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Abstract To analyse count time series data inflated at the r + 1 values

{0, 1, · · · , r}, we propose a new first-order integer-valued autoregressive process

with r-geometrically inflated Poisson innovations. Some statistical properties

together with conditional maximum likelihood estimate are provided. For the

purpose of statistical monitoring, we focus on the cumulative sum chart, expo-

nentially weighted moving average chart and combined jumps chart towards the

proposed process. Numerical simulations indicate that the conditional maximum

likelihood estimator is unbiased. Moreover, the cumulative sum chart is the best

choice to monitor our model in practice. Some applications about telephone com-

plaints data are provided to illustrate the proposed methods.
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1 Introduction

Count time series data have attracted great interests of many researchers during the

past years. Due to the special count structure, some traditional time series models fail

to describe this kind of data. To solve this problem, Al-Osh and Alzaid (1987) proposed

a novel first-order integer-valued autoregressive (INAR(1)) model based on the thinning

operator “◦” in Steutel and Van Harn (1979), which has laid the foundation of thinning-

operator based methods in the field of integer-valued time series. Since then, a great

number of related papers were published towards the topics on count time series data.

To mention just a few examples, Zheng et al. (2007) proposed a first-order random coef-
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ficient integer-valued autoregressive process. Ristić et al. (2009) defined a new INAR(1)

process with geometric distribution. Bakouch and Ristić (2010) proposed an INAR(1)

process with zero truncated Poisson marginal distribution. Zhang et al. (2010; 2012) pro-

posed some INAR processes with signed thinning operators. Schweer and Weiß (2014)

considered a compound Poisson INAR(1) model for time series of overdispersed counts.

Nastić et al. (2016) introduced a random environment in the integer-valued autoregres-

sive process. Fernández-Fontelo et al. (2019) built an INAR(1) model for underreported

counts. Lu (2019) studied the predictive distributions of count time series. Sellers et al.

(2020) and Bourguignon et al. (2019) considered dispersed INAR(1) models. Jentsch and

Weiß (2019) proposed a general INAR-type bootstrap procedure. Darolles et al. (2019)

studied a new family of bivariate INAR models. For more literatures, we refer to the

review papers by Weiß (2008) and Scotto et al. (2015).

From the view of practical application, count data may contain excess of certain

values, so-called “inflated-values”. One of the most common case is the zero-inflated data.

For example, Jazi et al. (2012) introduced a new stationary first-order integer valued

autoregressive process with zero inflated Poisson innovations. Li et al. (2015) proposed

a first-order mixed integer-valued autoregressive process with zero-inflated generalized

power series innovations. Barreto-Souza (2015), Bourguignon et al. (2018) and Bakouch

et al. (2018) gave new zero-modified geometric INAR processes for count time series with

deflation or inflation of zeros respectively. Möller et al. (2018) and Kang et al. (2019)

developed zero pattern INAR models with bounded supports respectively. Shamma et

al. (2020) and Möller et al. (2020) also proposed state-dependent zero inflation INAR(1)

models. Weiß et al. (2019) developed several tests for zero inflation in INAR(1) models.

However, the real count data may inflated at several values instead of a single inflated

value at zero (Rakitzis et al., 2016; 2018).

Statistical quality control (SQC) is often concerned with count data (Xie et al.,

2001). The monitoring of INAR(1) processes has received sustaining attention in the

literature. For instance, Weiß and Testik (2009; 2011), Weiß (2009a, 2009b, 2011), Yon-

tay et al. (2013), Zhang et al. (2014), Sales et al. (2020), Cabral Morais and Knoth

(2020) all developed some strategies to monitor Poisson INAR(1) processes respectively.

Li et al. (2019a) proposed some effective control charts for monitoring the zero truncated

INAR(1) processes respectively. Rakitzis et al. (2017), Kim and Lee (2019) studied
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the controlling methods of zero-inflated Poisson INAR(1) models respectively. Li et al.

(2019b) explored the monitoring of zero-inflated geometric INAR(1) processes. Vanli et

al. (2019) presented control charts for Poisson integer valued GARCH models. Li et

al. (2020) considered INAR control charts for simultaneously detecting shifts in both

the marginal mean and the autocorrelation coefficient. In this work, we propose a novel

first-order integer-valued autoregressive process with geometrically inflated Poisson inno-

vations (INAR-GIP(1)), which is more flexible in practical application. Our model can

fit count time series data inflated at the r+ 1 values {0, 1, · · · , r}, and Jazi et al. (2012)

can be viewed as a special case of our proposed INAR-GIP(1) process. Moreover, we

monitor the INAR-GIP(1) process by the cumulative sum (CUSUM) control chart, expo-

nentially weighted moving average (EWMA) control chart and combined jumps control

chart, respectively.

The remainder of the paper is organized as follows. In Section 2, we propose a

new INAR(1) process with geometrically inflated Poisson innovations. Some statistical

properties of the process, together with the estimation method of parameters are provided.

In Section 3, the CUSUM, EWMA and combined jumps charts for the INAR-GIP(1)

process are studied. Section 4 presents some simulation results. In Section 5, we apply

our proposed methods to two real data examples. Some concluding remarks are given in

Section 6.

2 The INAR-GIP(1) process

In this section, we propose a new INAR-GIP(1) process to handle the non-negative

integer-valued time series data with inflated values at {0, 1, · · · , r}. Some basic statistical

properties of the INAR-GIP(1) process are established. We use the conditional maximum

likelihood (CML) method to estimate the unknown parameters in the INAR-GIP(1)

process.

2.1 Construction and some properties of the process

First we review the r-geometrically inflated Poisson distribution, which was proposed

by Rakitzis et al. (2016). A random variable εt is said to follow the geometrically inflated

Poisson distribution of order r with parameters φ and λ (denoted as GIPr(φ, λ)), if its

3



probability mass function is given as

P (εt = k) =


1
r+1

φk+1 +
(
1− 1

r+1

∑r
i=0 φ

i+1
)
λke−λ

k!
, if k ∈ {0, · · · , r},(

1− 1
r+1

∑r
i=0 φ

i+1
)
λke−λ

k!
, if k ∈ {r + 1, · · · },

where φ ∈ [0, 1], λ > 0 and r ∈ N. As pointed out by Rakitzis et al. (2016), the

GIPr(φ, λ) distribution is inflated at the first r + 1 values {0, 1, · · · , r}. Of note, the

GIPr(φ, λ) distribution reduces to zero-inflated Poisson distribution with parameters φ

and λ if r = 0; and it reduces to Poisson distribution with parameter λ when φ = 0.

For simplicity, we denote g(r, φ) = 1 − 1
r+1

∑r
i=0 φ

i+1 in the following context. By

Rakitzis et al. (2016), the probability generating function of GIPr(φ, λ) distribution is

ΦGIPr(s) =
1

r + 1

r∑
i=0

siφi+1 + g(r, φ)eλ(s−1). (2.1)

If εt follows from GIPr(φ, λ), the mean, variance and kth order moments of εt are µε =

E(εt) = 1
r+1

∑r
i=1 iφ

i+1 + g(r, φ)λ, σ2
ε = Var(εt) = 1

r+1

∑r
i=1 i

2φi+1 + g(r, φ)λ(1 + λ)− µ2
ε,

and E(εkt ) = 1
r+1

∑r
i=1 i

kφi+1 + g(r, φ)E(W k), where W ∼ Poisson(λ). Here we point

out that the σ2
ε/µε may be equal to 1, greater than 1, or less than 1 (Rakitzis et al.,

2016). Thus, the GIPr distribution could fit a broad class of data with various levels of

dispersion.

To construct the INAR-GIP(1) process, we employ the binomial thinning opera-

tor “ ◦ ” ( Steutel and Van Harn, 1979) defined as α ◦ X =
∑X

i=1 Yi, where {Yi} is a

sequence of independent and identically distributed (i.i.d.) Bernoulli random variables

with P (Yi = 1) = 1 − P (Yi = 0) = α. Below, we give some details about the proposed

INAR-GIP(1) process.

Definition 1. The INAR-GIP(1) process {Xt} is defined by the following recursive

equation:

Xt = α ◦Xt−1 + εt, t = 0, 1, 2, · · · , (2.2)

where α ◦ Xt−1 =
∑Xt−1

i=1 Yit with α ∈ (0, 1), the {εt} is a sequence of i.i.d. GIPr(φ, λ)

random variables; εt is independent of all Bernoulli count series {Yit}. Let µε = E(εt) and

σ2
ε = Var(εt), which are assumed to be finite. The sequence of {εt} is called the innovation

series and the INAR-GIP(1) process is an INAR(1) process with r-geometrically inflated

Poisson innovations.
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Obviously, when φ = 0 the INAR-GIP(1) process is reduced to Poisson INAR(1)

process (Al-Osh and Alzaid, 1987); and when r = 0 and φ > 0, the INAR-GIP(1) pro-

cess is reduced to ZIPINAR(1) process (Jazi et al., 2012). The proposed INAR-GIP(1)

process could be viewed as a Markov process or a Galton-Waston branching process with

immigration. From the view of branching process, the α ◦Xt−1 can be interpreted as the

number of offspring at time t from the previous period t− 1, where α can be interpreted

as the survival probability of an individual offspring, and εt is the number of new im-

migrants at time t. Based on the branching process theorem in Heathcote (1966), if we

impose two conditions 0 < α < 1 and 1
r+1

∑r
i=1 iφ

i+1 + g(r, φ)λ <∞ on our model (2.2),

the resulting INAR-GIP(1) process is strictly stationary, irreducible and aperiodic. In

the remainder of this article, we assume {Xt} satisfies the above two conditions. Now we

give some moments and conditional moments of the INAR-GIP(1) process.

