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Abstract. We investigate the structure of nodal solutions for coupled nonlinear Schrödinger

equations in the repulsive coupling regime. Among other results, for the following coupled

system of N equations, we prove the existence of infinitely many nodal solutions which share

the same componentwise-prescribed nodal numbers

(0.1)

{
−∆uj + λuj = µu3j +

∑
i 6=j βuju

2
i in Ω,

uj ∈ H1
0,r(Ω), j = 1, . . . , N,

where Ω is a radial domain in Rn for n = 2, 3 and a bounded interval for n = 1, λ > 0, µ > 0,

and β < 0. More precisely, let p be a prime factor of N and write N = pB. Suppose β ≤ − µ
p−1 .

Then for any given non-negative integers P1, P2, . . . , PB , (0.1) has infinitely many solutions

(u1, . . . , uN ) such that each of these solutions satisfies the same property: for b = 1, ..., B,

upb−p+i changes sign precisely Pb times for i = 1, ..., p. The result reveals the complex nature

of the solution structure in the repulsive coupling regime due to componentwise segregation

of solutions. Our method is to combine a heat flow approach as deformation with a minimax

construction of the symmetric mountain pass theorem using a Zp group action index. Our

method is robust, also allowing to give the existence of one solution without assuming any

symmetry of the coupling.

Keywords: Multiple nodal solution; Componentwise-prescribed number of nodes; Coupled

Schrödinger equations.

2010 MSC: 35J47, 35J50, 35J55, 35K45

1. Introduction

1.1. Main Result. In this paper, we consider the following coupled nonlinear

Schrödinger system of N equations:

(1.1)

{
−∆uj + λjuj = µju

3
j +

∑N
i=1,i 6=j βijuju

2
i in Ω,

uj ∈ H1
0,r(Ω), j = 1, . . . , N,

where Ω ⊂ Rn is a radially symmetric domain, bounded or unbounded for n =

2, 3, and a bounded interval for n = 1, and the constants satisfy λj > 0, µj > 0
1
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for j = 1, ..., N , and βij = βji for i 6= j. H1
0,r(Ω) denotes the subspace of H1

0 (Ω)

of radially symmetric functions.

To demonstrate the spirit of our results, we state the result in a special case

first, where all λj are equal to λ > 0, all µj are equal to µ > 0, and all βij are

equal to β for i 6= j, i.e.,

(1.2)

{
−∆uj + λuj = µu3

j +
∑

i 6=j βuju
2
i in Ω,

uj ∈ H1
0,r(Ω), j = 1, . . . , N.

Theorem 1.1. Let p be a prime factor of N and write N = pB. Suppose

β ≤ − µ
p−1

, Then for any given non-negative integers P1, P2, . . . , PB, (1.2) has

infinitely many solutions (u1, . . . , uN) such that for b = 1, ..., B, upb−p+i changes

sign precisely Pb times for i = 1, ..., p.

The result gives new insight into the structure of nodal solutions for coupled

Schrödinger equations. For a componentwise-prescribed number of nodes, we

find infinitely many solutions which share the same number of nodal domains,

revealing more complexity of nodal solutions compared with the classical scalar

field equation −∆u+ u = |u|p−2u for which a long standing folklore has been the

uniqueness of sign-changing solutions with a prescribed number of nodes. We say

the solutions given above have componentwise-prescribed number of nodes.

Our method works in more general form than that of (1.2). Denote by B =

(βij)N×N the coefficient matrix involved on the right hand side of Problem (1.2),

where we denote βii = µi. We do not need to require the same values for λj, µj
and βij. We denote the transformation of exchanging the i-th row and the j-th

row of a matrix by Rij, the i-th column and the j-th column by Cij.

Theorem 1.2. Let p be a prime factor of N and write N = pB. Assume the

following four conditions hold.

(A) λpb−p+1 = λpb−p+2 = · · · = λpb > 0 for b = 1, . . . , B.

(B) For i, j = 1, . . . , N and i 6= j, βij = βji ≤ 0 and µj > 0.

(C) For b = 1 . . . , B, B = (βij)N×N is invariant under the action of

p−1∏
i=1

Cpb−p+i,pb−p+i+1 ◦Rpb−p+i,pb−p+i+1.

(D) For b = 1, . . . , B and pb− p+ 1 ≤ j ≤ pb, it holds

µj +
∑

pb−p+1≤i≤pb ; i 6=j

βij ≤ 0.

Then for any given non-negative integers P1, . . . , PB, the Problem (1.1) possesses

infinitely many solutions (u1, . . . , uN) such that for b = 1, ..., B, upb−p+i changes

sign precisely Pb times for i = 1, ..., p.
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Remark 1.3. In the special case of (1.2), we see (A) and (C) are satisfied readily,

while (B) and (D) are satisfied under β ≤ − µ
p−1

< 0. Thus Theorem 1.1 follows.

Our approach in this paper to study multiplicity of nodal solutions having

the same componentwise-prescribed number of nodes is to combine an associated

parabolic flow serving as a descending flow of the variational problem with a

minimax construction in the spirit of the symmetric mountain pass theorem via an

Zp index theory in the presence of invariant sets of the flow. While for multiplicity

of nodal solutions having the same nodal numbers, we need in an essential way the

symmetry of the coupling coefficients, our method will be set up in a more general

framework and also allows us to treat in the general case Problem (1.1) without

such a symmetry. In this general setting we prove the existence of one solution

with a componentwise-prescribed number of nodes, and this gives a different

proof of a result from [32] where such a solution was given by gluing on Nehari

manifold. In the present paper, we employ the corresponding parabolic flow as a

tool for deformation of the variational problem, which is essential for establishing

multiplicity results.

Theorem 1.4. Assume λj, µj > 0 for j = 1 . . . , N . Then for any non-negative

integers P1, . . . , PN , there exists b > 0 such that if βij ≤ b for all i 6= j, Prob-

lem (1.1) has a solution (u1 . . . , uN) with the j-th component uj changing sign

precisely Pj times for j = 1 . . . , N .

We note that while for the multiplicity results we need the condition of negative

coupling, for the existence of one solution we can allow a wider range of coupling

here.

To make the symmetry condition in Theorem 1.2 clear, we give three examples

for the coupling coefficient matrix B = (βij)N×N of Problem (1.1). The matrices

are cut into blocks for suitable symmetry.

Example 1.5. For the case N = 4 and p = B = 2, the assumptions (B−D) are

satisfied in the following form
µ1 β1 β3 β3

β1 µ1 β3 β3

β3 β3 µ2 β2

β3 β3 β2 µ2


with βi ≤ −µi < 0 for i = 1, 2 and β3 ≤ 0. Assume that λ1 = λ2 > 0 and

λ3 = λ4 > 0. Then given any two nonnegative integers P1, P2, there exist infinitely

many solutions with first two components u1, u2 each having exactly P1 simple

zeros, and with the last two components u3, u4 each having exactly P2 simple

zeros.
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If we set N = 6, p = 2 and B = 3, the assumptions (B −D) are satisfied in

µ1 β1 β4 β4 β5 β5

β1 µ1 β4 β4 β5 β5

β4 β4 µ2 β2 β6 β6

β4 β4 β2 µ2 β6 β6

β5 β5 β6 β6 µ3 β3

β5 β5 β6 β6 β3 µ3


with βi ≤ −µi < 0 for i = 1, 2, 3 and β4, β5, β6 ≤ 0.

If we set N = 6, p = 3 and B = 2, the assumptions (B −D) are satisfied in

µ1 β1 β1 β3 β3 β3

β1 µ1 β1 β3 β3 β3

β1 β1 µ1 β3 β3 β3

β3 β3 β3 µ2 β2 β2

β3 β3 β3 β2 µ2 β2

β3 β3 β3 β2 β2 µ2


with βi ≤ −µi

2
< 0 for i = 1, 2 and β3 ≤ 0.

1.2. Historical Remarks and the Idea of the Present Paper. The nonlin-

ear coupled elliptic system (1.1) has its theoretical root in Bose-Einstein conden-

sates. The solutions of Problem (1.1) give rise to standing waves solutions of the

time-dependent nonlinear coupled Schrödinger system

(1.3)

{
−i∂tΦj −∆Φj = µj|Φj|2Φj +

∑
i 6=j βijΦj|Φi|2 in Ω,

Φj(t, x) ∈ C, j = 1, . . . , N,

for j = 1, . . . , N and t > 0. In physics models, the parameters µj and βij are

the intraspecies and interspecies scattering lengths respectively. When βij > 0,

it is called the attractive case, when βij < 0, it is called the repulsive case. In

this paper, we mainly consider the repulsive case while small attractive coupling

is also considered. [2, 35] is referred for more physics background.

In recent years, a large number of mathematical results on Problem (1.1) have

appeared, e.g., in [5, 10, 9, 17, 25, 26, 28, 30, 31, 36, 44, 49, 50, 52] for studying

various aspects of the problem such as existence theory for the attractive case

and for the repulsive case, the bifurcation analysis, the synchronization and seg-

regation for different coupling parameter regimes, and convergence and regularity

of large couplings in the repulsive case etc. We refer to these papers for more

references therein. In the repulsive coupling case, solutions tend to be segregated

component-wisely creating more complex patterns of solutions. The application

of variational methods to the coupled Schrödinger systems mainly involves mini-

mizing methods and minimax methods. The symmetric mountain-pass theorem
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has been well adopted for a large number of elliptic problems that goes back to the

celebrated [6] by Ambrosetti-Rabinowitz. For Problem (1.1), the first difficulty

is that there exist infinitely many so-called semi-trivial solutions (solutions with

some components being zeros) so the system is degenerated to a system of smaller

number of equations. In [30, 31], Liu and Wang proved the existence of infin-

itely many non-trivial (all components are non-zero) solutions to Problem (1.1)

via invariant sets of descending flow and Nehari manifold method respectively.

In [17] and [50], the authors proved multiplicity results of positive solutions to

the special case Problem (1.2) which possesses the componentwise permutation

symmetry. This can be considered as a typical result for the repulsive case which

shows distinct difference between a scalar field equation and a coupled nonlinear

elliptic system since for the classical scalar field equation −∆u+ u = |u|p−2u the

uniqueness of positive solutions is well known ([21, 23]) and a folklore has been

the uniqueness of nodal solutions with a prescribed number of nodes ([8, 48]). In

[28], the authors obtained a multiplicity result of solutions to Problem (1.1) in

general domains with prescribed number of positive components and prescribed

number of sign-changing components. Recently, for radially symmetric domains,

the existence of a nodal solution with componentwise prescribed number of nodes

is obtained by Liu and Wang in [32] via gluing on Nehari’s method, extending

the work for scalar equations ([11, 46]). More precisely, it is proved in [32] that

for any given nonnegative integers P1, ..., PN there is a nodal solution (u1, ..., uN)

to Problem (1.1) such that ui has exactly Pi simple zeros, i = 1, ..., N .

In the present paper, our main concern and interest is that for a componentwise-

prescribed number of nodes whether there are multiple such solutions sharing

the given nodal number, in particular whether there are infinitely many such

solutions? This is the main goal of our studies. Our result gives a construction

of infinitely many solutions sharing a given componentwise-prescribed number of

nodes (Theorem 1.1 and 1.2).

To deal with the sign-changing property of multiple solutions we will employ

the heat flow of the corresponding coupled heat equations to Problem (1.1). An

important part of the present paper lies in the studies of the associated heat flow,

including the existence and regularity results, the global existence and blow-up

results, the non-increasing property of the sign-changing numbers along flow lines,

the boundedness of trajectories and dynamical property of some invariant sets of

the flow. We refer [4, 22, 33, 42] for general discussions on the parabolic prob-

lems. There have been a lot of works in the literature in which elliptic problems

are solved with the help of heat flow methods. In [16], Conti, Merizzi and Ter-

racini proved the existence of radial solutions with prescribed number of nodal

domains to a scalar field equation. Utilizing the semilinear parabolic flow and

the topological degree, they proved the result which was only treated by Nehari
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method before ([11, 46]). In [15], Chang established a variational framework and

applied it to minimal surface problems. Quittner proved the existence and mul-

tiplicity of solutions of several semilinear elliptic problems and other dynamical

properties by using parabolic flow in [38, 39, 41]. In [1], Ackermann and Bartsch

developed the idea of superstable manifold and refined the symmetric mountain-

pass theorem for sign-changing solutions (c.f. [12, Section 2]), which produced

multiplicity results, nodal properties and order comparison results. More works

on using parabolic flow to treat elliptic problems can be found in the references in

these papers. However, there are few results on the coupled Schrödinger systems

using the heat flow. We mention [52] in which for two equations a comparison

between components of positive solutions was obtained. We will further develop

the ideas in these papers by using heat flow as a tool of descending flow of our

variational problem for Problem (1.1). In fact, with the growth of the nonlinear-

ity, a finer analysis on the global existence of the parabolic flow is also required.

