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Abstract—Two functions are essential and necessary for wire- limited lifetime, which consume lots of efforts to maintain the
less powered communication network, which are energy beam- patteries, such as wireless sensor networks. In contrast, the
forming and localization. On one hand, energy beamforming wireless network equipped with RF energy harvesting mod-

controls the wireless energy waves of energy access point (E-AP) le h tainabl v f di . ¢
in order to activate the nodes for transmitting information. On ule has a sustainable power supply irom radio environment.

the other hand, locating the nodes is important to network man- Consequently, with the appearing of the commercialized prod-
agement and location based services in WPCN. For large scaleucts, e.g., Powercast, wireless power communication networks
network, cooperative localization which employs neighborhood (WPCNs) have drawn much attention [2]. As a promising
nodes to participate in positioning unknown target nodes is highly network of future loT systems, the architecture, waveform

accurate and efficient. However, how to use energy beamforming desi b f . d network ootimizati tensivel
to achieve high accurate localization is not fully investigated yet. esign, beamiorming and network optimization are extensively

In this paper, we analyze the impacts of energy beamforming on investigated.

the cooperative localization performance of WPCNs. We formu-  Compare with wireless communication networks (WCNS)

late the Fisher information matrix (FIM) and the corresponding [3], WPCNs show advantages in lifetime and cost. The life-

Crameéer-Rao lower bound (CRLB) for the full connected network time of WPCN can be extended as long as possible with a

and a single node respectively. Then we propose beamforming _. .
schemes to optimize the cooperative localization and the power single energy access point (E-AP). Because such E-AP can

consumption. For optimal localization problems, we derive the Provide continuously wireless energy for the passive nodes.
close-form expression of the optimal energy beamforming. And The lifetime of WCN is limited by the batteries equipped in the
for the optimal energy efficiency problems, we propose semi- nodes. No matter what kind of energy efficient strategies are
definite programming (SDP) solutions to achieve the minimum ,seq the batteries will be depleted finally. Even if all the nodes
power consumption while using calibrations to approach the ted with th i th bilitv is limited and
actual localization requirements. Further, we also analyze the are connecte ,W' € power |n.e.s, € mobiiity 1S imited an ]
impacts of channel uncertainty. Through extensive simulations, the costs are increased. In addition, the cost of each node in
the results demonstrate the dominant factors of the localization WPCN is much lower than WCN, since no battery is required
performance, and the performance improvements of our pro- and the architecture of the chip is much simpler. In this case,
posed schemes, which outperform the existing power allocation large-scale network can be constructed.
schemes. Similar to other wireless networks, WPCNs contain a large
_Index Terms—wireless power transfer, cooperative localization, number of deployed nodes sensing, gathering and communi-
Fisher information matrix, semi-definite programming, energy  cating information with other nodes [4]. Therefore, the knowl-
efficiency . . . .
edge of node positions is becoming important for network
management and optimization strategies. On the other hand,
. INTRODUCTION positioning the nodes in WPCNs also provides cost effective

In the recent years, radio frequency (RF) power transfer H@§ation based services. However, using GPS is not only an
become effective alternative technique to supply continuo§¥Pensive solution but infeasible in some harsh environments,
energy for the remote next-generation wireless networks [£}9- N buildings, in urban canyons, under tree canopies

The conventional energy constrained wireless networks hav@’ain caves. Thus, a fast, cost-effective and high accurate
localization technique is required for large scale WPCNSs.
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attained only as if the nodes gain enough energy from E-ARwinimum energy consumption with a given localization re-
Thus, the microwave propagations in cooperative localizatiguirement.

based WPCN consist of energy beamforming of E-AP and The rest parts of this paper are organized as follows: Sec.
the rangning measurements. And the energy beamformihgresents the related works of the WPCN and cooperative
directly influences the ranging and the localization accuratycalization; Sec. Il provides the system model and the FIM
[6], [7]. Using the cooperative localization technique, th&ormulations; the beamforming schemes for full connected
WPCN has two kinds of potential applications. On one handetwork are introduced in Sec. IV and the optimizations for
WPCN can track nodes widely deployed in the environmesingle node are presented in Sec. V; Sec VI formulates the
without considering the battery depletion, e.g., the sensor tdggpacts of channel uncertainty; the simulations are presented
in manufactory, hospital and tunnel [8], [9]. In addition, thén Sec. VIl and Sec. VIII concludes the whole paper.

UAVs are potential mobile wireless power transfer devices

for such application [10]. On the other hand, such system Il. RELATED WORK

can be used as the indoor localization for large scale shop/V/PCN has gain much attention since it is firstly introduced
malls or factories, since the battery-less nodes can be desigimefd 5], [16]. Then, many researches utilize various techniques
as anchors, which are activated by the wireless power. Suochimprove the data transmission quality or reliability, e.g.,
devices are small and the cost is even small than other indbd@amforming strategies [17], [18], network design [19], [20],
localization systems, e.g., iBeacon [11]. MAC control schemes [21], [22], cooperative strategies [23],

To analyze the impact of energy beamforming on localiz§24]. Considering 3D space, UAVs are employed as the wire-
tion performance in this paper, the Fisher information matrigss power transfer base stations, and the related joint resource
(FIM) is utilized as the fundamental tool and squared positicailocation and trajectory plan are investigated [10], [25]. Re-
error bound (SPEB) is introduced as the major metric for evalently, some passive devices in WPCN are designed to provide
uation, which are widely applied in many researches [12]-[14dcalization services, e.g., using backscatter communications
Within the FIM framework, the beamed wireless power signg26] or converting the harvested energy into UWB signals
channel information, network topology are fully analyzed, anf@7]. Pannuto et al. proposed a UWB based backscatter device
the optimization objectives are constructed. Then, wirelegsich can achieve 30 cm localization accuracy [28]. Fantuzzi
power beamforming strategies can be developed to minimigeal. proposed circuit designs to convert the UHF microwave
the position estimation errors or the energy consumption. into UWB signals and provide TDOA ranging [29]-[31].

