183 0.0924 0.1032 0.905

DS 0.0169 0.0746 0.0482 0.990 −0.1727 0.0754 0.0736 0.360

TP 0.0010 0.0803 0.0902 0.915 0.0229 0.0849 0.0980 0.895

† TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the two-stage

projection-based method with the whole sample.
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Table 2. Estimation results on the parameter of interest β with Case II†.

β = 0 β = 0.5

Methods Bias ESE SSE CP Bias ESE SSE CP

p = 500 TPCV 0.0028 0.0941 0.1035 0.945 0.0147 0.0989 0.0974 0.955

DS 0.0134 0.0757 0.0492 0.990 −0.1898 0.0771 0.0719 0.335

TP 0.0067 0.0835 0.0910 0.950 0.0189 0.0883 0.0947 0.945

p = 1000 TPCV 0.0065 0.0966 0.1059 0.905 0.0164 0.1009 0.1075 0.935

DS 0.0135 0.0756 0.0414 1 −0.2057 0.0767 0.0678 0.200

TP 0.0078 0.0842 0.0907 0.920 0.0303 0.0890 0.0988 0.935

† TPCV denotes our proposed method; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the two-stage

projection-based method with the whole sample.
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Table 3. Size/Power results with significance level α = 0.05 (Case I)†.

p = 500 p = 1000

β TPCV1 TPCV2 TPCV3 DS TP TPCV1 TPCV2 TPCV3 DS TP

0 0.005 0.035 0.035 0 0.070 0.030 0.050 0.050 0.035 0.085

0.1 0.125 0.140 0.140 0.095 0.215 0.130 0.165 0.165 0.065 0.240

0.2 0.565 0.610 0.610 0.320 0.670 0.595 0.670 0.670 0.345 0.725

0.3 0.910 0.945 0.945 0.760 0.955 0.935 0.945 0.940 0.720 0.965

0.4 0.990 0.995 0.995 0.970 0.995 0.990 0.995 0.995 0.945 1

0.5 1 1 1 1 1 1 1 1 1 1

† TPCVk denotes our proposed method, for k = 1, 2, 3; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the

two-stage projection-based method with the whole sample.
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Table 4. Size/Power results with significance level α = 0.05 (Case II)†.

p = 500 p = 1000

β TPCV1 TPCV2 TPCV3 DS TP TPCV1 TPCV2 TPCV3 DS TP

0 0.025 0.040 0.035 0.020 0.060 0.025 0.055 0.055 0.015 0.085

0.1 0.115 0.215 0.215 0.075 0.305 0.115 0.190 0.190 0.060 0.300

0.2 0.565 0.685 0.670 0.350 0.735 0.515 0.625 0.620 0.255 0.685

0.3 0.825 0.890 0.890 0.650 0.925 0.855 0.920 0.920 0.550 0.945

0.4 0.985 0.990 0.990 0.930 0.990 0.980 1 1 0.870 0.990

0.5 1 1 1 1 1 1 1 1 0.985 1

† TPCVk denotes our proposed method, for k = 1, 2, 3; “DS” denotes the decorrelated score method in Fang et al. (2017); “TP” denotes the

two-stage projection-based method with the whole sample.
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Table 5. Estimation results on the parameters of interest β = (β1, β2)
T.

Bias ESE SSE CP

p β1 β2 β1 β2 β1 β2 β1 β2

Case I p=500 0.0326 0.0312 0.0870 0.0891 0.0929 0.0892 0.925 0.935

p=1000 0.0309 0.0412 0.0884 0.0903 0.0936 0.0972 0.920 0.925

Case II p=500 0.0299 0.0204 0.0957 0.0962 0.1067 0.1009 0.930 0.930

p=1000 0.0259 0.0176 0.0975 0.0987 0.1094 0.1062 0.925 0.935
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Table 6. Summary of genes that are potentially related

with breast cancer survival data†.

Gene identifier Est SE CI Padj

Contig55111 RC 1.6400 0.4176 [0.8214, 2.4586] 0.0430

NM 006397 2.9614 0.7371 [1.5167, 4.4062] 0.0294

NM 006622 −2.1774 0.5040 [−3.1653, −1.1896] 0.0078

NM 016448 3.0523 0.7598 [1.5630, 4.5415] 0.0295

NM 001168 1.9191 0.3840 [1.1664, 2.6717] 0.0003

†“Est” denotes our TPCV-based estimator; “SE” denotes the corresponding standard error; “CI” denotes

the 95% confidence interval; Padj denotes the Bonferroni adjusted p-value.
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