Combining the Cazenave-Lions interpolation ([13] and [15]) and some estimate

in [15, 38], we can address that the growth of the nonlinearity is admissible to

the global existence in dimensions n ≤ 3. A finer analysis of the invariant sets

requires the H1-bounds of global solutions which we will prove in Section 2.4.

We use a variant of the method in [40], and we refer [19, 40] for more references

on this topic. Another important part of our work involves using some natural

permutation symmetry in the coupling patterns. We will make use of the sym-

metry of the problem, that is, the problem is invariant under a Zp group action

of a cyclic permutation σ. With the heat flow serving as a deformation we will

construct minimax critical values in the spirit of the symmetric mountain pass

theorem via a Zp index. We need to build up special symmetric subsets of large

Zp index contained in the invariant sets of the flow. Inspired by the approach for

scalar equations in [16] our method is a sharper and symmetric variant of [16]

for coupled systems. To accomplish this, a certain combination of the methods

in [16, 31, 50] are needed. While the idea of Nehari manifold was used in [31],

we will use the more natural ingredient, the boundary of the stable manifold of

the origin, which has the advantage in keeping the non-increasing property of the

sign-changing number along flow lines.

1.3. The Structure of This Paper. Section 2 mainly deals with the regularity

and dynamical properties of the heat flow of the corresponding heat equations,

constructing various invariant sets of the flow. We prove the existence result of

Theorem 1.4 for the general system (1.1) in Section 3, and this also will set up the

stage for the proof of the main result Theorem 1.2 in Section 4. In Section 4, we

give the proof of the multiplicity result Theorem 1.2 from a minimax argument
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by constructing symmetric sets of large Zp index inside various flow invariant sets

on the boundary of the domain of attraction of the origin.

2. Dynamical properties of the associated heat equations

The parabolic flow associated with the elliptic system will be used as a mean of

descending flow for the variational problems. We start by collecting some relevant

results on existence and regularity of the heat equations. Then we will develop

some further estimates and construct some invariant sets of the flow which will

be used in our proof later. Let us fix some notations first.

We always use capital letters to represent vector valued functions and the cor-

responding lower case letters with subscript for their components. For example,

U = (u1, . . . , , uN) and V = (v1, . . . , vN). A solution U = (u1, . . . , , uN) to Prob-

lem (1.1) is called a non-trivial solution if and only if uj 6= 0 for any j = 1, . . . , N .

It is semi-trivial if and only if U 66= θ and U has some zero components, where θ

is the zero vector.

The norm of Lebesgue space Lp(Ω) is denoted by |·|p and the norm of H1
0 (Ω) by

‖·‖. For the product of spaces, such as (Lp(Ω))N ((H1
0 (Ω))N), we still use |·|p(‖·‖)

to denote its norm. With no confusions, we sometimes omit the domain Ω, the

boundary condition and the radial condition and only denote the corresponding

spaces by Lp, H1, H2 and Hs for s ∈ (1, 2).

2.1. Existence and Regularity Results of the Parabolic Flow. Instead of

the gradient flow, we will combine our variational structure with the following

nonlinear coupled parabolic system:

(2.1)


∂
∂t
uj −∆uj + λjuj = µju

3
j +

∑
i 6=j βijuju

2
i in Ω,

uj(t, x) ∈ Hs
0,r(Ω), j = 1, . . . , N,

uj(0, x) = u0,j(x) ∈ Hs
0,r(Ω), j = 1, . . . , N.

whose equilibria are solutions to Problem (1.1). Here, we require the coefficients

λj’s, µj’s and βij’s satisfy the conditions in Theorem 1.4 and Theorem 1.2 when

we prove two theorems respectively.

By the notation ηt(U) we denote a solution to the parabolic system with U =

(u0,1, ..., u0,N) as its initial data. Sometimes, for the sake of simplicity, we also

write U(t).

A special case of Problem (2.1) is of the form:

(2.2)


∂
∂t
uj −∆uj + λuj = µu3

j +
∑

i 6=j βuju
2
i in Ω,

uj(t, x) ∈ Hs
0,r(Ω), j = 1, . . . , N,

uj(0, x) = u0,j(x) ∈ Hs
0,r(Ω), j = 1, . . . , N.

It is obvious that an equilibrium point of Problem (2.2) is a solution to Problem

(1.2). Both of the parameters s in Problems (2.1) and (2.2) will be taken to be in
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[1, 2] depending upon the situation. Readers can find general theory of parabolic

problems in [4, 18, 22, 33, 42]. We will state a slightly more general result on the

existence and regularity for the parabolic system (2.1) than we need in this paper.

Noticing that the spectrum of −∆+λ is contained in [λ,∞), we conclude that the

operator −∆ + λ is sectorial and, as a consequence, the existence and regularity

results can be given. The results are stated and proved in terms of interpolation

spaces Xα for α ∈ [0, 1] (e.g., [18]). We refer [4, 18, 22, 33, 42] once again for more

information on sectorial operators and related properties on interpolation spaces.

Note that with the range being L2, the domain of the operator is D(−∆ + λ) =

{u ∈ H2|γ2u = 0} := X1 (c.f. [18, (4.6), (4.7)] or [45]), where γ2 is the trace

operator in L2 = X0. Using the relation between these interpolation spaces and

the Bessel-potential spaces Xs/2 = Hs
0(Ω) for s ∈

[
1, 3

2

)
∪
(

3
2
, 2
]
, we will state the

following theorem with the Hs
0 setting (c.f. [18, Theorem 4.20], [37] and [3]). The

following result for Problem (2.1) is useful in the present paper.

Theorem 2.1. Let s ∈ [1, 2]\
{

3
2

}
be fixed. If the initial value U := (u1, . . . , uN) ∈

(Hs)N , there is a unique solution ηt(U) = (u1(t), . . . , uN(t)) to Problem (2.1) de-

fined on its maximum interval [0, T (U)), satisfying

(I) it holds that

ηt(U) ∈C1((0, T (U)), (L2)N) ∩ C([0, T (U)), (Hs)N);

(II) for any U ∈ (Hs)N and any δ ∈ [0, T (U)), there are positive constants

r,K such that for any t ∈ [0, δ]

‖U − V ‖(Hs)N < r ⇒ ‖ηt(U)− ηt(V )‖(Hs)N ≤ K‖U − V ‖(Hs)N ;

(III) the trivial solution θ ∈ (Hs)N is asymptotically stable in (Hs)N .

Remark 2.2. Part (I) of this theorem is due to [18, Theorem 15.3, Theorem 16.2]

and (II) is of [18, Proposition 16.8]. The assertion (III) is due to [22, Theorem

5.1.1].

Remark 2.3. In following, we mainly use the result for s = 1 and s = 2.

Notice that the theorem also holds true if we restrict the spaces to the case of

radial symmetric functions. A similar regularity theory can be found in [33].

2.2. Global Existence of the Solutions Starting on the Boundary of

the Stable Manifold. The propositions are modified versions of some results

in [16] and in [38]. In this section, we always assume U(t) = (u1(t), . . . , uN(t))

is a solution to Problem (2.1). The energy of Problem (1.1) is the functional
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J(U) : (H1
r )N → R defined by

J(U) := J(u1, . . . , uN)

=
1

2

N∑
j=1

∫
|∇uj|2 + λj|uj|2 −

1

4

N∑
j=1

(∫
µju

4
j +

∑
i 6=j

∫
βiju

2
iu

2
j

)
,

which is a C2 functional and satisfies the (PS) condition.

Proposition 2.4. For a solution U(t) = (u1(t), . . . , uN(t)), we have

∂

∂t
J(U(t)) = −

N∑
j=1

∫
|∂tuj|2.

Proof. Note that

∂

∂t
J(U) =

N∑
j=1

∇ujJ(U)∂tuj.

By a direct computation we have

∇ujJ(U)∂tuj =

∫
∇uj · ∇∂tuj + λjuj∂tuj −

∫
µju

3
j∂tuj +

∑
i 6=j

βijuj∂tuju
2
i

=

∫
∂tuj

(
−∆uj + λjuj − µju3

j −
∑
i 6=j

βijuju
2
i

)
= −

∫
|∂tuj|2.

Then the proposition follows.

�

Corollary 2.5. Let

A =
{
U ∈ (H1)N |T (U) =∞ and lim

t→T (U)
ηt(U) = θ in (H1)N

}
.

Then A is invariant under the heat flow and is open in (H1)N .

This is a direct consequence of Theorem 2.1.

Lemma 2.6. ∂A is invariant under the heat flow and infU∈∂A J(U) ≥ 0.

Proof. The continuity of the energy J(U) with respect to (H1)N norm implies

the second part of this lemma. Now we prove the first part.

Due to the definition of A, if U ∈ ∂A ⊂ (H1)N\A, an immediate consequence

is that ηt(U) ⊂ (H1)N\A. And if there is a t0 ∈ (0, T (U)) such that ηt0(U) ∈
(H1)N\A, due to Theorem 2.1 and the openness of A in (H1)N , we can find a

V ∈ A such that ηt0(V ) ∈ (H1)N\A. Therefore, we address a contradiction. The

above deduction implies that ηt(U) ⊂ A\A = ∂A.

�
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Now, we prove that the flow with its initial data on the boundary of the stable

manifold ∂A has [0,∞) as its maximal existence interval. Before that, let us

prove a lemma under a more general condition.

Lemma 2.7. Suppose {J(ηt(U))}t∈[0,T (U)) is bounded from below. Then U(t)

exists globally in (H1)N .

Proof. The proof makes use of some arguments from [13], [15, Lemma 1] and

[38, Section 3]. Since ∂
∂t
J(ηt(U)) = −

∑N
j=1

∫
|∂tuj|2, the condition in the lemma

implies that

N∑
j=1

∫ t

0

∫
|∂tuj(s)|2dxds =

∣∣J(ηt(U))− J(U)
∣∣ ≤ C.(2.3)

Now we give the L2-estimate. First we have

N∑
j=1

∫
|uj(t)|2dx =

N∑
j=1

∫ t

0

d

dt

∫
|uj(s)|2dxds+

N∑
j=1

∫
|uj(0)|2dx

= 2
N∑
j=1

∫ t

0

∫
uj · ∂tujdxds+

N∑
j=1

∫
|uj(0)|2dx

≤ C

(
1 +

N∑
j=1

∫ t

0

∫
|uj(s)|2dxds

)
.

Using the Gronwall’s inequality, we have

N∑
j=1

∫
|uj(t)|2dx ≤ CeCt.(2.4)

Notice that

N∑
j=1

∫
|uj(t)|2dx−

N∑
j=1

∫
|uj(0)|2dx

= 2
N∑
j=1

∫ t

0

∫
uj(s) · ∂tuj(s)dxds

= −8

∫ t

0

J(ηs(U))ds+ 2
N∑
j=1

∫ t

0

∫ (
|∇uj(s)|2 + λj|uj|2

)
dxds.

Therefore, ∫ t

0

∫
|∇uj(s)|2dxds ≤ CeCt(2.5)
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follows immediately. Multiplying uj on both sides of the j-th equation of Problem

(2.1), integrating over Ω and summing up with j, we obtain

N∑
j=1

∫
uj · ∂tuj +

N∑
j=1

‖uj‖2 =
N∑
j=1

∫
µju

4
j +

∑
i 6=j

βju
2
iu

2
j .

Now we apply some methods in [13] and [15]. For any T > 0, we consider the

norms on the time interval [0, 2T ]. Due to the definition of the energy J and

(2.4), we have

N∑
j=1

‖uj‖2 ≤ 4J(U) +
N∑
j=1

∫
uj · ∂tuj

≤ C +

(
N∑
j=1

|uj|22

) 1
2

·

(
N∑
j=1

|∂tuj|22

) 1
2

(2.6)

≤ C + C

(
N∑
j=1

|∂tuj|22

) 1
2

for t ∈ [0, 2T ]. This implies that∫ 2T

0

( ∫
|uj(t)|2

∗
dx
) 4

2∗ dt ≤ C

∫ 2T

0

(
N∑
j=1

‖uj(t)‖2

)2

dt

≤ C(T ) +
N∑
j=1

∫ 2T

0

|∂tuj(t)|22dt ≤ C(T ).

