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Abstract
In this paper we consider the semi-classical solutions of a massive Dirac equations in

presence of a critical growth nonlinearity

−i~
3∑

k=1

αk∂kw + aβw + V (x)w = f(|w|)w.

Under a local condition imposed on the potential V , we relate the number of solutions with
the topology of the set where the potential attains its minimum. In the proofs we apply
variational methods, penalization techniques and Ljusternik-Schnirelmann theory.

Mathematics Subject Classifications (2010): 35Q40, 49J35.

Keywords: Dirac equations, Semi-classical states, Multiplicity.

1 Introduction and main result

In these last years, attentions have been drawn to the study of standing wave solutions for the
nonlinear Dirac equation of the form

(1.1) −i~∂tϕ = ic~α · ∇ϕ−mc2βϕ− V (x)ϕ+ g(x, ϕ), (t, x) ∈ R× R3

where ϕ(t, x) ∈ C4 is a spinor function, ~ is a small positive constant which corresponds to the
Plank’s constant, m, c > 0 are constants representing the mass of a electron and the speed of
light, α = (α1, α2, α3) and α · ∇ =

∑3
k=1 αk∂k with α1, α2, α3 and β being the 4× 4 complex

Pauli matrices:

β =

(
I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1, 2, 3,

and

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Moreover, in Eq. (1.1), V is a potential function and g is the nonlinearity modeling some self-
interaction in Quantum electrodynamics. In particle physics, (1.1) models many physical prob-
lems in the self-interacting scalar theories, where the nonlinear function g can be both a poly-
nomial and non-polynomial. Various nonlinearities are considered as possible basis models for
unified field theories, we just refer to [30, 31, 34] for more physical background.
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A solution of the form ϕ(t, x) = exp(−iωt/~)w(x) is called a standing wave. Assume that
g(x, exp(−iθ)ξ) = exp(−iθ)g(x, ξ) for θ ∈ R and ξ ∈ C4, a change of notation (in particular ε
instead of ~) leads to an equation of the form

(1.2) −iεα · ∇w + aβw + V (x)w = g(x,w) w ∈ H1(R3,C4).

This type of particle-like solution does not change its shape as it evolves in time, and thus has a
soliton-like behavior.

It should be pointed out here that, in quantum mechanics, the existence and multiplicity of
solutions to a dynamical equation in terms of an asymptotic representation as the Plank’s constant
tends to zero is of particular importance. To some extent, this corresponds to a deformation of
quantum mechanics and quantum field theory to classical mechanics and classical field theory.
Such deformation is parameterized by the Planck’s constant and, in this deformation, solutions
to dynamical equations are usually referred as semiclassical states. In the case of non-relativistic
quantum field theories, standing wave solutions for the nonlinear Schrödinger equation

−i~∂tψ = ∆ψ − V (x)ψ + f(ψ)

have been in the focus of nonlinear analysis since decades. Particularly, semiclassical states that
concentrate near a critical point of the potential V have been widely investigated ever since the
influential paper [33] by Floer and Weinstein who treated the cubic nonlinearity |ψ|2ψ in one-
dimension. An incomprehensive list of references are [2, 3, 6, 10, 11, 19–22, 36–38], in which
the authors used Lyapunov-Schmidt type methods, penalization and variational techniques to
establish the concentration phenomenon of the semiclassical states for the Schrödinger equations.

Much less is known for the nonlinear Dirac equation (1.1) which arises in relativistic field
theories. So far only a few results are available for the concentration phenomenon of semi-
classical states around a minima x0 of V ; see [26, 27]. Related results, i.e., concentration of
semiclassical states under the influence of nonlinear potentials, can be found for similar equa-
tions in [24–26]. Lyapunov-Schmidt type methods do not seem to be applicable to (1.2) because
even for the homogeneous nonlinearity g(x,w) = |w|p−2w nothing is known about uniqueness
or non-degeneracy of the least energy solution of

