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Abstract—Two functions are essential and necessary for wire-
less powered communication network, which are energy beam-
forming and localization. On one hand, energy beamforming
controls the wireless energy waves of energy access point (E-AP)
in order to activate the nodes for transmitting information. On
the other hand, locating the nodes is important to network man-
agement and location based services in WPCN. For large scale
network, cooperative localization which employs neighborhood
nodes to participate in positioning unknown target nodes is highly
accurate and efficient. However, how to use energy beamforming
to achieve high accurate localization is not fully investigated yet.
In this paper, we analyze the impacts of energy beamforming on
the cooperative localization performance of WPCNs. We formu-
late the Fisher information matrix (FIM) and the corresponding
Cramér-Rao lower bound (CRLB) for the full connected network
and a single node respectively. Then we propose beamforming
schemes to optimize the cooperative localization and the power
consumption. For optimal localization problems, we derive the
close-form expression of the optimal energy beamforming. And
for the optimal energy efficiency problems, we propose semi-
definite programming (SDP) solutions to achieve the minimum
power consumption while using calibrations to approach the
actual localization requirements. Further, we also analyze the
impacts of channel uncertainty. Through extensive simulations,
the results demonstrate the dominant factors of the localization
performance, and the performance improvements of our pro-
posed schemes, which outperform the existing power allocation
schemes.

Index Terms—wireless power transfer, cooperative localization,
Fisher information matrix, semi-definite programming, energy
efficiency

I. I NTRODUCTION

In the recent years, radio frequency (RF) power transfer has
become effective alternative technique to supply continuous
energy for the remote next-generation wireless networks [1].
The conventional energy constrained wireless networks have a
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limited lifetime, which consume lots of efforts to maintain the
batteries, such as wireless sensor networks. In contrast, the
wireless network equipped with RF energy harvesting mod-
ule has a sustainable power supply from radio environment.
Consequently, with the appearing of the commercialized prod-
ucts, e.g., Powercast, wireless power communication networks
(WPCNs) have drawn much attention [2]. As a promising
network of future IoT systems, the architecture, waveform
design, beamforming and network optimization are extensively
investigated.

Compare with wireless communication networks (WCNs)
[3], WPCNs show advantages in lifetime and cost. The life-
time of WPCN can be extended as long as possible with a
single energy access point (E-AP). Because such E-AP can
provide continuously wireless energy for the passive nodes.
The lifetime of WCN is limited by the batteries equipped in the
nodes. No matter what kind of energy efficient strategies are
used, the batteries will be depleted finally. Even if all the nodes
are connected with the power lines, the mobility is limited and
the costs are increased. In addition, the cost of each node in
WPCN is much lower than WCN, since no battery is required
and the architecture of the chip is much simpler. In this case,
large-scale network can be constructed.

Similar to other wireless networks, WPCNs contain a large
number of deployed nodes sensing, gathering and communi-
cating information with other nodes [4]. Therefore, the knowl-
edge of node positions is becoming important for network
management and optimization strategies. On the other hand,
positioning the nodes in WPCNs also provides cost effective
location based services. However, using GPS is not only an
expensive solution but infeasible in some harsh environments,
e.g., in buildings, in urban canyons, under tree canopies
or in caves. Thus, a fast, cost-effective and high accurate
localization technique is required for large scale WPCNs.

Cooperative localization employs nodes exchange radio
signals to attain the range measurements [5]. Such technique
offers additional localization accuracy gain by enabling the
neighbor nodes to help each other in estimating positions,
which is suitable for WPCNs in a high density and large
scale deployment scenario. In cooperative localizations, nodes
with known positions are called anchors, which are sparsely
deployed and used to locate other nodes. The nodes with
unknown positions are called targets. In WPCN, all nodes in-
cluding anchors and targets are batteryless and powered up by
the E-APs, which are either centralized deployed with MIMO
antennas or distributed deployed throughout the playing field.
The ranging measurements of cooperative localization can be
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attained only as if the nodes gain enough energy from E-APs.
Thus, the microwave propagations in cooperative localization
based WPCN consist of energy beamforming of E-AP and
the rangning measurements. And the energy beamforming
directly influences the ranging and the localization accuracy
[6], [7]. Using the cooperative localization technique, the
WPCN has two kinds of potential applications. On one hand,
WPCN can track nodes widely deployed in the environment
without considering the battery depletion, e.g., the sensor tags
in manufactory, hospital and tunnel [8], [9]. In addition, the
UAVs are potential mobile wireless power transfer devices
for such application [10]. On the other hand, such system
can be used as the indoor localization for large scale shop
malls or factories, since the battery-less nodes can be designed
as anchors, which are activated by the wireless power. Such
devices are small and the cost is even small than other indoor
localization systems, e.g., iBeacon [11].

To analyze the impact of energy beamforming on localiza-
tion performance in this paper, the Fisher information matrix
(FIM) is utilized as the fundamental tool and squared position
error bound (SPEB) is introduced as the major metric for eval-
uation, which are widely applied in many researches [12]–[14].
Within the FIM framework, the beamed wireless power signal,
channel information, network topology are fully analyzed, and
the optimization objectives are constructed. Then, wireless
power beamforming strategies can be developed to minimize
the position estimation errors or the energy consumption.

Our major contributions are as follows: Firstly, we formu-
late the FIM of full-connected WPCN within a cooperative
framework, which fully considers the energy beamforming,
network topology, signal noise and cooperative ranging mea-
surements. The impacts of beamforming waves on localization
performance in E-APs are clearly illustrated in the form of
the FIM. Then, the second contribution is that we introduce
the beamforming schemes to solve two optimization problems,
which are the minimization of position estimation error with
transmitted power constraints and the minimization of energy
consumption problem with node localization requirements. We
prove that the SPEBs in the objectives are bounded by the
inverse forms of the FIM trace, in which the objectives are
turned into quadratically constraint quadratic programmings
(QCQPs). Then, the optimization problems are efficiently
solved by obtaining the close form expression or using semi-
definite programming (SDP). Thirdly, the spatial recursive
FIM formulations and optimization strategies for a single node
are exploited with the prior information of other nodes. We
derive the upper bound of spatial recursive FIM to develop
simplified beamforming solutions. To overcome the over re-
laxation problems, we employ a calibration method for the
SDP solutions. The final contribution is that we analyze the
impacts of channel estimation error on localization estimation
performances.