That is, uj ∈ L4((0, 2T ), L2∗(Ω)), with 2∗ = 6 for dimension 3. At the same time,

the embedding H1 ↪→ Lp holds for any p ≥ 2 for dimension 2. Therefore, we

also have uj ∈ L4((0, 2T ), L6(Ω)) for dimension 2. Notice that (2.3) implies that

∂tuj ∈ L2((0, 2T ), L2(Ω)).

Next we claim uj ∈ L∞((0, T ) , L
18
5 (Ω)) for j = 1, . . . , N . We prove it in the

following paragraph. Using the idea of Cazenave-Lions interpolation (c.f. [13],

[15]), we set uj(x, t) = uj(x, t) · θ(t) and v = |uj|3. Here, θ(t) is a smooth cut-off

function such that θ(t) = 1 for t ∈ [0, T ], θ(s) = 0 for t ∈
[

3T
2
, 2T

]
and θ(t) ∈ [0, 1]

for t ∈ [0, 2T ]. Using the Newton-Leibniz formula and Hölder’s inequality, we can

compute for any t ∈ [0, T ]

|uj(t)| 18
5

= |v|
1
3
6
5

≤
∣∣∣ ∫ 2T

t

|vt| 6
5

∣∣∣ 13 ≤ C
∣∣∣ ∫ 2T

t

|u2
j · ∂tuj| 6

5
ds
∣∣∣ 13

≤ C
(∫ 2T

0

|u2
j |3|∂tuj|2ds

) 1
3
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with

5

6
=

1

3
+

1

2
.

Hence, for t ∈ [0, T ] using Hölder’s inequality with respect to the variable s

|uj(t)| 18
5
≤ C

(∫ 2T

0

|uj|26|∂tuj|2ds
) 1

3 ≤ C
(∫ 2T

0

|uj|46ds
) 1

6
(∫ 2T

0

|∂tuj|22ds
) 1

6
.

Therefore, we have

sup
t∈(0,T )

|uj(t)| 18
5
≤ C

(∫ 2T

0

|uj|46ds
) 1

6
(∫ 2T

0

|∂tuj|22ds
) 1

6
.

Noticing that

∂tuj = ∂tuj · θ + u · ∂tθ.

Using the fact that ∂tuj ∈ L2((0, 2T ), L2(Ω)) for any j = 1, . . . , N and (2.4),∫ 2T

0

|∂tuj|22ds ≤ C

(∫ 2T

0

|∂tuj|22ds+

∫ 2T

0

|uj|22ds
)
≤ C(T ).

Therefore, we can conclude that for any j = 1, . . . , N ,

sup
t∈(0,T )

|uj(t)| 18
5
≤ C(T )

for any t ∈ [0, T ], i.e. uj ∈ L∞((0, T ), L
18
5 (Ω)).

Multiplying u3
j on the both sides of the j-th equation and integrating over Ω,

d

dt
|u2
j |22 + ‖u2

j‖2 ≤ C
(
µj|u2

j |33 +
∑
i 6=j

∫
βiju

4
ju

2
i

)

≤ C

N∑
l=1

|u2
l |33.

Here, the second inequality is due to Young’s inequality. Using the interpolation

inequality, we have

1

3
=

4
7

6
+

3
7
9
5
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and

d

dt
|u2
j |22 + ‖u2

j‖2 ≤ C
N∑
l=1

|u2
l |

9
7
9
5

|u2
l |

12
7

6

≤ C
N∑
l=1

|u2
l |

9
7
9
5

‖u2
l ‖

12
7

≤ 1

2N

N∑
j=1

‖u2
j‖2 + C

N∑
l=1

|ul|18
18
5

≤ 1

2N

N∑
j=1

‖u2
j‖2 + C.

It follows that

d

dt

N∑
j=1

|u2
j |22 +

N∑
j=1

‖u2
j‖2 ≤ 1

2

N∑
j=1

‖u2
j‖2 + C

and
N∑
j=1

|u2
j(t)|22 ≤ C

∫ T

0

dt+
N∑
j=1

|u2
j(0)|22 ≤ C(T ),

i.e. uj ∈ L∞((0, T ), L4(Ω)) for j = 1 . . . , N . Using the definition of the energy J ,

N∑
j=1

‖uj‖2 ≤ 2J(ηt(U)) +
1

2

N∑
j=1

∫
µju

4
j +

∑
i 6=j

βiju
2
iu

2
j ≤ C.

Hence uj ∈ L∞((0, T ), H1
0 (Ω)). Therefore, T (U) =∞ since T > 0 is arbitrary.

�

Remark 2.8. In fact, this lemma proves that, under the assumptions of Lemma

2.7, for any T > 0, there is a constant C > 0 depends only on T > 0 and the

H1-norm of the initial data such that ‖U(t)‖ ≤ C for any t ∈ [0, T ].

Remark 2.9. With the same conditions, we can address that T (U) = ∞, i.e.

ηt(U) ∈ C((0,∞), (Hs)N) for any s ∈ (1, 2]\{3
2
}. To this end, we only need to use

the formula of variation of constants and the fact that
∑N

j=1

(
µju

3
j+
∑

i 6=j u
2
iuj

)
∈

L∞((0, T ), L2(Ω)) (c.f. [33, Proposition 7.1.8]). Especially, with the same method,

we can prove ηt(U) ∈ C((0,∞), (H2)N) when U ∈ (H2)N .

The following corollary follows from the fact that inf∂A J ≥ 0 and that the

energy J is non-increasing along the flow line.

Corollary 2.10. For any U ∈ ∂A, T (U) =∞.



14

2.3. The H1 bounds of the Solutions Starting on ∂A. We will borrow some

ideas used by Quittner in [40], which can be adapted for our situation (see also

[19] for some related work).

Lemma 2.11. Let U(t) be a global solution to (2.1) such that limt→∞ J(U(t)) =

E1 is finite. Then there is C > 0 depending continuously upon the L2-norm of

the initial data, the initial energy E0 := J(U(0)) and E1, such that for any t ≥ 0,

|U(t)|2 ≤ C.

Proof. Suppose 0 ≤ t0 ≤ t < +∞. Denote Φ(t) =
∫ t
t0
|U(s)|22ds and E0 =

J(U(0)). Using the computation in previous subsection, we have∣∣∣∣∣
N∑
j=1

|uj(t)|22 −
N∑
j=1

|uj(t0)|22

∣∣∣∣∣ = 2

∣∣∣∣∣
N∑
j=1

∫ t

t0

∫
Ω

uj∂tujdxds

∣∣∣∣∣
≤ 2
( N∑
j=1

∫ t

t0

|∂tuj|22ds
) 1

2
( N∑
j=1

∫ t

t0

|uj|22ds
) 1

2

≤ 2
√
E0 − E1Φ(t)

1
2 ,

which gives

Φ′(t) ≤ |U(t0)|22 + 2
√
E0 − E1Φ(t)

1
2 .(2.7)

Then we can compute that

2
(√

Φ(t)− |U(t0)|2
)′

+
=

Φ′(t)√
Φ(t)

χ{
√

Φ>|U(t0)|2} ≤ |U(t0)|2 + 2
√
E0 − E1.

This gives √
Φ(t) ≤ |U(t0)|2 +

(
|U(t0)|2 + 2

√
E0 − E1

)t− t0
2

.(2.8)

Combining above deductions, we have∣∣∣∣∣
N∑
j=1

|uj(t)|22 −
N∑
j=1

|uj(t0)|22

∣∣∣∣∣
≤ 2
√
E0 − E1

(
|U(t0)|2 +

(
|U(t0)|2 + 2

√
E0 − E1

)t− t0
2

)
.(2.9)

Set

C1 =
1

minj λj
(9 + 8|E0|+ 8|E1|) + 2|U(0)|22 + 81(E0 − E1) + 3(2.10)

We claim |U(t)|22 ≤ C1 for any t ≥ 0. We prove the claim by contradic-

tion. Suppose that there is a τ > 0 such that |U(τ)|22 > C1. First since∑N
j=1

∫∞
0
|∂tuj|22ds = E0 − E1 < ∞, we can find a sequence tk → ∞ such that
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∇J(U(tk))→ 0 and J(U(tk))→ E1 as k →∞. Thus (U(tk)) ⊂ (H1)N is a (PS)

sequence. It is easy to check (e.g., [53]) that ‖U(tk)‖2 ≤ 4(1 +E1). We also have

• |U(0)|22 ≤ |U(0)|22 + 1 < C1

2
;

• |U(tk)|22 ≤
4(1+E1)
minj λj

< C1

2
.

Let k be the integer such that τ ∈ [tk−1, tk] and, without loss of generality, let us

assume |U(τ)|22 = max[tk−1,tk] |U(s)|22. Then for any t ∈ [τ, τ + 1], applying (2.9)

and the fact that C1 > 81(E0 − E1) + 1,

|U(t)|22 ≥ |U(τ)|22 − 2
√
E0 − E1

(5

2
|U(τ)|2 + 3

√
E0 − E1

)
≥ |U(τ)|22 − 5

√
E0 − E1|U(τ)|2 − 6(E0 − E1)

>
|U(τ)|22

2
>
C1

2
> |U(tk)|22.

This implies that tk /∈ [τ, τ + 1]. Therefore τ + 1 < tk and τ + 1 ∈ [tk−1, tk].

Consequently we have |U(τ + 1)|2 ≤ |U(τ)|2. From above computation, we also

have |U(t)|22 ≥ C1

2
for t ∈ [τ, τ + 1]. And now, since C1 >

1+8(E0−E1)
minj λj

, we have

0 ≥ |U(τ + 1)|22 − |U(τ)|22 = 2
N∑
j=1

∫ τ+1

τ

∫
Ω

uj∂tujdxds

≥ −8

∫ τ+1

τ

J(U(s))ds+ 2

∫ τ+1

τ

N∑
j=1

λj|uj|22(s)ds

≥ −8E0 + 2 min
j
λj

∫ τ+1

τ

|U(s)|22ds

≥ −8E0 + min
j
λjC1 > 1,

which is a contradiction. Hence we have |U(t)|22 ≤ C1 for any t ≥ 0.

�

For a further discussion on the boundedness of trajectories of the flow in (H1)N ,

we need a result on the maximal regularity of parabolic equation in [4, Theorem

III.4.10.7]. Spaces involving time will be used here, such as Lp(I,X), W 1,p(I,X),

where I is an interval and X is a Banach space with a norm || · ||X , and the norms

are defined respectively by

‖u‖Lp(I,X) =

(∫
I

‖u(t)‖pXdt

) 1
p

and

‖u‖W 1,p(I,X) =

(∫
I

∥∥∥∥dudt (t)

∥∥∥∥p
X

+ ‖u(t)‖pXdt

) 1
p

.
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Theorem 2.12. Consider the linear parabolic problem

(2.11)


∂
∂t
u−∆u+ λ0u = f in Ω,

u(t, x) = 0 on ∂Ω,

u(0, x) = u0(x) in Ω,

where λ0 > 0. Given a compact interval I = [0, T ], f ∈ Lq(I, Lp(Ω)) and 1 <

p, q <∞, the solution u to the Problem (2.11) satisfies

‖u‖W 1,q(I,Lp(Ω)) + ‖u‖Lq(I,W 2,p(Ω)) ≤ CMR

(
‖u0‖W s,p(Ω) + ‖f‖Lq(I,Lp(Ω))

)
,(2.12)

where CMR is a positive constant independent of f , u0 and I and s > 2
(

1− 1
q

)
.

Remark 2.13. In fact, this is a special case of [4, Theorem III.4.10.7]. We

only give this version for our purpose here. In the original version stated in [4],

the first term on the right hand side of (2.12) is in the form of ‖u0‖Xp,q , where

the interpolation space Xp,q = (Lp(Ω),W 2,p(Ω))1− 1
q
,q satisfies W s,p(Ω) ↪→ Xp,q

for s > 2
(

1− 1
q

)
. We refer [27, 33, 47] once again for details on interpolation

spaces.

Now we prove the H1-boundedness of the global solutions.

Lemma 2.14. Let U(t) be a global solution to Problem (2.1) with U(0) ∈ (Hs)N

for s ∈ (1, 2] such that limt→∞ J(U(t)) ≥ 0. Then there is a constant C >

0 depending only on the H2-norm of U(0) and the initial energy E0 such that

‖U(t)‖ ≤ C for any t ≥ 0.