(1.3) −iα · ∇w + aβw + V (x0)w = |w|p−2w, w ∈ H1(R3,C4)

which appears as limit equation for (1.2). As for variational methods, a major difference between
nonlinear Schrödinger and Dirac equations is that the Dirac operator is strongly indefinite in
the sense that both the negative and positive parts of the spectrum are unbounded and consist
of essential spectrum. It follows that the quadratic part of the energy functional associated to
(1.2) has no longer a positive sign, moreover, the Morse index and co-index at any critical point
of the energy functional are infinite. It is not clear whether one can develop a penalization
technique to find semiclassical states. And moreover, beyond the existence and concentration
results in [26, 27], it is interesting to ask whether one can obtain a multiplicity of semiclassical
solutions to Eq. (1.2). Very recently, in [40] Wang and Zhang obtained an interesting result in this
direction. By using the symmetric structure of Eq. (1.2), they constructed an infinite sequence of
bound state solutions for small values of ε, particularly, these solutions are of higher topological
type.

In this paper, letting M be a set of local minima of the potential V , we are interested in
the following aspects which have not been dealt with before and is new in the case of Dirac
equations:

(1) to show the multiplicity of semiclassical solutions concentrating around M is influenced
by the topology of the level sets of the potential V in a bounded domain;
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(2) to apply variational methods, concentration-compactness and rescaling techniques to deal
with nonlinearities more general than |w|p−2w, in particular, g(x,w) grows critically as
|w| → ∞.

We mention here that starting from the paper of Bahri and Coron [5], many papers are devoted
to study the effect of the domain topology on the existence and multiplicity of solutions for
semilinear elliptic problems. We refer to [7–9, 12, 16, 17] for related studies for Dirichlet and
Neumann boundary value problems. We also refer to [4, 13–15] for the study of semiclassical
states of Schrödinger equations.

Now, in order to state our results precisely, let us consider the following equation

(1.4) −iεα · ∇w + aβw + V (x)w = f(|w|)w.

Throughout the paper, we assume that the potential V satisfies

(V1) V is locally Hölder continuous and ‖V ‖L∞ < a.

(V2) There exists a bounded domain Λ ⊂ R3 such that

ω := min
Λ
V < min

∂Λ
V.

And we denote M := {x ∈ Λ : V (x) = ω}. For the nonlinear function f , we make the
following assumptions:

(f1) f ∈ C[0,∞) ∩ C1(0,∞), f(0) = 0 and f ′(s) ≥ 0;

(f2) lim
s→∞

f(s)

s
= κ;

(f3) there exist p ∈ (2, 3) such that f(s) ≥ sp−2 + κs for all s ≥ 0;

(f4) there exists θ > 2 such that 0 < θF (s) ≤ f(s)s2 for s > 0, where F (s) =
∫ s

0 f(t)tdt.

Condition (f1) implies that s 7→ f(s)s is superlinear and strictly increasing, an important role
in our approach. If κ > 0 in (f2), then F (s) ∼ κs3 as s → ∞ is of critical growth. This
terminology is befitting because the form domain of the quadratic form associated to the Dirac
operator is H

1
2 (R3,C4). This space embeds into the corresponding Lq-spaces for 2 ≤ q ≤ 3.

And if κ = 0 then the problem is subcritical. (f3) is a technical assumption, and (f4) is the
Ambrosetti-Rabinowitz condition.

Letting catX(A) denote the Lusternick-Schnirelmann category ofA inX for any topological
pair (X,A), our main result can be stated as follows

Theorem 1.1. Suppose (V1) − (V2). There exists κ̄ = κ̄(‖V ‖L∞) > 0 such that if f satisfies
(f1)− (f4) with κ ∈ [0, κ̄) then, letting

Mδ = {x ∈ R3 : dist(x,M) ≤ δ}, for δ > 0

Eq. (1.4) has at least catMδ
(M) solutions wkε , k = 1, . . . , catMδ

(M), for sufficiently small
ε > 0. These solution have the following properties:

(1) for each k, |wkε | possesses a (global) maximum point xkε in Λ such that

lim
ε→0

V (xkε) = ω;

(2) The rescaled function vkε (x) = wkε (εx+ xkε), converges in H1 as ε → 0 to a least energy
solution v : R3 → C4 of

−iα · ∇v + aβv + ωv = f(|v|)v.
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Remark 1.2. (1) In some circumstances, such as M is a finite set, M is smooth compact
submanifold of R3 or M is the boundary of a bounded open set, catMδ

(M) = catM (M)
for small δ > 0. More specifically, if M ∼ S2 (the sphere in R3), then catM (M) = 2.