Theorem 1. Let {Xt} be the INAR-GIP(1) process given in (2.2), then

(i). µX = E(Xt) =
µε

1− α
;

(ii). σ2
X = Var(Xt) =

αµε + σ2
ε

1− α2
;

(iii). E(Xt+k|Xt) = αkXt +
1− αk

1− α
µε, k = 1, 2, · · · ;

(iv). Var(Xt+k|Xt) = αk(1− αk)(Xt − µX) + (1− α2k)σ2
X , k = 1, 2, · · · ;

(v). Corr(Xt+k, Xt) = αk, k = 1, 2, · · · .

Proof. (i). Note that

E(Xt) = E(α ◦Xt−1 + εt) = αE(Xt−1) + µε.

Since {Xt} is a strictly stationary process, we have µX ≡ E(Xt) = µε
1−α .

(ii). Due to Xt = α ◦Xt−1 + εt, we can derive that

E(X2
t ) = E[(α ◦Xt−1 + εt)

2]

= E[(α ◦Xt−1)
2] + E(ε2t ) + 2E[(α ◦Xt−1)εt]

= α2E(X2
t−1) + α(1− α)E(Xt−1) + Var(εt) + E2(εt) + 2αE(Xt)E(εt)

= α2E(X2
t−1) + αµε + σ2

ε + µ2
ε +

2αµ2
ε

1− α
.
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By the stationarity of the process, we know

E(X2
t ) =

α(1− α)µε + (1− α)σ2
ε + (1 + α)µ2

ε

(1− α)2(1 + α)
.

Then,

Var(Xt) = E(X2
t )− µ2

X =
αµε + σ2

ε

1− α2
.

(iii). The one-step conditional mean is

E(Xt+1|Xt) = E(α ◦Xt + εt+1|Xt) = αXt + µε. (2.3)

By repeated application of (2.3), it is easy to obtain that

E(Xt+k|Xt) = αkXt +
1− αk

1− α
µε.

(iv). Furthermore,

E(X2
t+1|Xt) = E((α ◦Xt + εt+1)

2|Xt)

= α2X2
t + α(1− α)Xt + E(ε2t+1) + 2αµεXt

= α2X2
t + [α(1− α) + 2αµε]Xt + E(ε2t+1).

By the proof of (ii), we have E(ε2t ) = (1− α2)E(X2
t )− [α(1− α) + 2αµε]E(Xt). Then

E(X2
t+1|Xt) = α2X2

t + [α(1− α) + 2αµε](Xt − E(Xt)) + (1− α2)E(X2
t ).

Then using the induction method, we obtain

E(X2
t+k|Xt) = α2kX2

t +
[α(1− α) + 2αµε]α

k(1− αk)
α(1− α)

(Xt − E(Xt)) + (1− α2k)E(X2
t ).

Also the k-ahead conditional variance takes the following form,

Var(Xt+k|Xt) = E(X2
t+k|Xt)− E(Xt+k|Xt)

2

= αk(1− αk)(Xt − E(Xt)) + (1− α2k)(E(X2
t )− E(Xt)

2)

= αk(1− αk)(Xt − µX) + (1− α2k)σ2
X .

(v). Since

E(Xt+kXt) = E[E(Xt+kXt|Xt)] = E[XtE(Xt+k|Xt)]
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= E

[
Xt

(
αkXt +

1− αk

1− α
µε

)]
= αkE(X2

t ) +
1− αk

1− α
µεE(Xt).

Thus, we know that Corr(Xt+k, Xt) = αk. This completes the proof. �

From the above theorem, we can see that limk→∞ E(Xt+k|Xt) = µε/(1−α) = E(Xt),

which is the unconditional mean of the process, limk→∞Var(Xt+k|Xt) = Var(Xt), which

is the unconditional variance of the process. According to Theorem 1, we can also get

the variance-to-mean ratio of the INAR-GIP(1) process {Xt}

σ2
X

µX
=
αµε + σ2

ε

αµε + µε
.

So the {Xt} is overdispersed for σ2
ε/µε > 1, or underdispersed for σ2

ε/µε < 1, or equidis-

persed for σ2
ε/µε = 1. From this point of view, our proposed INAR-GIP(1) process is

very flexible, which can describe an extensive kinds of count time series data for practical

application.

The transition probability of {Xt} plays an important role in the likelihood-based

estimation methods, it is straight-forward to derive that

pij = P (Xt = j|Xt−1 = i) =

min{i, j}∑
k=0

P (εt = j − k)

(
i

k

)
αk(1− α)i−k, i, j = 0, 1, · · · .

Moreover, the marginal distribution of INAR-GIP(1) process could be expressed in terms

of the innovation sequence {εt} with Xt =
∑∞

j=0 α
j ◦ εt−j (Al-Osh and Alzaid, 1987).

Then we can get the probability generating function of {Xt}

ΦXt(s) =
∞∏
j=0

[
1

r + 1

r∑
i=0

(1 + αjs− αj)iφi+1 + g(r, φ)e−λα
j(1−s)

]
. (2.4)

Based on (2.4), the corresponding probability mass function of {Xt} is given as

P (Xt = k) = Φ
(k)
X (0)/k!, for k = 0, 1, · · · , (2.5)

where Φ
(k)
X (s) denotes the kth derivative of ΦX(s). More specifically, we present the

probability mass function of {Xt} at “0” and “1”, where

P (Xt = 0) =
∞∏
j=0

[
1

r + 1

r∑
i=0

(1− αj)iφi+1 + g(r, φ)e−λα
j

]
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and

P (Xt = 1) =
∞∑
k=0

[(
1

r + 1
αk

r∑
i=1

i(1− αk)i−1φi+1 + g(r, φ)λαke−λα
k

)

×
∏
j 6=k

(
1

r + 1

r∑
i=0

(1− αj)iφi+1 + g(r, φ)e−λα
j

)]
.

In the following theorem, we also give k-step ahead forecasting distribution of our

proposed INAR-GIP(1) process.

Theorem 2. The conditional probability generating function of Xt+k given Xt is

given by

ΦXt+k|Xt(s) = (1 + sαk − αk)Xt
k−1∏
j=0

[
1

r + 1

r∑
i=0

(1 + sαj − αj)iφi+1 + g(r, φ)e−λα
j(1−s)

]
,

k = 1, 2, · · · .

Proof. Note that

Xt+k =α ◦Xt+k−1 + εt+k = α ◦ (α ◦Xt+k−2 + εt+k−1) + εt+k

= · · ·

=αk ◦Xt +
k∑
j=1

αk−j ◦ εt+j = αk ◦Xt +
k−1∑
j=0

αj ◦ εt+k−j.

Then we have

ΦXt+k|Xt(s) =E(sXt+k |Xt)

=E(sα
k◦Xt+

∑k−1
j=0 α

j◦εt+k−j |Xt)

=E(sα
k◦Xt|Xt)E(s

∑k−1
j=0 α

j◦εt+k−j)

=E(sα
k◦Xt|Xt)

k−1∏
j=0

E(sα
j◦εt+k−j).

Since αk ◦Xt|Xt ∼ B(Xt, α
k), E(sα

k◦Xt|Xt) = (1 + sαk − αk)Xt and

k−1∏
j=0

E(sα
j◦εt+k−j) =

k−1∏
j=0

E(sα
j◦εt) =

k−1∏
j=0

Eεt [E(sα
j◦εt |εt)]

=
k−1∏
j=0

E(1 + sαj − αj)εt

=
k−1∏
j=0

[
1

r + 1

r∑
i=0

(1 + sαj − αj)iφi+1 + g(r, φ)e−λα
j(1−s)

]
.
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Hence, the result.

This completes the proof. �

As k →∞, the k-step ahead conditional probability generating function ΦXt+k|Xt(s)

converges to the marginal probability generating function of the process {Xt}, that is,

limk→∞ΦXt+k|Xt(s) = ΦXt(s). Since the probability generating function uniquely deter-

mines the probability mass function, the k-step ahead forecasting distribution of Xt+k

given Xt converges to the marginal distribution of Xt.

The sequence of jumps {Jt}N is an interesting feature of the correlated process, which

is defined by Jt = Xt −Xt−1, t > 1. Now we present some properties of the statistic Jt

in a stationary INAR-GIP(1) process.

