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1. Introduction

1.1. Main results. In this note, we give some multiplicity results of positive so-

lutions on the following coupled nonlinear Schrödinger equations with nonhomoge-

neous perturbations:

(1.1)


−∆u+ u = µ1u

3 + βuv2 + f1 in Ω,

−∆v + v = µ2v
3 + βvu2 + f2 in Ω,

u = v = 0 on ∂Ω,

where Ω ⊂ Rn is a bounded domain with a smooth boundary for 1 ≤ n ≤ 3, and

µ1 > 0, µ2 > 0 and β are constants. The perturbation terms f1 and f2 are assumed

to be non-negative L2 functions. We define the energy for u, v ∈ H1
0 (Ω)

I(u, v) =
1

2
(‖u‖2 + ‖v‖2)− µ

4

∫
u4 + v4 − β

2

∫
u2v2 −

∫
f · (u+ v),

where ‖u‖ = (
∫
|∇u|2 +

∫
|u|2)

1
2 is the Sobolev norm. We use | · |p for Lp norm

1 ≤ p <∞. It is easy to see that the functional I is of class C2. We say a solution

(u, v) is positive if both u and v are positive. We prove the following existence

theorem and multiplicity result on positive solutions.

Theorem 1.1. Let µ1 > 0, µ2 > 0 and β ∈ R be fixed and assume fi ≥ 0 for

i = 1, 2. Then there is ε0 > 0 such that if 0 < |fi|2 ≤ ε0 for i = 1, 2, Problem

(1.1) possesses two positive solutions (u1, v1) and (u2, v2) with I(u1, v1) > 0 and
1
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I(u2, v2) < 0. Moreover, the solution (u2, v2) is the only solution to Problem (1.1)

with a small norm.

Theorem 1.2. Assume µ := µ1 = µ2 > 0 and f := f1 = f2 ≥ 0. Then there is

ε0 > 0, such that if |f |2 ≤ ε0, the following conclusions hold.

(1). If β ≤ −µ, Problem (1.1) possesses an infinite sequence of positive solutions

(uk, vk) such that uk 6= vk for any k.

(2). For any positive integer k, there is a δk > 0 such that for any β ∈ (−µ,−µ+

δk), Problem (1.1) has at least k positive solutions.

Remark 1.3. (i). Under the assumption of Theorem 1.2, due to Theorem 1.1,

the small solution with negative energy is unique. Moreover, it is in the form of

(u, u), where u is the unique solution to the equation −∆u + u = (µ + β)u3 + f

with negative energy.

(ii). The results still hold when Ω = Rn with n = 2, 3. In this case, we work

in the subspace of radial functions, H1
r (Rn), which embeds compactly into Lp for

2 < p < 2n
n−2

. Our method works through with little modifications.

(i). We assumed the coefficients of u and v in (1.1) are the same. The first

theorem still holds with different positive coefficients, and the second theorem the

same coefficients are essential.

1.2. Historical Notes. Semilinear elliptic problems with non-homogeneous term,

as an immediate generalization of the usual semilinear problems (c.f. [11, 27, 32]),

are widely studied via many methods. For elliptic equations, the problem is usually

in the form of

(1.2)

{
−∆u+ u = f(u) + p(x, u) in Ω,

u(x) ∈ H1
0 (Ω).

Here the nonlinearity f(u) is assumed to be odd. One can find a traditional treat-

ment in [4, 5, 7, 8, 27, 26, 29, 28] under the name of perturbation from symmetry

or Bahri-Berestycki method. Infinitely many solutions can be obtained via this

method. Two key steps of this method are to estimate the growth of critical level

for the energy function of the problem (1.2) with p(x, u) ≡ 0 and to construc-

t a perturbation of the linking. Although it is a powerful method, the range of

the growth of the nonlinear term is incomplete. For example, for f(u) = u3, the

method fails for p(x, u) = p(x) ∈ L2, a pure nonhomogeneous perturbation (see

[5, 8] for the optimal range of the nonlinearity). The problem on validity of the full

range is still open. In [33] this method was used for coupled systems like (1.1) for

dimensions n = 1, 2, since n = 3 is already out of the range of the Bahri-Berestycki

methods. Another approach to solve this problem is to consider the case of small

perturbations. An asymptotic result can be found in [17, 19], i.e. more solutions

will be obtained as the perturbation shrinks. The advantage of this method is that
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we do not need to restrict the growth of the nonlinear term f(u). Existence of

two solutions can be found in [3]. For the result on two positive solutions to the

problem, readers can find them in [9, 18]. In [2], Adachi and Tanaka gave four

positive solutions and their convergence result as the perturbation goes to zero. A

result on jumping nonlinearities can be found in [11, Section 3.4].

In this note, we focus on the case of coupled nonlinear Schrödinger equations.

We show that, unlike for scalar equations with perturbation to even symmetry, for

systems with permutation symmetry under small perturbations an infinite number

positive solutions survive. In establishing our existence results we will employ the

heat flow methods and solutions will be constructed in some suitable invariant sets

of the flow having large an permutation symmetry index. In comparison, our re-

sults hold for all dimensions n = 1, 2, 3, we give infinitely many positive solutions

for small perturbations, while by using Bahri-Berestycki methods infinitely many

solutions was given in [33] by assuming |β| < µ for n = 1, 2 without requiring small-

ness of perturbations. The results of ours and of [33] are not inclusive with each

other, both giving a better understanding of the perturbation problem for coupled

systems. In [24], the authors consider the coupled nonlinear Schrödinger systems

with non-homogeneous nonlinear term with potentials. Taking the advantages of

the certain choice of the potentials, they obtained infinitely many solutions and

the convergence results.

1.3. Organization of this Paper. In Section 2 we first collect necessary results

on the associated parabolic system. Then without the presence of equilibria of

the system we construct a domain of attraction for some closed sets. Our two

main theorems are proved in Section 3 and Section 4 respectively. Some detailed

estimates used in Section 2 are left in the Appendix of Section 5.