(2) There is an example showing that Eq. (1.4) has arbitrary large number of solutions. Under
conditions (V1)− (V2), if M = {xn : n ≥ 1} ∪ {x0}, where xn → x0 as n→ +∞, then
for any m ∈ N, there exists δm > 0 such that catMδm

(M) ≥ m. Hence it follows from
Theorem 1.1, for small ε > 0, Eq. (1.4) has at least m solutions.

(3) The constant κ̄(‖V ‖L∞) > 0 will be explicitly defined; see (5.3). It satisfies κ̄(‖V ‖L∞)→
c(p) > 0 as ‖V ‖L∞ → 0. Thus we do allow critical growth f(s)s ∼ κs2 but the factor κ
cannot be too large. It is an interesting open problem whether this restriction on κ can be
removed.

The proof will be done by variational techniques. Since we have no information on the poten-
tial V at infinity, we employ the truncation trick explored in [20]. It consists in making a suitable
modification on the nonlinearity f , solving a modified problem and then check that, for ε small
enough, the solutions of the modified problem are indeed solutions of the original one. We em-
phasize here that, in the usual concept, the truncation tricks are well adapted for the study of the
subcritical variational problems, see for instance [10,11,19,21,22] for the studies of Schrödinger
equations. However, due the strongly indefinite character of the Dirac operator, we note that it
is not easy to obtain compactness in view of the critical growth of the nonlinearity even for the
modified problem. To overcome this, we will need a delicate analysis for the limit problem (1.3)
on the ground state energy level and use a version of the concentration-compactness principle
originated from Lions [35] to control the factor κ > 0 in the critical growth. As a matter of fact,
the truncation trick we adapt here is essentially depending on the factor κ as we will see in the
Remark 4.3 in Section 4.

To obtain multiple solutions of the modified problem, the main ingredient is to make precise-
ly comparisons between the category of some sublevel sets of the modified functional and the
category of the set M . This kind of argument for the Schrödinger equations has been appeared
in [8, 13–15], where subcritical problems were considered.

The remainder part of the paper is organized as follows. In Sect. 2 we first present the
variational settings of the problem, both in the original and in the extended variables, and we
truncate the original problem. For the sake of completeness, we collect some useful results
which are needed in our proof. In Sect. 3, we investigate the associated autonomous problem.
This study allow us to show the role which the critical factor κ plays in the ground state energy
level. And the Palais-Smale condition, which does not hold in general case since we allow critical
growth, will then be studied in Sect. 4. Next, in Sect. 5, we provide the main components of our
proof. The first point is we introduce the min-max scheme that can be applied to the truncated
problem. And as the second point, we construct two maps in terms of the truncated problem such
that their composition is homotopically equivalent to the embedding j : M → Mδ. Finally, the
main results are proved in Sect. 6..

2 Notations, known facts and main ingredients

Let u(x) = w(εx) and Vε(x) = V (εx), it is clear to see that (1.4) is equivalent to

(2.1) −iα · ∇u+ aβu+ Vε(x)u = f(|u|)u.

We shall in the sequel focus on this equivalent problem.
In what follows, by | · |q we denote the usual Lq-norm, and (·, ·)2 the usual L2-inner product.

