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Abstract. With the emergence of big data, it is increasingly common that

the data are distributed. i.e., the data are stored at many distributed sites

(machines or nodes) owing to data collection or business operations, etc. We

propose a distributed subsampling procedure in such a setting to efficiently

approximate the maximum likelihood estimator for the logistic regression.

We establish the consistency and asymptotic normality of the subsample

estimator given the full data. The optimal subsampling probabilities and

optimal allocation sizes are explicitly obtained. We develop a two-step

algorithm to approximate the optimal subsampling procedure. Numerical

simulations and an application to airline data are presented to evaluate the

performance of our subsampling method.
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1 Introduction

With the development of technologies, big data or massive data have become ubiq-

uitous in many scientific fields. Due to the incredible sizes of massive data, it is very

challenging to perform standard statistical inference. A major bottleneck is that the

huge dataset exceeds the available computational capability at hand. Hence, there is

an urgent need for developing new statistical methods to analyze massive datasets.

Recently, many efforts have been made on building both methodologies and algo-

rithms for big data analysis. For example, Zhao et al. (2016) proposed a partially

linear framework for massive heterogeneous data. Battey et al. (2018) studied the

topics on hypothesis testing and parameter estimation with massive data. Shi et

al. (2018) introduced a cubic-rate estimator under massive data framework. Jor-

dan et al. (2019) presented a communication-efficient surrogate likelihood method

for distributed statistical inference. Volgushev et al. (2019) proposed a distributed

inference approach for quantile regression. Besides, Ma et al. (2015) proposed an

algorithmic leveraging-based subsampling procedure. Wang et al. (2018) and Wang

(2019) developed some optimal subsampling methods for logistic regression. Wang

et al. (2019) provided a novel information-based subdata selection approach in the

context of linear models. Zuo et al. (2020) introduced a subsample-based estimation

method for massive survival data with additive hazards model. Ai et al. (2020) stud-

ied optimal subsampling for the big data generalized linear models, among others.

Nowadays, it is increasingly common that the data are inherently distributed.

The term “inherent” means that the data are stored in a lot of distributed sites

(machines or nodes) due to data collection or business operations, etc. For exam-

ple, a search engine company may own data coming from a lot of locations, and

each location collects huge datasets (Corbett et al. 2013). Faced with this kind of
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massive data, we propose a distributed subsampling method in the context of logis-

tic regression, which aims to select informative subsamples and construct effective

subsample-based estimators. The main advantages of our method are as follows:

First, we establish the convergence rate of the subsample-based estimator, which en-

sures the consistency of our proposed method. Second, the asymptotic normality of

our subsample-based estimator is presented, which is useful for conducting statistical

inference in the framework of distributed data. Third, the computational speed of

our subsampling method is much faster than the full data approach.

The remainder of this article is organized as follows. In Section 2, we give some no-

tations and assumptions. A distributed subsampling algorithm is presented. Asymp-

totic properties of the subsample-based estimator are established. In Section 3, we

introduce a subsampling strategy with optimal subsampling probablities and opti-

mal allocation sizes. In Section 4, a two-step subsampling procedure is proposed for

practical application. In Section 5, simulations and a real data example are provided.

Concluding remarks are presented in Section 6. All proof details are given in the

Appendix.

2 Methods

2.1 Model and Notation

We consider the logistic regression model

P (Yik = 1|Xik) =
exp(βTXik)

1 + exp(βTXik)
, i = 1, · · · , nk, and k = 1, · · · , K, (2.1)

where Xik ∈ Rd is the covariate, Yik ∈ {0, 1} is the response, β ∈ Rd is a vector of

regression coefficients. Here nk is the sample size of the kth dataset, n =
∑K

k=1 nk
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is the total sample size, and K is the number of distributed datasets. Denote the

full data as Fn = {(Yik,Xik), i = 1, · · · , nk; k = 1, · · · , K}. We assume that these

distributed data satisfy the logistic model in (2.1), i.e., we need the logistic regression

model to be true, but the covariate distributions can be heterogeneous. Ideally, if a

central computer with super capacity is available, the maximum likelihood estimator

(MLE) of β is obtained by maximizing the log-likelihood function

β̂MLE = arg max
β

`(β) = arg max
β

K∑
k=1

nk∑
i=1

[Yik logPik(β) + (1− Yik) log{1− Pik(β)}],

where Pik(β) =
exp(XT

ikβ)

1+exp(XT
ikβ)

. Note that there is no closed-form solution for β̂MLE, and

a Newton’s method is adopted with the following iterative formula,

β̂(t+1) = β̂(t) −
{ K∑
k=1

nk∑
i=1

wik(β̂
(t))XikX

T
ik

}−1∂`(β̂(t))

∂β
,

where wik(β) = Pik(β){1 − Pik(β)}. Our aim is to construct a subsample-based

estimator, which can be used to effectively approximate the full data estimator β̂MLE.

2.2 Subsampling Algorithm and Asymptotic Properties

In this section, we propose a distributed subsampling algorithm to approximate

the β̂MLE. Meanwhile, the consistency and asymptotic normality of the subsample

estimator are established. First we propose a subsampling method in Algorithm 1,

which can reasonably select a subsample from distributed data. Then, a subsample-

based estimator is presented.
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Algorithm 1 Distributed Subsampling Algorithm

• Sampling: Assign subsampling probabilities {πik}nk
i=1 for the kth dataset Dk =

{(Xik, Yik), i = 1, · · · , nk} with
∑nk

i=1 πik = 1, where k = 1, · · · , K. Given r, draw a

random subsample of size rk with replacement from Dk according to {πik}nk
i=1, where

{rk}Kk=1 are allocation sizes with
∑K

k=1 rk = r. For i = 1, · · · , nk and k = 1, · · · , K,

we denote the corresponding responses, covariates, and subsampling probabilities as

Y ∗ik, X∗ik and π∗ik, respectively.

• Estimation: Based on the subsamples {(Y ∗ik,X∗ik, π∗ik) : i = 1, · · · , rk}Kk=1, we maxi-

mize the following weighted log-likelihood function to get a subsample-based estimate

β̃.

`∗(β) =
K∑
k=1

1

rk

rk∑
i=1

1

π∗ik
[Y ∗ik logP ∗ik(β) + (1− Y ∗ik) log{1− P ∗ik(β)}],

where P ∗ik(β) =
exp(βTX∗

ik)

1+exp(βTX∗
ik)

.

In order to characterize asymptotic properties of the subsample-based estimator

β̃, we need the following regularity assumptions:

(A.1) The parameter space JB ⊂ Rd is a compact convex set, and β̂MLE is in the

interior of JB.

(A.2) 1
n2

∑K
k=1

1
rk

∑nk

i=1
‖Xik‖l
πik

= OP (
∑K

k=1

n2
k

n2rk
) for l=2 and 4, where ‖ ·‖ denotes the

Euclidean norm of a vector.