Our analysis and proposed beamforming schemes are eval-
uated in extensive simulations. We compare our schemes with
SDP based power allocation solutions and equally combing
method. Then, the impacts considering the channel uncertainty
are also presented. The results demonstrate that our schemes
can greatly improve the estimation accuracy and reduce the

minimum energy consumption with a given localization re-
quirement.

The rest parts of this paper are organized as follows: Sec.
II presents the related works of the WPCN and cooperative
localization; Sec. III provides the system model and the FIM
formulations; the beamforming schemes for full connected
network are introduced in Sec. IV and the optimizations for
single node are presented in Sec. V; Sec VI formulates the
impacts of channel uncertainty; the simulations are presented
in Sec. VII and Sec. VIII concludes the whole paper.

II. RELATED WORK

WPCN has gain much attention since it is firstly introduced
in [15], [16]. Then, many researches utilize various techniques
to improve the data transmission quality or reliability, e.g.,
beamforming strategies [17], [18], network design [19], [20],
MAC control schemes [21], [22], cooperative strategies [23],
[24]. Considering 3D space, UAVs are employed as the wire-
less power transfer base stations, and the related joint resource
allocation and trajectory plan are investigated [10], [25]. Re-
cently, some passive devices in WPCN are designed to provide
localization services, e.g., using backscatter communications
[26] or converting the harvested energy into UWB signals
[27]. Pannuto et al. proposed a UWB based backscatter device
which can achieve 30 cm localization accuracy [28]. Fantuzzi
et al. proposed circuit designs to convert the UHF microwave
into UWB signals and provide TDOA ranging [29]–[31].

In addition to hardware design, communication strategies
and localization methods in WPCNs are also exploited, espe-
cially in WSN area. El et al. proposed a hop count method
to estimate the node positions in energy harvested WSN
[32]. Chang et al. introduced a passive WSN, in which the
node was activated by the RF power, and angle division and
grid division methods were developed with adapting the RF
propagation directions to derive the node positions [33]. Belo
et al. used an antenna array to estimate single node location
based on RSS value [34]. Aziz et al. introduced a batteryless
IoT node with two antennas, and employed 64 antenna array
to simultaneously provide wireless power and track the node
[35]. In [36], the batteryless anchors are introduced and power
allocation schemes for single target tracking are proposed to
improve the system performance. Although some localization
algorithms are investigated in WPCN, these methods are only
applicable for single node or target, which is difficult to
implement in large scale network.

In wireless cooperative localization researches, lots of the-
oretical investigations and localization algorithms appear in
the recent years [37]. In general, cooperative localization is
an efficient method of self-organized large-scale network to
manage the network and tracking multiple targets. However,
the localization error can also propagate throughout the whole
network when the target nodes contain localization errors and
help locate the new joined node. Shen et al. derived the
equivalent Fisher information matrix (EFIM) of cooperative
localization and used squared position error bound (SPEB) as
the main metric to evaluate the positioning accuracy [38]. This
work demonstrated that lots of targets provide ranging infor-
mation when only a few anchors are deployed in a large scale
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Fig. 1. The architecture of WPCLoc.

network. Then, the localization accuracy is increased with such
information. However analyzing the fundamental performance
of cooperative localization is complex. Consequently, resource
allocations are also complex and the distributed strategies may
only converge to local optimal values. Thus, the power control
and bandwidth allocation schemes using SDP, gaming and
machine learning methods for wideband systems are exploited
[39]–[42]. For cooperative localization algorithms, distributed
localization algorithm outperforms the centralized algorithm in
cooperative localization since the data flow from targets and
anchors are reduced. In this case, the operation expense of
cooperative localization is much lower than the conventional
localization. A linear distributed algorithm framework is intro-
duced in [43]. Nguyen proposed a least squared method in the
cooperative localization [44]. Further, semi-definite program-
ming for relaxing the least squared method was also proposed
in [45]. Note that, compared with WCNs, the localization
accuracy of WPCN is lower with the same number of nodes.
Because, the power transfer efficiency of WPCN is quite low,
which leads to the low accuracy estimation. In addition, the
nodes of WPCN are also low power chips, which means that
the nodes can only provide single frequency carrier RSS value
for ranging. However, nodes in WCN are active which can
provide wide-band singles for localization, e.g., CSI values. In
this case, the accuracy is much higher than WPCN. However,
the theoretical foundations and optimizations for cooperative
localization in WPCNs are not fully investigated yet.

III. SYSTEM MODEL

The WPCN consists of E-AP and the wireless commu-
nication nodes, which is illustrated in Fig. 1. The nodes
with perfect knowledge of their positions are defined as
anchors, and the nodes without their position knowledge
are defined as targets. All the nodes are equipped without
batteries. We useNA andNT to denote the number of anchors
and targets respectively. The set of anchors is denoted by
NA = {1, 2, . . . , NA} and the set of targets is denoted by
NT = {1, 2, . . . , NT }. The position of anchorj is denoted
by aj , [aXj , aYj ]

T , and the position of targeti is denoted by
pi , [pXi , pYi ]

T .

The E-AP contains multiple antennas and provides the
wireless power beam to turn on the batteryless nodes. We
useK to denote the number of antennas in E-AP. LetG ,

[g1,g2, . . . ,gN ]T be the downlink wireless power channel
matrix from the E-AP to the nodes, and definegkn , [G]kn
as the channel coefficient between thek-th antenna of the E-
AP and the noden. To distinguish the wireless power beam
channel to the anchors and the cooperative nodes, we define
GA as the anchor channel matrix which indicate the channel
from E-AP to the anchors, and defineGC as the target channel
matrix to indicate the channel from E-AP to the target nodes.
Let dji = ||aj−pi|| be the range (or distance) between anchor
j and targeti. Similarly, let dim = ||pi − pm|| be the range
between targeti andm, wherei 6= m. The anchors will send
ranging signals to the targets when attaining sufficient energy,
and the targets also send the ranging signals to each other
to form a full connected network and cooperatively locate
themselves.