Proof. Denote the interval I = [t0, t0 + T ]. Firstly, using the global L2 bound of

U(t) and the same computation of (2.6), we have,

N∑
j=1

‖uj‖2 ≤ C(C1)
(
1 + |∂tU |2

)
.(2.13)

Here C1 is the L2 bound of the solution U(t). Using Theorem 2.12 with respect

to each equation in Problem (2.1) and putting p = 2 and q = 4
3

(Therefore,

s ∈
(

1
2
, 2
]
), we have

‖uj‖L 4
3 (I,H2(Ω))

≤ CMR

(
N∑
i=1

‖U(t0)i‖Hs +
∥∥∥µju3

j +
∑
i 6=j

βiju
2
iuj

∥∥∥
L

4
3 (I,L2(Ω))

)
.
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The last term can be estimated as follows:∥∥∥µju3
j +

∑
i 6=j

βiju
2
iuj

∥∥∥
L

4
3 (I,L2(Ω))

≤ C

(∫ T+t0

t0

(
|uj|36 +

N∑
i=1

|u2
iuj|2

) 4
3
ds

) 3
4

≤ C

(∫ T+t0

t0

( N∑
i=1

|ui|36
) 4

3
ds

) 3
4

≤ C

(∫ T+t0

t0

( N∑
i=1

‖ui‖4
)
ds

) 3
4

≤ C

(∫ T+t0

t0

( N∑
i=1

‖ui‖2
)2

ds

) 3
4

.

Using (2.13) and Proposition 2.4, we have∥∥∥µju3
j +

∑
i 6=j

βiju
2
iuj

∥∥∥
L

4
3 (I,L2(Ω))

≤ C(C1)
(∫ t0+T

t0

(
1 + |∂tU |22

)
ds
) 3

4

≤ C(C1)(T + E0)
3
4 ≤ C(C1, E0)(T + 1)

3
4 .

Now set

C2 = 8(NCMR)2
(
(‖U(0)‖(Hs)N + 1)2 + C(C1, E0)2(2NCMR + 1)2

)
+ C(C1, E0) + 1.

(2.14)

Let T =
(
2NCMR+1

) 4
3 and t0 = 0. Then we notice that ‖U(0)‖(Hs)N ≤ C2. And

we have(∫ T

0

‖U(τ)‖
4
3

(H2)N
dτ

) 3
4

≤
N∑
j=1

(∫ T

0

‖uj(τ)‖
4
3

(H2)N
dτ

) 3
4

≤ NCMR

(
‖U(0)‖(Hs)N + C(C1, E0)(T + 1)

3
4

)
.

Therefore, there must be a positive number t′ ∈ (0, T ) such that

‖U(t′)‖(H2)N ≤ NCMR

‖U(0)‖(Hs)N

T
3
4

+NC(C1, E0)CMR

(
1 +

1

T

) 3
4

≤
NCMR

(
‖U(0)‖(Hs)N + C(C1, E0)

)
T

3
4

+NCMRC(C1, E0) ≤ C2.

We may assume t′ is the largest such number in (0, T ]. With above results,

exchanging t0 = 0 into t0 = t′. Note that we can select s = 2 for the second and

later steps. Via the same method, we can find a largest t′′ ∈ (t′, t′ + T ] such that

‖U(t′′)‖(H2)N ≤ C2. Inductively, we can find a sequence of (t′l)l such that
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• 0 < t′l − t′l−1 ≤ T ;

• liml→∞ t
′
l =∞;

• ‖U(t′l)‖(H2)N ≤ C2.

The first and the last assertions are obvious. For liml→∞ t
′
l =∞, we first observe∫ T

0

‖U(τ)‖
4
3

(H2)N
dτ ≤ 4(NCMR)2

(
‖U(0)‖2

(Hs)N + C(C1, E0)2
(

(2NCMR + 1)
4
3 + 1

))
≤ C2.

This implies that

C2 ≥
∫ T

0

‖U(τ)‖
4
3

(Hs)N
dτ =

∫
‖U‖

(H2)N
<C2

+

∫
‖U‖

(H2)N
≥C2

‖U(τ)‖
4
3

(H2)N
dτ

≥ 0 + (T − δ)C
4
3
2 .

where δ = |{t ∈ [0, T ]|‖U(t)‖(H2)N < C2}|. This gives δ ≥ T − C
− 1

3
2 > 0.

Therefore for any l = 0, 1, . . . , we have t′l+1 − t′l ≥ δ > 0.

Using Remark 2.8 on every interval [t′l, t
′
l+T ], we can prove that ‖U(t)‖(H1)N ≤

C(C2) = C(‖U(0)‖(Hs)N ) for any t ∈ [t′l, t
′
l + T ] and any l = 1, 2, . . . . Therefore,

‖U(t)‖(H1)N is bounded for t ≥ 0 and the upper bound dependence on ‖U(0)‖(H2)N

continuously.

�

We now give two corollaries which will be useful in following paragraph.

Corollary 2.15. For any U ∈ ∂A, ‖ηt(U)‖(H1)N ≤ C for any t ≥ 0. Here, the

constant C > 0 depends continuously on the initial data.

Remark 2.16. With the results in Remark 2.9, if we assume U(0) ∈ (Hs)N ,

then we can conclude ηt(U) ∈ L∞((0,∞), (Hs)N) for s ∈
[
1, 3

2

)
∩
(

3
2
, 2
]

via the

formula of variation of constants.

2.4. Finer Nodal Properties. It is well known that for scalar equations along

the heat flow the number of changing sign is non-increasing ([7, 16, 34]). For

coupled systems it was proved in [52] for two equations. We can prove this is

also the case for our system using the arguments in [16] and [17], and we omit

details here. But we need a more specific version of this theorem from [16], which

is based on the notation of bumps of a radial function.

Let us recall this from [16]. The number of changing sign of a continuous radial

function u = u(|x|), denoted by n(u), is defined as the largest number k such that

there exist a sequence of real number 0 < x0 < x1 < · · · < xk such that

u(xj) · u(xj+1) < 0, j = 0, . . . , k − 1.
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We call n(u) the nodal number of the function u. We always assume that the

functions we discussed have finite nodal numbers. For a radial function u with

n(u) = k and u(x0) > 0, we define its q-th bump for q = 1, ..., k + 1, by

u1(x) = χ{u>0} · χ{|x|<x1} · u(x),

uq(x) = χ{(−1)q−1u>0} · χ{xq−2<|x|<xq} · u(x), q = 2, . . . , k,

uk+1(x) = χ{u(xk)·u>0} · χ{xq−1<|x|} · u(x).

For a radial function u with n(u) = k and u(x0) < 0, we define its q-th bump

q = 1, ..., k + 1 by

u1(x) = χ{u<0} · χ{|x|<x1} · u(x),

uq(x) = χ{(−1)q−1u<0} · χ{xq−2<|x|<xq} · u(x), q = 2, . . . , k,

uk+1(x) = χ{u(xk)·u>0} · χ{xq−1<|x|} · u(x).

To avoid confusion, for the j-th component uj of U = (u1, . . . , uN), we denote its

q-th bump by uj,q.

For the solution U(t) to Problem (2.1) with initial value U ∈ (H2
r )N for t ∈

[0, T (U)), we denote its j-th component by u(t)j. By u(t)j,q we denote the q-th

bump of its j-th component.

In this subsection, we always assume that the initial data U(0) ∈ (H2)N .

Theorem 2.1 ensure that ηt(U) ∈ (H2)N for any t ≥ 0.

We firstly consider the case for βij ≤ 0 for all i, j = 1, . . . , N and i 6= j.

Proposition 2.17. There is a positive number ρ > 0 such that if 0 < |uj,q|4 < ρ

then 0 < |uj,q(t)|4 < ρ for t ≥ 0.

Proof. By Theorem 2.1 and the inclusion H2 ⊂ C(Ω) for dimension n = 2, 3,

then U(t) is continuous in spatial variable. As a consequence, the nodal number

of uj(t), n (uj(t)), is well-defined. Hence, there exists a small ε > 0 such that if

(−1)q+1uj(xq, 0) > 0,

then

(−1)q+1uj(xq, t) > 0

for any t ∈ [0, ε]. Hence, due to the definition of bump uj,q (c.f. Section 2.1), the

differential ∂
∂t

∫
|uj,q|4 is well-defined. Notice that

∂

∂t

∫
|uj,q|4 = 4

∫
u3
j,q∂tuj,q = 4

∫
u3
j,q∂tuj

= 4

∫
u3
j,q

(
∆uj − λjuj + µju

3
j +

∑
i 6=j

βijuju
2
i

)
= −3

∫
|∇(u2

j,q)|2 − 4λj

∫
u4
j,q + 4µj

∫
u6
j,q + 4

∑
i 6=j

βij

∫
u4
j,qu

2
i .
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Denote W = u2
j,q. By computing

1

3
=

1
2

6
+

1− 1
2

2
,

we have from Sobolev embedding of dimensions 2 and 3,

|W |33 ≤ C‖W‖
3
2 |W |

3
2
2 .

Therefore,

∂

∂t

∫
|uj,p|4 ≤ −C‖W‖2 + C‖W‖

3
2 |W |

3
2
2

≤ −C‖W‖
3
2 |W |

1
2
2 + C‖W‖

3
2 |W |

3
2
2

= −C‖W‖
3
2 |W |

1
2
2

(
1− C|W |2

)
= −C‖W‖

3
2 |W |

1
2
2

(
1− C|uj,q|24

)
< 0

for |uj,q|4 small enough.

�

If there is a couple (i0, j0) such that i0 6= j0, i0, j0 = 1, . . . , N and βi0,j0 > 0,

the property becomes more delicate.

Lemma 2.18. For a solution U(t) with its initial data U(0) ∈ (H2)N , there is a

b = b(‖U(0)‖(H2)N ) > 0 such that if βij < b for all i, j = 1, . . . , N and i 6= j, the

conclusion of the last lemma holds true.

Proof. With the same computation, we have

∂

∂t

∫
|uj,q|4 = −3

∫
|∇(u2

j,q)|2 − 4λj

∫
u4
j,q + 4µj

∫
u6
j,q + 4

∑
i 6=j

βij

∫
u4
j,qu

2
i

≤ −C0‖W‖2 + 4µj|W |33 + 4 max
ij

βij

N∑
i=1

∫
W 2u2

i ,

where C0 = min{3, 4λj} and W = u2
j,q. Now we deal with the last term and have

4 max
ij

βij

N∑
i=1

∫
W 2u2

i = 4 max
ij

βij

∫
W 2
( N∑
i=1

u2
i

)
≤ 4N max

ij
βij|W |23|U |26

≤ 4N max
ij

βijS
2
3S

2
6‖W‖2‖U‖2

≤ 4NbC3(U(0))S2
3S

2
6‖W‖2,

where Sp is the best constant for the inequality |U |p ≤ Sp‖U‖ and C3(U(0)) is

the upper bound of ‖U(t)‖2 we computed in the last subsection. If we assume
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that b =
min{3,4λj}

8NS2
3S

2
6C3(U0)

> 0, we will have

∂

∂t

∫
|uj,q|4 ≤ −

C0

2
‖W‖+ 4µj|W |33.

The rest part of the proof is the same with the last lemma.

�

3. Proof of Theorem 1.4

3.1. A Topological Lemma. We give the linking structure without assuming

any symmetry, which can be used in the proof of Theorem 1.4. The strategy of

proving is to extend the original setting into a symmetric setting.

Lemma 3.1. For A = [0,+∞)n and a bounded open neighbourhood O of the

origin 0 in Rn, there is no continuous map F : ∂O∩A→ A such that F (∂O∩A) ⊂
∂A\{0} and that the condition xj = 0 implies Fj(x1 . . . , xn) = 0 for all j =

1, . . . , n, where Fj(x1 . . . , xn) is the j-th component of the vector F (x1 . . . , xn).

Proof. We argue it by contradiction. Suppose there is a continuous mapping

F : ∂O∩A→ A such that F (∂O∩A) ⊂ ∂A\{0} and Fj(x1, . . . , xn) = 0 if xj = 0

for any j = 1, . . . , n. Inspired by [24], we begin the proof by extending the setting

to a symmetric version and obtain the contradiction via a genus argument.