(A.3) As n → ∞, the matrix HX = 1
n

∑K
k=1

∑nk

i=1

wik(β̂MLE)XikX
T
ik

πik
converges to a

positive definite matrix in probability.

(A.4) 1
n

∑K
k=1

∑nk

i=1 ‖Xik‖6 = Op(1).

(A.5)
∑K

k=1

n2
k

n2rk
= oP (1).

(A.6) 1
n3

∑K
k=1

1
r2k

∑nk

i=1
‖Xik‖3
π2
ik

= OP (
∑K

k=1

n3
k

n3r2k
).
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Assumption (A.1) is a standard condition in the proofs. Assumptions (A.2)

and (A.6) are two conditions on the subsampling probabilities, allocation sizes and

covariates distribution. For uniform subsampling with πik = 1/nk and rk = rnk/n,

the sufficient condition for those assumptions is E‖X‖4 < ∞. Assumptions (A.3)

and (A.4) impose two conditions on the covariates. (A.3) holds if E(XXT ) is positive

definite, and (A.4) holds if E‖X‖6 <∞. Assumption (A.5) is reasonable for uniform

allocation sizes with {rk = rnk/n}Kk=1, and it holds as r →∞.

Theorem 1. Under Assumptions (A.1)−(A.5), as n → ∞, for any ε > 0, with

probability approaching one, there exists a finite ∆ε and rε, such that

P

‖β̃ − β̂MLE‖ ≥

{
K∑
k=1

n2
k

n2rk

}1/2

∆ε

∣∣∣Fn
 < ε, (2.2)

for all rk ≥ rε, and k = 1, · · ·K.

Under Assumption (A.5), the convergence rate in (2.2) ensures that we can con-

sistently approximate β̂MLE with β̃. For practical application, we suggest to use

β̃ rather than β̂MLE for reducing computational burden. Next, we establish the

asymptotic normality of β̃, which is given in the following theorem.

Theorem 2. If Assumptions (A.1)−(A.6) hold, conditional on Fn, and as n→

∞ and r →∞, with probability tending to one, we have

Σ−1/2(β̃ − β̂MLE)
d−→ N(0, I), (2.3)

where
d−→ denotes convergence in distribution, Σ = H−1

X ΓH−1
X with

Γ =
1

n2

K∑
k=1

1

rk

nk∑
i=1

{Yik − Pik(β̂MLE)}2XikX
T
ik

πik
. (2.4)
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3 Optimal Subsampling Strategy

We consider how to specify the subsampling probablities {πik}nk
i=1, and the allocation

sizes {rk}Kk=1 for given r. A naive choice is the uniform subsampling strategy with

and {πik = 1/nk}nk
i=1 and {rk = [rnk/n]}Kk=1, where [ · ] denotes the rounding op-

eration. However, this uniform subsampling method is not optimal. A nonuniform

subsampling strategy may has a better performance (Wang et al., 2018). Our idea is

to determine the optimal allocation sizes and optimal subsampling probabilities by

minimizing the asymptotic variance matrix Σ in Theorem 2. However, because Σ is

a matrix, the meaning of “minimizing” needs to be carefully defined. For this pur-

pose, we adopt the idea of A-optimality from optimal design of experiments, and use

the trace to induce a complete ordering of the asymptotic variance matrix (Kiefer,

1959). In this case, the asymptotic mean squared error (AMSE) of β̃ is equal to the

trace of Σ, i.e.,

AMSE(β̃) = tr(Σ), (3.1)

where tr(·) denotes the trace of a matrix.

As mentioned above, the optimal allocation sizes and subsampling probabilities

require the calculation ofH−1
X if we determine them by minimizing tr(Σ), which takes

substantial time in the case of big n. Note that HX and Γ are nonnegative definite,

and Σ = (HX)−1Γ(HX)−1. Simple matrix algebra yields that tr(Σ) = tr(ΓH−2
X ) ≤

λmax(H−2
X ) tr(Γ), where λmax(·) denotes the maximum eigenvalue of a matrix. The

minimizer of tr(Γ) minimizes an upper bound of tr(Σ). In fact, Σ depends on rk and

πik only through Γ, and HX is free of rk and πik. Hence, we suggest to determine the

optimal allocation sizes and optimal subsampling probabilites by directly minimizing

tr(Γ) rather than tr(Σ), which can effectively speed up our subsampling algorithm.
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Theorem 3. In Algorithm 1, if the subsampling probabilities and allocation sizes

are chosen as

πmΓ
ik =

|Yik − Pik(β̂MLE)|‖Xik‖∑nk

i=1 |Yik − Pik(β̂MLE)|‖Xik‖
, i = 1, · · · , nk, (3.2)

and

rmΓ
k = r ·

∑nk

i=1 |Yik − Pik(β̂MLE)|‖Xik‖∑K
k=1

∑nk

i=1 |Yik − Pik(β̂MLE)|‖Xik‖
, k = 1, · · · , K, (3.3)

then tr(Γ) attains its minimum.

Remark: In practice, we can use [rmΓ
k ] as the optimal allocation sizes for k =

1, · · · , K, where [ · ] denotes the rounding operation.

4 Two-Step Algorithm

The optimal subsampling probabilities and allocation sizes in (3.2) and (3.3) depend

on the unavailable β̂MLE. To deal with this problem, we use a pilot estimator β̃0 to

replace β̂MLE in (3.2) and (3.3). Below, we propose a two-step subsampling procedure

in Algorithm 2.
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Algorithm 2 Two-Step Algorithm

• Step 1: Given r0, we run Algorithm 1 with subsampling size rk = [r0nk/n] to

obtain a pilot estimator β̃0, using either πik = 1/nk or πik = 1/(2n0k) if i ∈ S0k and

πik = 1/(2n1k) if i ∈ S1k, where [ · ] denotes the rounding operation. Here n0k and

n1k are the numbers of elements in S0k = {i : Yik = 0} and S1k = {i : Yik = 1},

respectively. Replace β̂MLE with β̃0 in (3.2) and (3.3) to get the allocation sizes

rk(β̃0) and subsampling probabilities πik(β̃0), for i = 1, · · · , nk and k = 1, · · · , K,

respectively.

• Step 2: Based on the {rk(β̃0)}Kk=1 and {πik(β̃0)}nk
i=1 in Step 1, we can select a

subsample {(Y ∗ik,X∗ik, π∗ik) : i = 1, · · · , rk}Kk=1 from the full data Fn. Maximize the

following weighted log-likelihood function to get a two-step subsample estimate β̆.

`∗
β̃0

(β) =
K∑
k=1

1

rk(β̃0)

rk(β̃0)∑
i=1

1

π∗ik(β̃0)
[Y ∗ik logP ∗ik(β) + (1− Y ∗ik) log{1− P ∗ik(β)}],

where P ∗ik(β) =
exp(βTX∗

ik)

1+exp(βTX∗
ik)

.