Our major contributions are as follows: Firstly, we formu- In addition to hardware design, communication strategies
late the FIM of full-connected WPCN within a cooperativand localization methods in WPCNSs are also exploited, espe-
framework, which fully considers the energy beamformingijally in WSN area. El et al. proposed a hop count method
network topology, signal noise and cooperative ranging me@a- estimate the node positions in energy harvested WSN
surements. The impacts of beamforming waves on localizatif82]. Chang et al. introduced a passive WSN, in which the
performance in E-APs are clearly illustrated in the form afode was activated by the RF power, and angle division and
the FIM. Then, the second contribution is that we introduagrid division methods were developed with adapting the RF
the beamforming schemes to solve two optimization problenmopagation directions to derive the node positions [33]. Belo
which are the minimization of position estimation error wittet al. used an antenna array to estimate single node location
transmitted power constraints and the minimization of enerpased on RSS value [34]. Aziz et al. introduced a batteryless
consumption problem with node localization requirements. WeT node with two antennas, and employed 64 antenna array
prove that the SPEBs in the objectives are bounded by tlvesimultaneously provide wireless power and track the node
inverse forms of the FIM trace, in which the objectives arf85]. In [36], the batteryless anchors are introduced and power
turned into quadratically constraint quadratic programmingdlocation schemes for single target tracking are proposed to
(QCQPs). Then, the optimization problems are efficientiynprove the system performance. Although some localization
solved by obtaining the close form expression or using senailgorithms are investigated in WPCN, these methods are only
definite programming (SDP). Thirdly, the spatial recursivapplicable for single node or target, which is difficult to
FIM formulations and optimization strategies for a single nodmplement in large scale network.
are exploited with the prior information of other nodes. We In wireless cooperative localization researches, lots of the-
derive the upper bound of spatial recursive FIM to develawetical investigations and localization algorithms appear in
simplified beamforming solutions. To overcome the over réhe recent years [37]. In general, cooperative localization is
laxation problems, we employ a calibration method for than efficient method of self-organized large-scale network to
SDP solutions. The final contribution is that we analyze thmanage the network and tracking multiple targets. However,
impacts of channel estimation error on localization estimatidhe localization error can also propagate throughout the whole
performances. network when the target nodes contain localization errors and

Our analysis and proposed beamforming schemes are evadlp locate the new joined node. Shen et al. derived the
uated in extensive simulations. We compare our schemes watuivalent Fisher information matrix (EFIM) of cooperative
SDP based power allocation solutions and equally combifggalization and used squared position error bound (SPEB) as
method. Then, the impacts considering the channel uncertaititg main metric to evaluate the positioning accuracy [38]. This
are also presented. The results demonstrate that our schewm® demonstrated that lots of targets provide ranging infor-
can greatly improve the estimation accuracy and reduce tiation when only a few anchors are deployed in a large scale
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The E-AP contains multiple antennas and provides the
wireless power beam to turn on the batteryless nodes. We
use K to denote the number of antennas in E-AP. Get2
[g1,82,...,8n]7 be the downlink wireless power channel
matrix from the E-AP to the nodes, and defipg, = [G|in
as the channel coefficient between th¢h antenna of the E-
AP and the node:. To distinguish the wireless power beam
channel to the anchors and the cooperative nodes, we define
G 4 as the anchor channel matrix which indicate the channel
from E-AP to the anchors, and defi- as the target channel
matrix to indicate the channel from E-AP to the target nodes.

<> Wireless Power Beam IE Energy Access Point

4

— =~ Ranging from Anchor '/ Anchor Letd;; = ||a; —p;|| be the range (or distance) between anchor
-+ — - — Ranging from Target '® Target j and target. Similarly, letd;,, = ||p; — pm|| be the range
between target andm, wherei £ m. The anchors will send

Fig. 1. The architecture of WPCLoc. ranging signals to the targets when attaining sufficient energy,

and the targets also send the ranging signals to each other
to form a full connected network and cooperatively locate
network. Then, the localization accuracy is increased with sugfemselves.

information. However analyzing the fundamental performance

of cooperative localization is complex. Consequently, resourge
allocations are also complex and the distributed strategies may
only converge to local optimal values. Thus, the power control Theé E-AP generates a signal vector= [z1, 2, ..., Tk
and bandwidth allocation schemes using SDP, gaming aiggform a wireless power beam. The anchors are activated by
machine learning methods for wideband systems are exploifééfh signals. On the network node side, the received signal
[39]-[42]. For cooperative localization algorithms, distributeéPr noden is:

Wireless Power Transfer Phase
]T

localization algorithm outperforms the centralized algorithm in K
cooperative localization since the data flow from targets and Yn = Bn& + v = ngn:vk + vy (1)
anchors are reduced. In this case, the operation expense of k=1

cooperative localization is much lower than the conventionghere , < NaUNr and v is the additive noise which
localization. A linear distributed algorithm framework is introfg|jows zero-mean Gaussian distribution. For the wireless
duced in [43]. Nguyen proposed a least squared method in fi&ver beam, we assume that the received energy is mainly
cooperative localization [44]. Further, semi-definite prograngrom the E-AP, andv? is too small to power up the device,

ming for relaxing the least squared method was also proposggich can not be collected as the energy source. Then, the
in [45]. Note that, compared with WCNs, the localizatiopecejved power” = E,, (|lyn|[?) of the noden is:
y Yn n .

accuracy of WPCN is lower with the same number of nodes.