Theorem 3. Let {Xt}N0 be a stationary INAR-GIP(1) process, then the moment

generating function of Jt is given by

MJt(s) =

[
1

r + 1

r∑
i=0

esiφi+1 + g(r, φ)eλ(e
s−1)

]
∗

{
∞∏
j=0

1

r + 1

r∑
i=0

[
1− αj(1− α)(1− e−s)

]i
φi+1

+ g(r, φ)e−λα
j(1−α)(1−e−s)

}
. (2.6)

Proof. Let ΦXt,Xt−1(s0, s1) be the probability generating functions of the bivariate

random variable (Xt, Xt−1). We have that

ΦXt,Xt−1(s0, s1) = E[sXt0 s
Xt−1

1 ] = E[s
α◦Xt−1+εt
0 s

Xt−1

1 ] = E[sεt0 s
Xt−1

1 E(s
α◦Xt−1

0 |Xt−1)]

=Φεt(s0)E
[
s
Xt−1

1 (1 + s0α− α)Xt−1

]
= Φεt(s0)ΦXt (s1(1 + s0α− α))

=

[
1

r + 1

r∑
i=0

si0φ
i+1 + g(r, φ)eλ(s0−1)

]
∗

{
∞∏
j=0

1

r + 1

r∑
i=0

[
1 + αjs1(1 + s0α− α)− αj

]i
φi+1

+ g(r, φ)e−λα
j [1−s1(1+s0α−α)]

}
.

Let MJt(s) be the moment generating function of the random variable Jt, then we have

MJt(s) =E[esJt ] = E[esXte−sXt−1 ] = ΦXt,Xt−1(e
s, e−s)

=

[
1

r + 1

r∑
i=0

esiφi+1 + g(r, φ)eλ(e
s−1)

]
∗

{
∞∏
j=0

1

r + 1

r∑
i=0

[
1− αj(1− α)(1− e−s)

]i
φi+1

+ g(r, φ)e−λα
j(1−α)(1−e−s)

}
.
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This completes the proof. �

It’s also easy to obtain E(Jt) = 0, Var(Jt) = 2(αµε+σ2
ε)/(1 +α), and the autocorre-

lation ρJ(k) = αk−1(α − 1)/2. In Section 3 below, we shall introduce a combined jumps

chart, which monitors the counts and jumps in the INAR-GIP(1) process simultaneously.

2.2 Estimation of parameters in the INAR-GIP(1) process

For the INAR-GIP(1) model, the number of unknown parameters does not change

if the r varies. As suggested by Rakitzis et al. (2016), the r can be regarded as a

nuisance parameter. In practice, we can use the AIC or BIC criterion to choose the best

r for analysis. We are interested in estimating the parameters α, φ and λ. Given r and

{x1, · · · , xn}, the likelihood function for model (2.2) is given as

L0 =P (X1 = x1, X2 = x2, · · · , Xn = xn)

=P (X1 = x1)P (X2 = x2|X1 = x1) · · ·P (Xn = xn|Xn−1 = xn−1)

=P (X1 = x1)
n∏
t=2

min{xt−1, xt}∑
k=0

P (εt = xt − k)

(
xt−1
k

)
αk(1− α)xt−1−k

 .
However, the expression of marginal probability function P (X1 = x1) is very com-

plicated in (2.5). Similar to Li et al. (2015), we can estimate the parameters of interest

by maximizing the conditional maximum likelihood (CML) function

L =
n∏
t=2

min{xt−1, xt}∑
k=0

P (εt = xt − k)

(
xt−1
k

)
αk(1− α)xt−1−k

 . (2.7)

Existing Matlab function “fmincon” can be directly used to carry out the procedure.

3 Control charts for monitoring the process mean

In this section, we will study effective control charts for monitoring the INAR-GIP(1)

process. As INAR(1) processes are always implemented as the numbers of jobless, defec-

tive goods and infectious patients, the upward shifts in the process mean stand for the

increasing of the unemployment rate and the defective percentage, the spread of the dis-

ease. They are usually crucial and shall be identified and reported in time. Therefore for

practical application considerations, the mean upward shift of the INAR-GIP(1) process

is studied in this paper.
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There are several papers in literature on monitoring procedures for INAR(1) pro-

cesses, which fall into two main categories, the single control chart and the mixed con-

trol chart. In this paper, we investigate the effectiveness of three representative control

charts, including two single control chart (the CUSUM chart and the EWMA chart) and

one mixed control chart (the combined jumps chart).

The CUSUM chart is the first method we use, which was firstly proposed by Page

(1961). The theory of the CUSUM chart is based on sequential probability ratio test, the

idea is to accumulate the sample data information and accumulate the small deviation

of the process to enlarge the effect. The CUSUM chart has proved to be effective to

monitor integer-valued time series, such as Poisson INAR(1) (Weiß and Testik, 2009;

2011), NGINAR(1) (Li el al., 2016), ZIPINAR(1) and INARCH(1) (Rakitzis et al., 2017),

etc. The CUSUM chart is also applied in this paper to the geometrically inflated count

time series. We start with C0 = c0, c0 ∈ N0, a CUSUM statistic with reference value w

is obtained by Ct = max(0, Xt − w + Ct−1), t = 1, 2, · · · . Then we have the following

results.

Scheme 1 (The CUSUM chart). Denote w, UCL∈ N with µX ≤ w < UCL, the mon-

itoring statistics {Ct}N0 are plotted on a CUSUM chart with control region [0, UCL].

The INAR-GIP(1) process is considered as being in control unless Ct > UCL.

The process is considered to be out-of-control when the CUSUM statistic Ct ex-

ceeds control limit UCL. Further investigation should be done on the basis of specific

circumstances. The values of chart designs (w, UCL) are decided by the procedure to

assess the performance of the chart. Average run length (ARL), the expected value of

the number of sampling points until the chart signalizes an alarm, is the most common

measure to assess the performance of the control chart. For an efficient control chart,

a large in-control ARL (denoted as ARL0) together with small out-of-control ARLs is

necessary. The values of (w, UCL) are determined such that the in-control ARL (ARL0)

can be close to a given value, e.g. ARL0 = 370. Now it comes to compute the values

of ARL basing on the model parameters and CUSUM chart designs. As {Xt , Ct}N0 of

the INAR-GIP(1) process forms a bivariate Markov chain, the Markov chain approach

introduced in Weiß and Testik (2009) could also be used here for computing ARL. To

give a complete picture of the computing method, we briefly explain this technique in the

following.
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For the CUSUM chart, the set of reachable in-control values of the bivariate Markov

process {Xt, Ct}N0 is given by

CR1 , {(n, i) ∈ N0 × {0, · · · , UCL}|max(0, n− w + i) ∈ {0, · · · , UCL}}

= {(n, i)|0 6 i 6 UCL,max(0, i+ w − UCL) 6 n 6 i+ w},

which is finite and could be ordered in a certain manner. The transition probability

matrix of {Xt, Ct}N0 is Q> , (p(n, j|m, i))(n,j),(m,i)∈CR1 , where

p(n, j|m, i) , P (Xt = n,Ct = j|Xt−1 = m,Ct−1 = i)

= P (Ct = j|Xt = n,Xt−1 = m,Ct−1 = i)P (Xt = n|Xt−1 = m,Ct−1 = i)

= δj,max(0,n−w+i)P (Xt = n|Xt−1 = m).

The initial probabilities are

p(n, j|c0) , P (X1 = n,C1 = j|C0 = c0)

= P (C1 = j|X1 = n,C0 = c0)P (X1 = n|C0 = c0)

= δj,max(0,n−w+c0)P (X1 = n).

Define the conditional probability that the run length of {Xt, Ct}N0 equals r by

pm,i(r) , P ((Xr+1, Cr+1) 6∈ CR1, (Xr, Cr), · · · , (X2, C2) ∈ CR1|(X1, C1) = (m, i)),

where (m, i) ∈ CR1. Let the vector µ(k) denote the kth factorial moments that (u(k))m,i ,∑∞
r=1 r(k)pm,i(r) where k ≥ 1 and r(k) = r · · · (r − k + 1). Then

pm,i(r) =
∑

(n,j)∈CR1

pn,j(r − 1) · p(n, j|m, i),

(u(1))m,i = 1 +
∑

(n,j)∈CR1

p(n, j|m, i) · (u(1))n,j, i.e., (I −Q) · u(1) = 1.

The ARL is obtained as

ARL =
∑

(m,i)∈CR1

(u(1))m,i · p(m, i|c0). (3.1)

The above procedures can be carried out directly by Matlab. For simplicity we don’t

repeat the proof methods, see Weiß and Testik (2009) for more details.