A. Wireless Power Transfer Phase

The E-AP generates a signal vectorx = [x1, x2, . . . , xK ]T

to form a wireless power beam. The anchors are activated by
such signals. On the network node side, the received signal
for noden is:

yn = gnx+ vn0 =

K∑

k=1

gknxk + vn0 (1)

where n ∈ NA

⋃NT and vn0 is the additive noise which
follows zero-mean Gaussian distribution. For the wireless
power beam, we assume that the received energy is mainly
from the E-AP, andvn0 is too small to power up the device,
which can not be collected as the energy source. Then, the
received powerrny = Eyn(||yn||2) of the noden is:

rny = Ex(x
TgTngnx) (2)

B. Cooperative Range Measurement Phase

After obtaining the energy from E-AP, network nodes,
including anchors and targets, will encode the ranging data and
forward to the other nodes. When noden sends the ranging
signal to targeti, the received signal is:

zni = hn,i(dn,i)yn + vnie (3)

wheren 6= i, hn,i(·) is the channel response ofyn which
considers the path loss according to the rangedn,i = ||pn−pi||
between noden andi. Take a flat fading propagation channel
for instance, we havehni(dn,i) = ( fc

4πdn,i
)β
√
ξn,i wherefc

is the central frequency of the signal,β is the fading factor,
andξn,i is the channel gain.

C. Fisher Information Matrix

To derive the fundamental performance, we employ FIM
as the analysis tool. Firstly, we defineθ as the vector of the
unknown target position states:

θ = [pT1 pT2 . . . pTNT
]T (4)
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Then, we definez as the observation vector of all the
received signals on the target side:

z = [zTA zTC ]
T (5)

wherezA andzC indicate the observations from anchors and
cooperative targets respectively:





zA = [zA1
T
zA2

T
. . . zAi

T
. . . zANT

T
]T

zC = [zC1
T
zC2

T
. . . zCi

T
. . . zCNT

T
]T

(6)

andzAi andzCi indicate the received signal vectors of target
i from anchors and targets respectively:

{
zAi = [z1i z2i . . . zji . . . zNAi]

T

zCi = [z1i z2i . . . zmi . . . zNT i]
T (7)

where m ∈ NT . Here we definezii = 0, i ∈ NT for
future calculation. The joint probability distributionf(θ, z) =
f(z|θ)f(θ), wheref(z|θ) is the likelihood function, andf(θ)
is the prior distribution ofθ. And, f(z|θ) can be expressed
as:

f(z|θ) =
NT∏

i=1

(

NT∏

m=1

f(zmi|pi)
NA∏

j=1

f(zji|pi)) (8)

where we definef(zii|pi) = 1, i ∈ NT .
Next, we definẽθ as the unbiased estimator ofθ based on

z. The CRLB indicates that the covariance ofθ̃ should satisfy
the information inequality:

Ez,θ{(θ̃ − θ)(θ̃ − θ)T } � J−1
θ (9)

whereJθ is the FIM for θ given by:

Jθ = Ez,θ{∇θ ln f(θ, z)[∇θ ln f(θ, z)]
T } (10)

where∇θ is the first order partial derivatives operator ofθ.
Then, we have the following proposition.

Proposition 1. The FIM of all the target nodes in WPCN is
given by (12) on top of the next page whereJθ is a2NT×2NT

matrix. AndJA(pi) andCi,m are expressed as follows:
{

JA(pi) =
∑NA

j=1 λj,iJ(φj,i) j ∈ NA

Cm,i = (λi,m + λm,i)J(φm,i) i,m ∈ NT
(11)

where λm,i is derived based on (47);J(φm,i) =
qm,iq

T
m,i is the angle-of-arrival (AOA) matrix,qm,i =

[cosφm,i sinφm,i]
T with φm,i = arctan

pXi −pXm
pYi −pYm

denoting the
AOA from the nodem to the nodei.

Proof. Refer to Appendix A for the detailed derivation.

Note that, this FIM formulation is constructed based on
the framework of cooperative localization [38]. Proposition 1
illustrates the relationship between the wireless power transfer
and the localization accuracy and provides the new model of
equivalent ranging coefficient (ERC) within the FIM frame-
work. Specifically,λi,m andλj,i are re-formulated compared
with [38], whereλi,m is formulated as:

λi,m = rmy
ξi,mβ2( fc4π )

2β

d2β+2
i,m N0

(13)

in which rmy is determined by the wireless node since the node
is active. However,rmy in this paper is attained by wireless
power transfer, which isrmy = Ex(x

TgTmgmx). Then, we
have:

λi,m = Ex(x
TgTmgmx)

ξi,mβ2( fc4π )
2β

d2β+2
i,m N0

(14)

It is clearly observed thatx is the beamforming strategy and
xTgTmgmx determines the localization accuracy directly in
(12). Thus, the two phase propagations are integrated as a
new FIM. For instance,λi,m = λm,i for WCNs if both active
nodes send the same signal powers. However, in our system,
λi,m 6= λm,i even if x contains the same waveforms for all
the antennas. Because the wireless power propagation channels
from antennas to the nodes are different.

D. Squared Position Error Bound

Although CRLB is the widely used localization performance
indicator for unbiased estimation algorithms, a specified scalar
value is preferred for quantify the localization accuracy. Gen-
erally, the mean square error (MSE) or root mean squared error
(RMSE) are closely related to the trace of CRLB. In this case,
SPEB which is the trace of CRLB is employed as the optimal
performance metric [3]. For a single target node, we define
SPEB as:

P(pi) , tr{J−1(pi)} (15)

Then, for multiple target nodes, the SPEB is expressed as
follows:

P(θ) ,

NT∑

i=1

tr{J−1(pi)} = tr{J−1(θ)} (16)

In addition, using SPEB as the scalar value can derive a tighter
bound during relaxing the following optimization problems.