Because, the power transfer efficiency of WPCN is quite low, ry = Ez(z" g gne) 2
which leads to the low accuracy estimation. In addition, the

nodes of WPCN are alsp Iovy power chips, whic_h means that Cooperative Range Measurement Phase

the nodes can only provide single frequency carrier RSS value -

for ranging. However, nodes in WCN are active which can Afte_r obtaining the energy from E-AP, netwo_rk nodes,
provide wide-band singles for localization, e.g., CSI values. HCIUd'ng anchors and targets, will encode the ranging da_ta and
this case, the accuracy is much higher than WPCN. Howev .,ward to the ’other nodgs. W_hen n_odesends the ranging
the theoretical foundations and optimizations for cooperati\%gnal to target, the received signal is:

localization in WPCNSs are not fully investigated yet. Zni = hini(dyy i)y + 0 (3)

wheren # i, hy,(-) is the channel response gf, which
considers the path loss according to the rafige= ||p,—p;||

The WPCN consists of E-AP and the wireless commipetween node: andi. Take a flat fading propagation channel
nication nodes, which is illustrated in Fig. 1. The nodef®r instance, we have,,;(d. ;) = (477{12,1-)[3\/57@ where f.
with perfect knowledge of their positions are defined d§ the central frequency of the signal,is the fading factor,
anchors, and the nodes without their position knowled@®dé&n.i is the channel gain.
are defined as targets. All the nodes are equipped without
batteries. We us&/4 and N1 to denote the number of anchorsc. Fisher Information Matrix
and targets respectively. The set of anchors is denoted b
N4y = {1,2,...,N4} and the set of targets is denoted blé
Nr = {1,2,...,Nr}. The position of anchoy is denoted
by a; £ [a,a)]”, and the position of targetis denoted by

pi = [ p) 7. 6=1[p{ P - Pn,)" 4

IIl. SYSTEM MODEL

Mo derive the fundamental performance, we employ FIM
s the analysis tool. Firstly, we defileas the vector of the
unknown target position states:
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Then, we definez as the observation vector of all thein whichr;" is determined by the wireless node since the node

received signals on the target side: is active. Howeverr;” in this paper |s attalned by wireless
ower transfer, which is ' = Eg(x glg..x). Then, we
2 =[] L7 (5) bove (2" grgme)
wherez 4 andz¢ indicate the observations from anchors and . & mBQ(Z;)QB
. . . /\z m E (.’13 gmgmm) 2B+2 (14)
cooperative targets respectively: 202N,
T T T . . .
2o =20 22T AT 2 T It is clearly observed that is the beamforming strategy and

20 = [zc o et c T]T (6 xTgl g, x determines the localization accuracy directly in
us, the two phase propagations are integrated as a
b ‘ Nz 12). Thus, the two ph t tegrated

and z2 and z¢ indicate the received signal vectors of targéteW FIM. For instance);,,, = A, ; for WCNs if both active

i from anchors and targets respectively: nodes send the same signal powers. However, in our system,
u . Aiom # Am,i €ven if x contains the same waveforms for all
z =[z10 22 - Zji - ZNadl @ the antennas. Because the wireless power propagation channels
28 =210 220 <+ Zmi -0 ZNgil T from antennas to the nodes are different.

where m € Np. Here we definez;; = 0,5 € Np for
future calculation. The joint probability distributiof{@, z) = D. Squared Position Error Bound

f(z]0)f(0), wheref(z|0) is the likelihood function, and ()
is the prior distribution ofd. And, f(z|@) can be expressed
as:

Although CRLB is the widely used localization performance
indicator for unbiased estimation algorithms, a specified scalar
Nr Ny value is preferred for quantify the localization accuracy. Gen-
f(26) = H H f(zmilps) Hf 2ilpi)) (8) erally, the mean square error (MSE) or root mean squa_red error

m—1 (RMSE) are closely related to the trace of CRLB. In this case,
SPEB which is the trace of CRLB is employed as the optimal
performance metric [3]. For a single target node, we define

1=1

where we definef (z;;|p;) = 1,i € NT.
Next, we define® as the unbiased estimator @fbased on

- . ~ . SPEB as:
z. The CRLB indicates that the covariancef$hould satisfy as P 5 0y 15
the information inequality: (pi) = tr{J™" (i)} (15)
Ezyg{(é_g)(g_ 0} =3, 9) ;rrlllen, for multiple target nodes, the SPEB is expressed as
ollows:

whereJy is the FIM for @ given by: Np
Jo — Ez,e{ve lnf(O, Z)[Vg hlf(O, z)]T} (10) 'P(@) S Ztr{.]fl(pi)} = tr{Jfl(O)} (16)
1=1

where Vg is the first order partial derivatives operator @f

Then, we have the following proposition. In addition, using SPEB as the scalar value can derive a tighter

bound during relaxing the following optimization problems.
Proposition 1. The FIM of all the target nodes in WPCN is

given by (12) on top of the next page whédgeis a2 N7 x 2N

. IV. BEAMFORMING SCHEMES FORFULL CONNECTED
matrix. AndJ 4(p;) and C,,,, are expressed as follows:

NETWORK
N .
{ Ja(pi) = 22520 Ajid (¢5.0) JE€Na (11) A. Localization Accuracy Optimization
Comi = Nim + Am.i) I (9m.i) im € Nr It is clearly observed that the wireless power beam directly
where \,; is derived based on (47):J(¢m.i) = influence the localization performance. With the given FIM to
Am.iql is the angle-of-arrival (AOA) matrix dmi _ indicate the SPEB, we formulate beamforming problems for

WPCNSs as the optimal cooperative localization problem.
Considering the sum of transmitter power is constrained, the
minimum SPEB is to decide how to design the wireless power