The EWMA chart was first introduced by Roberts (1959). This chart weights sam-

ples following the rule of which the nearest samples in time series are weighted the most
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while the previous samples contribute very little. Weiß (2009b) proposed a mixed-EWMA

chart (a combination of a traditional Shewhart chart and EWMA chart) to detect per-

sistent shifts for Poisson INAR processes. Weiß (2011) developed a single EWMA chart

to monitor the Poisson INAR(1) process and proved that the single EWMA chart could

be efficient and robust. The good performance of the single EWMA chart has also been

verified in Zhang et al. (2014) and Li et al. (2019a). Thus the single EWMA chart is

the second method used here. Let Z0 = z0, z0 ∈ N0, an EWMA statistic is given by

Zt = round(hXt+(1−h)Zt−1), t ∈ N , where h ∈ (0, 1) is a constant, and round (x) = z

iff the integer z ∈ (x − 1/2, x + 1/2]. The details about the EWMA chart are given as

follows:

Scheme 2 (The EWMA chart). Let UCL ∈ N with UCL > 1. The observations of

{Zt}N0 are plotted on an EWMA chart with control region [0, UCL], i.e., the process is

considered as being in control unless Zt > UCL.

The values of chart designs (h, UCL) are chosen such that the ARL0 can be close

to a given value (similar to the Scheme 1). The ARL computation method of the INAR-

GIP(1) EWMA chart is also based on the Markov chain approach. Different from the

CUSUM chart, the effective control region of the bivariate Markov process {Xt, Zt}N0 is

infinite and we cannot get the accurate values of ARL at this time. The control region is

given by

CR2 = {(n, z) ∈ N0 × {0, ..., UCL}|round(hn+ (1− h)z) ∈ {0, ..., UCL}} (3.2)

= {(n, z)|n ∈ N0, z = max(0, round(λn)), ...,min(UCL, round((1− λ)UCL+ λn))}.

The approximate values of ARL can be obtained with arbitrary precision by choosing a

sufficiently large limit of Xt. Similar approaches could be found in Weiß (2009b), the

proof is also skipped for simplicity.

The combined jumps chart is the last method used here, which is a kind of mixed

charts, combining the c-chart and the jump chart together. The c-chart is known as a

kind of the most common Shewhart control charts, basing on the principles that the upper

control limit and the lower control limit are computed as the mean of monitoring statistics

plus and minus three times the standard deviation of monitoring statistics. The upper

control limit of the c-chart is UCL (UCL ∈ N), and then plot {Xt}. If Xt /∈ [0, UCL],
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the process is deemed to be out of control. Obviously, the c-chart handles the INAR(1)

process the same as the i.i.d. process, regardless of the sequence autocorrelation. The

jump chart proposed by Weiß (2009a) can better deal with the correlation of the process.

The sample statistic jumps Jt = Xt − Xt−1 are plotted on a jump control chart with

control region [−k, k] for a k > 0; that is, the process is considered as being in control

unless |Jt| > k. In terms of similar idea by Weiß (2009a), the combined jumps chart is

also used to monitor the INAR-GIP(1) process.

Scheme 3 (The combined jumps chart). Let k, UCL ∈ N0 with k 6 UCL. The observed

combined jumps (Xt, Jt)N are plotted in parallel on a c-chart with control region [0, UCL]

and a jump control chart with control region [−k, k], i.e., the process is considered as

being in control unless Xt 6∈ [0, UCL] or Jt 6∈ [−k, k].

Obviously, the resulting control region of the combined jumps chart is included in

{0, ..., UCL} × {−k, ..., k}. In fact, it is given by

CR3 = {(n, j) ∈ {0, ..., UCL} × {−k, ..., k}|n− j ∈ {0, ..., UCL}}

= {(n, j)|n = 0, ..., UCL, j = max(n− UCL,−k), ...,min(n, k)}.

Markov chain approach for computing ARL of the combined jumps chart is also

accepted. More details of the Markov chain approach for the combined jumps chart’s

ARL computation can be found in Weiß (2009a).

4 Numerical simulation

We will conduct some simulation studies to evaluate the finite sample performances

of our proposed methods. First, we choose eight different combinations of (λ, α, φ), and

set r = 6. We compute the CML estimators for λ, α and φ with the help of Matlab.

All the results are based on 1000 replications with the sample size n = 100, 200, 500,

and 1000, respectively. In Table 1, we report the estimated bias (BIAS) given by the

sample mean of the estimate minus the true value, and the sampling standard error

(SSE) of the estimate. The values are showed with the format BIAS(SE). For example,

−0.06094(0.03631) means that the BIAS is −0.06094 and SE is 0.03631. It can be seen

from the results in Table 1 that the proposed CML estimators seem to be unbiased, and

the performances become better as the sample size n increases.
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As a comparision section, we conduct the second simulation to compare the per-

formances of the CUSUM, EWMA and combined jumps charts in detecting changes of

the process mean. In this paper, the in-control parameters of the INAR-GIP(1) process

will be denoted as λ0, α0, φ0, r0. Moreover, when the process is in control, we donate

the process mean µX as µ0. As our main goal is to detect changes in µX , based on the

previous description about the process, µX is exclusively influenced by parameter change

of λ in the INAR-GIP(1) model, Table 2 shows some examples how change in µX ef-

fects the λ. So for the INAR-GIP(1) process, without loss of generality, we assume that

changes only occur in λ, and the changes are sustained until an out-of-control signal is

diagnosed. It is also necessary to know that the choice of initial values c0 (z0) in the

CUSUM (EWMA) chart has a very small influence on the resulting ARLs (see Tables

3 and 4), hence, both c0 and z0 are fixed to 0 in the following computations and the

results of ARL are shown with only two decimal places for simplicity. The mean upward

shift magnitude δµ = (µX − µ0)/µ0 is set as 5%, 10%, 20%, 30%, 40%, 50%, 60% and

70%, respectively. The desired in-control ARL value is equal to ARL0 = 370. Moreover,

besides ARL, we also adopt the usual relative deviation (in %) in the ARL (Weiß and

Testik, 2011), dev(%) = 100% ∗ (ARL−ARL0)/ARL0 to evaluate the performances of

control charts.

Figure 1 shows the ARL performance of the CUSUM charts with different values of

chart designs. For example, for (µ0, α0, φ0, r0) = (1, 0.6, 0.6, 8) in Figure 1(a), there are

three suitable sets of statistical designs leading to similar ARL0, they are (w, UCL) =

(1, 42), (2, 14) and (3, 8). From Figure 1 we can see that the CUSUM chart with smaller

reference value of w shows a better sensitivity. Thus reference value w in the CUSUM

chart is suggested to set as the smallest integer no less than µ0, i.e., w = dµ0e.

In Table 5, we study the CUSUM chart under (µ0, α0) = (2, 0.3), (3, 0.4), (4, 0.5)

with various values of (φ0, r0) respectively. The results show that the CUSUM chart is

very efficient in detecting the upward shifts in µX . To be more specific, the values of ARL

decrease when the process mean µX is increasing. Meanwhile, the decline proportion

of ARL (absolute value of dev(%)) is much higher than the rise proportion of µ (δµ).

Specifically, for (µ0, α0, φ0, r0) = (2, 0.3, 0, 6), when there is only 5% increasing in the

process mean, the ARL drops significantly from 317.42 to 209.3. In this case, the out-

of-control state will be identified as soon as the control chart alarms. Moreover, for
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(µ0, α0, φ0, r0) = (2, 0.3, 0, 6), when the process mean increases from 2 to 3 (δµ = 50%),

the resulting ARL is only 33.98 (dev(%) = −90.85%), which indicates that immediate

alerts will arise in the CUSUM control chart. Similar conclusions also hold in other

parameter combinations, so the CUSUM control chart works well for the INAR-GIP(1)

process.

Table 6 shows the comparison of the EWMA charts with different sets of chart

designs (h, UCL). It can be seen that different values of (h, UCL) will affect the efficiency

of the chart and for h = 0.2 or 0.3, the EWMA chart performs better. As not every set of

(h, UCL) will lead to an ARL0 of about 370, for the EWMA control chart, we select the

(h, UCL) with a smaller h on the premise that the corresponding ARL0 is close to 370.

In Table 7, we focus on assessing the performance of the EWMA chart. The results show

that the EWMA chart is also effective in monitoring the mean shifts in INAR-GIP(1)

process except for one parameters combination (µ0, α0, φ0, r0) = (2, 0.3, 0.8, 7).

In Figure 2, given a particular value of (µ0, α0, φ0, r0), we find that there is little

difference in the sensitivity when the chart designs (k, UCL) of the combined jumps chart

are different. Table 8 also clearly indicates that the combined jumps chart performs well

in detecting the increasing shifts of µX with different in-control models. The analysis

procedures are similar to those conclusions in Tables 5 and 7, and we omit the details.

Finally, Table 9 shows the comparison of three charts with different values of µ0

(1, 3 and 5) in the INAR-GIP(1) process. The bold values show where the dev(%) is

the smallest among three charts with the same model parameters. It becomes clear in

Table 9 that each chart shows greater decrease ratio of ARL with the increasing of δµ.

For the shift sizes of 5%, 10% and 20%, the CUSUM chart is consistently best in each

combination of (µ0, α0). For shift sizes larger than 0.2µ0, the sensitivity of three charts is

nearly the same. As a whole, if the monitored data are from the INAR-GIP(1) process,

the CUSUM chart is the best choice after various shift sizes are taken into consideration.