For the subsample-based estimator β̆ in Algorithm 2, we need the following as-

sumption in order to derive its asymptotic properties, and a similar assumption was

also required by Wang et al. (2018).

(A.7) E(e4λ‖X‖) <∞, where λ = supβ∈JB‖β‖.

Theorem 4. Under Assumptions (A.1), (A.4) and (A.7), if the pilot estimate

β̃0 exists, then as r0 → ∞, r → ∞, and n → ∞, for any ε > 0, with probability

approaching one, there exists a finite ∆ε and rε, such that

P (‖β̆ − β̂MLE‖ ≥ r1/2∆ε|Fn) < ε, (4.1)

for all r ≥ rε.
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Based on Theorem 4, as long as the pilot estimate β̃0 exists, the two-step Algo-

rithm 2 produces a consistent subsample-based estimator β̆. Its asymptotic normal-

ity is given in the following theorem.

Theorem 5. If Assumptions (A.1), (A.4) and (A.7) hold, conditional on β̃0 and

Fn, as r0 →∞, r →∞, and n→∞, with probability tending to one, we have

Σ−1/2(β̆ − β̂MLE)
d−→ N(0, I), (4.2)

where
d−→ denotes convergence in distribution, Σ = H−1

X ΓH−1
X with

Γ =
1

rn2

K∑
k=1

nk∑
i=1

|Yik − Pik(β̂MLE)|‖Xik‖
K∑
k=1

nk∑
i=1

|Yik − Pik(β̂MLE)|XikX
T
ik

‖Xik‖
. (4.3)

In order to estimate the standard errors for each component of β̆, a simple way is

to replace β̂MLE with β̆ in the asymptotic variance matrix Σ. However, it involves the

full data with heavy calculation burden. To solve this issue, we propose to estimate

the covariance matrix of β̆ with a subsample,

Σ̆ = (H̆X)−1Γ̆(H̆X)−1, (4.4)

where

H̆X =
1

n

K∑
k=1

1

rk

rk∑
i=1

w∗ik(β̆)X∗ikX
∗T
ik

π∗ik
,

Γ̆ =
1

n2

K∑
k=1

1

r2
k

rk∑
i=1

{Y ∗ik − P ∗ik(β̆)}2X∗ikX
∗T
ik

π∗2ik
.

From the above formulas, if β̆ is replaced by β̂MLE, then H̆X and Γ̆ are unbiased

estimators of HX and Γ, respectively. The standard errors of components in β̆

are obtained by the square roots of diagonal elements of Γ̆. We will evaluate the

performance of (4.4) by numerical studies in Section 5.
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5 Numerical Studies

5.1 Simulation

In this section, we conduct simulations to verify our proposed method. The true

parameter is β = (−1,−0.5, 0, 0.5, 1)T with d = 5. We consider the following four

cases for the covariate X,

Case I : X ∼ N(0,Σ), where Σij = 0.5|i−j|.

Case II: X ∼ N(0,Σ), where Σij = 0.5I(i 6=j).

Case III: X ∼ t5(0,Σ), i.e., X follows a multivariate t distribution with degree 5,

and covariance matrix Σij = 0.5|i−j|.

Case IV: X = (X1, · · · , X5)T , where Xi are independent exponential random vari-

ables with probability density function f(x) = 2e−2xI(x > 0), i = 1, · · · , 5.

Note that in Cases I − III the covariate distributions are symmetric, while in

Case IV the covariate distribution is skewed. For Case IV, there could exist po-

tential outliers in X due to the skewness of covariate distribution. We carry out

computations on a server with 128GB memory using R software. All the simula-

tion are based on 1000 replications. We set the sample size of each datasets as

{nk = [nuk/
∑K

k=1 uk]}Kk=1, where uk are generated from the uniform distribution

over (1, 2) with K = 5 and 100, respectively.

In Tables 1 and 2, we report the simulation results on subsample-based estimator

for β1 (other βi’s are similar and omitted), including the estimated bias (Bias) given

by the sample mean of estimates minus β̂MLE, the mean of estimated standard errors

(ESE) of the estimates, the sampling standard error (SSE) of the estimates, and

the empirical 95% coverage probability (CP), where r0 = 200, n = 106 and 108,

respectively. The subsample sizes r = 200, 400, 600, 800 and 1000, respectively. It
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can be seen from the results that the subsample-based estimator is unbiased. The

ESE and SSE are close to each other, and the coverage probabilities are satisfactory.

In all cases, the performance of our subsample-based estimator becomes better as r

increases.

For comparison, we consider the uniform subsampling method (Uniform) with

πik = 1/nk, and rk = [rnk/n], for i = 1, · · · , nk and k = 1, · · · , K. Let MSE =

1
B

∑B
b=1 ‖β̆(b) − β̂MLE‖2, where β̆(b) is for the bth subsample, b = 1, · · · , B. Figures

1 and 2 present the MSEs of each method for K = 5, n = 106 and K = 100,

n = 108, where B = 1000. From the results, we can see that the MSEs of our

method (Proposed) are much smaller than those of Uniform.

We conduct the second simulation to evaluate the computational efficiency of our

two-step subsampling algorithm, where the mechanism of data generation is the same

as the above-mentioned situation. For fair comparison, we count the CPU time with

one core based on the mean calculation time of 1000 repetitions of each subsample-

based method. In Table 3, we report the results for Case I with n = 106, K =

5, r0 = 200, r=200, 400, 600, 800 and 1000, respectively. The computing time for

the full data method is also given in the last row. Note that the uniform subsampling

requires the least computing time, because its subampling probabilities πik = 1/nk

and allocation sizes rk = [rnk/n], do not take time to compute. Our subsampling

algorithm has great computation advantage over the full data method. To further

investigate the computational gain of the subsampling approach, we increase the

dimension d to d = 30 with the true parameter β being a 30×1 vector of 0.5 entries.

Table 4 records the computing time for Case I with r0 = 200, r = 1000, K = 5,

n = 104, 105, 106, 107 and 108, respectively. It is clear that both subsampling methods

take significantly less computing times than the full data approach.

We conduct the third simulation to assess our method when the covariates have
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different distributions towards corresponding distributed datasets. For K = 5, the

distributed datasets D1, · · · , D5 are generated similar to the first simulation, except

that the covariates in D1 follow from N5(0, I), the covariates in D2, · · · ,D5 are gener-

ated from Cases I, II, III and IV, respectively. In Table 5, we present the Bias, SSE,

ESE and CP for the proposed subsample estimator β̆1 with n = 106 and 107 (other

βi’s are similar and omitted). Moreover, the MSEs of uniform and non-uniform

subsampling methods are given in Figure 3. The results indicate that our method

also works well with heterogeneous covariates, i.e., the covariates can have different

distributions in different data blocks.