[COS Prni SiN @y i]T With ¢y, ; = arctan 2 p zm denoting the
AOA from the noden to the nodei. "

Proof. Refer to Appendix A for the detailed derivation. wave forms to achieve the minimum location estimation error:
Note that, this FIM formulation is constructed based on (P1) : min P(8) 17
the framework of cooperative localization [38]. Proposition 1 s.t. Eg(zaT) < P, 17)

illustrates the relationship between the wireless power transfer

and the localization accuracy and provides the new modelwhere P. is the sum power constraint. Here, we assume that
equivalent ranging coefficient (ERC) within the FIM frameall the nodes, including the anchors and the target nodes, can
work. Specifically,); ., and \;; are re-formulated comparedreceive effective signals when the system is deployed. Thus,

with [38], where); ,,, is formulated as: the minimum received energy constraint is ignored. It is clearly
) observed thafP; is complicated to expand and it is also a
A = m &im B~ (15) (13) monotonically nonincreasing function &{@0). Then, we apply

=Ty T gy the
o e following propositions to relax the objectives:
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Jap1) + 224 Cim —Ci2 R —Ci Ny

—Ci2 Jap2) + 22,40 Com - —Ca, Ny
J(6) = _ : , : : (12)
—Ci Ny —Ca Ny - JaPnr) + 2 sny CNegm
Proposition 2. The SPEB satisfies th®(0) > 4N%m. C. Energy Efficiency Optimization
The” =7 holds if and only ifr, = 72 = ... = mn,, Where

The energy efficiency problem in cooperative localization
of WPCN is to achieve the minimum Tx power of E-AP with
Proof. Refer to Appendix B for the detailed derivation. given localization requirements constraints. The localization
requirements mean that the estimation error of each node
should not exceed a typical threshold, which is defined as
pin- Thus, the energy efficiency problem is expressed as:

T1,T2,...,Tan, are the eigenvalues a(6).

Using Proposition 2]P; can be relaxed to the maximum
tr{J(0)} problem:

(P}) :maxtr{J(0)}
s.t. Egy(zx?) < P,
wheretr{J(0)} is derived according to (56) in Appendix B:

(18) (P>) :min Eq (zz™)

(23)
s.t. P(O) S NTpth

Nt Nt where the localization should satisfy the average localization
tr{J(0)} = 2" (G} Y AiGA+GL(D Ti+E)Go)z (19) requirements. Similar t&;, we can relaxP, according to
i=1 i=1 Proposition 2:
andA;, T'; and = are derived in (57), (60) and (58).
(P3) :mgnEm(mmT)

NT NT

B. Close-form Solution

The above objective is a typical quadratically constrained st. 2T (Gh ZAiGA-i-Gg(Z I‘l-+E)Gc):c>4NT
guadratical programming (QCQP). One feasible solution is to — P T Pih
use Lagrangian relaxation and Lagrangian multiplier method (24)

to approximate the optimal value. Here we defide = _ _ _ _
G£ ZfV:Tl AiGAJrGg(Ef,V:Tl I';+E2)G¢, and it is clear that However, IP5 cannot provide a close form solution, since it

: o ) . ay not be always convex. Thus, we employ the SDP to relax
W is a positive defined matrix due to the nature of FIM. Therg,LCh problem. Firstly, leKX = @7z and it is obvious that

we define the multiplieg, > 0, and construct the Lagrangianrank(x) — 1. Considerzz” = tr(X) andz” Qz = tr(QX)
function of P} as follows: whereQ2 indicate any symmetric matrix, thdpy; is equivalent

Fi(z,p) = —2" W — u(P. — 2’ x) (20) to:
where we convert the objectivemaxtr{J(9)} into  (P2):mintr(X)

min —tr{J(@)}. Then, the Karush-Kuhn-Tucker (KKT) s s ANy
conditions are attained: st tr((Gh Y AiGa+GE() TiHE)Ge)X)> o
8]—"1(33,u) _ T X > 6:1 i=1
0w —Vx+pur =0 (21) z 25)

Sincep # 0, we have: o .
which is a typical SDP problem and can be solved by many

Yz = pz. (22)  efficient tools, e.g., CVX. WheiX is attained, we havX =
According to the definition of matrix eigenvalue, it is obvious\oqoaf , where) is the eigenvalue of rank one matrix aggl
that ;. is one of the eigenvalues for matri¥#, and = is is the corresponding eigenvector. Then, the feasible solution
the corresponding eigenvector. Sinde is a positive semi- of z is * = v/Aoqo.
definite Hermitian matrix, it can be eigen-decomposed to
¥ = Q®Q7, whereQ is the unitary matrix and® is a

diagonal matrix of the eigenvalues @. Then, definez = D. Calibrations
Q"x, andqy, ..., sk are the real and non-negative eigenvalues Note that using Proposition 2 to solv&®3) can only meet
of . Then, we haver” ¥z = Y, |#x|?, where¢ = a loose bound of the localization requirement, since several

(0,...,0,45,0,...,0), and|£,|? = 1. In this case, the max- relaxations are employed. Thus, the localization requirement
im’al CI;T;I’EL"iS’ att:ained with — argmax{ } constraints are not met even if the optimal solutions are

; W Omaz = ATgMAX151, - -+, SKJ-  attained. However, such loose bound can be adapted into a
Thus, the optimal solutior°P! is proportional to the corre-

. o : tight bound by introducing a coefficient, to 2%z, which
sponding column of. Considering the power constraifit,  means that we can set a value during the computation to force

the optimalz®®* = ¢ - maxeig(¥), wherec is an adapting the relaxed constraints strictly approach the real localization
co-efficient to make the sum of signal power approath requirements. Therefore, we employ a self-calibration method
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and divide the SDP solutions into two steps. In the first stejmilarly, we can construct KKT conditions just like (21), and
we setcy = 1, and turn(IP}) as follows: use eigenvalue decomposition to attain the optimal veetor