IV. B EAMFORMING SCHEMES FORFULL CONNECTED

NETWORK

A. Localization Accuracy Optimization

It is clearly observed that the wireless power beam directly
influence the localization performance. With the given FIM to
indicate the SPEB, we formulate beamforming problems for
WPCNs as the optimal cooperative localization problem.

Considering the sum of transmitter power is constrained, the
minimum SPEB is to decide how to design the wireless power
wave forms to achieve the minimum location estimation error:

(P1) :min
x

P(θ)

s.t. Ex(xx
T ) ≤ Pc

(17)

wherePc is the sum power constraint. Here, we assume that
all the nodes, including the anchors and the target nodes, can
receive effective signals when the system is deployed. Thus,
the minimum received energy constraint is ignored. It is clearly
observed thatP1 is complicated to expand and it is also a
monotonically nonincreasing function ofJ(θ). Then, we apply
the following propositions to relax the objectives:
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J(θ) =




JA(p1) +
∑

m 6=1 C1,m −C1,2 · · · −C1,NT

−C1,2 JA(p2) +
∑
m 6=2 C2,m· · · −C2,NT

...
...

. . .
...

−C1,NT
−C2,NT

· · ·JA(pNT
) +

∑
m 6=NT

CNT ,m




. (12)

Proposition 2. The SPEB satisfies thatP(θ) ≥ 4N2
T

1
tr{J(θ)} .

The ” = ” holds if and only ifτ1 = τ2 = . . . = τ2NT
, where

τ1, τ2, . . . , τ2NT
are the eigenvalues ofJ(θ).

Proof. Refer to Appendix B for the detailed derivation.

Using Proposition 2,P1 can be relaxed to the maximum
tr{J(θ)} problem:

(P∗
1) :max

x
tr{J(θ)}

s.t. Ex(xx
T ) ≤ Pc

(18)

wheretr{J(θ)} is derived according to (56) in Appendix B:

tr{J(θ)} = xT (GT
A

NT∑

i=1

ΛiGA+G
T
C(

NT∑

i=1

Γi+Ξ)GC)x (19)

andΛi, Γi andΞ are derived in (57), (60) and (58).

B. Close-form Solution

The above objective is a typical quadratically constrained
quadratical programming (QCQP). One feasible solution is to
use Lagrangian relaxation and Lagrangian multiplier method
to approximate the optimal value. Here we defineΨ =
GT
A

∑NT

i=1 ΛiGA+GT
C(
∑NT

i=1 Γi+Ξ)GC , and it is clear that
Ψ is a positive defined matrix due to the nature of FIM. Then,
we define the multiplierµ > 0, and construct the Lagrangian
function ofP∗

1 as follows:

F1(x, µ) = −xTΨx− µ(Pc − xTx) (20)

where we convert the objectivemax
x

tr{J(θ)} into

min
x

−tr{J(θ)}. Then, the Karush-Kuhn-Tucker (KKT)
conditions are attained:

∂F1(x, µ)

∂x
= −Ψx+ µxTx = 0 (21)

Sinceµ 6= 0, we have:

Ψx = µx. (22)

According to the definition of matrix eigenvalue, it is obvious
that µ is one of the eigenvalues for matrixΨ, and x is
the corresponding eigenvector. SinceΨ is a positive semi-
definite Hermitian matrix, it can be eigen-decomposed to
Ψ = QΦQT , whereQ is the unitary matrix andΦ is a
diagonal matrix of the eigenvalues ofΨ. Then, definex́ =
QTx, andς1, . . . , ςK are the real and non-negative eigenvalues
of Ψ. Then, we havexTΨx =

∑
k ςk|x́k|2, where x́ =

(0, . . . , 0, x́k, 0, . . . , 0), and |x́k|2 = 1. In this case, the max-
imal xTΨx is attained withςmax = argmax{ς1, . . . , ςK}.
Thus, the optimal solutionxopt is proportional to the corre-
sponding column ofQ. Considering the power constraintPc,
the optimalxopt = c · maxeig(Ψ), wherec is an adapting
co-efficient to make the sum of signal power approachPc.

C. Energy Efficiency Optimization

The energy efficiency problem in cooperative localization
of WPCN is to achieve the minimum Tx power of E-AP with
given localization requirements constraints. The localization
requirements mean that the estimation error of each node
should not exceed a typical threshold, which is defined as
ρth. Thus, the energy efficiency problem is expressed as:

(P2) :min
x

Ex(xx
T )

s.t. P(θ) ≤ NTρth
(23)

where the localization should satisfy the average localization
requirements. Similar toP1, we can relaxP2 according to
Proposition 2:

(P∗
2) :min

x
Ex(xx

T )

s.t. xT (GT
A

NT∑

i=1

ΛiGA+G
T
C(

NT∑

i=1

Γi+Ξ)GC)x≥
4NT

ρth

(24)

However,P∗
2 cannot provide a close form solution, since it

may not be always convex. Thus, we employ the SDP to relax
such problem. Firstly, letX = xTx and it is obvious that
rank(X) = 1. ConsiderxxT = tr(X) andxTΩx = tr(QX),
whereΩ indicate any symmetric matrix, thenP∗

2 is equivalent
to:

(P̃∗
2) :min

X

tr(X)

s.t. tr((GT
A

NT∑

i=1

ΛiGA+G
T
C(

NT∑

i=1

Γi+Ξ)GC)X)≥
4NT

ρth

X ≥ 0
(25)

which is a typical SDP problem and can be solved by many
efficient tools, e.g., CVX. WhenX is attained, we haveX =
λ0q0q

T
0 , whereλ0 is the eigenvalue of rank one matrix andq0

is the corresponding eigenvector. Then, the feasible solution
of x is x∗ =

√
λ0q0.