5.2 A Real Data Example

We apply our method to an example about airline data (Schifano et al., 2016),

which are publicly available at http://stat-computing.org/dataexpo/2009/ . The data

consist of flight arrival and departure details for all commercial flights within the

USA from October 1987 to April 2008, which are stored within 22 files year by year

(K = 22; see Table 6). For analysis, the response variable Y denotes whether an

airline is arrival delayed more than 15 minutes (1=yes, 0= otherwise). The vector of

covariates X = (X1, X2, X3)T , where X1 is the day/night flight status (binary; 1 if

departure between 8 p.m. and 5 a.m., 0 otherwise), X2 is the departure delay time

(continuous, in minutes) and X3 is the distance (continuous, in thousands of miles).

There are totally n = 119, 793, 199 observations with completed information on Y

and X.

For comparison, we also report the full data estimate β̂MLE = (β̂1, β̂2, β̂3)T with

β̂1 = −1.1120, β̂2 = 0.1284 and β̂3 = −2.4974, respectively. Table 7 gives the mean of

subsample estimates, the mean of estimated standard errors (ESE) and the sampling
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standard error (SSE) of estimates based on 1000 subsamples with r = 400, 600, 800

and 1000, respectively. It can be seen from Table 6 that the subsample estimators

are close to β̂MLE. In Figure 4, we present the MSE of both subsampling methods

based on B = 1000. We can see that the MSEs of our method (Proposed) are

much smaller than those of Uniform. Moreover, an illustrative example about the

allocation size rk with r = 1000 is reported in Table 6.

6 Concluding Remarks

We have studied the statistical properties of a subsampling algorithm for the logistic

regression model with distributed and massive data. We derived the optimal sub-

sampling probabilities and optimal allocation sizes. The asymptotic properties of the

subsample estimator were established. Some simulations and a real data example

were provided to check the performance of our method.

There are several topics to be studied in the future. First, the simulations indi-

acted that our method works well with potential outliers in the covariates. In the

case of mislabels (outliers in the responses), it requires further research. Second, our

method relies on the homogeneous structure of distributed datasets. In practice, it

is important to consider the impact of the stratified heterogeneity of the strata on

the sampling and regression, which is out of the scope of this manuscript. Third,

our distributed subsampling approach can be extended to the big data generalized

linear models (Ai et al., 2020; Zhang et al., 2020).
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7 Appendix

Lemma 1. If Assumptions (A.1)−(A.3) hold, then conditional on Fn, we have

˙̀∗(β̂MLE)

n
= OP |Fn

(
K∑
k=1

n2
k

n2rk

)1/2

, (7.1)

and

H̃−1
X = OP |Fn(1), (7.2)

where H̃X = ∂2`∗(β̂MLE)
n∂β∂βT , and the probability measure in OP |Fn(·) is conditional mea-

sure given Fn.

Proof. For any β ∈ JB, we can derive that

E

{ ˙̀∗(β)

n

∣∣∣∣Fn} =
˙̀(β)

n
. (7.3)

For the jth component of ˙̀∗(β), i.e., ˙̀∗
j(β) =

∑K
k=1

1
rk

∑rk
i=1

({Y ∗
ik−P

∗
ik(β)}X∗

ik)j
π∗
ik

,

E

{ ˙̀∗
j(β)

n
−

˙̀
j(β)

n

∣∣∣∣Fn}2
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= E

{
1

n

K∑
k=1

1

rk

rk∑
i=1

({Y ∗ik − P ∗ik(β)}X∗ik)j
π∗ik

− 1

n

K∑
k=1

nk∑
i=1

({Yik − Pik(β)}Xik)j

∣∣∣∣Fn}2

=
1

n2

K∑
k=1

1

rk

[ nk∑
i=1

({Yik − Pik(β)}Xik)
2
j

πik
−
( nk∑
i=1

({Yik − Pik(β)}Xik)j

)2
]

≤ 1

n2

K∑
k=1

1

rk

nk∑
i=1

‖Xik‖2

πik
.

By Assumption (A.2),

E

{ ˙̀∗
j(β)

n
−

˙̀
j(β)

n

∣∣∣∣Fn}2

= OP |Fn

( K∑
k=1

n2
k

n2rk

)
.

Using the Markov’s inequality together with (7.3), we can get

˙̀∗(β)

n
−

˙̀(β)

n
= OP |Fn

( K∑
k=1

n2
k

n2rk

)1/2

. (7.4)

By Assumption (A.1), we have
˙̀∗(β̂MLE)

n
− ˙̀(β̂MLE)

n
= OP |Fn

(∑K
k=1

n2
k

n2rk

)1/2

. Because
˙̀(β̂MLE)

n
= 0, it follows that (7.1) holds.

To prove (7.2), some direct calculations yield that

E
{ ∂2`∗(β)

n∂β∂βT

∣∣∣Fn} =
∂2`(β)

n∂β∂βT
. (7.5)

For any component
∂2`∗j1j2

(β)

∂β∂βT of ∂2`∗(β)
∂β∂βT with 1 ≤ j1, j2 ≤ p, we can derive that

E
{∂2`∗j1j2(β)

n∂β∂βT
− ∂2`j1j2(β)

n∂β∂βT

∣∣∣Fn}2

=
1

n2

K∑
k=1

1

rk

[ nk∑
i=1

{w2
ik(β)XikX

T
ikXikX

T
ik}j1j2

πik
−
( nk∑
i=1

{wik(β)XikX
T
ik}j1j2

)2
]

≤ 1

n2

K∑
k=1

1

rk

nk∑
i=1

‖Xik‖4

πik
.
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By Assumption (A.2),

E
{∂2`∗j1j2(β)

n∂β∂βT
− ∂2`j1j2(β)

n∂β∂βT

∣∣∣Fn}2

= OP |Fn

( K∑
k=1

n2
k

n2rk

)
.

It follows from the Markov’s inequality that

∂2`∗(β)

n∂β∂βT
− ∂2`(β)

n∂β∂βT
= OP |Fn

( K∑
k=1

n2
k

n2rk

)1/2

. (7.6)

Based on Assumptions (A.1) and (A.3), we know (7.2) holds. This ends the proof.

Proof of Theorem 1. Conditional on Fn, the Assumption (A.5), Lemma 1 and

(7.4) lead to that
˙̀∗(β)
n
− ˙̀(β)

n
→ 0 in probability. Note that the parameter space JB is

compact, and β̂MLE is the unique solution to
˙̀(β)
n

= 0. Thus, it follows from Theorem

5.9 and its remark of van der Vaart (1998) that conditional on Fn, as n→∞,

‖β̃ − β̂MLE‖ = oP |Fn(1). (7.7)

Using the Taylor’s theorem (Ferguson, 1996, Chapter 4), we have

0 =
˙̀∗
j(β̃)

n
=

˙̀∗
j(β̂MLE)

n
+
∂2`∗j(β̂MLE)

n∂β∂βT
(β̃ − β̂MLE) +

1

n
Rj, (7.8)

where

Rj = (β̃ − β̂MLE)T
∫ 1

0

∫ 1

0

∂2 ˙̀∗
j{β̂MLE + uv(β̃ − β̂MLE)}

∂β∂βT
vdudv(β̃ − β̂MLE).