2. Preliminaries for Theorem 1.1 and Theorem 1.2

We will prove our main theorems via parabolic flow method. First we consider

the following parabolic problem

(2.1)


∂tu−∆u+ u = µ1u

3 + βuv2 + f1 in Ω,

∂tv −∆v + v = µ2v
3 + βvu2 + f2 in Ω,

u = v = 0 on ∂Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

2.1. Basic Properties of the Parabolic Flow. We use ηt(U) to represent the

solution to Problem (2.1) with initial value U = (u0, v0). First of all, we have

the following theorem on existence, uniqueness, regularity and dependence on the

initial value from the framework in [14].
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Theorem 2.1. For s = 1, 2, let the initial value U := (u0, v0) ∈ (Hs)2. Then there

is a unique solution ηt(U) = (u(t), v(t)) to Problem (2.1) defined on its maximum

interval [0, T (U)), satisfying

(I) it holds that

ηt(U) ∈C1((0, T (U)), (L2)2) ∩ C([0, T (U)), (H2)2);

(II) for any U ∈ (Hs)2 and any δ ∈ [0, T (U)), there are positive constants r,K

such that for any t ∈ [0, δ]

‖U − V ‖(Hs)2 < r ⇒ ‖ηt(U)− ηt(V )‖(H1)s ≤ K‖U − V ‖(Hs)2 ;

Lemma 2.2. For any solution to Problem (2.1), we have

∂tI(ηt(U)) = −
∫
|ut|2 + |vt|2.

Proof. Computing it directly, we have

∂tI(ηt(U)) =

∫
∇u · ∇ut +∇v · ∇vt + uut + vvt

−
∫
µ1u

3ut + µ2v
3vt + βuutv

2 + βu2vvt −
∫
f1ut + f2vt

=

∫ (
∆u− u+ µ1u

3 + βuv2
)
ut +

∫ (
∆v − v + µ2v

3 + βvu2
)
vt

= −
∫
|ut|2 + |vt|2.

�

Remark 2.3. It is an immediate consequence that the parabolic flow is a decreasing

flow for I. The energy will keep decreasing unless it is on a position of a solution

to Problem (1.1), which is nothing but an equilibrium point of the flow ηt(·).

We point out that the method we use in this paper is similar to that in [20].

To achieve our goal, there is still a stability result missing (c.f. [20]). The aim of

the stability result is to give a domain of attraction, on which various variational

structures will be found. Usually, the domain is the stable set of a trivial solution

(c.f. [1, 16, 20, 22, 23]). But in Problem (2.1), there is no obvious trivial equilibrium

points, which ceases the traditional method to be effective. To overcome this

difficulty, we choose to consider the stable set of a closed subset rather than of one

single equilibrium point. We put the detailed computations on energy levels in the

Appendix of the present paper. The main result can be summarized as follows.

Lemma 2.4. There is an ε1 > 0 small enough such that for any ε ∈ (0, ε1), if

|f1|2 + |f2|2 < ε, there exist following parameters:

δ0 > 0, 0 < a < b, R > R2 > 0, T0 > 0
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such that

(1) Ia ∩B(0, R) and Ib ∩B(0, R) are invariant under the flow ηt(·);
(2) for any U ∈ Ib ∩B(0, R), ηT0(U) ∈ Ia ∩B(0, R);

(3) (Ia ∩B(0, R))δ0 ⊂ B(0, R2) ⊂ Ib ∩B(0, R).

Here for a given set A, Aδ0 denotes the δ0 neighborhood of the set. The specific

selections of parameters are in the Appendix. Then we have the following corollary.

Corollary 2.5. With the same parameters in the above lemma, we have

ηT0
(
(Ia ∩B(0, R))δ0

)
⊂ Ia ∩B(0, R).

Due to the stability theory of closed sets in [6, Section 2.12] and the dependence

on initial data, we can get the existence of a domain of attraction.

Corollary 2.6. There is a ε0 > 0, such that for any ε ∈ (0, ε0), if |f1|2 + |f2|2 ≤ ε,

the set A defined by

A =

{
U ∈ (H1

0 (Ω))N

∣∣∣∣∣∃TU ≥ 0 s.t. ηTU (U) ∈ (Ia ∩B(0, R))δ0

}
,(2.2)

is an open neighbourhood of the trivial function (0, 0) in H1 ×H1. Moreover, both

of A and ∂A are invariant under the flow ηt(·).

Due to the specific construction of A, the following corollary is obvious.

Corollary 2.7. infU∈∂A I(U) =: c0 > 0

In the process of obtaining equilibrium points via heat flow, global existence

of the trajectory plays an important role. With this result, we can find a (PS)

sequence along the flow line. Therefore, a solution to Problem (1.1) can be found

(c.f. [13]). We apply the method in [20, Section 2.2] to this problem. One can also

find them in [10, 12, 25].

Lemma 2.8. Assume for a solution ηt(U) to Problem (2.1), there is C > 0 such

that limt→T (U) |I(U)− I(ηt(U))| ≤ C. Then T (U) = +∞.

2.2. Monotonicity of the Parabolic Flow. Usually, we describe the monotonic-

ity by showing the mapping preserves some kind of positivity. However, inspirited

by [21], we find it will be easier if we show that the flow has a shrinking error term

in variational methods. For example, we show the flow preserves the positivity by

proving that the small negative term keeps shrinking. We apply this idea to the

flow ηt(·) via a related technique in [13, 20].

Lemma 2.9. For Problem (2.1), if β ≤ 0, then there is a ρ0 > 0, such that if for

any ρ ∈ (0, ρ0) and a global solution U(t) = (u(t), v(t)), |u−(t0)|4 ≤ ρ with some

t0 ≥ 0, then for any t > t0, |u−(t)|4 < ρ. For v(t), the same result holds. Moreover,

the constant ρ > 0 is independent of fj.
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Proof.

∂t

∫
|u−|4 = 4

∫
u3
−∂tu ≤ 4

∫
u3
−
(
∆u− u+ µ1u

3 + βuv2
)

≤ −3

∫
|∇(u2)|2 − 4

∫
|u−|4 + 4µ1

∫
|u−|6.