D. Calibrations

Note that using Proposition 2 to solve(P̃∗
2) can only meet

a loose bound of the localization requirement, since several
relaxations are employed. Thus, the localization requirement
constraints are not met even if the optimal solutions are
attained. However, such loose bound can be adapted into a
tight bound by introducing a coefficientc0 to 4NT

ρth
, which

means that we can set a value during the computation to force
the relaxed constraints strictly approach the real localization
requirements. Therefore, we employ a self-calibration method

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on March 24,2021 at 03:11:06 UTC from IEEE Xplore.  Restrictions apply. 

wu huaming

wu huaming



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3068284, IEEE Internet of
Things Journal

6

and divide the SDP solutions into two steps. In the first step,
we setc0 = 1, and turn(P̃∗

2) as follows:

(P̃∗
2−c) :min

X

tr(X)

s.t. tr((GT
A

NT∑

i=1

ΛiGA+G
T
C(

NT∑

i=1

Γi+Ξ)GC)X)≥
c0

ρthNT

X ≥ 0
(26)

where we change4NT

ρth
into c0

ρthNT
in order to simplify

the further calibration and approach the real localization
requirements. When the optimal solutionx∗ is attained, we
substitutex∗ into (11). Then, we attain a real trace of FIM
ρ̃ = J−1(θ|x∗) based onx∗, and we setc0 = ρ̃

ρthNT
. The

final optimal solution is attained when the SDP ofP̃
∗
2−c is

executed again with newc0, and the localization requirements
are met as well.

V. SPATIAL RECURSIVE FORMULATIONS FORSINGLE

TARGET

A. Spatial Recursive Optimization

When theNT +1th node joins the network, the other nodes
will send the ranging signals to help this node attain its initial
location. However, the ranging signals for the otherNT node
localizations are not exploited. Then, we define the whole
estimated vector asθs = [pTNT+1 pT1 pT2 . . . pTNT

]T =
[pTNT+1 θT ]T . The FIM is formulated as (28) and using Shur
complement, we have (29) on top of the next page where:
{
CNT+1,i = Ci,NT+1 = (λNT+1,i + λi,NT+1)J(φNT +1,i)

MNT+1 = [−CNT+1,1 −CNT+1,2 . . . −CNT+1,NT
]

(27)
andINT×NT

is the identical matrix withNT×NT dimensions,
and⊗ is the Kronecker product.

However, using such FIM of optimization will lead to higher
order programming, which is too complicated to solve. Thus,
we derive a new upper bound ofJ(pNT+1) by ignoring some
parts ofJ(pNT+1), which is

JU (pNT+1) = JA(pNT+1) +
∑

i6=NT+1

CNT+1,i (30)

Using the elementary algebra, we obtain the inequality:

J(θs) � JU (θs) (31)

Then, we attain the lower boundP(pNT+1) ≥ PL(pNT+1) =
tr(J−1

U (pNT+1)). Thus, we can use the minimumPL(pNT+1)
to indicate the lower bound ofP(pNT+1). In this case, we just
need to attain the maximumtr(JU (pNT+1)).

Using Proposition 2, the spatial recursive beamforming is
formulated as:

(P∗
3) :max

x
tr{JU (pNT+1)}

s.t. Ex(xx
T ) ≤ Pc

(32)

which is also QCQP. Similar toP∗
1, tr{JU (pNT+1)} is a

simplified form according to (19):

tr{JU (pNT +1)} = x
T (GT

AΛNT +1GA+G
T
C(

NT∑

i=1

Γi)GC)x (33)

Similarly, we can construct KKT conditions just like (21), and
use eigenvalue decomposition to attain the optimal vectorx∗.

B. Energy Efficiency Problem

For energy efficiency purpose, we still useJU (pNT+1)
to relax J(pNT+1). Although such relaxation is not tight,
the computation overhead is efficiently reduced. Then, using
Proposition 2, the objective is expressed as:

(P∗
4) :min

x
Ex(xx

T )

s.t. tr{JU (pNT+1)} ≥ 4

ρth

(34)

Similar toP∗
2, we employX = xTx to relaxP∗

4 and we attain
the SDP formulations:

(P̃∗
4) :min

X

tr(X)

s.t. tr{JU (pNT+1)} ≥ 4

ρth
X ≥ 0

(35)

which can also be solved by CVX.

C. Calibration
Note thatP̃∗

4 still attains a loose bound of the localization
requirements. In this case, a two-step calibration method which
is similar to P

∗
2 is developed. In this calibration, we also

employ a coefficientc0 to adapt the constraints. The first step
is to setc0 = 1 and we obtain:

(P̃∗
4−c) :min

X

tr(X)

s.t. tr{JU (pNT +1)} ≥
c0

ρth

X ≥ 0

(36)

Then, the initial optimal solutionx∗ is attained. In the second
step, we usex∗ to derive the actual trace ofJ(pNT +1), and
computeρ̃ = J−1(pNT+1). Then, we still setc0 = ρ̃

ρth
, and

use SDP to attain the final solution ofP̃∗
4−c.

VI. CHANNEL UNCERTAINTY

In the real applications, the channel states are time-varying
and interfered by the noise. Thus, the beamforming schemes
should also consider the channel uncertainty problem. Then,
the optimizations are re-formulated accordingly and the impact
of the uncertainty should be analyzed.

Considering that thek-th antenna sends the pilot signal with
power qk to noden, noden will estimate the channel state
and feedback to the E-AP. The minimum mean square error
(MMSE) of gkn is denoted bỹgkn, and the estimation error
is ekn , g̃kn − gkn, which is a random variables with zero
mean and variance [46]:

σ2
kn =

βkn
1 + βknLqk/σ2

(37)

where βkn is the path loss from antennak to noden, L
indicates the symbol length andσ2 is the background noise
variance. Considering the estimation error is i.i.d, it is easily
attained||gkn||2 = ||g̃kn||2 + σ2

kn, andE(gkngkm) = g̃kng̃km.
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J(θs) =




JA(pNT+1) +
∑

i6=NT+1 CNT+1,i −CNT+1,1 . . . −CNT+1,NT

−C1,NT+1 JA(p1) +
∑
i6=1 C1,i. . . −C1,NT

...
...

. . .
...