Note that for all β,∥∥∥∂2`∗j(β)

∂β∂βT

∥∥∥ =
∥∥∥ K∑
k=1

1

rk

rk∑
i=1

P ∗ik(β)(1− P ∗ik(β))(1− 2P ∗ik(β))

π∗ik
X∗ikX

∗T
ik X∗ik

∥∥∥
≤

K∑
k=1

1

rk

rk∑
i=1

‖X∗ik‖3

π∗ik
.
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Thus,∥∥∥∫ 1

0

∫ 1

0

∂2 ˙̀∗
j{β̂MLE + uv(β̃ − β̂MLE)}

∂β∂βT
vdudv

∥∥∥ ≤ K∑
k=1

1

2rk

rk∑
i=1

‖X∗ik‖3

π∗ik
= OP |Fn(n), (7.9)

where the last equality is from the fact that

P
( K∑
k=1

1

nrk

rk∑
i=1

‖X∗ik‖3

π∗ik
≥ τ

∣∣∣Fn)
≤ 1

nτ
E
( K∑
k=1

1

rk

rk∑
i=1

‖X∗ik‖3

π∗ik

)
=

1

nτ

K∑
k=1

nk∑
i=1

‖Xik‖3 → 0,

as τ →∞ with Assumption (A.4). From (7.8) and (7.9), we have

β̃ − β̂MLE = −H−1
X

{ ˙̀∗(β̂MLE)

n
+OP |Fn(‖β̃ − β̂MLE‖2)

}
. (7.10)

It follows from (7.1) and (7.2), together with (7.7) and (7.10) that

β̃ − β̂MLE = OP |Fn

( K∑
k=1

n2
k

n2rk

)1/2

+ oP |Fn(‖β̃ − β̂MLE‖).

Hence, β̃ − β̂MLE = OP |Fn

(∑K
k=1

n2
k

n2rk

)1/2

. This ends the proof.

Proof of Theorem 2. Note that

˙̀∗(β̂MLE)

n
=

1

n

K∑
k=1

1

rk

rk∑
i=1

{Y ∗ik − P ∗ik(β̂MLE)}X∗ik
π∗ik

=
K∑
k=1

rk∑
i=1

ηik. (7.11)

Given Fn, we know that {ηik : i = 1, · · · , nk, k = 1, · · · , K} are independent random

variables with

K∑
k=1

rk∑
i=1

V ar(ηik|Fn)

18



=
1

n2

K∑
k=1

1

rk

nk∑
i=1

{Yik − Pik(β̂MLE)}2XikX
T
ik

πik
− 1

n2

K∑
k=1

1

rk

( nk∑
i=1

{Yik − Pik(β̂MLE)}Xik

)2

=
1

n2

K∑
k=1

1

rk

nk∑
i=1

{Yik − Pik(β̂MLE)}2XikX
T
ik

πik
+OP |Fn

( K∑
k=1

n2
k

n2rk

)
(7.12)

=
1

n2

K∑
k=1

1

rk

nk∑
i=1

{Yik − Pik(β̂MLE)}2XikX
T
ik

πik
+ oP (1), (7.13)

where (7.12) and (7.13) hold by Assumptions (A.2) and (A.5), respectively. Mean-

while, for every ε > 0,

K∑
k=1

rk∑
i=1

E{‖ηik‖2I(‖ηik‖ > ε)|Fn}

≤
K∑
k=1

rk∑
i=1

E
{
‖ηik‖2 · ‖ηik‖

ε

∣∣∣Fn}
=

1

ε

K∑
k=1

rk∑
i=1

E(‖ηik‖3|Fn)

=
1

ε

K∑
k=1

rk∑
i=1

1

n3r3
k

nk∑
i=1

|Yik − Pik(β̂MLE)|3‖Xik‖3

π2
ik

≤ 1

ε

K∑
k=1

1

n3r2
k

nk∑
i=1

‖Xik‖3

π2
ik

.

By Assumptions (A.5) and (A.6), we can derive that

K∑
k=1

rk∑
i=1

E{‖ηik‖2I(‖ηik‖ > ε)|Fn} ≤
1

ε
OP

( K∑
k=1

n3
k

n3r2
k

)
≤ 1

ε
OP

( K∑
k=1

n2
k

n2rk

)
= oP (1).

In view of (7.11) and (7.13), together with the Lindeberg-Feller central limit theorem

(Proposition 2.27 of van der Vaart, 1998) and the Slutsky’s theorem, conditional on

Fn, as n→∞ and rk →∞, we have that

1

n
Γ−1/2 ˙̀∗(β̂MLE)

d−→ N(0, I). (7.14)
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From Lemma 1, (7.10) and Theorem 1,

β̃ − β̂MLE = −H̃−1
X

{ ˙̀∗(β̂MLE)

n

}
+OP |Fn

( K∑
k=1

n2
k

n2rk

)
. (7.15)

It can be checked that

−H̃−1
X

{ ˙̀∗(β̂MLE)

n

}
= −H−1

X

{ ˙̀∗(β̂MLE)

n

}
− (H̃−1

X −H
−1
X )
{ ˙̀∗(β̂MLE)

n

}
= −H−1

X

{ ˙̀∗(β̂MLE)

n

}
+ [H−1

X (H̃X −HX)H̃−1
X ]
{ ˙̀∗(β̂MLE)

n

}
= −H−1

X

{ ˙̀∗(β̂MLE)

n

}
+OP |Fn(1)OP |Fn

( K∑
k=1

n2
k

n2rk

)1/2

OP |Fn(1)OP |Fn

( K∑
k=1

n2
k

n2rk

)1/2

= −H−1
X

{ ˙̀∗(β̂MLE)

n

}
+OP |Fn

( K∑
k=1

n2
k

n2rk

)
.

Hence,

β̃ − β̂MLE = −H−1
X

{ ˙̀∗(β̂MLE)

n

}
+OP |Fn

( K∑
k=1

n2
k

n2rk

)
. (7.16)

By Assumption (A.2), we have

Σ = H−1
X ΓH−1

X = OP |Fn

( K∑
k=1

n2
k

n2rk

)
. (7.17)

Thus, (7.16) and (7.17) yield that

Σ−1/2(β̃ − β̂MLE)

= −Σ−1/2H−1
X

{ ˙̀∗(β̂MLE)

n

}
+OP |Fn

( K∑
k=1

n2
k

n2rk

)1/2

= −Σ−1/2H−1
X Γ1/2Γ−1/2

{ ˙̀∗(β̂MLE)

n

}
+OP |Fn

( K∑
k=1

n2
k

n2rk

)1/2

.
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= −Σ−1/2H−1
X Γ1/2Γ−1/2

{ ˙̀∗(β̂MLE)

n

}
+ oP (1). (7.18)

Note that

Σ−1/2H−1
X Γ1/2(Σ−1/2H−1

X Γ1/2)T = Σ−1/2H−1
X Γ1/2Γ1/2H−1

X Σ−1/2 = I. (7.19)

By (7.17), (7.18) and the Slutsky’s theorem, we can get that as n→∞,

Σ−1/2(β̃ − β̂MLE)
d−→ N(0, I).