(P3_.) :min tr(X)
B. Energy Efficiency Problem

Nr Nr

st tr((Gh Y AiGa+GE () Tit+E)Go)X)> P
i=1 i=1 v

Co

For energy efficiency purpose, we still use/ (py,+1)
to relax J(pn,+1). Although such relaxation is not tight,
X=>0 the computation overhead is efficiently reduced. Then, using
(26) Proposition 2, the objective is expressed as:

where we change‘*/jV—T into ¢ in order to simplify

th h *Y\ L T
the further calibration and ar’Jproach the real localization (P3) 'mmmE‘"”(wm )
requirements. When the optimal solutiarf is attained, we st tr{Ju(p )} > i (34)
substitutex™ into (11). Then, we attain a real trace of FIM w UNPNr 1T =

~ 11 * * _ P
p_ =J _(0|:1: ) ba_sed_orm ,_and we sety = Ny The Similar toP3;, we employX = z Tz to relaxP}; and we attain
final optimal solution is attained when the SDPBf__. iS e SDP formulations:

executed again with new,, and the localization requirements

are met as well. (P3) : min tr(X)
t. tr{J > 2 (35)
V. SPATIAL RECURSIVE FORMULATIONS FORSINGLE st. tr{Ju(pnr+1)} = oih
TARGET X >0

A. Spatial Recursive Optimization )
. which can also be solved by CVX.
When theNr + 1th node joins the network, the other nodes

will send the ranging signals to help this node attain its initial o

location. However, the ranging signals for the ottér node C. Calibration

localizations are not exploited. Then, we define the whole Note thatP} still attains a loose bound of the localization
estimated vector a§, — [p]TVT+1 p? pl ... PJTVT]T — requirements. In this case, a two-step calibration method which

T T . - similar to P} is developed. In this calibration, we also
[PN,41 67]7. The FIM is formulated as (28) and using ShuEmploy a coeffiQCientO to adapt the constraints. The first step

complement, we have (29) on top of the next page where: g o setc, = 1 and we obtain:

{ Cnrt1,i = Cing+1 = (AN 41,0 + iy Np41) T (ONg41,1) (P;_.) :min tr(X)
Mpyyt+1 = [-Cnp+1.1 —ChNpt1,2 -+ — CNpt1,84] c

' ' ’ TN e
andIy, « n, is the identical matrix withV, x N dimensions, X>0

and® is the K_ronecker product. S : . Then, the initial optimal solutior* is attained. In the second
However, using such FIM of optimization will lead to hlgherSte we uses* to derive the actual trace of( ), and
order programming, which is too complicated to solve. Thus P, PNr+1)s

~ . Sy
we derive a new upper bound &fpx,.+1) by ignoring some computep = J _(pNTﬂ)' Then,-we~st|ll seky = 7, and
parts ofJ(px,+1), Which is use SDP to attain the final solution Bf;__.

Ju(Pnr+1) = Ja(Prr+1) + Z Cnr+1i (30) VI. CHANNEL UNCERTAINTY
i;ﬁNT+1

. . . . In the real applications, the channel states are time-varying
Using the elementary algebra, we obtain the inequality:

and interfered by the noise. Thus, the beamforming schemes
J(6s) 2 Ju(0s) (31) should also consider the channel uncertainty problem. Then,
the optimizations are re-formulated accordingly and the impact
of the uncertainty should be analyzed.

“U. ) , Considering that thé-th antenna sends the pilot signal with

to indicate the lower bound ?(py,.1). In this case, we just ), ver 0. to noden, noden will estimate the channel state

need_to attain th.e. maximum(JU.(pNTH)).l . and feedback to the E-AP. The minimum mean square error
Using Proposition 2, the spatial recursive beamforming {ﬁ/IMSE) of gun is denoted byg,.,, and the estimation error

formulated as: iS exn 2 Grn — grn, Which is a random variables with zero

Then, we attain the lower boufd(py,+1) > Pr(Pnpt1) =
tr(J;' (PNp+1)). Thus, we can use the minimuRYy, (p,.+1)

(P3) s max tr{Ju (Pnp+1)} (32) mean and variance [46]:
s.t. Em(ccmT) < PC 2 ﬂkn (37)
kn — 1 | 2 1. /.92
which is also QCQP. Similar td®3, tr{Ju(pn,11)} is @ 1+ BrnLqr/o?
simplified form according to (19): where i, is the path loss from antenra to noden, L
Ny indicates the symbol length anef is the background noise

tr{Ju (Prpi1)} = 27 (Gh AN, +1G 4 +GL(S T1)Ge)z (33) Variance. Considering the estimation error is i.i.d, it is easily
" " 7,2::1 attalned||gkn||2 = ||gkn||2 +U]%na andE(gkngkm) = GknYkm-
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JaPnr+1) + 2N, 1 CNet1i - —Cnpin - ~CNyt1,N7

—C1 N1 Jap1) + 224 Cuie - —Ci, Ny
J(6,) = : : _ (28)
—CnNyp Not1 —Cnyt o JaPng) 222N, Oy
J(PNr+1) =Ta(PNpt1) + Z Cnrt1i = MNgp+1(J(0) + Inpxng @ MNT+1)71M1]\1/T+1 (29)
i;ﬁNT+1