5 Real data analysis

In this section, we apply our proposed method to analyse the weekly telephone

complaints data in Changchun (the capital of Jilin province in China). As the upward

shifts in the process mean signify the decreasing of satisfaction, it should be quickly
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identified. The data sets are collected in mayor’s public telephone access project of

Changchun. Our goal is to model and monitor these complaints data.

5.1 The first telephone complaints example

The first complaints data are about Changchun Water Conservancy Bureau. We

consider the number of weekly telephone complaints from March 10th 2013 to August

30th 2015, which consists of 130 observations (see Figure 3). The first 100 observations

are chosen as the Phase I samples, and the remaining series are used as the Phase II

observations for control charts. From Figure 3, we can see that this data set appears to

have mean shift. The sample mean and variance of the data (Phase I) are 3.47 and 4.8091,

respectively. The autocorrelation function (ACF) and partial autocorrelation function

(PACF) of these data (Phase I) are also reported in Figure 3, which indicate that {Xt}

may come from an AR(1)-type process. We consider the following six competitive models:

• INAR(1) model with Poisson marginal (Poisson INAR(1), Al-Osh and Alzaid, 1987);

• INAR(1) model with zero inflated Poisson innovations (ZIPINAR(1), Jazi et al., 2012);

• INAR(1) model with geometric marginal (GINAR(1), Alzaid and Al-Osh, 1988);

• New geometric INAR(1) model (NGINAR(1), Ristić et al., 2009);

• INAR(1) with negative binomial marginals (NBINAR(1), Ristić et al., 2012);

• Random coefficient INAR(1) model with negative binomial marginal (NBRCINAR(1),

Weiß, 2008).

In Table 10, we summarize the estimated parameters, AIC and BIC for different

models. From the results, the INAR-GIP(1) model has the smallest AIC and BIC. We

can conclude that the INAR-GIP(1) model is the most appropriate for these data.

Below, we study the monitoring of complaints data based on the control charts. All

the control chart designs should be selected that can result in the corresponding ARL0

around 370 calculated with the estimated parameters. As more than one design combina-

tions may be available each time, these different design combinations affect performance

little, thus only one design combination result is presented here to improve the readabil-

ity. For the lack of proper designs of the combined jumps chart leading to similar ARL0,

we only choose the following designs of the CUSUM and EWMA chart:

• The CUSUM chart design (w, UCL) = (4, 28), corresponding to ARL0 = 370.06;

• The EWMA chart design (h, UCL) = (0.7, 9), corresponding to ARL0 = 389.6.
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Figure 4 shows two control charts with the telephone complaints data. Both charts

do not trigger alarms at the Phase I. However, the alarms happen at t = 113 and t ∈

[117, 130] in the CUSUM chart with Phase II. Similarly, the EWMA chart also alarms at

t = 113 and t = 124. Based on our survey, an explanation for this phenomenon is that

the domestic water pipes bursted during the last week of April in 2015 (corresponding to

t = 113 in complaints data). The maintenance of the water pipes lasted about ten weeks,

and the complaints towards the inconvenience still continued several weeks.

5.2 The second telephone complaints example

The second complaints data are about Changchun Tobacco Bureau, which consist

of 123 observations starting from August 24th 2014 to December 25th 2016. The first

100 observations (from August 24th 2014 to July 17th 2016) are chosen as the Phase I

samples (see Figure 5), and the remaining series are used as Phase II observations. The

sample mean and variance (Phase I) are 2.15 and 3.0675, respectively. The ACF and

PACF plots of the Phase I data are reported in Figure 5. We summarize the estimated

parameters, AIC and BIC for different models in Table 11. It can be seen from the

results that the INAR-GIP(1) model has the smallest AIC and BIC, which indicate that

the INAR-GIP(1) model is the most appropriate.

The control charts are also used to monitor the complaints data, the selection method

of the control limits is similar with the first example. We adopt the following two control

charts:

• The CUSUM chart design (w, UCL) = (3, 12), corresponding to ARL0 = 341.12;

• The EWMA chart design (h, UCL) = (0.2, 4), corresponding to ARL0 = 373.82.

Based on the Figure 6, both control charts do not trigger alarms at Phases I and II,

which indicate that the complaints data about Changchun Tobacco Bureau are in-control.

6 Concluding remarks

In this paper, we have proposed a new INAR-GIP(1) process which can model count

time series data inflated at the r + 1 values {0, 1, · · · , r}. Some statistical properties,

together with the CML estimators of interested parameters were reported. Three popular

control charts, the CUSUM, EWMA and combined jumps charts were applied to monitor
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the process mean. Simulations and real data examples indiacted that the CUSUM chart

was the most appropriate chart for the proposed INAR-GIP(1) model. Hence, we suggest

to implement the CUSUM chart for practical application.

There exist several topics to be studied in our future research. First, our INAR-

GIP(1) model is based on independent counting series. To make the model more flexible

in analysing real data, it is desirable to consider a dependent counting series model as

Ristić et al. (2013). Second, we can propose a new INAR-GIP(1) process with random

coefficient αt, and consider some related statistical inference topics. Third, it is interesting

to extend our proposed INAR-GIP(1) process to p-th order, which can describe high-order

dependence for count time series data. Fourth, we can consider a new bivariate INAR(1)

process (Pedeli and Karlis, 2013) with geometrically inflated Poisson innovations. Fifth,

under the complex system or uncertainty, the proposed chart can be extended under

neutrosophic statistics (Albassam and Aslam, 2020; Aslam, 2020; Aslam and Albassam,

2020; Aslam et al., 2020 (a, b) and Shawky et al., 2020).
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Figure 1. ARLs of the CUSUM chart under different chart designs (w, UCL).

Figure 2. ARLs of the combined jumps chart under different chart designs (k, UCL).
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Figure 3. Sample path, ACF plot, and PACF plot for the weekly telephone com-

plaints of Water Conservancy Bureau.

Figure 4. (a) CUSUM chart with (w, UCL) = (4, 28); (b) EWMA chart with

(h, UCL) = (0.7, 9) for the weekly telephone complaints of Water Conservancy Bureau.
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Figure 5. Sample path, ACF plot, and PACF plot for the weekly telephone com-

plaints of Tobacco Bureau.

Figure 6. (a) CUSUM chart with (w, UCL) = (3, 12); (b) EWMA chart with

(h, UCL) = (0.63, 6) for the weekly telephone complaints of Tobacco Bureau.
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Table 1. The BIAS and SSE of estimates with r=6‡.

n λ̂ α̂ φ̂ λ̂ α̂ φ̂

True values λ = 1, α = 0.3, φ = 0.4. True values λ = 2, α = 0.4, φ = 0.4.

100 -0.06094(0.03631) 0.00033(0.00703) 0.07168(0.02767) -0.10066(0.15602) -0.00368(0.00666) 0.15068(0.07238)

200 -0.04416(0.01788) -0.00023(0.00402) 0.05415(0.02039) -0.08289(0.06813) 0.00617(0.00303) 0.10959(0.05821)

500 -0.02578(0.00725) 0.00037(0.00156) 0.02453(0.01603) -0.02304(0.0227) -0.00148(0.00133) 0.04088(0.04384)

1000 -0.01682(0.00329) 0.00047(0.00077) 0.00068(0.01452) -0.02329(0.01065) 0.00028(0.0007) 0.02335(0.03455)

True values λ = 1, α = 0.3, φ = 0.5. True values λ = 2, α = 0.4, φ = 0.5.

100 -0.05387(0.03721) 0.00043(0.00704) 0.01137(0.02035) -0.16336(0.17829) 0.00329(0.00625) 0.08072(0.04932)

200 -0.02955(0.01897) -0.00573(0.00429) -0.00405(0.01575) -0.11338(0.08121) 0.00116(0.00308) 0.05812(0.04562)

500 -0.01497(0.00751) 0.00096(0.00159) -0.02269(0.01337) -0.05229(0.02851) -0.00222(0.00147) -0.01268(0.03928)

1000 -0.006 (0.004) -0.00054(0.00088) -0.01745(0.00851) -0.03379(0.01204) -0.00156(0.00073) -0.02497(0.03087)

True values λ = 1, α = 0.3, φ = 0.6. True values λ = 2, α = 0.4, φ = 0.6.

100 -0.03952(0.04742) -0.00695(0.00673) -0.01341(0.01482) -0.17053(0.19228) -0.00083(0.00624) 0.01654(0.04142)

200 -0.006 (0.02137) -0.00326(0.00363) -0.02479(0.01259) -0.09444(0.08169) -0.00273(0.00347) -0.018(0.03891)

500 0.00407(0.00972) -0.00205(0.00155) -0.01893(0.00549) -0.05662(0.03296) -0.00134(0.00132) -0.0509(0.03687)

1000 0.00344(0.00535) -0.00248(0.00079) -0.00926(0.00257) -0.03233(0.01468) -0.00233(0.0007) -0.05154(0.02868)

True values λ = 1, α = 0.3, φ = 0.8. True values λ = 2, α = 0.4, φ = 0.7.