Denote W = u2
−. The last line of above computation can be dominated by

−C‖W‖2 + C|W |33.

Noticing 1
3

=
1
2

6
+

1− 1
2

2
and using the Sobolev embedding, we conclude that

|W |33 ≤ C‖W‖
3
2 |W |

3
2
2 .

Hence,

∂t

∫
|u−|4 ≤ −C‖W‖2 + C‖W‖

3
2 |W |

3
2
2

≤ −C‖W‖
3
2 |W |

3
2
2 + C‖W‖

3
2 |W |

3
2
2

= −C‖W‖
3
2 |W |

3
2
2

(
1− C|u−|24

)
is negative when |u−|4 is small.

�

Corollary 2.10. Consider Problem (2.1). If the initial value (u0, v0) of a trajectory

(u(t), v(t)) satisfies u0, v0 ≥ 0 in Ω and β satisfies the conditions in above lemmas,

then for any t ∈ [0, T (u0, v0)), u(t), v(t) ≥ 0 in Ω.

Proof. We argue it by contradiction. Suppose that the result is violated for some

time t0 by u. Then, due to Theorem 2.1, there must be a time t1 ∈ (0, t0] such that

• |u(t1)|4 ≤ ρ0
2

;

• ∂t|u−|44
∣∣
t=t1

> 0.

Here the ρ0 is the positive number given in Lemma 2.9. Then the two entries lead

us to a contradiction with the same lemma.

�

2.3. Verification of (PS) Condition. In this subsection, we verify the (PS)

condition of the energy I of Problem (1.1). Recall

I(u, v) =
1

2
(‖u‖2 + ‖v‖2)− µ

4

∫
u4 + v4 − β

2

∫
u2v2 −

∫
f · (u+ v).
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For any sequence (un, vn) ∈ H2 with |I(un, vn)| ≤ C and ‖I ′(un, vn)‖ = o(1), as a

routine in [32], it is easy to see that

C + 1 + ‖un‖+ ‖vn‖ ≥ I(un, vn)− 1

4
I ′(un, vn)(un, vn)

=
1

2

(
‖un‖2 + ‖vn‖2

)
− 3

4

∫
(f1un + f2vn)

≥ 1

2

(
‖un‖2 + ‖vn‖2

)
− C (‖un‖+ ‖vn‖) .

This gives that the sequence ((un, vn))n ⊂ H1 ×H1 is bounded. With the help of

Sobolev embedding,

(un, vn) ⇀ (u, v) in H1 ×H1

(un, vn)→ (u, v) in Lr × Lr

for some (u, v) ∈ H2 and for any r ∈ (2, 6). On the other hand, based on an

elementary calculation,

‖un − u‖2 + ‖vn − v‖2 = (I ′(un, vn)− I ′(u, v)) ((un, vn)− (u, v))

+ µ1

∫
(un − u)

(
u3
n − u3

)
+ µ2

∫
(vn − v)

(
v3
n − v3

)
− β

∫
(un − u)

(
uv2 − unv2

n

)
+ (vn − v)

(
u2v − u2

nvn
)

=: I1 + I2 + I3 + I4.

Estimate the integrals respectively.

|I1| = |(I ′(un, vn)− I ′(u, v)) ((un, vn)− (u, v))|

≤ ‖I ′(un, vn)‖ ·
(

sup
n
‖(un, vn)‖+ ‖(u, v)‖

)
+ |I ′(u, v) ((un, vn)− (u, v)) | → 0,

since ‖I ′(un, vn)‖ = o(1) and (un, vn) ⇀ (u, v) in H1 ×H1. For the second term,

|I2| ≤ µ1

∫ ∣∣(un − u)
(
u3
n − u3

)∣∣ = µ

∫
(un − u)2(u2

n + unu+ u2)

≤ |un − u|24|un + unu+ u2|2 ≤ C|un − u|24 → 0.

This is valid due to (un, vn)→ (u, v) in Lr × Lr for any r ∈ (2, 6). The same with

I3.

|I4| ≤ |β|
∫ ∣∣(un − u)

(
uv2 − unv2

n

)∣∣+
∣∣(vn − v)

(
u2v − u2

nvn
)∣∣

≤ C (|un − u|4 + |vn − v|4)→ 0.
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This implies that (un, vn)→ (u, v) in H1 ×H1 and the (PS) condition holds for I.

3. Proof of Theorem 1.1

3.1. Existence of a solution with negative energy. Due to Lemma 2.4, we

know that Ia ∩ B(0, R) is invariant under the flow ηt(·). We can find the specific

definitions on a and R in appendix. Moreover, ∅ 6= I0 ∩ B(0, R) ⊂ Ia ∩ B(0, R)

is also invariant. Due to the form of energy I, it has a negative lower bound on

I0 ∩ B(0, r). We select a smooth function δ(f̃1, f̃2) ∈ I0 ∩ B(0, R), where f̃1 and

f̃2 are nonnegative C∞0 functions such that
∫
f1f̃1 + f2f̃2 > 0 and δ > 0 is small

enough. Compute that

I(δ(f̃1, f̃2)) =
δ2

2

(
‖f̃1‖2 + ‖f̃2‖2

)
− δ4

4

∫
µ1f̃1

4
+ µ2f̃2

4
+ 2βf̃1

2
f̃1

2

− δ
∫
f1f̃1 + f2f̃2.

Then I(δ(f̃1, f̃2)) < 0 when δ > 0 is small. This implies that δ(f̃1, f̃2) ∈ I0∩B(0, r)

if δ > 0 is smaller. Consider the trajectory (u(t), v(t)) of Problem (2.1) with

u(0) = δf̃1 and v(0) = δf̃2. Now we apply a method in [13] to find a (PS) sequence.

We firstly notice that the trajectory (u(t), v(t)) is of global existence since it is

included in I0 ∩ B(0, R), which is a H1 × H1 bounded invariant set. The same

argument also give that limt→∞ I(u(t), v(t)) = −c < 0 for some constant c. Using

Lemma 2.2, ∫ ∞
0

∫
|ut|2 + |vt|2dxdt = I(u(0), v(0)) + c <∞.