Firstly, let us define another open neighbourhood O∗ of the origin 0 ∈ Rn by

reflection with respect to each component of the coordinates, i.e.

O∗ = {x = (x1, . . . , xn)|(|x1|, . . . , |xn|) ∈ O}.

It is easy to see that the open set O∗ is antipodal symmetric. Then the following

inclusion holds true:

∂O∗ ∩ A ⊂ ∂O ∩ A.(3.1)

Indeed, we observe that ∂O∗∩int(A) = ∂O∩int(A). So we only need to show that

∂O∗ ∩ ∂A ⊂ ∂O∩ ∂A. For any x ∈ ∂O∗ ∩ ∂A, for any r > 0, BRn(x, r)∩O∗ 6= ∅.
Due to the construction of O∗, the last intersection gives BRn(x, r)∩O 6= ∅, which

implies that x ∈ ∂O ∩ ∂A. Now we restrict the mapping F to the set ∂O∗ ∩ A
and extend it to the whole ∂O∗. Define the mapping F̃ : ∂O∗ → X by

F̃ (x1, . . . , xn) =
(
sgn(x1)F1(|x1|, . . . , |xn|), . . . , sgn(xn)Fn(|x1|, . . . , |xn|)

)
,

where X = {x = (x1, . . . , xn)|
∏

j=1,...,n xj = 0}. Then we can claim

• F̃ is an odd and continuous extension of F ;

• F̃ (∂O∗) ⊂ X\{0}.
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The first assertion is easy. Now we check the second one. We only need to

verify that for any x ∈ ∂O∗, F̃ (x) 6= 0. Otherwise, if for any j = 1, . . . , n,

sgn(xj)Fj(|x1|, . . . , |xn|) = 0. Since x ∈ ∂O∗, there are some integers, say 1, . . . , s,

with x1 = . . . , xs = 0 and other integers, say s+1, . . . , n, with xs+1 6= 0, . . . , xn 6=
0. Therefore, Fj(|x1|, . . . , |xn|) ≡ 0 for any j = 1, . . . , n. This is a contradiction

with (|x1|, . . . , |xn|) ∈ ∂O ∩ A and F (∂O ∩ A) ⊂ ∂A\{0}.
Now we will have a contradiction via the genus with respect to the symmetry

of antipodal. We denote the genus generated by the antipodal symmetry by

γ′. On one hand, we have n = γ′(∂O∗) ≤ γ′(F̃ (∂O∗)) due to Borsuk’s theorem

for the symmetry with respect to antipodal. On the other hand, notice that

X ∩ X ′ = {0}, where X ′ = {x = (x1, . . . , xn)|x1 = · · · = xn}. Then we can

construct an odd homotopy G such that

X\{0} G' Sn−2.

This implies that γ′(F̃ (∂O∗)) ≤ n− 1. This is a contradiction.

�

We remark that some of the computations in the above proof were used in [30, 31]

and will be also used in the next section.

Remark 3.2. Since the set O is an open neighbourhood of the origin in Rn, the

conclusion still holds if we replace [0,+∞)n by [a,+∞)n, where a > 0 is small

enough.

3.2. Proof of Theorem 1.4. We prove this theorem via the concept of invariant

sets of a descending flow and we will use the parabolic flow as a mean of descending

flow. Recall we fix N non-negative integers P1, . . . , PN which are the prescribed

componentwise nodal numbers. We first introduce some auxiliary functions.

• Firstly, for the radial domain Ω, we cut it into N radial sub-domains Ωj

for j = 1, . . . , N with Ω = ∪Nj=1Ωj;

• For any fixed j = 1, . . . , N , we cut the domain Ωj into Pj +1 sub-domains

Ωj,q with q = 1, . . . , Pj + 1 with Ωj = ∪Pj+1
q=1 Ωj,q;

• For any j = 1, . . . , N and q = 1, . . . , Pj + 1, we define a smooth non-zero

radial function with compact support wj,q : Ωj,q → [0,+∞).

Without loss of generality, we can assume that |wj,q|4 ≡ 1 for any j = 1, . . . , N

and q = 1, . . . , Pj + 1. We define the following set S by

S =

{(
P1+1∑
q=1

(−1)q+1α1,qw1,q(x), . . . ,

PN+1∑
q=1

(−1)q+1αN,qwN,q(x)

)∣∣∣∣∣
αj,q ≥

ε

100
for q = 1, . . . , Pj + 1 and j = 1, . . . , N

}
,
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which is a closed cone in the real vector space of dimension
∑N

j=1 Pj + N . And

there is an isomorphism

i : S → [0,+∞)
∑N
j=1 Pj+NPj+1∑

q=1

(−1)q+1αj,qwj,q


j

7→
(
αj,q −

ε

100

)
j,q
.

We denote by Y the
∑N

j=1 Pj + N dimensional vector space spanned by S with

respect to the linearity in i(S). It is easy to see that A ∩ Y is also an open

neighbourhood of the origin in Y and A∩Y is bounded. Notice that S ∩ ∂A is a

compact set and can be embedded into a finite dimensional vector space, where

all the norms are equivalence. If there is at least one βij is positive, due to the

restriction of Lemma 2.18, we need to find an upper bound b > 0 depending on

supU∈S∩∂A supt≥0 ‖ηt(U)‖2 ∈ (0,∞). If all the βij’s are non-positive, the limit on

the upper bound is no longer necessary (Lemma 2.17).

Now we will locate the portions of the boundary ∂A in which along the flow

lines the number of nodal domains can be controlled. For this purpose, as done

for scalar equations in [16], we introduce the following notations:

• Dj,k = {U = (u1, . . . , uN) ∈ (H2
r )N |n(uj) = k} and D = ∩Nj=1Dj,Pj , where

P1, . . . , PN are given in the theorem;

• Eε
j,q = {U = (u1, . . . , uN) ∈ D||uj,q|4 < ε} for q = 1, . . . , Pj + 1 and

j = 1, . . . , N ;

• denote

H =

{
U = (u1, . . . , uN) ∈ (H2

r )N |n(uj) ≤ Pj for j = 1, . . . , N

and
N∑
j=1

n(uj) <
N∑
j=1

Pj

}
• denote

Fε = ∪Nj=1 ∪
Pj+1
q=1 Eε

j,q ∪H;

• the complete invariant set of the set Eε
j,q is defined as

C(Eε
j,q) =

{
U ∈ (H2)N

∣∣∃t0 ≥ 0 s.t. ηt0(U) ∈ Eε
j,q

}
for q = 1, . . . , Pj + 1 and j = 1, . . . , N . Therefore, we can denote

Aεj,q = C(Eε
j,q) ∩ ∂A ∩D

for q = 1, . . . , Pj + 1 and j = 1, . . . , N .

Due to the invariance property proved in the last section we will also define an

arriving time
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• for any U ∈ D ∩ ∂A, denote T ∗(U) = inf{t ≥ 0|ηt(U) ∈ F ε
2
}. Note that

T ∗(U) is only well-defined for U ∈ D.

Remark 3.3. The concept of complete invariant set is from [29].

We note that the set Dj,k consists of the vector-valued functions whose j-th

components have exactly k sign-changing number. For any function (u1, . . . , uN)

in the set D, let uj be an arbitrary component. The set Eε
j,q contains the functions

whose q-th bump of j-th component has a small L4 norm. This set is invariant

due to Proposition 2.17 when n(ηt(·)j) dose not change. As to the set Fε, an

element in Fε either has a small bump or has a component with a sign-changing

number less than what we prescribed. It should be noted that this set is what we

want to remove. T ∗ is the time when the flow line arrives in the set F ε
2
. Using the

computation in Proposition 2.17, any flow line which flows into Fε in a finite time

will flow into F ε
2

eventually. We will fix small ε so that the invariance property

holds. Following the idea in [16, Lemma 5], we now have the continuity of the

arriving time T ∗(U).

Lemma 3.4. The arriving time T ∗(U) is continuous.

Proof. Let U ∈ D. For a sequence Un → U in (H1)N , we only check the lower

limit

T ∗(U) ≤ lim
n→∞

T ∗(Un).

The upper one T ∗(U) ≥ limn→∞ T
∗(Un) can be proved in the same way.

We argue by contradiction. Suppose, up to a subsequence, we have

s := lim
n→∞

T ∗(Un) < T ∗(U) ≤ T (U) =∞.

Then we can find a t ∈ (s, T ∗(U)). Set Vn = ηt(Un) and V = ηt(U). Then,

due to Theorem 2.1, we have Vn → V in (H1)N . Since t < T ∗(U), we have

V = ηt(U) ∈ D∩ ∂A\F ε
2
. Then |Vj,q|4 ≥ ε

2
for all j = 1, . . . , N , q = 1, . . . , Pj + 1.

By using T ∗(Un) → s < t, we have Vn = ηt(Un) ∈ F ε
2
∩ ∂A, which implies

|(Vn)j0,q0|4 ≤ ε
2

for some j0 = 1, . . . , N , q0 = 1, . . . , Pj + 1. Combining these with

the fact that Vn → V in (H1)N , we conclude that |ηt(U)j0,q0|4 = |Vj0,q0|4 = ε
2
.

Hence, t ≥ T ∗(U) due to the definition of T ∗, which is a contradiction.

�

Lemma 3.5. For any U = (u1, . . . , uN) ∈ ∂A satisfying

•
∑N

j=1 n(uj) <
∑N

j=1 Pj, and

• there is a sequence of functions Un ∈ D∩∂A such that Un → U in (H1)N ,

we have limn→∞ T
∗(Un) = 0.



25

Proof. We prove the lemma by contradiction. For a sequence Un → U in (H1)N

with Un ∈ D ∩ ∂A for any n = 1, 2, . . . , suppose there is t0 > 0 such that

T ∗(Un) ≥ 2t0 for large n. We select and fix a t ∈ (0, t0). On one hand, we have

ηt(Un)→ ηt(U) in (H1)N ,

due to Theorem 2.1. On the other hand, by the definition of the arriving time

T ∗ and the non-increasing property of nodal number along the flow line, using

Un ∈ D we have

• n
(
(Un)j

)
= Pj for j = 1, . . . , N ;

•
∣∣(ηt(Un)

)
j,q

∣∣
4
≥ ε

2
for j = 1, . . . , N and q = 1, . . . , Pj + 1;

• n
((
ηt(U)

)
j

)
≤ Pj for j = 1, . . . , N and q = 1, . . . , Pj + 1 and at least one

of the ≤’s holds strictly.

Here, (ηt(W ))j and (ηt(W ))j,q are the j-th component and the q-th bump of

the j-th component of ηt(W ). Now we show that these assertions lead us to a

contradiction.

Since ηt(Un) → ηt(U) in (H1)N , we can select a large n0 > 0 such that∣∣ηt(Un0) − ηt(U)
∣∣
4
≤ ε

4
. In the following, we will argue it in terms of com-

ponents. Let us consider ηt(U)1 and ηt(Un0)1 for the sake of simplicity, where

ηt(U)1 and ηt(Un0)1 are the first components of ηt(U) and ηt(Un0) respectively.

Let us assume that n(ηt(U)1) < n(ηt(Un0)1) = P1 without loss of generality. Due

to the definition of the sign-changing number, we can find a sequence of numbers

xq−1 ∈ supp ηt(Un0)1,q for q = 1, . . . , P1 + 1, where ηt(Un0)1,q is the q-th bump,

such that

ηt(Un0)1(xq) · ηt(Un0)1(xq+1) < 0

for q = 0, . . . , P1. Using the facts
∣∣ηt(Un0)1,q

∣∣
4
≥ ε

2
for q = 1, . . . , P1 + 1, and∣∣ηt(Un0)− ηt(U)

∣∣
4
≤ ε

4
, we claim there must be x′q−1 ∈ supp ηt(Un0)1,q such that

ηt(U)1(x′q) · ηt(U)1(x′q+1) < 0(3.2)

for q = 0, . . . , P1. Otherwise, if there is a q0 = 1, . . . , P1 + 1 such that

• ηt(Un0)1,q0 ≥ 0;

• ηt(U) ≤ 0 on suppηt(Un0)1,q0 ;

• |ηt(Un0)1,q0 |4 ≥ ε
2
;

then we have
ε

4
≥ |ηt(Un0)− ηt(U)|4 ≥ |ηt(Un0)1,q0 − ηt(U) · χsuppηt(Un0 )1,q0

|4

≥ |ηt(Un0)1,q0|4 ≥
ε

2
,

which is a contradiction. Here, the function χA is the characteristic function of

the set A. Therefore, (3.2) holds, i.e., P1 = n(ηt(U)1), but this is a contradiction

with n(ηt(U)1) < P1. The proof is complete.
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�

Finally to prove Theorem 1.4, we only need to show that

A := ∂A ∩D\
(
∪Nj=1 ∪

Pj+1
q=1 A

ε
j,q

)
6= ∅.