−CNT ,NT+1 −CNT ,1 . . .JA(pNT
) +

∑
i6=NT

CNT ,i




(28)

J(pNT+1) = JA(pNT+1) +
∑

i6=NT+1

CNT+1,i −MNT+1(J(θ) + INT×NT
⊗MNT+1)

−1MT
NT+1 (29)

Then, we update the received power for noden in (2) with
the channel uncertainty model:

r̃
n
y=x

T




||g̃1n||
2+σ2

1n g̃1ng̃2n . . . g̃1ng̃Kn

g̃2ng̃1n ||g̃2n||
2+σ2

2n . . . g̃2ng̃Kn

...
...

. . .
...

g̃Kng̃1n g̃Kng̃2n . . . ||g̃Kn||
2+σ2

Kn



x

(38)
Statistically,g̃kng̃km is equivalent togkngkm. In this case, the
FIM and the localization estimation accuracy does not only
rely on the channel state but also depends on the estimation
error of the wireless power propagation channel. And the
estimation error mainly influences the diagonal elements in
r̃ny . To simplify the analysis, we mainly use the pilot signal-
to-noise-ratio (SNR) as the main parameter to indicate the
channel uncertainty.

VII. S IMULATION

The proposed schemes are evaluated by extensive simula-
tions. In the simulations, we assume that all nodes including
10 anchors and several targets are randomly deployed in a
500 × 500 m2 playing field. The antenna array of E-AP can
be deployed in the center of the playing field or randomly
deployed throughout the whole playing field. The signal carrier
frequency is 2.4 GHz and the maximum allowed transmitted
power of E-AP is 30 dBm (1 W). In addition, the received
power of each node for communications and harvesting energy
is -90 dBm, and the power of the background noise is -
130 dBm. We assume a free space propagation model of the
wireless power transfer channel, and the NLOS ranging is not
considered in FIM calculation [3].

We use SPEB to indicate the localization accuracy and use
the total transmitted power of E-AP as the energy efficiency
metric. Since our schemes are to relax the trace of FIM and
employ quadratic programming or SDP to solve the optimiza-
tion problems, our schemes are indicated as Tr-QP or Tr-SDP.
The proposed schemes are compared with equally combining
scheme (EC), which allocates the transmitted power equally
and the same wave form on each antenna, and SDP based
power allocation schemes in [14], [39], [40].

To transfer the power allocation from WCN to W-
PCN, we consider the signals from E-AP is orthogonal
E(
∑

k 6=l xkxl) = 0. Then, rny = E(
∑K

k=1 ||gkn||2||xk||2).
Define the channel power gain vector for the noden ḡn =
[E(||g1n||2), E(||g1n||2), . . . , E(||gKn||2)]T , and definerx =

[r1x, r2x, . . . , rKx ] as the transmitter power vector ofx, where
rkx = E(||xk||2), k ∈ {1, 2, . . . , K}. Then, we have:

rny = ḡTn rx (39)

It is clearly observed thatrny is determined by the power
allocation ofrx. Then, we re-formulateJ(θ|rx) and substitute
it into J(θ) in the problem formulations. And we also employ
rx to indicateEx(xx

T ). In this case, the energy beamforming
problem is converted into a power allocation problem. For SDP
solutions, one optional method is to employ an auxiliary co-
variance matrixZ [39], which satisfies thatJ−1(θ|rx) � Z−1.
Using linear matrix inequality (LMI), we have:

(
J(θ|rx) I

I Z

)
� 0 (40)

whereI is the identical matrix with the same dimension of
J(θ|rx) andZ. Then, we can useZ either as the objective
or localization requirement, which is a typical SDP problem.
However, such method is over relaxed and far from the
actual FIM value especially in the cooperative localization
framework. Thus, we still employ the trace ofJ(θ|rx) and
re-formulate the objectives, which are still SDP problems.

A. Full Connected Network Evaluation

Firstly, the beamforming strategies for cooperative localiza-
tion of WPCN are evaluated in a sequential way, in which
the nodes harvest the energy from beamformed microwaves
and exchange signals during each time slots, and then fuse
the previous FIM to derive the current SPEBs. The averaged
SPEBs of all the schemes are illustrated in Fig. 2. It is clearly
observed that the estimation error of Tr-QP is much lower than
the other two. Compare with SDP, Tr-QP can effectively use
the spatial correlations to increase the performance. While the
results of SDP only allocate the major power on one antenna,
which ignores the benefits of the correlated channels. In this
case, SDP is even slightly worse than EC. However, with the
previous information, the SPEBs of three schemes gradually
converge to a quite low value.

Then, we increase the cooperative nodes from 10 to 100.
As illustrated in Fig. 3, the SPEBs of all three schemes drop
down with more nodes participating in the localization. The Tr-
QP outperforms other schemes even with only 10 cooperative
nodes, and the related SPEB only decreases a limited value
with more cooperative nodes.
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Fig. 2. Sequential Evaluation of SPEB. The SPEB contains the previous
FIM.
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Fig. 3. Cooperative node evaluation. We increase the nodes tocheck whether
it will benefit the localization performance.

Next, we adapt the antennas of E-AP to examine the
impacts for cooperative localizations. In this simulation, we
also evaluate the impacts of both centralized and distributed
antennas of E-APs. For centralized antennas, we assume there
is only one E-AP with a Tx antenna array that is deployed
in the center of the playing field. For distributed antennas,
we assume multiple E-APs randomly deployed in the whole
playing field and each E-AP contains only one antenna. We
adapt the number of antennas from 4 to 64. The SPEBs of
three schemes in both cases are depicted in Fig. 4. For EC
and SDP schemes, the distributed antennas outperform the
centralized antennas. In addition, more antennas can benefit
both schemes. However, the SPEBs of Tr-QP in both cases
are quite similar, and the centralized antenna array is slightly
better than the distributed antennas. Increasing the number of
antennas reduces the SPEBs of Tr-QP but not too much since
the initial values are below 0.1 with only 4 antennas.