Then, we update the received power for noden (2) with rl, r72,..., rK] as the transmitter power vector of where
the channel uncertainty model: r? = E(||lzx]|?), k€ {1, 2, ..., K}. Then, we have:
~ 2 2 ~ o~ ~ o~
||gl~n|| ~+0—17L ~gln292n ) e gln,?Kn TZ — ggrz (39)
Gongin  |G2nll*+020 .. Gonxn _ _ _
Fr=ax" ) ) _ i x It is clearly observed thaty is determined by the power
: : g : allocation ofr,.. Then, we re-formulatd(0|r,,) and substitute
GrnJin GKnJ2n oo MNgrnlP+oikn it into J(0) in the problem formulations. And we also employ
(38) r, toindicateE, (). In this case, the energy beamforming

Statistically,gingrm is equivalent tgx, gxn. In this case, the problem is converted into a power allocation problem. For SDP
FIM and the localization estimation accuracy does not ong|utions, one optional method is to employ an auxiliary co-
rely on the channel state but also depends on the estimatigfiance matrixz [39], which satisfies thal ~*(6|r,) = Z~!.

error of the wireless power propagation channel. And thgsing linear matrix inequality (LMI), we have:
estimation error mainly influences the diagonal elements in

7y - To simplify the analysis, we mainly use the pilot signal- J(O[r;) 1 “0
to-noise-ratio (SNR) as the main parameter to indicate the I Z |~
channel uncertainty.

(40)

wherel is the identical matrix with the same dimension of
J(@|r,) andZ. Then, we can us& either as the objective

) . or localization requirement, which is a typical SDP problem.
The proposed schemes are evaluated by extensive simylgy ever such method is over relaxed and far from the

tions. In the simulations, we assume that all nodes includingy 5| Fi\M value especially in the cooperative localization
10 anchors and several targets are randomly deployed iR &, awork. Thus, we still employ the trace afé|r,) and

5 S
500 x 500 m* playing field. The antenna array of E-AP cang_tormylate the objectives, which are still SDP problems.
be deployed in the center of the playing field or randomly

deployed throughout the whole playing field. The signal carrier _
frequency is 2.4 GHz and the maximum allowed transmittétt Full Connected Network Evaluation
power of E-AP is 30 dBm (1 W). In addition, the received Firstly, the beamforming strategies for cooperative localiza-
power of each node for communications and harvesting enet@n of WPCN are evaluated in a sequential way, in which
is -90 dBm, and the power of the background noise isthe nodes harvest the energy from beamformed microwaves
130 dBm. We assume a free space propagation model of #el exchange signals during each time slots, and then fuse
wireless power transfer channel, and the NLOS ranging is ritbe previous FIM to derive the current SPEBs. The averaged
considered in FIM calculation [3]. SPEBs of all the schemes are illustrated in Fig. 2. It is clearly
We use SPEB to indicate the localization accuracy and uskserved that the estimation error of Tr-QP is much lower than
the total transmitted power of E-AP as the energy efficientlie other two. Compare with SDP, Tr-QP can effectively use
metric. Since our schemes are to relax the trace of FIM attie spatial correlations to increase the performance. While the
employ quadratic programming or SDP to solve the optimizeesults of SDP only allocate the major power on one antenna,
tion problems, our schemes are indicated as Tr-QP or Tr-SD¥ich ignores the benefits of the correlated channels. In this
The proposed schemes are compared with equally combingagse, SDP is even slightly worse than EC. However, with the
scheme (EC), which allocates the transmitted power equafisevious information, the SPEBs of three schemes gradually
and the same wave form on each antenna, and SDP basaaverge to a quite low value.
power allocation schemes in [14], [39], [40]. Then, we increase the cooperative nodes from 10 to 100.
To transfer the power allocation from WCN to W-As illustrated in Fig. 3, the SPEBs of all three schemes drop
PCN, we consider the signals from E-AP is orthogonalown with more nodes participating in the localization. The Tr-
E(Q ) zez) = 0. Then,ry = ]E(Zszl llgrnl|?lzx][?). QP outperforms other schemes even with only 10 cooperative
Define the channel power gain vector for the nodg, = nodes, and the related SPEB only decreases a limited value
E(l|g1:]1?), E(llginll?),-- -, E(lgrnl?*)]T, and definer, = with more cooperative nodes.

VII. SIMULATION
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Fig. 2. Sequential Evaluation of SPEB. The SPEB contains teeiqus Fig. 4. The SPEBs with different antennas of E-APs. In thisusition, we
FIM. consider both centralized and distributed antennas.
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Fig. 3. Cooperative node evaluation. We increase the nodesettk whether
it will benefit the localization performance.

Next, we adapt the antennas of E-AP to examine the
impacts for cooperative localizations. In this simulation, we
also evaluate the impacts of both centralized and distributed
antennas of E-APs. For centralized antennas, we assume there
is only one E-AP with a Tx antenna array that is deployed
in the center of the playing field. For distributed antennas,
we assume multiple E-APs randomly deployed in the whole
playing field and each E-AP contains only one antenna. We
adapt the number of antennas from 4 to 64. The SPEBs of
three schemes in both cases are depicted in Fig. 4. For EC
and SDP schemes, the distributed antennas outperform the
centralized antennas. In addition, more antennas can benefit

Node

(a) Tx power consumption with different number of coop-
erative nodes.