The rest part of the proof requires a lower bound of the energy functional J on

the set A and the fact that the energy functional satisfies the (PS) condition.

The second part is obvious and the first part is given by

A ⊂ ∂A

and

0 ≤ inf
∂A
J ≤ inf

A
J.

Now we verify that ∂A ∩D\
(
∪Nj=1 ∪

Pj+1
q=1 A

ε
j,q

)
6= ∅.

This proof relies heavily on a technique used in [30, 31]. We will use the subset

S ⊂ D constructed at the beginning of this subsection and prove the theorem by

proving ∂A ∩ S\
(
∪Nj=1 ∪

Pj+1
q=1 A

ε
j,q

)
6= ∅.

Now we argue by contradiction, i.e., we assume that ∂A∩S ⊂ ∪Nj=1 ∪
Pj+1
q=1 Aεj,q.

We use ∂Y S to denote the boundary of S with respect to the space of Y . Define

a continuous cut-off function φ : [0,∞)→ [0, 1]:

(3.3) φ(x) =


1 s ≥ ε,

0 s ≤ ε

2
,

2s

ε
− 1 s ∈

(ε
2
, ε
)
.

Let us define the mapping h : ∂A ∩ S → ∂Y S by

h
(
U
)

=

(
P1+1∑
q=1

(−1)q+1
(
φ(|ηT ∗(U)(U)1,q|4) +

ε

100

)
w1,q, . . . ,

PN+1∑
q=1

(−1)q+1
(
φ(|ηT ∗(U)(U)N,q|4) +

ε

100

)
wN,q

)
,

where U = (U1, . . . , UN) ∈ ∂A ∩ S.

We are here in position to use Lemma 3.1. To do this, we only need to check

that h(∂Y (A ∩ Y ) ∩ S) ⊂ ∂Y S\{θ}. Firstly, we notice that ∂Y (A ∩ Y ) ⊂ ∂A ∩
Y . Then we claim that for any U ∈ ∂A ∩ S, there is a j = 1, . . . , N and a

q = 1, . . . , Pj + 1 such that φ(|ηT ∗(U)(U)j,q|4) > 0. If the claim is not true,

for any j = 1, . . . , N and q = 1, . . . , Pj + 1, we have
∫
|Uj,q|4 < ε4 as t goes

large. Multiplying uj on the both sides of the j-th equation of Problem (2.1) and
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integrating and summing up with respect to j, we have

1

2

∂

∂t
|U(t)|22 + ‖U(t)‖2 ≤

N∑
j=1

(
µj

∫
|uj(t)|4 +

∑
i 6=j

βij

∫
ui(t)

2uj(t)
2

)
< Cε

for t large. Using the openness of A in (H1)N and the invariance of ∂A, ‖U(t)‖ ≥
C > 0 uniformly for t ≥ 0. This implies that ∂

∂t
|U(t)|22 ≤ −C for t > 0, a

contradiction. Therefore, the mapping h satisfies the condition for F in Lemma

3.1, so we have a contradiction on the existence of the mapping h. The proof is

complete.

�

4. Proof of Theorem 1.2

4.1. The Idea of the Proof. We are now in position to prove Theorem 1.2. We

outline our approach briefly first. Using the flow invariance property we reduce

the variational problem to one defined on a subset on the boundary of the stable

set of the origin where the nodal number of the functions is controlled by the

componentwise-prescribed number of nodes. In order to establish multiple nodal

solutions having the same componentwise nodal number we will make use of the

symmetry property imposed in Theorem 1.2.

More precisely, our problem possesses a Zp symmetry under a cyclic permuta-

tion σ : (u1, . . . , uN) 7→ (σ1(u1), . . . , σN(uN)) in (H1
0 (Ω))N defined by

• σi(ui) = ui+1 for i 6= pb for b = 1, . . . , B,

• σpb(upb) = up(b−1)+1 for b = 1, . . . , B.

In other words, we define the permutation σ as

σ(u1, u2, . . . , up; . . . . . . ;uN−p+1, uN−p+2, . . . , uN)

= (u2, . . . , up, u1; . . . . . . ;uN−p+2, . . . , uN , uN−p+1).

It is easy to see that this can be regarded as a Zp cyclic group action, our varia-

tional functional J is invariant under this action.

We will use a Zp group action index (or genus), which is from [50] (see also

related works in [51, 52]). We summarize some basic property of the index.

Let E be a Banach space on which there is a Zp action generated by σ. Let

Fσ = {U ∈ E | σU = U} be the set of fixed points of the σ action. For a

σ-symmetric compact set A ⊂ E\Fσ, the index γ(A) is defined as the smallest

m ∈ N such that there exists a continuous mapping h : A→ Cm\{0} with

h(σU) = e
2πi
p h(U).

If there is no such mapping, we set γ(A) =∞. We need the following properties

of the Index γ.

• If A ⊂ B, then γ(A) ≤ γ(B);
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• γ(A ∪B) ≤ γ(A) + γ(B);

• if g : A→ E\Fσ is continuous and satisfies g(σ(u)) = σg(u) for all u ∈ A,

then

γ(A) ≤ γ(g(A));

• if γ(A) > 1, then A is an infinite set;

• if A is compact and γ(A) < ∞, then there exist an open σ-invariant

neighbourhood N of A such that γ(A) = γ(N );

• if S is the boundary of a bounded neighbourhood of the origin in a m-

dimensional complex linear space such that e
2πi
p U ∈ S for any U ∈ S, and

Ψ : S → E\Fσ is continuous and satisfies for any U ∈ S, Ψ(e
2πi
p U) =

σ(Ψ(U)), then γ(Ψ(S)) ≥ m;

One can find the proofs of all these properties in for example [50]. Nevertheless,

to complete our proof, another lemma on the Zp index is necessary. It can be

considered as a generalization of the normalization of the Z2 genus, c.f. [43,

Proposition 7.5].

Lemma 4.1. Let A be a closed set such that A ⊂ E \ Fσ, and ∩p−1
i=0σ

i(A) = ∅.
Then γ(Zp(A)) ≤ p− 1.

Proof. The idea to proof is to decompose Zp(A) into p − 1 sets with genus no

larger than 1. Firstly, note that it is clear that if σi(A) ∩ σj(A) = ∅ for i 6= j,

1 ≤ i, j ≤ p, then γ(Zp(A)) = 1.

Let L0 = {A, σ(A), ..., σp−1(A)}. Let k < p be the largest integer such that

there exist k elements in L0 whose intersection is nonempty, and there is no k+ 1

elements of L0 whose intersection is nonempty. Without loss of generality, we

assume k = p− 1 and we will do induction in k.

First there exist p sets B1, ..., Bp each of which is the intersection of p − 1

elements of L0 so some Bi is nonempty. Due to σ symmetry, the union of these p

sets form a Zp invariant set. We claim that Bi∩Bj = ∅ for all i 6= j. This follows

from k = p− 1 being the largest. So each Bi is a closed set and ∪pi=1Bi = Zp(Bj)

for any j. Thus γ(∪pi=1Bi) = 1. We may also find an open set U1 such that

B1 ⊂ U1 and σi(U1) ∩ σj(Ū1) = ∅ for i 6= j. Thus we also have γ(∪pi=1U i) = 1.

Define A1 = A \ ∪pi=1Ui and L1 = {A1, σ(A1), ..., σp−1(A1)}. Then A1 is a

closed set. If for A1, the largest integer k1 is such that some k1 elements of

L1 have nonempty intersection, then k1 is less or equal to p − 2. This is due

to the construction. Without loss of generality, assume k1 = p − 2. Now we

repeat the arguments above, there exist at most Cp−2
p = p(p − 1)/2 sets which

are intersections of p−2 elements of L1: C1, C2, .... We claim that Ci’s are closed

sets, and Ci ∩ Cj = ∅ for all i 6= j. This follows from p − 2 being the largest in

this case.
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Due to σ symmetry, these sets Ci’s form at most (p − 1)/2 number of Zp
invariant sets, each such Zp invariant set is given by C1, ..., Cp with the property

Ci = σi−1(C1) for i = 1, ..., p, Ci ∩ Cj = ∅ for i 6= j. Thus γ(∪pi=1Ci) = 1. We

have at most (p − 1)/2 such disjoint closed Zp invariant sets, whose union has

genus 1. Then we choose an open neighborhood Vi of Ci so that the closures of

these open sets are also disjoint and the union of these closed neighborhoods also

has genus 1.

Define A2 = A1 \ ∪iVi and L2 = {A2, σ(A2), ..., σp−1(A2)}. Doing this process

until we get to k = 1 then we are done.

�

Remark 4.2. In fact we have proved that γ(Zp(A)) ≤ k if ∩j∈Jσj(A) = ∅ holds

for any k-element subset J ⊂ {0, 1, . . . , p− 1}.

Using this Zp-cyclical permutation symmetry and the genus type index gener-

ated as above, we construct multiple nodal solutions with a given componentwise

prescribed number of nodes by a minimax type argument. With the aid of the

flow invariance, the central part of the proof is to construct a certain set of vector-

valued functions which has infinite Zp genus and in which the flow line always

possesses prescribed number of nodal domains. Then by a minimax construc-

tion in variational methods (c.f. [14, 43]), we will have a sequence of critical

levels and therefore a sequence of solutions to Problem (1.1). For the construc-

tion of sets with large Zp-index, we will use a variant of the construction in [50,

Proposition 4.2] where only positive solutions were considered, by making sets of

sign-changing functions with σ symmetry property. For computations of the Zp
index, we will adapt some ideas from [16, 30, 31, 50] incorporating the invariance

of nodal domains and the Zp symmetry.

4.2. Invariant Sets and Other Constructions. We need a symmetric version

of the settings in Section 3. We begin with constructing sets of vector-valued

functions with componentwise-prescribed number of nodal domains and with ar-

bitrarily large genus.

Recall that p is a prime factor of N and B is such that N = pB and that

P1, . . . , PB are B non-negative integers and fixed in the proof. For any given

positive integerK, we will construct a subset having Zp genus not less thanK that

consists of vector-valued functions U = (u1, . . . , uN) such that for b = 1, . . . , B,

n(upb−p+i) = Pb for i = 1, ..., p, and satisfies other dynamic property.

Firstly, we divide the domain Ω into B radial parts and denote them by Ωb

for b = 1, ..., B so ∪Bb=1Ωb = Ω. For a fixed integer b = 1 . . . , B, we divide Ωb

into Pb + 1 radial sub-domains Ωb,q for q = 1, . . . , Pb + 1 so ∪Pb+1
q=1 Ωb,q = Ωb. For

each sub-domain Ωb,q, divide it into K radial sub-domains Ωb,q,k for k = 1, . . . , K
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so ∪Kk=1Ωb,q,k = Ωb,q. Denote Ob,q = S1 × Ωb,q and Ob,q,k = S1 × Ωb,q,k. For

b = 1 . . . , B, q = 1, . . . , Pb + 1 and k = 1, . . . , K, we define functions for (t, x) ∈
Ob,q,k = S1 × Ωb,q,k as follows:

• wb,q,k(t, x) = wb,q,k(t, |x|) = wb,q,k(t, r) : Ob,q,k → R of class C4 and of

compact support in Ob,q,k;
• wb,q,k ≥ 0 and wb,q,k(t, ·) 6≡ 0 for any t ∈ S1 ;

• suppwb,q,k(t, ·) ∩ suppwb,q,k
(

2π
p

+ t, ·
)

= ∅ for any t ∈ S1.

Now we have a few words about the notation for clarity. We point out that the

subscript ”b” denotes the number of the blocks of components with each block

having p components so it is invariant under the Zp-permutation of components.