Let L = −iα · ∇ + aβ denote the self-adjoint operator on L2 := L2(R3,C4) with domain
D(L ) = H1 := H1(R3,C4). It is well known that σ(L ) = σc(L ) = R \ (−a, a) where σ(·)
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and σc(·) denote the spectrum and the continuous spectrum. Thus the space L2 possesses the
orthogonal decomposition:

(2.2) L2 = L+ ⊕ L−, u = u+ + u−

so that L is positive definite (resp. negative definite) in L+ (resp. L−). Let E := D(|L |1/2) =
H1/2 be equipped with the inner product

〈u, v〉 = <(|L |1/2u, |L |1/2v)2

and the induced norm ‖u‖ = 〈u, u〉1/2, where |L | and |L |1/2 denote respectively the absolute
value of L and the square root of |L |. Since σ(L ) = R \ (−a, a), one has

(2.3) a|u|22 ≤ ‖u‖2 for all u ∈ E.

Note that this norm is equivalent to the usual H1/2-norm, hence E embeds continuously into Lq

for all q ∈ [2, 3] and compactly into Lqloc for all q ∈ [1, 3).
It is clear that E possesses the following decomposition

(2.4) E = E+ ⊕ E− with E± = E ∩ L±,

orthogonal with respect to both (·, ·)2 and 〈·, ·〉 inner products. And remarkably, this decomposi-
tion of E induces also a natural decomposition of Lq for every q ∈ (1,+∞):

Proposition 2.1 (see [27]). Let E+ ⊕ E− be the decomposition of E according to the positive
and negative part of σ(L ). Then, set E±q := E± ∩ Lq for q ∈ (1,∞), there holds

Lq = clq E
+
q ⊕ clq E

−
q

with clq denoting the closure in Lq. More precisely, there exists dq > 0 for every q ∈ (1,∞)
such that

dq|u±|q ≤ |u|q for all u ∈ E ∩ Lq.

Remark 2.2. It is of great importance for the projections fromH1/2 := E = E+⊕E− onto E+

(or E−) to be continuous in the Lq’s and not only in H1/2. This is not the case for every direct
sum in H1/2. In fact, the proof of Proposition 2.1 implies on the splitting of Lq’s that: For every
q ∈ (1,∞), Lq can be split into topologically direct sum of two (infinite dimensional) subspaces
which, accordingly, are the positive and negative projected spaces of the Dirac operator L .

In what follows, we define the energy functional

Φ̃ε(u) =
1

2

∫
R3

L u · u+
1

2

∫
R3

Vε(x)|u|2 −
∫
R3

F (|u|)

=
1

2
(‖u+‖2 − ‖u−‖2) +

1

2

∫
Vε(x)|u|2 −Ψ(u)

for u = u+ + u− ∈ E. Standard arguments show that, under our assumptions, Φ̃ε ∈ C2(E,R)
and critical point of Φ̃ε is a (weak) solution to (2.1).

To establish the multiplicity of solutions, we will adapt for our case an argument explored
by the penalization method introduced by Del Pino and Felmer [20]. To this end, we need to fix
some notations.

We first let δ0 ∈
(
0, a−|V |∞2

]
and consider f̃ ∈ C1(0,∞) such that

(2.5)
d

ds

(
f̃(s)s

)
= min

{
f ′(s)s+ f(s), δ0

}
.
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Then we introduce

(2.6) g(x, s) = χΛ(x)f(s) + (1− χΛ(x))f̃(s) ,

and the corresponding energy functional

Φε(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+

1

2

∫
R3

Vε(x)|u|2 −Ψε(u) ,

where χΛ denotes the characteristic function of Λ, Ψε(u) :=
∫
R3 G(εx, |u|) dx and G(x, s) =∫ s

0 g(x, t)t dt. One should keep in mind here that Λ has to be rescaled when we consider the
modified rescaled equation (2.1). It is well-known that such truncation trick will be helpful in
both bringing compactness to the problem and locating the maximum points of the solutions,
see [20, 21] and [27] for subcritical problems. Since we address here the critical growth, we
remark that, in order to recover the compactness, δ0 should be chosen even smaller and this will
be seen in the proof of Proposition 4.1 where a implicit upper bound is established accordingly to
the critical fact κ: if κ = 0, then δ0 ≤ a−|V |∞

2 is enough; if κ > 0, then δ0 needs to be properly
smaller.