35

301

Tx Power (dBm)
- N )
(9] o (9]

=)

—#—Tr-SDP
&-8-g--g--g- &-8-0--g-8--8-4-F-SDP A

30 40
Antenna

10 20

50 60

(b) Tx power consumption with different number of anten-

nas.

both schemes. However, the SPEBs of Tr-QP in both casg$ 5. Energy efficiency evaluation for full connected network.

are quite similar, and the centralized antenna array is slightly
better than the distributed antennas. Increasing the number of

antennas reduces the SPEBs of Tr-QP but not too much si¢emore nodes and antennas, the power consumptions are

the initial values are below 0.1 with only 4 antennas.
Further, we evaluate the power consumptions of our pro-
posed energy efficiency schemes. We compare our SDP based

gradually reduced.

scheme, which is named by Tr-SDP, with the SDP based pov@ér Spatial Recursive Evaluation

allocation scheme. The average SPEB requirementis®.1

In the spatial recursive simulation, the nodes join the

The cooperative node number and the antenna number aetwork one by one, and we apply the proposed scheme to
also adapted to evaluate the performance, in which the SP&tBain the optimal SPEB of the new node. The number of
is used to indicate localization accuracy and the total Tx powanchors is 10. The power constraint is 30 dBm for optimal
(dBm) is the energy efficiency metric. The results are depictémtalization problems, and we employ the spatial recursive
in Fig. 5. As illustrated in Fig. 5(a) and Fig. 5(b), the total T>orm of Tr-QP to solvelP;. We also compare our scheme
power of Tr-SDP is lower than SDP. With the participatiomvith SDP and EC for a single node. As indicated in Fig. 6, the
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Fig. 7. The Tx power consumptions for single node evaluation. (a) SPEB results.
50 : : - o 5
SPEBs of SDP and EC are decreasing when more nodes join T AT I
the network. However, the Tr-QP maintains a low value which ®l 0o
is below 0.2 when the network only contains one node, and Eaof
such value is kept even with more nodes joining the network, = J/
which outperforms the other two schemes. £ % 5
For energy efficiency optimization, the localization require- E”’ ,,’
ment constraint is In?, and we apply Tr-SDP to solvE;. R
We also compare our scheme with SDP schemes, and the By’ —6—Tr-SDP
power consumptions are illustrated in Fig. 7, in which Tr-SDP " | (=% TrS0P with channel uncertaity
consumes less power than SDP and such value even drops with -0 20 '1gNR (dB)O 10 2
more nodes.

(b) Tx power consumptions.
C. Channel Uncertainty Evaluation Fig. 9. Energy efficiency evaluation with channel uncertainty.

Finally, we introduce the channel uncertainty model into the
simulations to evaluate the impacts. We still use 10 anchors

and 20 nodes, and the simulation parameters are the sam8uch impacts also lead to the unreliable energy consump-
as mentioned before. For channel estimations, the accuréiops, as illustrated in Fig. 9(a). The SPEB of Tr-SDP with
mainly relies on the transmitted pilot power and the noiseawer SNR is much higher than the ideal channel case,
Therefore, we employ the pilot SNR to indicate the channehich indicates that the localization requirements are not
estimation parameter. Then, we adapt the SNR from -30 dBdoaranteed and SPEBs are wrongly derived. And the Tx power
20 dB, and both Tr-QP for optimal localization and Tr-SDP fois reduced with higher SPEBs. However, such power reduction
energy efficiency are analyzed. In Fig. 8, the SPEB of Tr-QP mainly caused by the unreliable SPEB due to the channel
with lower SNR is higher than the Tr-QP with ideal channaincertainty, because the localization requirement constraints
information, which demonstrates the degrading localizati@are not bounded any more during the SDP calculations. In
accuracy due to the inaccurate channel estimation. Whidis case, the system consumes less power compared with ideal

the SNR is increased, the SEPB with channel uncertaintydase, because it considers the required localization accuracy
gradually reduced and approaching the ideal case. is already achieved.
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VIIl. CONCLUSION and we obtainJ 4 (p;):

In this paper, we analyze the fundamental limits of the Oln f(zA|p;) 91n f( A|p
cooperative localization in WPCNs. We formulate the coo@4(p;) = E( . i) Z)\J, (D))
erative FIM and propose the beamforming schemes to solve op; opi
the localization accuracy and energy efficiency optimization _ _ (48)
problems. In addition, the spatial recursive form and relatdden.J 4 (0) = diag(Ja(p1), ..., Ja(pn,)) is attained.
beamforming schemes are also investigated. The simulationSimilarly, we have Uc(0) = Vgln f(z¢|6) and at-

demonstrate that our schemes outperform the power allocatidif (49) on top of the next page, wheie f(z{|p;) =
based SDP methods and equally combining power scheme,,—i 1t f(zm,i|p:) is the sum log likelihood fop; based on
With more nodes and more antennas of E-AP participatin§€ observations sending from all the target nodes to tar¢et
the localization accuracy is increased. We also observe thasdition, al“fa(zmm) alnf(z“""’l) ,m # i. Then,Uc(0)
the channel uncertainty affect the localization accuracy arsisimplified as right side form in (49)

consume more power to achieve the localization requirementsFor w we have similar results tn f(z; Alp;), in

alnf Zm 1‘171)
which eachT, m # i

APPENDIXA
FIM FOR COOPERATIVELOCALIZATION IN WPCN Oln f(zm,ilpi) _ Yo - O i(dm,i) i (50)
According to (8), the log likelihood function faf consists opi Odon.
of two parts: Similarly, 212/ Gimlpi) g
! opi ’
In f(2(0) = In f(24]0) + In f(2c0) (41) Ol f(zimlpi)  Ohim(dim) (51)
For the first parin f(z4]0), the score function is (42), where Ipi . Idi,m o
Alp.) — Na ) i ikeli
In f(z{|pi) = ijllnf(zﬂpl) is the sum log likelihood where q;.n = —am.. Then, substitut 61nf(z1 m|1m) and
for p; based on the observations from anchors. £(=C o) ’ .
Due to the mdependence of the received signals for dlffere‘mil into Jo(0) = E(Uc(6)Uc(0)), we have.
target nodesM =0,m 75 1, then we have a dlagOI’la| Zmﬁcl m —Ci, —Ci,ny
matrix: —Cis  ¥,.Cam —Cany
91n f(z7'|p1) Jo(0)=
op1 : : . :
Ua(0) = (43) —Cing  —Cong o X, CNem
52)
Oln f(zA (
% whereCo, i = (Nim + A, i)I(Pm.i);i # m € N, and i m
is:
lnf Zj, 1|p1 2 fe 28
I:JJIr eachi we decompose it according to the chain Ay = Em(ngZ%gmw)gmgzié%) (53)
Oln f(z.ilpi) _ " Ohji(d;) - (44) et
opi / od;j; " Then,J(0) = JA(0) + Jc(6).
whereq;; = [cos¢;; sing;;|T with ¢;; = arctan py_ii,. APPENDIX B