Therefore, we can find a sequence of time tk →∞ with
∫
|ut|2(tk)+|vt|2(tk)dx→ 0.

Then we have ‖I ′(u(tk), v(tk))‖H−1×H−1 → 0. Indeed, if we select two functions

φ, ψ ∈ H1,

I ′(u(tk), v(tk))(φ, ψ) ≤ |∆u− u+ µ1u
3 + βuv2 + f1|2|φ|2

+ |∆v − v + µ2v
3 + βvu2 + f2|2|ψ|2

≤ o(1) (‖φ‖+ ‖ψ‖) .

Therefore we have a sequence (uk, vk) ∈ H1 ×H1 satisfies

• I(uk, vk)→ −c;
• ‖I ′(uk, vk)‖H1×H1 → 0;

• uk, vk ≥ 0 in Ω.

The third entry follows from the monotonicity. Using the (PS) condition, the

sequence tends to its limit (u1, v1), which is a solution to Problem (1.1) with neg-

ative energy and u1, v1 ≥ 0 in Ω. The regularity and maximum principle of elliptic

equations imply that u1, v1 > 0 in Ω.
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3.2. Existence of a solution with positive energy. To obtain the second so-

lution, we focus on the boundary ∂A of the domain of attraction A. Select two

smooth positive functions with disjoint supports, say φ and ψ. Notice that

I(t(φ, ψ)) =
t2

2

(
‖φ‖2 + ‖ψ‖2

)
− t4

4

∫
µ1φ

4 + µ2ψ
4 − t

∫
f1φ+ f2ψ.

The assumption that |f1|2 + |f2|2 is small ensure that there is a t0 such that

I(t0(φ, ψ)) >
S−2
4

16(µ1+µ1+2|β|+1)
. Here the constant Sp > 0 satisfies that |u|p ≤ Sp‖u‖

for any u ∈ H1
0 (Ω). A detailed computation is in the Appendix. Therefore we

can find a t1 > 0 such that t1(φ, ψ) ∈ ∂A. With a similar method, we can select

a non-negative (PS) sequence from the flow ηt(t1(φ, ψ)), which will lead us to a

positive solution (u2, v2) ∈ ∂A. Finally, noticing that infU∈∂A I(U) > 0, we have

I(u2, v2) > 0.

3.3. Uniqueness of the solution (u1, v1). To give the uniqueness of the small

solution (v1, v2), we firstly give a L∞ estimate for it. Notice that, due to the

computation in Appendix, ‖u1‖+ ‖v1‖ → 0 as |f1|2 + |f2|2 → 0. Using the explicit

form of Problem (1.1), we can estimate the H2 norm of (u1, v1) as |f1|2 + |f2|2 → 0:

|∆u1|2 + |∆v1|2 ≤ C
(
|u1|2 + |v1|2 + ‖u1‖3 + ‖v1‖3 + |f1|2 + |f2|2

)
→ 0,

which gives the fact that |u1|∞+ |v1|∞ → 0 as |f1|2 + |f2|2 → 0 due to the Sobolev

embeddings in R3. Suppose there is another solution (u′1, v
′
1) with a small H1-norm,

then we have

−∆(u1 − u′1) + (u1 − u′1) = µ1(u1 − u′1)(u1
2 + u1u

′
1 + u′1

2
)

+ β(u1 − u′1)v1
2 + βu′1(v1 + v′1)(v1 − v′1)

−∆(v1 − v′1) + (v1 − v′1) = µ2(v1 − v′1)(v1
2 + v1v

′
1 + v′1

2
)

+ β(v1 − v′1)u1
2 + βv′1(u1 + u′1)(u1 − u′1).

Multiplying them by u1−u′1 and v1− v′1 respectively, integrating and adding them

up. We can do the following estimating

‖u1 − u′1‖2 + ‖v1 − v′1‖2 ≤C (|u1|∞ + |v1|∞ + |u′1|∞ + |v′1|∞)
2

·
(
‖u1 − u′1‖2 + ‖v1 − v′1‖2

)
.

Notice that C (|u1|∞ + |v1|∞ + |u′1|∞ + |v′1|∞)→ 0 as |f1|2 + |f2|2 → 0, we conclude

that u1 = u′1 and v1 = v′1.

3.4. A remark. If we do not require the positivity of solution, i.e. we only want to

prove the existence, we may skip the step of monotonicity. Then we can conclude

the following theorem with the rest of the process the same:
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Theorem 3.1. There is ε0 such that if the non-zero functions f1 and f2 satisfy

0 < |f1|2 + |f2|2 ≤ ε0, Problem (1.1) possesses two nontrivial solutions (u1, v1) and

(u2, v2) with I(u1, v1) > 0 and I(u2, v2) < 0.

4. Proof of Theorem 1.2

In this section, we give a proof of Theorem 1.2. A symmetry under permutation is

the key to the multiplicity result. Readers can find more results about permutation

symmetry in [15, 20, 30, 31]. We denote the permutation by σ(u, v) = (v, u).

Obviously, the Problem (1.1) and (2.1) is invariant under the permutation if we set

µ1 = µ2 =: µ and f1 = f2 =: f , i.e. the problem are in the form of

(4.1)


−∆u+ u = µu3 + βuv2 + f in Ω,

−∆v + v = µv3 + βvu2 + f in Ω,

u = v = 0 on ∂Ω

and of

(4.2)


∂tu−∆u+ u = µu3 + βuv2 + f in Ω,

∂tv −∆v + v = µv3 + βvu2 + f in Ω,

u = v = 0 on ∂Ω,

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.

We proceed the usual program of symmetric mountain pass theorem to this theorem

in the symmetry of permutation. To do this, firstly, we need to define the genus

generated by the permutation σ. The following definition and properties can be

found in [15, 20, 30].