The subscript ”q” denotes the number of nodal domains. And the subscript ”k”

is for the factor K of the dimension of the simplex. To give a simplex in Sobolev

space (H1)N involving vector-valued functions, we start by its componentwise

construction. In order to use the Zp index γ, we need to consider the complex

Euclidean space CK
(∑B

b=1 Pb+B
)
. For any vector z = (zb,q,k) we decompose them

in the polar-coordinates with respect to the components. This leads to zb,q,k =

eiθb,q,kαb,q,k with αb,q,k’s are nonnegative real numbers and θb,q,k ∈ [0, 2π) for any

b = 1 . . . , B, q = 1, . . . , Pb + 1 and k = 1, . . . , K. For b = 1, ..., B fixed we define

Vb(t, zb)(r) =

Pb+1∑
q=1

(−1)q+1

K∑
k=1

αb,q,kwb,q,k(t+ θb,q,k, r)

where the vector zb = {(zb,q,k) | q = 1, . . . , Pb + 1; k = 1, . . . , K}. Then we can

define a mapping

ψ : CK
(∑B

b=1 Pb+B
)
→ (H2

r )N

by

ψ(z) =

(
V1(0, z1),V1

(2π

p
, z1

)
, . . . , V1

(2π(p− 1)

p
, z1

)
,

. . . . . .

VB(0, zB), VB

(2π

p
, zB

)
, . . . , VB

(2π(p− 1)

p
, zB

))
.

We note that

Vb(t, e
2πi
p zb)(r) =

Pb+1∑
q=1

(−1)q+1

K∑
k=1

αb,q,kwb,q,k

(
t+ θb,q,k +

2π

p
, r
)

= Vb

(2π

p
+ t, zb

)
(r),

which implies that ψ
(
e

2πi
p z
)

= σψ(z). Here recall σ is the Zp cyclic permutation.
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As the settings and notations used in Section 3, we introduce the following

notations:

• Dj,k = {U = (u1, . . . , uN) ∈ (H2
r )N |n(uj) = k} and

D = ∩Bb=1 ∩
p
i=1 Dpb−p+i,Pb ;

• For ε > 0, Eε
j,q = {U = (u1, . . . , uN) ∈ D||uj,q|4 < ε};

• denote

H =

{
U = (u1, . . . , uN) ∈ (H2

r )N |n(ubp−p+i) ≤ Pb, for i = 1, . . . , p, b = 1, . . . , B,

and
N∑
j=1

n(uj) < p

B∑
b=1

Pb

}
and

Fε = ∪Bb=1

(
∪Pb+1
q=1 ∪

p
i=1E

ε
pb−p+i,q

)
∪H;

• the complete invariant set of the set Eε
j,q is defined as

C(Eε
j,q) =

{
U ∈ (H2)N

∣∣∃t0 ≥ 0 s.t. ηt0(U) ∈ Eε
j,q

}
.

Therefore, we can denote

Aεj,q = C(Eε
j,q) ∩ ∂A ∩D

and

Aε = ∪Bb=1 ∪
Pb+1
q=1 ∪

p
i=1A

ε
pb−p+i,q.

• T ∗(U) = inf{t ∈ [0, T (U))|ηt(U) ∈ F ε
2
∩ ∂A} for U ∈ ∂A ∩D.

The notations are symmetric versions of the ones in Section 3, and the difference

is that we restrict the sign-changing condition for the sake of componentwise

permutation.

As we proved in Section 3, the continuity of the arriving time T ∗(U) holds.

Besides, the invariance of T ∗(U) is easy to check.

Lemma 4.3. T ∗(U) is continuous and invariant under the permutation σ.

So holds the following lemma.

Lemma 4.4. For any U = (u1, . . . , uN) ∈ ∂A satisfies

•
∑N

j=1 n(uj) < B
∑N

q=p Pq,

• there is a sequence of vector-valued functions Un ∈ D ∩ ∂A such that

Un → U in (H1)N ,

then limn→∞ T
∗(Un) = 0.
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To compute the Zp-index, we will use an idea from [30]. Nevertheless, it should

be noticed that the simplex in [30] is different from ours. In order to make it

work, we need to enlarge the previous set ψ
(
CK
(∑B

b=1 Pb+B
))

. Let us select a

σ-invariant set G which contains ψ
(
CK
(∑B

b=1 Pb+B
))

by the following

G =

{(
K∑
k=1

P1+1∑
q=1

(−1)q+1α1,1
q,kw1,q,k(s

1
q,k, r), . . . ,

K∑
k=1

P1+1∑
q=1

(−1)q+1α1,p
q,kw1,q,k

(2π(p− 1)

p
+ s1

q,k, r
)
,

. . . . . . . . . . . . . . . . . . . . . . . . ,

K∑
k=1

PB+1∑
q=1

(−1)q+1αB,1q,k wB,q,k(s
B
q,k, r), . . . ,

K∑
k=1

PB+1∑
q=1

(−1)q+1αB,pq,k wB,q,k

(2π(p− 1)

p
+ sBq,k, r

))∣∣∣∣∣
αb,jq,k ≥ 0, sbq,k ∈ [0, 2π), for any b = 1, . . . , B, j = 1 . . . , p, q = 1, . . . , Pb + 1,

k = 1, . . . , K

}
.

Note that for any t ≥ 0 and U ∈ G, we have tU ∈ G. The difference between

the set G and the set ψ
(
CK
(∑B

b=1 Pb+B
))

is that in G the coefficients αb,jq,k’s are

independent. Notice that the set G contains no nontrivial fixed points of σ due

to the definitions of the functions wb,q,k’s. We observe that due to the definition

of A and the property of the heat flow ηt, every half-line in G starting at the

origin intersects ∂A. Moreover, the set G ∩ ∂A is compact and σ-invariant. In

particular, we denote

G0 =
{
U ∈ G

∣∣n(Ubp−p+i) = Pb for any i = 1, . . . , p and b = 1, . . . , B
}
.

This is to say that we define G0 as the portion of G whose elements do not degen-

erate in the sense of no drop-off of the sign-changing number, i.e., n(Ubp−p+i) = Pb
for any i = 1, . . . , p and b = 1, . . . , B. It is easy to see G = G0.

4.3. Avoiding the Fixed Points. In Section 3, we already proved that ∂A ∩
D∩ (H2)N\Aε 6= ∅. In this subsection we show that ∂A∩D\Aε contains no fixed

points of the permutation σ action. The following lemma ensures that the flow

line does not go through the fixed points of the permutation σ.

Lemma 4.5. For any U ∈ ∂A∩D\Aε, the flow line {ηt(U)}t≥0 contains no fixed

point of the permutation σ.

Proof. We argue by contradiction. Suppose that there is a t0 > 0 such that

ηt0(U) is a fixed point of the permutation σ. Then we have ηt0(U)1 = · · · =

ηt0(U)p. Due to the uniqueness of the solution, ηt(U)1 = · · · = ηt(U)p for any
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t ≥ t0. Multiplying u3
1 on both sides of the first equation of Problem (2.1) and

integrating over Ω, we get

d

dt

∫
u4

1 + 4 min

{
3

4
, λ1, . . . , λN

}
‖u2

1‖2 ≤ 4

(
µ1

∫
u6

1 +
N∑
i=2

βi1

∫
u2
iu

4
1

)

= 4

((
µ1 +

p∑
i=2

βi1
) ∫

u6
1 + βi1

N∑
i=p+1

∫
u2
iu

4
1

)
.

Combining with µ1 +
∑p

i=2 βi1 ≤ 0 (assumption (D) of Theorem 1.2) and the

Sobolev’s embedding, we have

d

dt

∫
u4

1 ≤ −C‖u2
1‖2 ≤ −C|u1|44.

Hence,
∫
u4

1 ≤ Ce−Ct follows. Therefore, for some T0 > 0 and q = 1, . . . , P1,

ηt(U) ∈ E
ε
2
1,q for t > T0. This is a contradiction with the fact that U ∈ ∂A∩D\Aε.

�

Remark 4.6. In fact, we can do the same computation to the other components,

therefore we will have ηt(U)→ θ in (L4)N .

Corollary 4.7. The set ∂A ∩D\Aε contains no fixed point.

4.4. Construction of σ-Symmetric Sets of Functions of Prescribed N-

odal Numbers with Arbitrarily Large Genus. The aim of this subsection

is to prove that for any integer k > 0, there is a compact subset Bk ⊂ ∂A∩D\Aε
satisfies σ(Bk) = Bk and γ(Bk) ≥ k. To do this, we only need to check that for

the set G constructed in the last subsection 4.2, it holds γ(∂A∩G\Aε) ≥ K since

K can be chosen to be arbitrarily large.

Lemma 4.8. γ(G ∩ ∂A) = K
(∑B

b=1 Pb +B
)
.

Proof. It is obvious that ψ
(
CK
(∑B

b=1 Pb+B
))
⊂ G. Hence, we have

γ(G ∩ ∂A) ≥ γ

(
ψ
(
CK
(∑B

b=1 Pb+B
))
∩ ∂A

)
= K

(
B∑
b=1

Pb +B

)
,

where the equality holds due to Borsuk’s theorem. To obtain the reversed in-

equality, we note that the set G is homeomorphic to the following subset X of

CpK
(∑B

b=1 Pb+B
)
:

X =

{
(zb,jq,k) ∈ CpK

(∑B
b=1 Pb+B

)∣∣∣∣∣arc(zb,1q,k) = arc(zb,2q,k) = · · · = arc(zb,pq,k)

for any b = 1, . . . , B, q = 1, . . . , Pb + 1, k = 1, . . . , K

}
.
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In fact we may define ξ : G→ X by

ξ :

(
K∑
k=1

Pb+1∑
q=1

(−1)q+1αb,jq,kwb,q,k

(2π(j − 1)

p
+ sbq,k, ·

))
→

(
eis

b
q,kαb,jq,k

)
.

To distinguish between the spaces CK
(∑B

b=1 Pb+B
)

and CpK
(∑B

b=1 Pb+B
)
, we denote

their vectors by (zb,q,k) and (zb,jq,k) respectively. On the other hand, we have a

continuous map f : X → CK
(∑B

b=1 Pb+B
)

written as

f(zb,jq,k) =
( p∑
j=1

zb,jq,k

)
.

Notice that f−1(0) = 0 and f(e
2πi
p zb,jq,k) = e

2πi
p f(zb,jq,k). The reversed inequality

follows from the identity f ◦ ξ(σU) = e
2πi
p f ◦ ξ(U).

�

By Proposition 2.17 for ε > 0 small enough, Eε
bp−p+i,q is invariant under the

heat flow ηt(·) for any b = 1, . . . , B, i = 1, . . . , p and q = 1, . . . , Pb + 1. For the

sake of convenience, we will denote the set Eε
bp−p+i,q by Eε

j,q with b = 1, . . . , B,

i = 1, . . . , p, q = 1, . . . , Pb + 1 and j = pb− p+ i. As we did in Section 3.2, define

a continuous cut-off function φ : [0,∞) → [0, 1] by φ(s) = 1 for s ≥ ε, φ(s) = 0

for s ≤ ε
2
, and φ(s) = 2s

ε
− 1 for s ∈ ( ε

2
, ε).

We will prove γ(∂A∩G\Aε) ≥ K− (p−1)(
∑B

b=1 Pb+B), which completes the

proof of the present subsection. To obtain this, we define a mapping h : G∩Aε →
G as

h(U) =
( P1+1∑

q=1

(−1)q+1φ
(
|ηT ∗(U)(U)1,q|4)U1,q, . . . ,

PB+1∑
q=1

(−1)q+1φ
(
|ηT ∗(U)(U)N,q|4

)
UN,q

)
for U ∈ G0 and for U ∈ G\G0, let

h(U) =
( P1+1∑

q=1

(−1)q+1φ
(
|U1·χΩ1,q |4)U1·χΩ1,q , . . . ,

PB+1∑
q=1

(−1)q+1φ
(
|UN ·χΩN,q |4

)
UN ·χΩN,q

)
.

Here, χA is the characteristic function of the set A ⊂ Ω. In fact, for U ∈ G,

Ubp−p+i,q = Ubp−p+i · χΩb,q for q = 1 . . . , Pb + 1, i = 1, . . . , p and b = 1 . . . , B. And

n(Ubp−p+i) ≤ Pb for i = 1, . . . , p and b = 1, . . . , B. The ”≤”’s hold strictly for at

least one of admissible (b, j)’s. The mapping h is continuous due to Lemma 4.3

and Lemma 4.4. And it is easy to see that this mapping is also σ-equivariant.

Then, we have the following claim.