It is elementary to check that (f1) and (f3) implies that g is a Carathéodory function and it
satisfies

(g1) gs(x, s) exists everywhere, g(x, s)s = o(s) uniformly in x as s→ 0;

(g2) 0 ≤ g(x, s)s ≤ f(s)s for all x;

(g3) 0 < 2G(x, s) ≤ g(x, s)s2 ≤ δ0s
2 for all x 6∈ Λ and s > 0;

(g4) g(x, s) ≥ sp−2 + κs for all x ∈ Λ and s > 0;

(g5) d
ds

(
g(x, s)s

)
≥ 0 for all x and s > 0;

(g6) Ĝ(x, s)→∞ as s→∞ uniformly in x.

Here we used the notation Ĝ(x, s) = 1
2g(x, s)s2 −G(x, s).

In what follows, we shall collect some properties of Φε when the assumptions on V and f
hold. First, similar as that in [27], we give the following geometric behaviors of Φε.

Lemma 2.3. For c ≥ 0, any (P.S.)c-sequence for Φε is bounded independent of ε > 0.

Proof. We sketch the proof as follows. Let {un} be such that

Φε(un) = c+ on(1) and Φ′ε(un) = on(1) as n→∞.

Then we have

(2.7)
c+ on(1) = Φε(un)− 1

2
Φε(un)[un] =

∫
R3

Ĝ(εx, |un|)

≥
∫

Λε

1

2
f(|un|)|un|2 − F (|un|)

and

(2.8)
on(‖un‖) = Φε(un)[u+

n − u−n ]

= ‖un‖2 + <
∫
R3

Vε(x)un · (u+
n − u−n )−<

∫
R3

g(εx, |un|)un · (u+
n − u−n ).

6



By (g3), we deduce from (2.8) that

(2.9)
(

1− |V |∞ + δ0

a

)
‖un‖2 ≤

∫
Λε

f(|un|)un · (u+
n − u−n ) + on(‖un‖).

And by (f1) and (f2) we have
(
f(s)s

) 3
2 ≤ Cf(s)s2 for some C > 0, and hence it follows from

(f4) and (2.7)-(2.9) that(
1− |V |∞ + δ0

a

)
‖un‖2 ≤

(∫
Λε

∣∣f(|un|)un
∣∣ 32) 2

3 |u+
n − u−n |3 + on(‖un‖)

≤
(

2Cθ(c+ on(1))

θ − 2

) 2
3

‖un‖+ on(‖un‖)

which implies the boundedness. Moreover, we can see from the above inequalities that un → 0
in E if and only of c = 0.

In the sequel, let Kε :=
{
u ∈ E \ {0} : Φ′ε(u) = 0

}
be the critical set of Φε, using the same

iterative argument of [29, Proposition 3.2], we obtain the following

Lemma 2.4. If u ∈ Kε with |Φε(u)| ≤ C. Then, for any q ≥ 2, u ∈ W 1,q(R3,C4) with
‖u‖W 1,q ≤ Cq, where Cq depends only on C and q.

In order to describe further the critical values, let us recall some known facts on a Lyapunov-
Schmidt type reduction for Φε. Such reduction technique depends on the convexity of the non-
linearities, specifically, it requires that the second order derivative of Φε is negative definite on
E−. And by the anti-coercion and concavity properties of Φε|E− , we can define `ε : E+ → E−

to be the bounded reduction map correspondingly such that, for any u ∈ E+,

Φε

(
u+ `ε(u)

)
= max

v∈E−
Φε(u+ v).

And denote Iε(u) = Φε

(
u+ `ε(u)

)
, we shall call (`ε, Iε) : E+ ×E+ → E− ×R the reduction

couple associated to Φε on E+ (for details we refer to [1, 27]). Then, it is all clear that Iε ∈
C2(E+,R) and critical points of Iε and Φε are in one-to-one correspondence via the injective
map u 7→ u+ `ε(u) from E+ to E.

Now, on E+, let us consider the functional Iε.

Lemma 2.5. For small ε > 0, Iε has the mountain pass structure:

(1) Iε(0) = 0 and there are positive constants r, τ > 0 such that Iε |S+
r
≥ τ .