Definition 4.1. Let E be a Banach space and a Z2 action on E given by σ. Denote

the fixed point set by Fσ. For any closed subset A ⊂ E\Fσ, the index γ(A) is

defined as the smallest number m ∈ N such that there exists a continuous mapping

h : A→ Cm\{0} with

h(σU) = eiπh(U).

If there is no such a mapping, we set γ(A) =∞.

Proposition 4.2. The index γ satisfies the following properties:

• If A ⊂ B, then γ(A) ≤ γ(B);

• γ(A ∪B) ≤ γ(A) + γ(B);

• if a closed set ∅ 6= A ⊂ E\Fσ satisfies A∩σ(A) = ∅, then γ (A ∪ σ(A)) = 1;

• if g : A→ E\Fσ is continuous and satisfies g(σ(U)) = σg(U) for all U ∈ A,

then

γ(A) ≤ γ(g(A));

• if A ∩ Fσ = ∅ and γ(A) > 1, A is an infinite set;

• if A is compact and γ(A) <∞, then there exist an open σ-invariant neigh-

bourhood N of A such that γ(A) = γ(N);
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• if S is the boundary of a bounded neighbourhood of the origin in a m-

dimensional complex linear space such that eiπU ∈ S, and Ψ : S → E\Fσ
is continuous and satisfies for any U ∈ S, Ψ(eiπU) = σ (Ψ(U)), then

γ (Ψ(S)) ≥ m.

We can find the proofs of these properties in [15, 20, 30], which are variants of

the ones in [27, Section 7].

4.1. Proof of the first Theorem 1.2. Due to the routine of symmetric mountain

pass theorem, we need to prove a certain invariant set, where we preform the

minimax procedure, possesses infinitely large genus (c.f. [21, 22, 23, 20, 30]). [30]

shows a way to solve this problem. In [30], the authors gave the explicit formula of

the subset of invariant set using the advantage of Nehari manifolds, which is very

hard to be done in our problem since it involves solving cubic equations if we want

to process the same deduction. To overcome this difficulty, we replace the Nehari

manifold (c.f. [20]) with the boundary of a domain of attraction. It is convenient

to do so because in the case of f1 = f2 6= 0, we do not need to consider about the

semi-trivial solutions.

Before doing that, we need to check that there is no non-negative fixed point

of the permutation σ on ∂A. First let us check that there is no equilibrium point

(u, v) with u = v ≥ 0. Indeed, let u = v in the energy I, we have

I(u, u) = ‖u‖2 − µ+ β

2

∫
u4 − 2

∫
fu

=
µ+ β

2

∫
u4 −

∫
fu ≤ 0.

Combining the fact that infU∈∂A I(U) ≥ c > 0, we can conclude that ∂A contains

no positive equilibrium point which is a fixed point of permutation σ. Then, if there

is a non-negative fixed point (u′, u′) ∈ ∂A, we consider the flow line ηt(u′, u′). Using

the same process in the last section, we can find an equilibrium point (u′′, u′′) ∈ ∂A
and u′′ > 0. This contradicts the deduction above. Therefore, there is no non-

negative fixed point on ∂A.

Next, we define the following functions. For any positive integer K, we do the

following steps.

• First of all, we select an annulus Ω′ ⊂ Ω (without loss of generality, we can

assume that the center of the annulus is at the origin of R3) and divide it

into K disjoint sub-domains Ωk with ∪Kk=1Ωk = Ω′;

• Secondly, for a fixed k = 1, . . . , K, we define a smooth positive radial func-

tion wk(x, t) = wk(r, t) with r = |x| on Ωk × S1 such that wk(x, t) 6= 0 for

any t ∈ S1 and suppwk(x, t) ∩ suppwk(x, t+ π) = ∅.
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Now consider the K-dimensional complex Euclidean space CK with its elements

denoted by z = (z1, . . . , zK) = (α1e
iθ1 , . . . , αKe

iθK ). Define a mapping

Φ(z) =

(
K∑
k=1

αkwk(x, θk),
K∑
k=1

αkwk(x, θk + π)

)
.

It is easy to see that the mapping Φ satisfies Φ(−z) = σ ◦ Φ(z) and Φ is a home-

omorphism. Furthermore, any U ∈ Φ(CK) satisfies {tU |t ≥ 0} ∩ ∂A 6= ∅. Using

Borsuk’s theorem, we have γ
(
Φ(CK) ∩ ∂A

)
≥ K. Notice that any U ∈ Φ(CK) has

two non-negative components. Denote

ck = inf
A∈Γk

sup
U∈A

I(U),

where

Γk =
{
A ⊂ X ∩ ∂A

∣∣∣γ(A) ≥ k
}
, X =

{
(u, v) ∈ H1

0 ×H1
0

∣∣∣u, v ≥ 0
}
.

Now we claim that ck’s are critical values having positive critical points on these

critical levels. Then the first part of the result of Theorem 1.2 follows. The proof

of the above claim is a straightforward routine in variational arguments. We only

sketch it here while refering [20, 27] for more details. Assume that the critical set

Kck at the level ck contains no positive critical points. Then for any ε > 0, we

can find a positive number T1 > 0 such that when we denote η0(U) := ηT1(U) the

mapping η0 satisfies the following properties:

• η0 : X ∩ ∂A → X ∩ ∂A is continuous;

• η0 (X ∩ ∂A ∩ Ick+ε) ⊂ X ∩ ∂A ∩ Ick−ε.
The constructing of deformation mapping is a traditional technique in the topics

on modern variational methods. We refer [11, 27, 32] for a detailed computation.

Readers can also find a variant with parabolic flow in [20], which is similar with

the condition here. With the same ε > 0, we can find a set A ∈ Γk such that

• supA I(U) < ck + ε;

• supη0(A) I(U) < ck − ε;
• η0(A) ∈ Γk.

These lead us to a contradiction with the definition of the value ck. Therefore,

the critical set Kck contains at least one positive critical point. If for k, p > 0,

ck = · · · = ck+p, using a routine in [27], we can address that γ(Kck ∩X) ≥ p + 1.