This ends the proof.

Proof of Theorem 3. It can be shown that

tr(Γ) =
1

n2

K∑
k=1

1

rk

nk∑
i=1

tr
({Yik − Pik(β̂MLE)}2XikX

T
ik

πik

)
=

1

n2

K∑
k=1

1

rk

nk∑
i=1

{Yik − Pik(β̂MLE)}2‖Xik‖2

πik

=
1

n2

K∑
k=1

1

rk

[ nk∑
i=1

πik

nk∑
i=1

{Yik − Pik(β̂MLE)}2‖Xik‖2

πik

]
≥ 1

n2

K∑
k=1

1

rk

[ nk∑
i=1

|Yik − Pik(β̂MLE)|‖Xik‖
]2

(7.20)

=
1

n2

1

r

K∑
k=1

rk

K∑
k=1

[∑nk

i=1 |Yik − Pik(β̂MLE)|‖Xik‖
]2

rk

≥ 1

n2r

[ K∑
k=1

nk∑
i=1

|Yik − Pik(β̂MLE)|‖Xik‖
]2

, (7.21)

where (7.20) and (7.21) follows from the Cauchy-Schwarz inequality and the equality

hold if and only if πik ∝ |Yik−Pik(β̂MLE)|‖Xik‖, and rk ∝
∑nk

i=1 |Yik−Pik(β̂MLE)|‖Xik‖,

respectively. This ends the proof.
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Next, we establish two lemmas that will be used in the proofs of Theorems 4 and

5.

Lemma 2. Under Assumptions (A.4) and (A.7), for l=2 and 4,

1

n2

K∑
k=1

1

rk(β̃0)

nk∑
i=1

‖Xik‖l

πik(β̃0)
= OP |Fn(r−1), (7.22)

and

1

n3

K∑
k=1

1

r2
k(β̃0)

nk∑
i=1

‖Xik‖3

π2
ik(β̃0)

= OP |Fn(r−2). (7.23)

Proof. It follows from the expressions of rk(β̃0) and πik(β̃0) that

1

n2

K∑
k=1

1

rk(β̃0)

nk∑
i=1

‖Xik‖l

πik(β̃0)

=
1

rn2

K∑
k=1

nk∑
i=1

∑K
k=1

∑nk

i=1 |Yik − Pik(β̃0)|‖Xik‖
|Yik − Pik(β̃0)|‖Xik‖

‖Xik‖l

=
1

rn

K∑
k=1

nk∑
i=1

‖Xik‖l−1

|Yik − Pik(β̃0)|
· 1

n

K∑
k=1

nk∑
i=1

|Yik − Pik(β̃0)|‖Xik‖

≤ 1

rn

K∑
k=1

nk∑
i=1

‖Xik‖l−1(1 + eX
T
ikβ̃0 + e−X

T
ikβ̃0) (7.24)

≤ 1

rn

K∑
k=1

nk∑
i=1

‖Xik‖l−1(1 + 2eλ‖Xik‖)

≤ 3

rn

K∑
k=1

nk∑
i=1

‖Xik‖l−1eλ‖Xik‖, (7.25)

where (7.24) holds by Assumption (A.4). Note that

E{‖Xik‖l−1eλ‖Xik‖} ≤ {E(‖Xik‖2(l−1))E(e2λ‖Xik‖)}1/2 <∞. (7.26)

Hence, (7.22) follows from (7.25), (7.26) and the law of large numbers. Analogously,

we can prove that (7.23) holds. This ends the proof.
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Lemma 3. If Assumptions (A.1), (A.4) and (A.7) hold, conditional on Fn we have

˙̀∗
β̃0

(β̂MLE)

n
= OP |Fn(r−1/2), (7.27)

and

{H̃β̃0

X }
−1 = OP |Fn(1), (7.28)

where H̃β̃0

X =
∂2`∗

β̃0
(β̂MLE)

n∂β∂βT .

Proof. For any β ∈ JB, we can derive that

E

{ ˙̀∗
β̃0

(β)

n

∣∣∣∣Fn, β̃0

}
=

˙̀(β)

n
. (7.29)

For the jth component ˙̀∗
β̃0j

(β) of ˙̀∗
β̃0

(β),

E

{ ˙̀∗
β̃0j

(β)

n
−

˙̀
j(β)

n

∣∣∣∣Fn, β̃0

}2

=
1

n2

K∑
k=1

1

rk(β̃0)

[ nk∑
i=1

({Y ∗ik − P ∗ik(β)}X∗ik)2
j

π∗ik(β̃0)
−
{ nk∑

i=1

({Yik − Pik(β)}Xik)j

}2
]

≤ 1

n2

K∑
k=1

1

rk(β̃0)

nk∑
i=1

‖Xik‖2

πik(β̃0)
.

By Lemma 2,

E

{ ˙̀∗
β̃0j

(β)

n
−

˙̀
j(β)

n

∣∣∣∣Fn}2

= OP |Fn(r−1). (7.30)

In view of the Markov’s inequality and Assumption (A.1), (7.27) follows from (7.29)

and (7.30).

In a similar manner, we obtain

E
{∂2`∗

β̃0
(β)

n∂β∂βT

∣∣∣Fn, β̃0

}
=

∂2`(β)

n∂β∂βT
. (7.31)

23



For any component
∂2`

∗j1j2
β̃0

(β)

∂β∂βT of
∂2`∗

β̃0
(β)

∂β∂βT with 1 ≤ j1, j2 ≤ p, it can be shown that

E
{∂2`∗j1j2

β̃0
(β)

n∂β∂βT
− ∂2`j1j2(β)

n∂β∂βT

∣∣∣Fn}2

=
1

n2

K∑
k=1

1

rk(β̃0)

[ nk∑
i=1

{w2
ik(β)XikX

T
ikXikX

T
ik}j1j2

πik(β̃0)
−
( nk∑
i=1

{wik(β)XikX
T
ik}j1j2

)2
]

≤ 1

n2

K∑
k=1

1

rk(β̃0)

nk∑
i=1

‖Xik‖4

πik(β̃0)
= OP |Fn(r−1), (7.32)

where (7.32) holds by Lemma 2. From (7.31), (7.32) and the Markov’s inequality,

we know that (7.28) holds. This ends the proof.