Lemma 4.9. For any U ∈ ∂A ∩ G0 ∩ Aε, there are admissible couples (j1, q1)

and (j2, q2) such that φ(|ηT ∗(U)(U)j1,q1|4) = 0 and φ(|ηT ∗(U)(U)j2,q2|4) > 0.
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Proof. We notice that ηt(U) always stays on ∂A, which implies that ‖ηt(U)‖ ≥
C > 0 for any t > 0. Let us assume that φ(|ηT ∗(U)(U)j,q|4) = 0 for any (j, q)

admissible. This gives
∑N

j=1

∫
|uj|4 < Cε4 as t goes large. Multiplying uj on the

both sides of the j-th equation of Problem (2.1) and summing up with respect to

j, we have

1

2

∂

∂t
|U(t)|22 + ‖U(t)‖2 ≤

N∑
j=1

(
µj

∫
|uj(t)|4 +

∑
i 6=j

βij

∫
ui(t)

2uj(t)
2

)
< Cε

when t is large. Using the openness of A in (H1)N and the invariance of ∂A, we

have ∂
∂t
|U(t)|22 ≤ −C for t > 0. This is a contradiction, and the proof is complete.

�

Remark 4.10. The lemma implies that for any U ∈ ∂A∩G0∩Aε, there are two

admissible couples (j1, q1) and (j2, q2) such that h(U)j1,q1 = 0 and h(U)j2,q2 6= 0.

Lemma 4.11. It holds γ(∂A ∩D\Aε) =∞.

Proof. We use the notations in the proof of Lemma 4.8. To proceed our

computation, we need an upper bound of γ (h(∂A ∩G ∩ Aε)). Due to above

deduction, for any U ∈ h(∂A ∩ G ∩ Aε), we can find an admissible couple

(j, q) such that |Uj,q|4 = 0. Translating into the version in G, we have that

there are some b0 = 1, . . . , B, j0 = 1, . . . , p and q0 = 1, . . . , Pb0 + 1 such that

|zb0,j0q0,k
| = 0 for any k = 1, . . . , K. Instead of estimating γ (h(∂A ∩G ∩ Aε)), we

will give an upper bound of γ (ξ ◦ h(∂A ∩G ∩ Aε)) since γ (h(∂A ∩G ∩ Aε)) ≤
γ (ξ ◦ h(∂A ∩G ∩ Aε)).

We divide h(∂A ∩G ∩ Aε) into two parts. The first part is defined by

L =

{
(zb,jq,k) ∈ ξ ◦ h(∂A ∩G ∩ Aε)

∣∣∣∣∣∃b0 = 1, . . . , B, ∃q0 = 1, . . . , Pb0 + 1

s.t. |zb0,jq0,k
| = 0 ∀j = 1, . . . , p, ∀k = 1, . . . , K

}
.

It is easy to see that for any (zb,q,k) ∈ f(L) ⊂ CK(
∑B
b=1 Pb+B), we can find some

b0 = 1, . . . , B and q0 = 1, . . . , Pb0 + 1 such that for any k = 1, . . . , K, zb0,q0,k = 0.

We define a subspace W ⊂ CK
(∑B

b=1 Pb+B
)

by

W =
{

(zb,q,k) ∈ CK
(∑B

b=1 Pb+B
)
|z1,1,k = · · · = z1,P1+1,k = · · · = zB,1,k = . . .

· · · = zB,PB+1,k ∀k = 1, . . . , K
}
.

To continue the proof, we need the following lemma:
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Lemma 4.12. There is an ε0 > 0 such that for any a = (a1, . . . , aK(
∑B
b=1 Pb+B)) ∈

f(L),
∑K(

∑B
b=1 Pb+B)

l=1 |al| ≥ ε0.

Proof. We argue it by contradiction. Then there is a sequence a(n) ∈ f(L) such

that |a(n)| → 0, which implies that there is a sequence U (n) ∈ ∂A ∩G ∩ Aε such

that
∑N

j=1 |u
(n)
j |4 → 0. Using the fact that T (U) = ∞ for U ∈ ∂A and similar

computations in Proposition 2.17 and Lemma 4.9, we will have a contradiction.

�

We now return to the proof of Lemma 4.11. On one hand, we have dim(W ) =

K. On the other hand, due to the definition of the space W and Lemma 4.12,

we have

f(L) ⊂ CK
(∑B

b=1 Pb+B
)
\Wδ

σ' SK
(∑B

b=1 Pb+B−1
)
−1.

Here, δ > 0 is small, Wδ represents the δ-neighbourhood of W , and the symbol
σ' means that two topological spaces are homotopy equivalent via a homotopy F

satisfies F (t, e
2πi
p z) = e

2πi
p F (t, z) and Sm−1 denote the unit sphere in Cm. Hence,

we have

γ(L) ≤ γ(f(L)) ≤ K

(
B∑
b=1

Pb +B − 1

)
.

Notice that L is a compact set, then there is a δ > 0 such that γ(L) = γ(Lδ).

Now we give an estimate on another part of ξ ◦h(∂A∩G∩Aε). Define the set

M := ξ ◦ h(∂A ∩G ∩ Aε)\Lδ,

where δ > 0 is small. According to the previous deduction, the elements (zb,jq,k) in

M satisfy that there are b0 = 1, . . . , B and q0 = 1, . . . , Pb0 + 1 such that there are

two j1, j2 = 1, . . . , p with j1 6= j2 and

• |zb0,j1q0,k
| = 0 for any k = 1, . . . , K;

•
∑K

k=1 |z
b0,j2
q0,k
| ≥ δ1,

for some δ1 > 0. Using these for any b = 1 . . . , B and q = 1, . . . , Pb1 + 1 we define

N b
q =

{
(zb,jq,k)j,k ∈M

∣∣∣∣∣there exist j1 6= j2 such that
K∑
k=1

∣∣∣zb,j1q,k

∣∣∣ = 0,
K∑
k=1

|zb,j2q,k | ≥ δ1

}
.

Then, N b
q can be divided into p sets

N b
q (j + 1) = σj

(
N b
q (1)

)
,

where j = 0, . . . , p− 1 and

N b
q (1) =

{
(zb,jq,k) ∈ N

b
q

∣∣∣∣∣
K∑
k=1

∣∣∣zb,1q,k∣∣∣ = 0

}
.
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It is easy to see that, due to the definition, we have

N b
q (j + 1) =

{
(zb,jq,k) ∈ N

b
q

∣∣∣∣∣
K∑
k=1

∣∣∣zb,j+1
q,k

∣∣∣ = 0

}
.

for j = 0, . . . , p− 1,

∩p−1
j=0σ

j
(
N b
q (1)

)
= ∅

and

N b
q = ∪p−1

j=0σ
j
(
N b
q (1)

)
.

Therefore, using the last property of the index γ in Section 4.1 we have

γ
(
N b
q

)
≤ p− 1

for any fixed b = 1, . . . , B and q = 1, . . . , Pb + 1 and

γ(M) = γ
(
ξ−1(M)

)
≤

B∑
b=1

Pb+1∑
q=1

γ
(
(ξ−1(N b

q ))
)
≤ (p− 1)

(
B∑
b=1

Pb +B

)
.

Now we can compute

γ
(
∂A ∩G ∩ Aε

)
≤ γ

(
h(∂A ∩G ∩ Aε)

)
≤ γ

(
ξ ◦ h(∂A ∩G ∩ Aε)

)
≤ γ(Lδ) + γ(Mδ) = γ(L) + γ(M)

≤ K

(
B∑
b=1

Pb +B − 1

)
+ (p− 1)

(
B∑
b=1

Pb +B

)
.

The above result implies that

γ
(
(∂A\Aε) ∩G

)
≥ γ(G ∩ ∂A)− γ

(
Aε ∩ ∂A ∩G

)
≥ K

(
B∑
b=1

Pb +B

)
−K

(
B∑
b=1

Pb +B − 1

)
− (p− 1)

(
B∑
b=1

Pb +B

)

= K − (p− 1)

(
B∑
b=1

Pb +B

)
.

The proof of Lemma 4.11 is complete since K is arbitrarily large.

�

Remark 4.13. We note that ∂A ∩ D\Aε is an invariant set of the heat flow,

from which, a sequence of compact sets with unbounded genus can be selected.
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4.5. The Existence of Multiple Equilibria Having the Same Compo-

nentwise Prescribed Number of Nodes. In this subsection, we complete the

proof of the main result Theorem 1.2.

Lemma 4.14. Let c ∈ J(∂A∩D\Aε). If there are positive numbers α and ε′ such

that for any U ∈ J−1[c−ε′, c+ε′]∩∂A∩D\Aε, |∆uj−λuj+µu3
j+
∑

i 6=j βu
2
iuj|2 ≥ α

for some j = 1, . . . , N , then there is T > 0 independent of U such that ηT (U) ∈
J c−ε

′ ∩ ∂A ∩D\Aε.

Proof. Let T = 4ε′

α2 > 0. Notice that ∂A ∩ D\Aε is invariant under the flow

η. If ηT (U) ∈ J c−ε
′ ∩ ∂A ∩ D\Aε, the proof is complete. Otherwise, assume

J(ηT (U)) > c−ε′. Then ηt(U) ∈ J−1[c−ε′, c+ε′]∩∂A∩D\Aε for any t ∈ [0, T ].

Compute that

d

dt
J(ηt(U)) = −

N∑
j=1

|∂tuj(t, ·)|22

= −
N∑
j=1

∣∣∆uj − λjuj + µju
3
j +

∑
i 6=j

βiju
2
iuj
∣∣2
2
(t)

≤ −α2.

Therefore,

c− ε′ ≤ c+

∫ T

0

d

dt
J(ηt(U))dt ≤ c− α2T = c− 4ε′.

This is a contradiction.

�

Define

Γk = {A ⊂ ∂A ∩D\Aε|A is σ invariant compact set, γ(A) ≥ k}.

By Lemma 4.11, Γk 6= ∅ for large k, and the values

ck = inf
A∈Γk

sup
u∈A

J(U)

are well-defined. Using Lemma 4.14 and some classical arguments as [43, Prop-

ersition 8.5] it is easy to verify the following.

Lemma 4.15. (i). Kck ∩ ∂A ∩D\Aε 6= ∅ for large k.

(ii). If c := cj = · · · = cj+l, then γ(Kc ∩ ∂A ∩D\Aε) ≥ l + 1.

Proof. A standard argument ensures that there is a sequence Un ∈ ∂A∩D\Aε,
such that

• J(Un)→ ck;

• for any j = 1, . . . , N , ∆un,j −λjun,j +µju
3
n,j +

∑
i 6=j βiju

2
n,iun,j → 0 in L2,
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where un,j is the j-th component of Un. The second assertion implies that

∇ujJ(Un) → θ in H−1. Then Un → U in (H1)N for some U since the energy

functional J satisfies the (PS) condition. It is easy to see that U is a critical

point of the energy J . Therefore, U is of class (H2)N due to the elliptic regularity

theory. Now we prove that U ∈ ∂A ∩D\Aε.
To show U ∈ D, denote U = (u1, ..., uN). Un’s are continuous since they are

of class (H2)N . We have for b = 1, ..., B, n
(
(Un)pb−p+i

)
= Pb for i = 1, ..., p, and∣∣(Un)pb−p+i,q

∣∣
4
≥ ε

2
for i = 1, ..., p and q = 0, . . . , Pb. Here (Un)pb−p+i,q denotes the

q-th bump of the (pb− p+ i)-th component of Un.

Since Un → U in (H1)N , for n large, we have
∣∣(Un)pb−p+i − upb−p+i

∣∣
4
< ε

100
.

Therefore, for fixed b = 1, ..., B, i = 1, ..., p, we can find a sequence x0, . . . , xPb ∈ Ω

such that

• 0 < |x0| < · · · < |xPb| <∞;

• upb−p+i(xk) · upb−p+i(xk+1) < 0 for k = 0, . . . , Pb − 1.

Therefore, U ∈ D.

Now we prove U ∈ ∂A\Aε by contradiction. If U ∈ Aε, due to the definition of

Aε, there is an admissible pair (j0, q0) such that U ∈ Aεj0,q0 . If |Uj0,q0|4 ≥ ε, there

is a T > 0 such that
∣∣ηT (U)j0,q0

∣∣
4
< ε. This implies that U is not equilibrium.

Therefore we have a contradiction. On the other hand, if |Uj0,q0|4 < ε, due to

Proposition 2.17, once again, U is not equilibrium. Hence, U /∈ Aε. And U ∈ ∂A
is due to the closeness of ∂A with respect to the norm ‖ · ‖. Assertion (i) is

proved.

Assertion (ii) can be proved by some arguments for the classical genus [43,

Propersition 8.5], and we omit it here.

�
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