100 0.04329(0.12146) -0.00477(0.00603) -0.01949(0.0054) -0.14594(0.20933) -0.00371(0.00618) -0.03867(0.04028)

200 0.01025(0.05828) -0.0034(0.00327) -0.00758(0.00138) -0.11235(0.10539) 0.00122(0.003) -0.04143(0.03231)

500 0.00583(0.02381) -0.00029(0.00119) -0.00201(0.00047) -0.02936(0.04143) -0.00406(0.00132) -0.0518(0.02716)

1000 0.00311(0.01076) -0.00034(0.00064) -0.00228(0.00021) -0.01488(0.02204) -0.00169(0.00062) -0.03758(0.01673)

‡ The SSE is in parenthesis.
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Table 2. The relationship between µX and λ.
φ = 0.3, r = 2, α = 0.3

µX = 1 µX = 1.05 µX = 1.1 µX = 1.2 µX = 1.3 µX = 1.4 µX = 1.5 µX = 1.6 µX = 1.7

λ 0.7573 0.7979 0.8386 0.9199 1.0012 1.0825 1.1638 1.2451 1.3264

φ = 0.4, r = 6, α = 0.3

µX = 2 µX = 2.1 µX = 2.2 µX = 2.4 µX = 2.6 µX = 2.8 µX = 3 µX = 3.2 µX = 3.4

λ 1.4783 1.5556 1.6330 1.7877 1.9424 2.0971 2.2518 2.4065 2.5612

φ = 0.7, r = 6, α = 0.4

µX = 3 µX = 3.15 µX = 3.3 µX = 3.6 µX = 3.9 µX = 4.2 µX = 4.5 µX = 4.8 µX = 5.1

λ 1.8418 1.9715 2.1011 2.3605 2.6198 2.8791 3.1384 3.3977 3.6571

φ = 0.8, r = 7, α = 0.5

µX = 4 µX = 4.2 µX = 4.4 µX = 4.8 µX = 5.2 µX = 5.6 µX = 6 µX = 6.4 µX = 6.8

λ 1.7240 1.8953 2.0666 2.4091 2.7516 3.0942 3.4367 3.7792 4.1218

φ = 0.5, r = 7, α = 0.5

µX = 5 µX = 5.25 µX = 5.5 µX = 6 µX = 6.5 µX = 7 µX = 7.5 µX = 8 µX = 8.5

λ 2.7178 2.8606 3.0033 3.2889 3.5745 3.86 4.1456 4.4311 4.7167

Table 3. ARL0 of the CUSUM chart in different in-control processes with different c0.

µ0 = 1 α0 = 0.6 µ0 = 2 α0 = 0.7 µ0 = 3 α0 = 0.4 µ0 = 4 α0 = 0.5 µ0 = 5 α0 = 0.5

φ0 = 0.6 r0 = 8 φ0 = 0.5 r0 = 6 φ0 = 0.7 r0 = 6 φ0 = 0.8 r0 = 7 φ0 = 0.5 r0 = 7

w=3 UCL=8 w=4 UCL=8 w=4 UCL=14 w=5 UCL=24 w=6 UCL=24

c0 = 0 378.33 379.44 353.18 362.42 351.74

c0 = 1 377.82 378.59 352.37 361.84 351.12

c0 = 2 377.04 377.24 351.16 361.11 350.34

c0 = 3 375.58 375.37 349.37 360.17 349.43

c0 = 4 373.81 373.05 347.08 358.97 348.15

c0 = 5 371.09 369.03 344.12 357.51 346.68

c0 = 6 366.99 364.34 340.04 355.77 344.99

Table 4. ARL0 of the EWMA chart in different in-control processes with different z0.

µ0 = 1 α0 = 0.6 µ0 = 2 α0 = 0.7 µ0 = 3 α0 = 0.4 µ0 = 4 α0 = 0.5 µ0 = 5 α0 = 0.5

φ0 = 0.6 r0 = 8 φ0 = 0.5 r0 = 6 φ0 = 0.7 r0 = 6 φ0 = 0.8 r0 = 7 φ0 = 0.5 r0 = 7

h=0.5 UCL=5 h=0.4 UCL=5 h=0.2 UCL=5 h=0.7 UCL=10 h=0.8 UCL=11

z0 = 0 352.86 414.31 364.76 422.56 316.54

z0 = 1 352.29 413.83 363.22 422.43 316.55

z0 = 2 351.55 413.02 360.82 422.29 316.28

z0 = 3 350.81 412.1 357.17 422.03 316.33

z0 = 4 349.27 410.35 350.98 421.96 316.18
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Table 5. The performances of ARL and dev(%) with the CUSUM charts‡.

µ0 = 2, α0 = 0.3

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 371.42 374.03 375.15 371.58 365.32 366.83

5% 209.3 (-43.65%) 212.56 (-43.17%) 223.36 (-40.46%) 272.88 (-26.56%) 205.08 (-43.86%) 243.78 (-33.54%)

10% 138.53 (-62.7%) 141.33 (-62.21%) 151.23 (-59.69%) 212.04 (-42.94%) 135.96 (-62.78%) 174.12 (-52.53%)

20% 79.76 (-78.53%) 81.7 (-78.16%) 88.34 (-76.45%) 143.72 (-61.32%) 78.68 (-78.46%) 105.61 (-71.21%)

30% 55.33 (-85.1%) 56.78 (-84.82%) 61.52 (-83.6%) 107.59 (-71.05%) 54.8 (-85%) 74.29 (-79.75%)

40% 42.17 (-88.65%) 43.33 (-88.42%) 46.96 (-87.48%) 85.69 (-76.94%) 41.94 (-88.52%) 56.9 (-84.49%)

50% 33.98 (-90.85%) 34.94 (-90.66%) 37.89 (-89.9%) 71.14 (-80.85%) 33.93 (-90.71%) 45.92 (-87.48%)

60% 28.39 (-92.36%) 29.22 (-92.19%) 31.69 (-91.55%) 60.78 (-83.64%) 28.46 (-92.21%) 38.42 (-89.53%)

70% 24.36 (-93.44%) 25.08 (-93.29%) 27.21 (-92.75%) 53.09 (-85.71%) 24.52 (-93.29%) 32.97 (-91.01%)

UCL 33 34 37 77 33 45

w 2 2 2 2 2 2

µ0 = 3, α0 = 0.4

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 373.6 379.89 366.87 368.91 373.95 370.17

5% 201.16 (-46.16%) 206.57 (-45.62%) 205.67 (-43.94%) 269.78 (-26.87%) 205.74 (-44.98%) 221.63 (-40.13%)

10% 130.34 (-65.11%) 134.54 (-64.58%) 135.61 (-63.04%) 209.07 (-43.33%) 135.6 (-63.74%) 149.83 (-59.52%)

20% 73.81 (-80.24%) 76.57 (-79.84%) 77.77 (-78.8%) 141.37 (-61.68%) 78.25 (-79.07%) 87.04 (-76.49%)

30% 50.87 (-86.38%) 52.89 (-86.08%) 53.83 (-85.33%) 105.7 (-71.35%) 54.51 (-85.42%) 60.38 (-83.69%)

40% 38.6 (-89.67%) 40.2 (-89.42%) 40.96 (-88.84%) 84.15 (-77.19%) 41.71 (-88.85%) 45.95 (-87.59%)

50% 31 (-91.7%) 32.32 (-91.49%) 32.97 (-91.01%) 69.83 (-81.07%) 33.76 (-90.97%) 36.98 (-90.01%)

60% 25.84 (-93.08%) 26.99 (-92.9%) 27.55 (-92.49%) 59.69 (-83.82%) 28.35 (-92.42%) 30.89 (-91.66%)

70% 22.12 (-94.08%) 23.12 (-93.91%) 23.63 (-93.56%) 52.12 (-85.87%) 24.42 (-93.47%) 26.48 (-92.85%)

UCL 45 47 48 112 49 54

w 3 3 3 3 3 3

µ0 = 4, α0 = 0.5

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 373.47 371.51 372.28 370.9 375.72 373.39

5% 199.03 (-46.71%) 201.32 (-45.81%) 204.8 (-44.99%) 265.72 (-28.36%) 208.22 (-44.58%) 215.49 (-42.29%)

10% 128.23 (-65.67%) 130.81 (-64.79%) 133.96 (-64.02%) 200.18 (-46.03%) 137.74 (-63.34%) 143.27 (-61.63%)

20% 72.25 (-80.65%) 74.26 (-80.01%) 76.34 (-79.49%) 127.31 (-65.68%) 79.7 (-78.79%) 82.24 (-77.97%)

30% 49.63 (-86.71%) 51.15 (-86.23%) 52.72 (-85.84%) 90.19 (-75.68%) 55.55 (-85.22%) 56.79 (-84.79%)

40% 37.57 (-89.94%) 38.8 (-89.56%) 40.03 (-89.25%) 68.72 (-81.47%) 42.53 (-88.68%) 43.14 (-88.45%)

50% 30.12 (-91.94%) 31.16 (-91.61%) 32.18 (-91.36%) 55.05 (-85.16%) 34.39 (-90.85%) 34.68 (-90.71%)

60% 25.07 (-93.29%) 25.97 (-93.01%) 26.85 (-92.79%) 45.78 (-87.66%) 28.88 (-92.31%) 28.93 (-92.25%)

70% 21.42 (-94.26%) 22.22 (-94.02%) 23.02 (-93.82%) 39.13 (-89.45%) 24.88 (-93.38%) 24.78 (-93.36%)

UCL 58 60 62 85 66 67

w 4 4 4 5 4 4

‡ The dev(%) is in parenthesis.
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Table 6. ARLs of the EWMA chart under different chart designs (h, UCL)‡ .