Proof of Theorem 4. It follows from (7.29) and (7.30) that given Fn,

˙̀∗
β̃0

(β)

n
−

˙̀(β)

n
→ 0,

Thus, conditional on Fn,

‖β̆ − β̂MLE‖ = oP (1), (7.33)

which ensures that β̆ is close to β̂MLE as long as r is large enough. Using the Taylor’s

theorem (Ferguson, 1996, Chapter 4),

0 =
˙̀∗
β̃0j

(β̆)

n
=

˙̀∗
β̃0j

(β̂MLE)

n
+
∂2`∗

β̃0j
(β̂MLE)

n∂β∂βT
(β̆ − β̂MLE) +

1

n
Rβ̃0j

, (7.34)

where

Rβ̃0j
= (β̆ − β̂MLE)T

∫ 1

0

∫ 1

0

∂2 ˙̀∗
β̃0j
{β̂MLE + uv(β̆ − β̂MLE)}

∂β∂βT
vdudv(β̆ − β̂MLE).

Note that for all β,∥∥∥∂2`∗
β̃0j

(β)

∂β∂βT

∥∥∥ =
∥∥∥ K∑
k=1

1

rk(β̃0)

rk(β̃0)∑
i=1

P ∗ik(β){1− P ∗ik(β)}{1− 2P ∗ik(β)}
π∗ik(β̃0)

X∗ikX
∗T
ik X∗ik

∥∥∥
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≤
K∑
k=1

1

rk(β̃0)

rk(β̃0)∑
i=1

‖X∗ik‖3

π∗ik(β̃0)
,

and by Assumption (A.4),

P
( 1

n

K∑
k=1

1

rk(β̃0)

rk(β̃0)∑
i=1

‖X∗ik‖3

π∗ik(β̃0)
≥ τ

∣∣∣Fn) ≤ 1
n

∑K
k=1

∑nk

i=1 ‖Xik‖3

τ
→ 0

in probability as τ →∞. Thus,

∥∥∥∫ 1

0

∫ 1

0

∂2 ˙̀∗
β̃0j
{β̂MLE + uv(β̆ − β̂MLE)}

∂β∂βT
vdudv

∥∥∥ = OP |Fn(n). (7.35)

By (7.34) and (7.35),

β̆ − β̂MLE = −H̃β̃0−1
X

{ ˙̀∗
β̃0

(β̂MLE)

n
+OP |Fn(‖β̆ − β̂MLE‖2)

}
. (7.36)

Based on (7.27), (7.28), (7.33) and (7.36), we have

β̆ − β̂MLE = OP |Fn(r−1/2) + oP |Fn(‖β̆ − β̂MLE‖).

Hence, β̆ − β̂MLE = OP |Fn(r−1/2). This ends the proof.

Proof of Theorem 5. Let

˙̀∗
β̃0

(β̂MLE)

n
=

1

n

K∑
k=1

1

rk(β̃0)

rk(β̃0)∑
i=1

{Y ∗ik − P ∗ik(β̂MLE)}X∗ik
π∗ik(β̃0)

=
K∑
k=1

rk(β̃0)∑
i=1

ηβ̃0

ik . (7.37)

Given Fn and β̃0, we know that ηβ̃0

ik are independent random variables with

K∑
k=1

rk(β̃0)∑
i=1

V ar(ηβ̃0

ik |Fn, β̃0) =
1

n2

K∑
k=1

1

rk(β̃0)

nk∑
i=1

{Yik − Pik(β̂MLE)}2XikX
T
ik

πik(β̃0)

− 1

n2

K∑
k=1

1

rk(β̃0)

( nk∑
i=1

{Yik − Pik(β̂MLE)}Xik

)2

.(7.38)
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Note that

1

n2

K∑
k=1

1

rk(β̃0)

( nk∑
i=1

{Yik − Pik(β̂MLE)}Xik

)2

=
1

rn2

K∑
k=1

(
∑nk

i=1{Yik − Pik(β̂MLE)}Xik)
2∑nk

i=1 |Yik − Pik(β̂MLE)|‖Xik‖

K∑
k=1

nk∑
i=1

|Yik − Pik(β̂MLE)|‖Xik‖

≤ 1

rn2

K∑
k=1

(
∑nk

i=1 |Yik − Pik(β̂MLE)|‖Xik‖)2∑nk

i=1 |Yik − Pik(β̂MLE)|‖Xik‖

K∑
k=1

nk∑
i=1
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By (7.38) and as r →∞,
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Meanwhile, for every ε > 0,
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≤ 1
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π2
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By Lemma 2, as r →∞, we have
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It follows from (7.37) and (7.39), together with the Lindeberg-Feller central limit

theorem (Proposition 2.27 of van der Vaart, 1998) and the Slutsky’s theorem, we

know that conditional on Fn, as n→∞ and r →∞,
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By Lemma 3, (7.36) and Theorem 5, we get that
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Note that
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Hence, (7.42) and (7.22) yield that
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It can be proved that
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For the distance between Γβ̃0 and Γ, we have
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≤ eλ‖Xik‖‖Xik‖‖β̃0 − β̂MLE‖+ e2λ‖Xik‖‖Xik‖2‖β̃0 − β̂MLE‖2, (7.46)
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It follows from (7.44), (7.45), (7.46) and (7.47) that

‖Γβ̃0 − Γ‖

≤ 1

rn2

K∑
k=1

nk∑
i=1

‖Xik‖2eλ‖Xik‖‖β̃0 − β̂MLE‖
K∑
k=1

nk∑
i=1

‖Xik‖

+
1

rn2

K∑
k=1

nk∑
i=1

‖Xik‖3e2λ‖Xik‖‖β̃0 − β̂MLE‖2

K∑
k=1

nk∑
i=1

‖Xik‖

+
3

rn2

K∑
k=1

nk∑
i=1

eλ‖Xik‖‖Xik‖
K∑
k=1

nk∑
i=1

‖Xik‖2eλ‖Xik‖‖β̃0 − β̂MLE‖

+
3

rn2

K∑
k=1

nk∑
i=1

eλ‖Xik‖‖Xik‖
K∑
k=1

nk∑
i=1

‖Xik‖3e2λ‖Xik‖‖β̃0 − β̂MLE‖2

= OP |Fn(r−1r
−1/2
0 ) +OP |Fn(r−1r−1

0 ) +OP |Fn(r−1r
−1/2
0 ) +OP |Fn(r−1r−1

0 )

= OP |Fn(r−1r
−1/2
0 ). (7.48)

By (7.43) and (7.48),

Σ−1/2H−1
X (Γβ̃0)1/2{Σ−1/2H−1

X (Γβ̃0)1/2}T = I +OP |Fn(r
−1/2
0 ). (7.49)

By (7.49) and the Slutsky’s theorem, as r0 → ∞, r → ∞ and n → ∞, we can get

that

Σ−1/2(β̆ − β̂MLE)
d−→ N(0, I).