Further, we evaluate the power consumptions of our pro-
posed energy efficiency schemes. We compare our SDP based
scheme, which is named by Tr-SDP, with the SDP based power
allocation scheme. The average SPEB requirement is 1m2.
The cooperative node number and the antenna number are
also adapted to evaluate the performance, in which the SPEB
is used to indicate localization accuracy and the total Tx power
(dBm) is the energy efficiency metric. The results are depicted
in Fig. 5. As illustrated in Fig. 5(a) and Fig. 5(b), the total Tx
power of Tr-SDP is lower than SDP. With the participation
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Fig. 4. The SPEBs with different antennas of E-APs. In this simulation, we
consider both centralized and distributed antennas.
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(a) Tx power consumption with different number of coop-
erative nodes.
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(b) Tx power consumption with different number of anten-
nas.

Fig. 5. Energy efficiency evaluation for full connected network.

of more nodes and antennas, the power consumptions are
gradually reduced.

B. Spatial Recursive Evaluation

In the spatial recursive simulation, the nodes join the
network one by one, and we apply the proposed scheme to
attain the optimal SPEB of the new node. The number of
anchors is 10. The power constraint is 30 dBm for optimal
localization problems, and we employ the spatial recursive
form of Tr-QP to solveP∗

3. We also compare our scheme
with SDP and EC for a single node. As indicated in Fig. 6, the
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Fig. 6. The SPEBs for single node evaluation.
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Fig. 7. The Tx power consumptions for single node evaluation.

SPEBs of SDP and EC are decreasing when more nodes join
the network. However, the Tr-QP maintains a low value which
is below 0.2 when the network only contains one node, and
such value is kept even with more nodes joining the network,
which outperforms the other two schemes.

For energy efficiency optimization, the localization require-
ment constraint is 1m2, and we apply Tr-SDP to solvẽP∗

4.
We also compare our scheme with SDP schemes, and the
power consumptions are illustrated in Fig. 7, in which Tr-SDP
consumes less power than SDP and such value even drops with
more nodes.

C. Channel Uncertainty Evaluation

Finally, we introduce the channel uncertainty model into the
simulations to evaluate the impacts. We still use 10 anchors
and 20 nodes, and the simulation parameters are the same
as mentioned before. For channel estimations, the accuracy
mainly relies on the transmitted pilot power and the noise.
Therefore, we employ the pilot SNR to indicate the channel
estimation parameter. Then, we adapt the SNR from -30 dB to
20 dB, and both Tr-QP for optimal localization and Tr-SDP for
energy efficiency are analyzed. In Fig. 8, the SPEB of Tr-QP
with lower SNR is higher than the Tr-QP with ideal channel
information, which demonstrates the degrading localization
accuracy due to the inaccurate channel estimation. When
the SNR is increased, the SEPB with channel uncertainty is
gradually reduced and approaching the ideal case.
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Fig. 8. The SPEB evaluation with channel uncertainty.
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(b) Tx power consumptions.

Fig. 9. Energy efficiency evaluation with channel uncertainty.

Such impacts also lead to the unreliable energy consump-
tions, as illustrated in Fig. 9(a). The SPEB of Tr-SDP with
lower SNR is much higher than the ideal channel case,
which indicates that the localization requirements are not
guaranteed and SPEBs are wrongly derived. And the Tx power
is reduced with higher SPEBs. However, such power reduction
is mainly caused by the unreliable SPEB due to the channel
uncertainty, because the localization requirement constraints
are not bounded any more during the SDP calculations. In
this case, the system consumes less power compared with ideal
case, because it considers the required localization accuracy
is already achieved.
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VIII. C ONCLUSION

In this paper, we analyze the fundamental limits of the
cooperative localization in WPCNs. We formulate the coop-
erative FIM and propose the beamforming schemes to solve
the localization accuracy and energy efficiency optimization
problems. In addition, the spatial recursive form and related
beamforming schemes are also investigated. The simulations
demonstrate that our schemes outperform the power allocation
based SDP methods and equally combining power scheme.
With more nodes and more antennas of E-AP participating,
the localization accuracy is increased. We also observe that
the channel uncertainty affect the localization accuracy and
consume more power to achieve the localization requirements.

APPENDIX A
FIM FOR COOPERATIVE LOCALIZATION IN WPCN

According to (8), the log likelihood function forθ consists
of two parts:

ln f(z|θ) = ln f(zA|θ) + ln f(zC |θ) (41)

For the first partln f(zA|θ), the score function is (42), where
ln f(zAi |pi) =

∑NA

j=1 ln f(zj,i|pi) is the sum log likelihood
for pi based on the observations from anchors.

Due to the independence of the received signals for different
target nodes,∂ ln f(zA

m|pi)
∂pi

= 0,m 6= i, then we have a diagonal
matrix:

UA(θ) =




∂ ln f(zA
1 |p1)

∂p1

. . .

∂ ln f(zA
NT

|pNT
)

∂pNT




(43)

For each∂ ln f(zj,i|pi)
∂pi

, we decompose it according to the chain
rule:

∂ ln f(zj,i|pi)
∂pi

= yj ·
∂hj,i(dj,i)

∂dj,i
· qj,i (44)

whereqj,i = [cosφj,i sinφj,i]
T with φj,i = arctan

pXi −pXj
pYi −pYj

.