Here, we consider a flat fading channel, in which the path lo$3R00F AND DERIVATION OF TRACES OFJ(0) AND J~1(0)
follows:

. . We decomposd () as follows:
1= (e (45) 0
) 47de,i T

wherer?t indicates the received signal power from anchto T2
targeti, and f. represents the central frequency of the signal. J(0) =10, ) Ui (54)
If the signal noise follows zero-mean Gaussian distribution B
with the powerNy, we have: TONy
E(aln f(z.ilpi) 0In f(zj,ilpi)T) _ i &2 (L)? (651) whereU,, is the eigenvector matrix and, ..., 7y, are the

op; op; SV PIN, 7%/ corresponding eigenvalues. Them{J(#)} = ZleT 7 and

(46) P(O) = ZleT 71 Consider each eigenvalue is positive in
where J(¢;:) = qj Zqﬂ- and rﬂ is attained according to FIM, we attain the following formulation according to [47]:
(2). Then, we employ;; to |nd|cate the equivalent ranging

2Nt
2Nt
coefficient (ERC): N Z . 55
N =1 (ngTg-w)W (47) 21 Ti
ji = L i 8i TN, Then, we obtairP(0) > 4N7 mrygyy-
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dln f(zp1) dln f(24|p1) . 3lnf(z;?[T|p1)
Op1 op1 op1
Oln f(zllps) Olnf(zflps)  Onf(zR,|p2)
Ops Op2 Op2
Ua(0) =Vegln f(24]0) = (42)
0In f(21'|pny) OIn f(24' [pny) O f(25, [PNy)
OPNy OPNy OPNy
ol f(z{|p1) Olnf(zS|p1) dln f(zg,.|p1) dIn f(2C|p1) d1n f(z1.2|p1) _9ln f(z1,npP1)
op1 op1 op1 op1 op1 op1
dln f(2C]ps) Oln f(25|p2) dln f(25,.|p2) Olnf(z21lp2)  Olnf(zF|ps) . Onf(z,np|P2)
3} I3} T 2] Op2 Op> Op2
Ug(0)= pe P2 b2 = (49)
dln f(=C| a1 ¢ aln £(z$. | ) dln f(z |pn.) Oln f(z lpn..)  Olnf(z5, |pNg)
L PNy) Oln f(z5 ‘PNT)_” J\ZN IPNp Ny 1IPNp Np.2IPNp) | Nt T
OpN, OpNy PN, 0PN, 0PNy OpN
FOI’J(H): [7] F. Tan, T. Lv, and P. Huang, “Global Energy Efficiency Optimization
for Wireless-Powered Massive MIMO Aided Multivay AF Relay Net-
Nt Nt works,” IEEE Transactions on Signal Processjngpl. 66, no. 9, pp.
tr{J(0 Z Jap)+> > Cum) 2384-2398, May 2018,
=1 i [8] Y. Kim, T. J. Lee, and D. I. Kim, “Joint Information and Power Transfer
in SWIPT-Enabled CRFID NetworksJEEE Wireless Communications
N Na N Nr (56) Letters vol. 7, no. 2, pp. 186-189, 2018.
= ZZ/\M + Z Z(/\i’m + /\m,z') [9] G. Loubet, A. Takacs, and D. Dragomirescu, “Implementation of a
im1 =1 =1 mti Battery-Free Wireless Sensor for Cyber-Physical Systems Dedicated to
Structural Health Monitoring Applications|JEEE Accessvol. 7, pp.
=Dy + D¢ 24679-24 690, 2019.
. . . [10] W. Feng, N. Zhao, S. Ao, J. Tang, X. Zhang, Y. Fu, D. K. C. So,
Substitute (47) intd 4, we attain: and K. K. Wong, “Joint 3D Trajectory Design and Time Allocation for
UAV-Enabled Wireless Power Transfer Network$ZEE Transactions
T on Vehicular Technologyvol. 69, no. 9, pp. 9265-9278, 2020.
Da== G Z AiGazx (57) [11] J. Rezazadeh, R. Subramanian, K. Sandrasegaran, X. Kong, M. Moradi,
and F. Khodamoradi, “Novel iBeacon Placement for Indoor Positioning
, 05 in 10T,” IEEE Sensors Journalol. 18, no. 24, pp. 10 240-10 247, 2018.
e E1aBP(fe)?P En,.,iB (45) [12] W. Dai, Y. Shen, and M. Z. Win, “Distributed Power Allocation for
where A; = diag( dzﬁ“N L d?f:fNo )- Then, we Cooperative Wireless Network LocalizatiodEEE Journal on Selected
) Areas in Communicationsol. 33, no. 1, pp. 28-40, Jan 2015.
substitute (53) intd¢ and divideDc = Z Zm#l A+ [13] Y. Shen, W. Dai, and M. Z. Win, “Power Optimization for Network

ik

ZN T Am,: t0 attain (59) wherd'; is formulated as (60)

and_ is expressed as:

[14]
Np 2/ fe \28 Np 2( fe\28
- §mB(52) Enp,mB(12)
::dlag(z §B+7247---7 Z W) (58) [15]
m#1 ;M m#Nrp T,m
[16]
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