δµ µ0 = 2, α0 = 0.4, φ0 = 0.7, r0 = 6

0 356.6 474.26 840.71 440.53 463 484.11 1008.69 658.21 1035.41

5% 319.75 387.01 680.92 367.99 391.05 413.62 875.97 572.53 910.17

(-10.33%) (-18.4%) (-19.01%) (-16.47%) (-15.54%) (-14.56%) (-13.16%) (-13.02%) (-12.1%)

10% 285.14 315.06 549.77 306.37 328.73 351.3 754.24 494.22 793.33

(-20.04%) (-33.57%) (-34.61%) (-30.45%) (-29%) (-27.43%) (-25.23%) (-24.91%) (-23.38%)

20% 223.48 209.08 357.13 211.32 230.21 250.07 546.77 360.99 589

(-37.33%) (-55.91%) (-57.52%) (-52.03%) (-50.28%) (-48.34%) (-45.79%) (-45.16%) (-43.11%)

30% 172.41 140.72 233.28 146.06 160.61 176.33 387.43 258.47 426.29

(-51.65%) (-70.33%) (-72.25%) (-66.84%) (-65.31%) (-63.58%) (-61.59%) (-60.73%) (-58.83%)

40% 131.96 97.13 154.94 102.1 112.75 124.42 271.16 183.37 303.48

(-62.99%) (-79.52%) (-81.57%) (-76.82%) (-75.65%) (-74.3%) (-73.12%) (-72.14%) (-70.69%)

50% 101.06 69.19 105.5 72.72 80.29 88.65 189.45 130.25 214.73

(-71.66%) (-85.41%) (-87.45%) (-83.49%) (-82.66%) (-81.69%) (-81.22%) (-80.21%) (-79.26%)

60% 77.95 51 74.04 52.99 58.33 64.25 133.4 93.36 152.47

(-78.14%) (-89.25%) (-91.19%) (-87.97%) (-87.4%) (-86.73%) (-86.77%) (-85.82%) (-85.27%)

70% 60.86 38.87 53.66 39.63 43.36 47.53 95.32 68.08 109.51

(-82.93%) (-91.8%) (-93.62%) (-91%) (-90.63%) (-90.18%) (-90.55%) (-89.66%) (-89.42%)

UCL 3 4 5 5 6 6 7 7 8

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

δµ µ0 = 3, α0 = 0.5, φ0 = 0.8, r0 = 7

0 1039.53 481.3 553 871.74 724.75 639.97 351.4 650.6 348.31

5% 896.78 396.27 464.12 749.27 634.51 568.77 317.88 590.92 318.66

(-13.73%) (-17.67%) (-16.07%) (-14.05%) (-12.45%) (-11.13%) (-9.54%) (-9.17%) (-8.51%)

10% 767.27 325.04 387.57 639.22 551.5 501.91 285.66 532.71 289.67

(-26.19%) (-32.47%) (-29.92%) (-26.67%) (-23.9%) (-21.57%) (-18.71%) (-18.12%) (-16.84%)

20% 550.11 217.57 267.1 455.78 407.7 382.01 225.73 422.47 233.79

(-47.08%) (-54.8%) (-51.7%) (-47.72%) (-43.75%) (-40.31%) (-35.76%) (-35.06%) (-32.88%)

30% 386.83 146.11 182.46 317.58 293.62 282.49 173.64 324.13 183.26

(-62.79%) (-69.64%) (-67.01%) (-63.57%) (-59.49%) (-55.86%) (-50.59%) (-50.18%) (-47.39%)

40% 270.13 99.61 124.85 218.04 207.25 203.87 130.41 240.99 139.91

(-74.01%) (-79.3%) (-77.42%) (-74.99%) (-71.4%) (-68.14%) (-62.89%) (-62.96%) (-59.83%)

50% 189.66 69.67 86.45 149.12 144.82 144.85 96.41 174.76 104.72

(-81.76%) (-85.52%) (-84.37%) (-82.89%) (-80.02%) (-77.37%) (-72.56%) (-73.14%) (-69.93%)

60% 135.32 50.29 61.12 102.7 101.24 102.38 70.76 124.89 77.44

(-86.98%) (-89.55%) (-88.95%) (-88.22%) (-86.03%) (-84%) (-79.86%) (-80.8%) (-77.77%)

70% 98.73 37.59 44.42 71.96 71.55 72.78 52.04 88.95 57.14

(-90.5%) (-92.19%) (-91.97%) (-91.75%) (-90.13%) (-88.63%) (-85.19%) (-86.33%) (-83.6%)

UCL 6 6 7 8 9 9 9 10 10

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

‡The dev(%) is in parenthesis.
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Table 7. The performances of ARL and dev(%) with EWMA charts‡.

µ0 = 2, α0 = 0.3

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 419.94 363.28 407.52 331.58 397.97 352.64

5% 299.75 (-28.62%) 260.88 (-28.19%) 342.64 (-15.92%) 241.85 (-27.06%) 260.6 (-34.52 %) 334.6 (-5.12%)

10% 219.52 (-47.73%) 192.16 (-47.1%) 286.04 (-29.81%) 182.34 (-45.01%) 177.44 (-55.41%) 316.71 (-10.19%)

20% 126.11 (-69.97%) 111.64 (-69.27%) 196.51 (-51.78%) 112.61 (-66.04%) 91.5 (-77.01%) 281.45(-20.19%)

30% 78.47 (-81.31%) 70.26 (-80.66%) 134.08 (-67.1%) 76.06 (-77.06%) 53.24 (-86.62%) 246.5 (-30.1%)

40% 52.22 (-87.56 %) 47.27 (-86.99%) 92.14 (-77.39%) 55.04 (-83.4%) 34.1(-91.43%) 211.83(-39.93 %)

50% 36.78 (-91.24%) 33.65 (-90.74%) 64.44 (-84.19%) 42.01 (-87.33%) 23.56 (-94.08%) 178.07 (-49.5%)

60% 27.15 (-93.53%) 25.09 (-93.09 %) 46.15 (-88.68%) 33.44 (-89.91%) 17.27 (-95.66%) 146.46 (-58.47%)

70% 20.84 (-95.04%) 19.45 (-94.65%) 33.91 (-91.68 %) 27.48 (-91.71%) 13.26 (-96.67%) 118.34 (-66.44%)

UCL 4 4 6 10 5 4

h 0.3 0.3 0.7 0.5 0.6 0.1

µ0 = 3, α0 = 0.4

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 409.77 374.47 364.76 378.44 358.64 329.5

5% 309.13 (-24.56%) 260.01 (-30.57%) 254.88 (-30.12%) 272.64 (-27.96%) 222.01 (-38.1%) 294.24 (-10.7%)

10% 238.02 (-41.91%) 185.98 (-50.34%) 182.56 (-49.95%) 203.73 (-46.17%) 147.01 (-59.01%) 260.4 (-20.97%)

20% 148.82 (-63.68%) 103.04 (-72.48%) 101.2 (-72.26%) 124.44 (-67.12%) 76.08 (-78.79%) 198.65 (-39.71%)

30% 98.9 (-75.86%) 62.51 (-83.31%) 61.92 (-83.02%) 83.5 (-77.94%) 46.55 (-87.02%) 147.25 (-55.31%)

40% 69.13 (-83.13 %) 40.87 (-89.09%) 41.32 (-88.67%) 60.15 (-84.11%) 32.02 (-91.07%) 107.67 (-67.32%)

50% 50.45 (-87.69%) 28.42 (-92.41%) 29.61 (-91.88%) 45.77 (-87.91%) 23.9 (-93.34%) 78.94 (-76.04%)

60% 38.19 (-90.68%) 20.8 (-94.45%) 22.46 (-93.84%) 36.37 (-90.39%) 18.88 (-94.74%) 58.79 (-82.16%)

70% 29.83 (-92.72%) 15.85 (-95.77%) 17.8 (-95.12%) 29.94 (-92.09%) 15.56 (-95.66%) 44.83 (-86.39%)

UCL 4 6 5 12 5 5

h 0.1 0.4 0.2 0.4 0.2 0.1

µ0 = 4, α0 = 0.5

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 412.82 365.08 313.13 395.42 365.38 422.51