This requires the following property of η0: for small ε > 0 an a neighbourhood N
of Kc, we have

η0(X ∩ ∂A ∩ Ic+ε\N ) ⊂ X ∩ ∂A ∩ Ic−ε.

The proof of Theorem 1.2 completed.

�
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4.2. Proof of the second part of Theorem 1.2. Here we only need to check

that the simplex contains no fixed point of the permutation σ. The rest part of the

proof ia the same with the one of the first part.

Now we check the following claim:

Claim 4.3. For any R > 0, there is a δR > 0 such that there is no positive fixed

point in ∂Aβ ∩ IR for Problem (2.1) with β ∈ (−µ,−µ+ δR).

Proof. In this part, we denote the energy and the boundary of attracting domain

by Iβ and Aβ respectively, to show the influence of the parameter β on them. As in

the last section, we firstly check that there is no fixed point which is also a critical

point in ∂Aβ ∩ IR. We argue it by contradiction. Suppose there is a R > 0 such

that for any β ∈ (−µ,−µ+ δ), there is always a fixed critical point uβ ∈ ∂Aβ ∩ IR.

Then

R ≥‖uβ‖2 − µ+ β

2

∫
u4
β − 2

∫
fuβ

=
1

2
‖uβ‖2 − 5

2

∫
fuβ.

This implies the sequence (uβ)β ⊂ H1 is bounded. On the other hand, since

β → −µ, we have

|−∆uβ + uβ − f |2 =
µ+ β

2
|u3
β|2 ≤ C(µ+ β)‖uβ‖3 → 0.

This shows that (uβ)β ⊂ H1 is a (PS) sequence of functional I0(u) := 1
2
‖u‖2−

∫
fu.

Therefore we have a subsequence of (uβ)β (we still denote it by (uβ)β) converges in

H1. Denote the limit by u. Notice that u is the only solution of −∆u+ u = f and

f 6= 0. This gives that u 6= 0. Then, on one hand, due to the fact that uβ ∈ ∂Aβ,

Iβ(uβ, uβ) = ‖uβ‖2 − µ+ β

2

∫
u4
β − 2

∫
fuβ ≥ c > 0

for some fixed c > 0 independence on β. Using the convergence of (uβ)β in H1, we

know that ‖u‖2 − 2
∫
fu ≥ c

2
. On the other hand, since u is the only solution of

−∆u+ u = f and f 6= 0, we have

‖u‖2 − 2

∫
fu = −‖u‖2 < 0.

We have a contradiction. Therefore, there is no positive fixed critical point in

∂Aβ ∩ IR. If there is a positive fixed point in ∂Aβ ∩ IR. Using the fact that

all the flow line start on ∂Aβ exists globally, the dissipation of the system and

the maximum principle, we can find a positive fixed point in ∂Aβ ∩ IR, which

contradicts the conclusion above.

�
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Now we have shown that there is no positive fixed point in ∂Aβ ∩ IR. Notice

that for a fixed simplex Φ(CK), supU∈Φ(CK)∩∂Aβ I(U) is independence on β. Then

we can complete the proof with the same method as that in the last section.

5. Appendix: Proof of Lemma 2.4

In this part, we prove Lemma 2.4, which gives the existence of domain of attrac-

tion, under the condition of small perturbation for the following general case for

Problem :

(5.1)


∂tuj −∆uj + uj = µju

3
j +

∑
i 6=j βijuju

2
i + fj in Ω,

uj = 0 on ∂Ω,

uj(x, 0) ∈ H1
0 (Ω) for j = 1, . . . , N.

In the following paragraph, we denote F = (f1, · · · , fN) and U = (u1, · · · , uN).

The energy is a C2 functional defined as

I(U) =
1

2

N∑
j=1

∫
|∇uj|2 + u2

j −
1

4

N∑
j=1

∫
µju

4
j +

∑
i 6=j

βiju
2
iu

2
j −

N∑
j=1

∫
fjuj

:
(
H1

0 (Ω)
)N → R.

Before we start computing in detail, we outline the strategy briefly. Usually, when

we consider a domain of attraction for a system with homogeneous nonlinear term,

we always give the existence of the domain of attraction by verifying the stability

of the trivial solution (c.f. [1, 16, 20, 22, 23]) or at least of a stable solution (c.f.

[25]). In this problem, there is no trivial solution, which causes an obstruction in

the traditional method. To overcome this difficulty, we choose to look for a ”stable

domain” rather than one stable equilibrium point. Related stability theory can be

found in [6, Section 2.12].

Denote

I(tU) =
t2

2

N∑
j=1

∫
|∇uj|2 + u2

j −
t4

4

N∑
j=1

∫
µju

4
j +

∑
i 6=j

βiju
2
iu

2
j − t

N∑
j=1

∫
fjuj

:= gU(t).

We begin our construction by steps.

In the following computation, Step.1-3 are estimates on energy levels. In

Step.4, an estimate on lower bound of derivative is obtained. At last, we summary

the result as a proof of Lemma 2.4 in Step.5.

Step.1. A Mountain-pass Level

In the following computation, we always assume that Sp is a constant that sat-

isfies |u|p ≤ Sp‖u‖ for any u ∈ H1
0 (Ω) and Sp > 1. We note that this constant is
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not necessarily the best. Denote B :=
∑N

j=1 µj +
∑

i 6=j |βij|+ 1 > 0. Then,

I
∣∣
‖U‖=

S−2
4√
NB

≥ 1

2
‖U‖2 − NB

4

N∑
j=1

∫
u4
j − |F |2 · |U |2

∣∣∣
‖U‖=

S−2
4√
NB

≥ 1

2
‖U‖2 − BNS4

4

4
‖U‖4 − |F |2 · ‖U‖

∣∣∣
‖U‖=

S−2
4√
NB

≥ S−4
4

8BN
,

where we assume that |F |2 ≤ S−2
4

8
√
BN

.

Step.2. Estimate on Monotonicity

In this step, we estimate the monotonicity of the energy I along different direc-

tions. In a word, we try to verify the following claim.