This completes the proof.
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Table 1.

The proposed subsample estimate of β1 with K = 5 and n = 106‡.

Case I Case II

r Bias ESE SSE CP Bias ESE SSE CP

200 0.0114 0.1952 0.2003 0.952 0.0152 0.2329 0.2423 0.940

400 0.0127 0.1346 0.1354 0.946 0.0059 0.1605 0.1594 0.958

600 0.0006 0.1087 0.1130 0.944 0.0102 0.1299 0.1315 0.954

800 0.0030 0.0940 0.0963 0.947 0.0014 0.1121 0.1131 0.958

1000 0.0039 0.0839 0.0838 0.955 0.0013 0.0997 0.1009 0.950

Case III Case IV

r Bias ESE SSE CP Bias ESE SSE CP

200 0.0139 0.1724 0.1815 0.946 0.0063 0.3246 0.3429 0.951

400 0.0035 0.1189 0.1227 0.954 0.0160 0.2234 0.2314 0.956

600 0.0032 0.0955 0.0944 0.968 0.0086 0.1805 0.1876 0.943

800 0.0012 0.0827 0.0832 0.941 0.0057 0.1548 0.1537 0.948

1000 0.0044 0.0737 0.0776 0.941 0.0087 0.1382 0.1380 0.952

‡ “Bias” denotes the sample mean of the estimates minus β̂MLE; “ESE” denotes the estimated

standard error of the estimates; “SSE” denotes the sampling standard error of the estimates; “CP”

denotes the empirical 95% coverage probability towards β̂MLE.
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Table 2.

The proposed subsample estimate of β1 with K = 100 and n = 108‡.

Case I Case II

r Bias ESE SSE CP Bias ESE SSE CP

200 0.0090 0.2246 0.2194 0.968 0.0189 0.2451 0.2449 0.954

400 0.0063 0.1436 0.1504 0.935 0.0082 0.1599 0.1627 0.950

600 0.0015 0.1131 0.1164 0.941 0.0079 0.1260 0.1273 0.957

800 0.0023 0.0966 0.0958 0.954 0.0053 0.1078 0.1133 0.934

1000 0.0020 0.0856 0.0843 0.959 0.0052 0.0960 0.0980 0.955

Case III Case IV

r Bias ESE SSE CP Bias ESE SSE CP

200 0.0186 0.2000 0.2028 0.955 0.0149 0.3613 0.4004 0.940

400 0.0098 0.1274 0.1267 0.949 0.0123 0.2301 0.2309 0.953

600 0.0002 0.0998 0.1026 0.945 0.0022 0.1813 0.1924 0.941

800 0.0051 0.0851 0.0869 0.943 0.0011 0.1550 0.1511 0.958

1000 0.0023 0.0753 0.0786 0.929 0.0013 0.1361 0.1359 0.953

‡ “Bias” denotes the sample mean of the estimates minus β̂MLE; “ESE” denotes the estimated

standard error of the estimates; “SSE” denotes the sampling standard error of the estimates; “CP”

denotes the empirical 95% coverage probability towards β̂MLE.

33



Table 3.

The CPU time for Case I with K = 5 and n = 106 (seconds).

r

Methods 200 400 600 800 1000

Uniform 0.021 0.022 0.022 0.023 0.024

Proposed 0.254 0.262 0.270 0.282 0.288

Full data 1.239
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Table 4.

The CPU time for Case I with r = 1000, K = 5 and d = 30 (seconds).

n

Methods 104 105 106 107 108

Uniform 0.037 0.034 0.096 0.423 5.511

Proposed 0.084 0.183 0.580 4.921 70.350

Full data 0.098 0.734 5.619 53.809 768.476
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Table 5.

The proposed subsample estimate of β1 with K = 5, n = 106 and n = 107‡.

n = 106 n = 107

r Bias ESE SSE CP Bias ESE SSE CP

200 0.0104 0.2075 0.2164 0.948 0.0061 0.2069 0.2198 0.940

400 0.0017 0.1422 0.1385 0.961 0.0062 0.1426 0.1394 0.963

600 0.0075 0.1148 0.1193 0.936 0.0034 0.1157 0.1161 0.950

800 0.0011 0.0989 0.1043 0.946 0.0035 0.0997 0.0995 0.952

1000 0.0003 0.0882 0.0917 0.938 0.0015 0.0889 0.0903 0.941

‡ “Bias” denotes the sample mean of the estimates minus β̂MLE; “ESE” denotes the estimated

standard error of the estimates; “SSE” denotes the sampling standard error of the estimates; “CP”

denotes the empirical 95% coverage probability towards β̂MLE.
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Table 6.

The number of yearly data and allocation sizes(r = 1000).

Years nk rk Years nk rk

1987 1287333 11 1998 5227051 44

1988 5126498 40 1999 5360018 46

1989 4925482 42 2000 5481303 49

1990 5110527 39 2001 4873031 40

1991 4995005 38 2002 5093462 39

1992 5020651 40 2003 6375689 44

1993 4993587 42 2004 6987729 55

1994 5078411 42 2005 6992838 58

1995 5219140 47 2006 7003802 63

1996 5209326 49 2007 7275288 66

1997 5301999 47 2008 6855029 59
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Table 7.

Subsample-based estimate β̆ and (ESE, SSE) in the real data.

β Proposed Uniform

r = 400 β1 −1.1111 (0.4815, 0.5461) −1.2216 (0.5502, 0.5873)

β2 0.1263 (0.0179, 0.0184) 0.1357 (0.0209, 0.0229)

β3 −2.5089 (0.4282, 0.4186) −2.5836 (0.4382, 0.4639)

r = 600 β1 −1.0752 (0.3677, 0.3900) −1.1599 (0.4458, 0.4690)

β2 0.1281 (0.0139, 0.0142) 0.1339 (0.0170, 0.0218)

β3 −2.4871 (0.3572, 0.3846) −2.5805 (0.3847, 0.3945)

r = 800 β1 −1.0481 (0.3445, 0.3538) −1.1585 (0.3821, 0.3969)

β2 0.1271 (0.0112, 0.0113) 0.1337 (0.0149, 0.0187)

β3 −2.4822 (0.2896, 0.2913) −2.5500 (0.3079, 0.3314)

r = 1000 β1 −1.0883 (0.3120, 0.3236) −1.1378 (0.3377, 0.3529)

β2 0.1286 (0.0098, 0.0099) 0.1323 (0.0133, 0.0182)

β3 −2.5110 (0.2625, 0.2688) −2.5441 (0.2750, 0.2979)
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Figure 1. The MSEs for different subsampling methods with K = 5 and n = 106.
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Figure 2. The MSEs for different subsampling methods with K = 100 and n = 108.
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Figure 3. The MSEs for different subsampling methods with n = 106 and n = 107.
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Figure 4. The results of MSE in the real data.
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