5% 287.95 (-30.25%) 257.39 (-29.5%) 225.75 (-27.91%) 284.66 (-28.01%) 230.07 (-37.03%) 341.89 (-19.08%)

10% 206.39 (-50%) 186.23 (-48.99%) 165.25 (-47.23%) 212.76 (-46.19%) 156.58 (-57.15%) 273.44 (-35.28%)

20% 113.97 (-72.39%) 104.51 (-71.37%) 93.29 (-70.21 %) 130.2 (-67.07%) 86.26 (-76.39%) 170.92 (-59.55%)

30% 68.26 (-83.46%) 63.43 (-82.63%) 56.34 (-82.01%) 87.58 (-77.85%) 55.75 (-84.74%) 106.1 (-74.89%)

40% 43.73 (-89.41%) 41.05 (-88.76%) 36.18 (-88.45%) 63.22 (-84.01%) 40.04 (-89.04%) 67.06 (-84.13%)

50% 29.58 (-92.83%) 27.95 (-92.34%) 24.54 (-92.16%) 48.1 (-87.84%) 30.96 (-91.53%) 43.83 (-89.63%)

60% 20.92 (-94.93%) 19.84 (-94.57%) 17.37 (-94.45%) 38.14 (-90.35%) 25.18 (-93.11%) 29.84 (-92.94%)

70% 15.41 (-96.27%) 14.57 (-96.01%) 12.78 (-95.92%) 31.23 (-92.1%) 21.29 (-94.17%) 21.18 (-94.99%)

UCL 9 10 10 15 6 10

h 0.7 0.9 0.9 0.4 0.1 0.7

‡The dev(%) is in parenthesis.
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Table 8. The performances of ARL and dev(%) with combined jumps charts‡.

µ0 = 2, α0 = 0.3

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 407.51 405.15 354.58 342.14 449.36 228.71

5% 326.57 (-19.86%) 331.51 (-18.18%) 304.93 (-14%) 237.12 (-30.7%) 297.03 (-33.9%) 216.86 (-5.18%)

10% 264.44 (-35.11%) 273.93 (-32.39%) 259.72 (-26.75%) 169.56 (-50.44%) 203.88 (-54.63%) 205.15 (-10.3%)

20% 178.44 (-56.21%) 192.01 (-52.61%) 184.35 (-48.01%) 93.99 (-72.53%) 105.81 (-76.45%) 181.58 (-20.61%)

30% 124.35 (-69.49%) 138.66 (-65.78%) 128.87 (-63.66%) 57.03 (-83.33%) 60.84 (-86.46%) 158.06 (-30.89%)

40% 89.08 (-78.14%) 102.7 (-74.65%) 90.03 (-74.61%) 37.23 (-89.12%) 37.91 (-91.56%) 134.73 (-41.09%)

50% 65.38 (-83.96%) 77.61 (-80.84%) 63.58 (-82.07%) 25.81 (-92.46%) 25.2 (-94.39%) 111.91 (-51.07%)

60% 48.97 (-87.98%) 59.7 (-85.26%) 45.68 (-87.12%) 18.82 (-94.5%) 17.61 (-96.08%) 90.67 (-60.36%)

70% 37.35 (-90.83%) 46.6 (-88.5%) 33.48 (-90.56%) 14.3 (-95.82%) 12.83 (-97.14%) 71.66 (-68.67%)

UCL 7 8 7 15 7 8

k 5 5 6 13 5 7

µ0 = 3, α0 = 0.4

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 282.41 402.17 375.53 386.36 327.44 493.04

5% 209.47 (-25.83%) 305.44 (-24.05%) 288.73 (-23.11%) 258.84 (-33.01%) 209.94 (-35.88%) 443.22 (-10.1%)

10% 158.45 (-43.89%) 235.21 (-41.51%) 222.73 (-40.69%) 180.28 (-53.34%) 140.95 (-56.95%) 391.92 (-20.51%)

20% 95.37 (-66.23%) 144.84 (-63.99%) 135.14 (-64.01%) 96.16 (-75.11%) 71.18 (-78.26%) 291.72 (-40.83%)

30% 60.88 (-78.44%) 93.22 (-76.82%) 84.85 (-77.41%) 56.97 (-85.25%) 40.52 (-87.63%) 204.94 (-58.43%)

40% 40.73 (-85.58%) 62.4 (-84.48%) 55.29 (-85.28%) 36.62 (-90.52%) 25.24 (-92.29%) 138.71 (-71.87%)

50% 28.31 (-89.98%) 43.25 (-89.25%) 37.38 (-90.05%) 25.11 (-93.5%) 16.84 (-94.86%) 92.65 (-81.21%)

60% 20.29 (-92.82%) 30.86 (-92.33%) 26.14 (-93.04%) 18.13 (-95.31%) 11.83 (-96.39%) 62.27 (-87.37%)

70% 14.92 (-94.72%) 22.57 (-94.39%) 18.81 (-94.99%) 13.67 (-96.46%) 8.68 (-97.35%) 42.57 (-91.37%)

UCL 8 9 9 19 9 10

k 7 6 6 17 7 7

µ0 = 4, α0 = 0.5

δµ φ0 = 0, r0 = 6 φ0 = 0.4, r0 = 6 φ0 = 0.7, r0 = 6 φ0 = 0.8, r0 = 0 φ0 = 0.8, r0 = 3 φ0 = 0.8, r0 = 7

0 368.4 367 395.62 379.26 391.36 365.41

5% 264.24 (-28.27%) 290.96 (-20.72%) 309.48 (-21.77%) 246.52 (-35%) 260.59 (-33.41%) 302.26 (-17.28%)

10% 193.72 (-47.42%) 233.11 (-36.48%) 244.45 (-38.21%) 166.94 (-55.98%) 179.63 (-54.1%) 246.39 (-32.57%)

20% 110.35 (-70.05%) 153.71 (-58.12%) 157.09 (-60.29%) 85.09 (-77.56%) 93.11 (-76.21%) 158.44 (-56.64%)

30% 67.21 (-81.76%) 104.33 (-71.57%) 104.53 (-73.58%) 48.66 (-87.17%) 53.15 (-86.42%) 99.81 (-72.69%)

40% 43.26 (-88.26%) 72.52 (-80.24%) 71.73 (-81.87%) 30.48 (-91.96%) 32.78 (-91.62%) 63.25 (-82.69%)

50% 29.06 (-92.11%) 51.47 (-85.98%) 50.46 (-87.25%) 20.55 (-94.58%) 21.54 (-94.5%) 41.03 (-88.77%)

60% 20.23 (-94.51%) 37.26 (-89.85%) 36.3 (-90.82%) 14.71 (-96.12%) 14.88 (-96.2%) 27.43 (-92.49%)

70% 14.45 (-96.08%) 27.44 (-92.52%) 26.61 (-93.27%) 11.07 (-97.08%) 10.72 (-97.26%) 18.93 (-94.82%)

UCL 10 12 13 24 13 11

k 7 6 6 17 7 8

‡The dev(%) is in parenthesis.
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Table 10. Estimated parameters, AIC and BIC for the first complaints data set.

Model Estimators of unknown parameters AIC BIC

Poisson INAR(1) λ̂ = 2.4234 α̂ = 0.2983 426.1256 431.336

ZIPINAR(1) α̂ = 0.3675 λ̂ = 2.5955 ρ̂ = 0.1469 419.9598 427.7753

GINAR(1) p̂ = 0.2883 α̂ = 0.4871 455.6586 460.869

NGINAR(1) µ̂ = 3.1849 α̂ = 0.6926 441.1347 446.345

NBINAR(1) θ̂ = 6.3551 p̂ = 0.5427 α̂ = 0.3487 423.1237 430.9392

NBRCINAR(1) n̂ = 8 p̂ = 0.6989 ρ̂ = 0.3678 422.4495 430.265

INAR-GIP(1) r̂ = 7 φ̂ = 0.8353 λ̂ = 1.7061 α̂ = 0.3878 414.7315 422.547
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Table 11. Estimated parameters, AIC and BIC for the second complaints data set.

Model Estimators of unknown parameters AIC BIC

Poisson INAR(1) λ̂ = 1.5137 α̂ = 0.2955 368.7535 373.9638

ZIPINAR(1) α̂ = 0.2984 λ̂ = 1.7604 ρ̂ = 0.1351 365.4889 373.3044

GINAR(1) p̂ = 0.3515 α̂ = 0.2354 393.1489 398.3593

NGINAR(1) µ̂ = 2.1359 α̂ = 0.6768 378.134 383.3443

NBINAR(1) θ̂ = 5.1522 p̂ = 0.4178 α̂ = 0.4061 364.4134 372.2289

NBRCINAR(1) n̂ = 5 p̂ = 0.7005 ρ̂ = 0.3451 365.228 373.0435

INAR-GIP(1) r̂ = 6 φ̂ = 0.7525 λ̂ = 1.2659 α̂ = 0.3012 363.1095 370.925
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