Claim 5.1. There is a ε0 > 0, when |F |2 ≤ ε0, for any ‖U‖ = 1, I(tU) is strictly

increasing for t ∈
[
0,

S−2
4√
BN

]
∩ {t > 0 : gU(t) > 0} 6= ∅.

In the following computation of this step, we always assume that ‖U‖ = 1.

According to the sign of
∑N

j=1

∫
µju

4
j +
∑

i 6=j βiju
2
iu

2
j and

∑N
j=1

∫
fjuj, we discuss

the monotonicity by dividing it into several cases.

(I).
∑N

j=1

∫
µju

4
j +

∑
i 6=j βiju

2
iu

2
j > 0.

(i).
∑N

j=1

∫
fjuj > 0.

Note that

gU(t) =
t2

2
− t4

4

N∑
j=1

∫
µju

4
j +

∑
i 6=j

βiju
2
iu

2
j − t

N∑
j=1

∫
fjuj

and

g′U(t) = t− t3
N∑
j=1

∫
µju

4
j +

∑
i 6=j

βiju
2
iu

2
j −

N∑
j=1

∫
fjuj

are both C1 functions. With an elementary computation, we find that g′U achieves

its maximum

g′MAX =
2

3
2

3
(

3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

) 1
2

−
N∑
j=1

∫
fjuj
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at t0 = 1

(3
∑N
j=1

∫
µju4j+

∑
i 6=j βiju

2
i u

2
j)

1
2

for t ≥ 0. Furthermore, if we assume that

|F |2 ≤ S−2
4√

3BN
, we have

N∑
j=1

∫
fjuj ≤ |F |2|U |2 ≤ |F |2‖U‖ = |F |2

≤ S−2
4√

3BN
≤ 1(

3BN
∑N

j=1 S
4
4‖uj‖4

) 1
2

≤ 1(
3BN

∑N
j=1

∫
u4
j

) 1
2

≤ 1(
3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

) 1
2

.

This gives that

g′MAX = g′U

 1(
3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

) 1
2


≥ 1(

3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

) 1
2

> 0.

Notice that

I(tU)
∣∣∣
t=t0

= gU

 1(
3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

) 1
2


=

1

2
· 1

3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

− 1

4
· 1(

3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

)2 ·
N∑
j=1

∫
µju

4
j +

∑
i 6=j

βiju
2
iu

2
j

− 1(
3
∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

) 1
2

·
N∑
j=1

fjuj

≥ 5

36
T 2 − 1√

3
|F |2T,
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where

T =
1(∑N

j=1

∫
µju4

j +
∑

i 6=j βiju
2
iu

2
j

) 1
2

≥
∑N

j=1

∫
|∇uj|2 + u2

j(
NB

∑N
j=1

∫
u4
j

) 1
2

≥ S−2
4√
NB

.

If we assume that |F |2 ≤ 5
√

3S−2
4

72
√
NB

, we have

I(tU)
∣∣∣
t=t0
≥ 5

36
T 2 − 1√

3
|F |2T

≥ 5

36

(
S−2

4√
NB

)2

− 1√
3
|F |2

S−2
4√
NB

≥ 5S−4
4

72BN
> 0.

Recall that we have gU

(
S−2
4√
BN

)
> 0 due to Step.1. In this part, we proved that

g′U

(
S−2
4√
BN

)
> 0. Notice that the conditions gU(t) ≥ 0 and t ≤ t0 imply that

g′U(t) > 0. Using the basic knowledge of polynomial, we can conclude that gU(t) is

strictly increasing for t ∈
[
0,

S−2
4√
BN

]
∩ {t > 0 : gU(t) > 0} 6= ∅.

(ii).
∑N

j=1

∫
fjuj = 0.

In this case,

gU(t) =
t2

2
− t4

4

N∑
j=1

∫
µju

4
j +

∑
i 6=j

βiju
2
iu

2
j .

Clearly, we have that gU(t) is strictly increasing for t ∈
[
0,

S−2
4√
BN

]
∩{t > 0 : gU(t) >

0} 6= ∅.
(iii).

∑N
j=1

∫
fjuj < 0.

Since g′U(t) has only one zero point t1 > t0 on positive half axis and g′U(t) > 0

for t ∈ [0, t0], gU(t) is strictly increasing for t ∈
[
0,

S−2
4√
BN

]
∩{t > 0 : gU(t) > 0} 6= ∅.

(II).
∑N

j=1

∫
µju

4
j +

∑
i 6=j βiju

2
iu

2
j = 0.

(i).
∑N

j=1

∫
fjuj > 0.

In this case,

gU(t) =
t2

2
− t

N∑
j=1

∫
fjuj.
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If we assume that |F |2 ≤ S−2
4

4
√
BN

,

I(tU)
∣∣∣
t=

S−2
4√
BN

= gU

(
S−2

4√
BN

)
≥ 1

2

S−4
4

BN
− S−2

4√
BN
|F |2 ≥

S−4
4

4BN
.

Due to the elementary properties of polynomial, we have that gU(t) is strictly

increasing for t ∈
[
0,

S−2
4√
BN

]
∩ {t > 0 : gU(t) > 0} 6= ∅.

(ii).
∑N

j=1

∫
fjuj ≤ 0.

The conclusion holds clearly.

(III).
∑N

j=1

∫
µju

4
j +

∑
i 6=j βiju

2
iu

2
j < 0.

(i).
∑N

j=1

∫
fjuj > 0.

In this case, the function g′U(t) has only one zero point on the positive half

axis. Check that, with a similar computation in (i) of (II), we have that when

|F |2 ≤ S−2
4

4
√
BN

gU(t) is strictly increasing for t ∈
[
0,

S−2
4√
BN

]
∩ {t > 0 : gU(t) > 0} 6= ∅.

(ii).
∑N

j=1

∫
fjuj ≤ 0.

The conclusion holds obviously in this case.

Step.3. Decreasing Levels

Firstly, we give several computations.

(1). On the sphere of radius ‖U‖ =
S−2
4√
BN

.