Here, we consider a flat fading channel, in which the path loss
follows:

rj,iz = rjy(
fc

4πdj,i
)2βξj,i (45)

whererj,iz indicates the received signal power from anchorj to
targeti, andfc represents the central frequency of the signal.
If the signal noise follows zero-mean Gaussian distribution
with the powerN0, we have:

E(
∂ ln f(zj,i|pi)

∂pi

∂ ln f(zj,i|pi)
∂pi

T

) = rjy
ξj,iβ

2( fc4π )
2β

d2β+2
j,i N0

J(φj,i)

(46)
where J(φj,i) = qj,iq

T
j,i and rjy is attained according to

(2). Then, we employλj,i to indicate the equivalent ranging
coefficient (ERC):

λj,i = Ex(x
TgTj gjx)

ξj,iβ
2( fc4π )

2β

d2β+2
j,i N0

(47)

and we obtainJA(pi):

JA(pi) = E(
∂ ln f(zAi |pi)

∂pi

∂ ln f(zAi |pi)
∂pi

T

) =

NT∑

j=1

λj,iJ(φj,i)

(48)
Then,JA(θ) = diag(JA(p1), . . . ,JA(pNT

)) is attained.
Similarly, we haveUC(θ) = ∇θ ln f(zC |θ) and at-

tain (49) on top of the next page, whereln f(zCi |pi) =∑NT

m=1 ln f(zm,i|pi) is the sum log likelihood forpi based on
the observations sending from all the target nodes to targeti. In
addition, ∂ ln f(zC

m|pi)
∂pi

=
∂ ln f(zi,m|pi)

∂pi
,m 6= i. Then,UC(θ)

is simplified as right side form in (49).

For ∂ ln f(zC
i |pi)

∂pi
, we have similar results toln f(zAi |pi), in

which each∂ ln f(zm,i|pi)
∂pi

,m 6= i:

∂ ln f(zm,i|pi)
∂pi

= ym · ∂hm,i(dm,i)
∂dm,i

· qm,i. (50)

Similarly, ∂ ln f(zi,m|pi)
∂pi

is:

∂ ln f(zi,m|pi)
∂pi

= yi ·
∂hi,m(di,m)

∂di,m
· qi,m (51)

where qi,m = −qm,i. Then, substitute∂ ln f(zi,m|pi)
∂pi

and
∂ ln f(zC

i |pi)
∂pi

into JC(θ) = E(UC(θ)U
T
C(θ)), we have:

JC(θ)=




∑
m6=1C1,m −C1,2 · · · −C1,NT

−C1,2

∑
m6=2 C2,m · · · −C2,NT

...
...

. . .
...

−C1,NT −C2,NT · · ·
∑

m6=NT
CNT ,m




.

(52)
whereCm,i = (λi,m + λm,i)J(φm,i); i 6= m ∈ NT , andλi,m
is:

λm,i = Ex(x
TgTmgmx)

ξm,iβ
2( fc4π )

2β

d2β+2
m,i N0

(53)

Then,J(θ) = JA(θ) + JC(θ).

APPENDIX B
PROOF AND DERIVATION OF TRACES OFJ(θ) AND J−1(θ)

We decomposeJ(θ) as follows:

J(θ) = Uψ




τ1

τ2

. . .

τ2NT




UT
ψ (54)

whereUψ is the eigenvector matrix andτ1, . . . , τNT
are the

corresponding eigenvalues. Then,tr{J(θ)} =
∑2NT

i=1 τi and
P(θ) =

∑2NT

i=1
1
τi

. Consider each eigenvalue is positive in
FIM, we attain the following formulation according to [47]:

2NT∑2NT

i=1
1
τi

≤ 1

2NT

2NT∑

i=1

τi (55)

Then, we obtainP(θ) ≥ 4N2
T

1
tr{J(θ)} .
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UA(θ) = ∇θ ln f(zA|θ) =




∂ ln f(zA
1 |p1)

∂p1

∂ ln f(zA
2 |p1)

∂p1
· · · ∂ ln f(zA

NT
|p1)

∂p1

∂ ln f(zA
1 |p2)

∂p2

∂ ln f(zA
2 |p2)

∂p2
· · · ∂ ln f(zA

NT
|p2)

∂p2

...
...

. . .
...

∂ ln f(zA
1 |pNT

)

∂pNT

∂ ln f(zA
2 |pNT

)

∂pNT

· · ·∂ ln f(zA
NT

|pNT
)

∂pNT




(42)

UC(θ)=




∂ ln f(zC
1 |p1)

∂p1

∂ ln f(zC
2 |p1)

∂p1
· · · ∂ ln f(zC

NT
|p1)

∂p1

∂ ln f(zC
1 |p2)

∂p2

∂ ln f(zC
2 |p2)

∂p2
· · · ∂ ln f(zC

NT
|p2)

∂p2

...
...

. . .
...

∂ ln f(zC
1 |pNT

)

∂pNT

∂ ln f(zC
2 |pNT

)

∂pNT

· · ·∂ ln f(zC
NT

|pNT
)

∂pNT




=




∂ ln f(zC
1 |p1)

∂p1

∂ ln f(z1,2|p1)
∂p1

· · · ∂ ln f(z1,NT
|p1)

∂p1

∂ ln f(z2,1|p2)
∂p2

∂ ln f(zC
2 |p2)

∂p2
· · · ∂ ln f(z2,NT

|p2)

∂p2

...
...

. . .
...

∂ ln f(zNT ,1|pNT
)

∂pNT

∂ ln f(zNT ,2|pNT
)

∂pNT

· · ·∂ ln f(zC
NT

|pNT
)

∂pNT




(49)

For J(θ):

tr{J(θ)} = tr(

NT∑

i=1

JA(pi) +

NT∑

i=1

NT∑

m 6=i

Cm,i)

=

NT∑

i=1

NA∑

j=1

λj,i +

NT∑

i=1

NT∑

m 6=i

(λi,m + λm,i)

= DA +DC

(56)

Substitute (47) intoDA, we attain:

DA = xTGT
A

NT∑

i=1

ΛiGAx (57)

whereΛi = diag(
ξ1,iβ

2( fc
4π

)2β

d
2β+2

1,i N0

, . . . ,
ξNA,iβ

2( fc
4π

)2β

d
2β+2

NA,iN0

). Then, we

substitute (53) intoDC and divideDC =
∑NT

i=1

∑NT

m 6=i λi,m+∑NT

i=1

∑NT

m 6=i λm,i to attain (59) whereΓi is formulated as (60)
andΞ is expressed as:

Ξ = diag(

NT∑

m6=1

ξ1,mβ2( fc
4π

)2β

d
2β+2

1,m N0

, . . . ,

NT∑

m6=NT

ξNT ,mβ2( fc
4π

)2β

d
2β+2

NT ,mN0

) (58)
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