I
∣∣∣
‖U‖=

S−2
4√
BN

≥ 1

2
· S
−4
4

BN
− 1

4
·BN · S−4

4

S−8
4

B2N2
− |F |2 ·

S−2
4√
BN

≥ S−4
4

8BN
,

with |F |2 ≤ S−2
4

8
√
BN

.

(2). On the sphere of radius ‖U‖ =
S−2
4

4
√
BN

.

I
∣∣∣
‖U‖=

S−2
4

4
√
BN

≤ 1

2

(
S−2

4

4
√
BN

)2

+
1

4
·BNS4

4

(
S−2

4

4
√
BN

)4

+ |F |2 ·
S−2

4

4
√
BN

≤ S−4
4

16BN
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if we set |F |2 ≤ S−2
4

64
√
BN

. Under the same condition, we have I
∣∣∣
‖U‖=

S−2
4

4
√
BN

≥ S−4
4

128BN
.

(3). On the sphere of radius ‖U‖ =
S−2
4

16
√
BN

.

I
∣∣∣
‖U‖=

S−2
4

16
√
BN

≤ 1

2

(
S−2

4

16
√
BN

)2

+
1

4
·BNS4

4

(
S−2

4

16
√
BN

)4

+ |F |2 ·
S−2

4

16
√
BN

≤ S−4
4

28BN
<

S−4
4

128BN

if we set |F |2 ≤ S−2
4

213
√
BN

. Under the same condition, we have I
∣∣∣
‖U‖=

S−2
4

16
√
BN

≥ 27−1
216
·

S−4
4

BN
.

(4). On the sphere of radius ‖U‖ =
S−2
4

26
√
BN

.

I
∣∣∣
‖U‖=

S−2
4

26
√
BN

≤ 1

2

(
S−2

4

26
√
BN

)2

+
1

4
·BNS4

4

(
S−2

4

26
√
BN

)4

+ |F |2 ·
S−2

4

26
√
BN

≤ S−4
4

210BN
<

27 − 1

216
· S
−4
4

BN

if we set |F |2 ≤ S−2
4

220
√
BN

. Under the same condition, we have I
∣∣∣
‖U‖=

S−2
4

26
√
BN

≥ 212−1
225
·

S−4
4

BN
.

(5). On the sphere of radius ‖U‖ =
S−2
4

28
√
BN

.

I
∣∣∣
‖U‖=

S−2
4

28
√
BN

≤ 1

2

(
S−2

4

28
√
BN

)2

+
1

4
·BNS4

4

(
S−2

4

28
√
BN

)4

+ |F |2 ·
S−2

4

28
√
BN

≤ S−4
4

215BN
<

212 − 1

225
· S
−4
4

BN

if we set |F |2 ≤ S−2
4

224
√
BN

.

(6). Conclusion.

Denote a = 212−1
225
· S
−4
4

BN
, b =

S−4
4

128BN
and R0 =

S−2
4

28
√
BN

, R1 =
S−2
4

26
√
BN

, R2 =
S−2
4

16
√
BN

,

R3 =
S−2
4

4
√
BN

, R =
S−2
4√
BN

. Using Claim 5.1, we have the following inclusion:

B(0, R0) ⊂ Ia ∩B(0, R) ⊂ B(0, R1) ⊂ B(0, R2) ⊂ Ib ∩B(0, R) ⊂ B(0, R3).(5.2)

Notice that since Ia ∩B(0, R) is a connected component of Ia due to the shape of

Ia, it is flow invariant. The same argument holds for Ib ∩B(0, R).
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Step.4. Estimate on the Derivatives

Inclusion (5.2) implies that

Iba ∩B(0, R) ⊂ B(0, R3)\B(0, R0).

Denote

G(U) =
N∑
j=1

∣∣∣∣∣∆uj − uj +
N∑
j=1

µju
3
j +

∑
i 6=j

βiju
2
iuj + fj

∣∣∣∣∣
2

.

In order to prove that there is a δ > 0 such that G(U) ≥ δ on Iba ∩ B(0, R0), we

prove the same inequality on B(0, R3)\B(0, R0). For any U ∈ B(0, R3)\B(0, R0),

G(U) ≥ I ′(U)U

|U |2
≥ 1

‖U‖

(
N∑
j=1

∫
|∇uj|2 + u2

j −BN
N∑
j=1

∫
|uj|4 − |F |2‖U‖

)

= ‖U‖ −BNS4
4‖U‖3 − |F |2 ≥

S−2
4

29
√
BN

=: δ > 0

if |F |2 ≤ S−2
4

210
√
BN

. This gives Lemma 2.4 immediately.

Step.5. Proof of Lemma 2.4

Entry (1) of Lemma 2.4 follows from (6) of Step.3. Estimate on the positive

lower bound in Step.4 gives (2) of Lemma 2.4. To prove (3) of Lemma 2.4, we

notice that it is sufficient to let δ0 = R2−R1

100
> 0 in (6) of Step.3.
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[6] Bhatia, N. P, Szegö, G. P., Dynamical systems: stability theory and applications. Lecture

Notes in Mathematics, 35, Springer Berlin Heidelberg, 1967.

[7] Bolle, Ph., On the Bolza problem. J. Differential Equations 152 (1999), no. 2, 274-288.

[8] Bolle, Ph., Ghoussoub, N., Tehrani, H., The multiplicity of solutions in non-homogeneous

boundary value problems. Manuscripta Math. 101 (2000), no. 3, 325-350.



21

[9] Cao, D.-M., Zhou, H.-S., Multiple positive solutions of nonhomogeneous semilinear elliptic

equations in RN Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 2, 443-463.

[10] Cazenave, T., Lions, P, L., Solutions globales d’equations de la chaleur semi lineaires. Com-

munications in Partial Differential Equations, 9 (1984), 955-978.

[11] Chang, K.-C., Infinite-dimensional Morse theory and multiple solution problems. Progress in

Nonlinear Differential Equations and their Applications, 6. Birkhäuser Boston, Inc., Boston,
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