(2) There exist e0 ∈ E+ with ‖e0‖ > r independent of ε > 0 such that Iε(e0) < 0.

Moreover, we have

Lemma 2.6. For all ε > 0, let

Nε =
{
u ∈ E+ \ {0} : I ′ε(u)[u] = 0

}
.

Then Nε is a C1 manifold, and there exist θ, µ > 0 both independent of ε such that for any
u ∈ Nε

‖u‖ ≥ θ and Iε(u) ≥ µ;

Moreover, critical points of Iε constrained on Nε are free critical points of Iε in E+.
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Remark 2.7. In general, letting u ∈ E+ \{0}, we find there exists at most one nontrivial critical
point tε = tε(u) > 0 which realizes the maximum of the function t 7→ Iε(tu). It can be also
seen, that Nε can be rewritten as

Nε =
{
tε(u)u : u ∈ E+ \ {0}, tε(u) <∞

}
.

It is worth pointing out that the set Nε is slightly different from the usual concept of the Nehari
manifold associated to the reduced functional Iε. In fact, Nε is no longer expected to be home-
omorphic to the sphere S+ := {u ∈ E+ : ‖u‖ = 1} due to the truncated nonlinear part is not
superlinear at infinity for certain directions. The details of the above lemmas can be found in
relevant material from [27], and we omit it. A general discussion of the properties of Nε in an
abstract setting can be found in [28, Section 4]

Lastly, let us remind the definition of the Ljusternik-Schnirelman category and a classical
result of the related critical point theory.

Definition 2.8. LetX be a topological space and let Y 6= ∅ be a closed subset ofX . The category
of Y in X , catX(Y ), is the smallest integer n such that

Y ⊂
n⋃
1

Ak

where for each k = 1, . . . , n, Ak is a closed set contractible in X . If such a integer does not
exist, then catX(Y ) = +∞. And set catX(∅) = 0.

In this context, the category of X in itself, catX(X), is simply denoted by cat(X).

Theorem 2.9 (see [32]). Let W be a complete C1 manifold and let Φ ∈ C1(W,R) be bounded
from below onW and satisfying the Palais-Smale compactness condition. Denoted by, for c ∈ R,

Φc =
{
u ∈W : Φ(u) ≤ c

}
Then Φ has at least cat(Φc) distinct critical points in Φc.

3 Variational framework for superlinear problems

In this section we establish some preliminary results which are needed for the proof of our main
theorems. Given ω ∈ (−a, a) and κ ≥ 0, we consider the equation

(3.1) L u+ ωu = |u|p−2u+ κ|u|u u ∈ E = H
1
2 (R3,C4)

and the associated energy functional

Φ(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+
ω

2
|u|22 −

1

p
|u|pp −

κ

3
|u|33 on E = E+ ⊕ E−.

And denoted by (`, I) the reduction couple for Φ and set N = {u ∈ E+ \ {0} : I ′(u)[u] = 0}.
Then we have N is a smooth manifold of codimension 1 in E+, and N is diffeomorphic to S+

by a C1 diffeomorphism. Particularly, the function t 7→ I(tu) attains its unique critical point
t = t(u) > 0 for each u ∈ E+ \ {0}, and t : S+ → R is a C1 function. If denoted by

γ(ω, κ) := inf
w∈E+\{0}

sup
u∈Rw⊕E−

Φ(u),

it can be also seen that γ(ω, κ) = infN I > 0.
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Proposition 3.1. Set ω∗ = min{ω, 0}, then γ(ω, κ) is attained provided that

(3.2)
( a2

a2 − ω2
∗

) 3
2 · κ2 · γ(ω, κ) <

S
3
2

6
,

where S denotes the best Sobolev constant for the embedding H1(R3,C4) ↪→ L6(R3,C4).

Before proving this proposition, we begin with some preliminary materials. Let us first con-
sider the following functional

Fω : E \ {0} → R, z 7→ ‖z
+‖2 − ‖z−‖2 + ω|z|22

|z|23
,

and the minimax scheme
Tω = inf

u∈E+\{0}
sup
v∈E−

Fω(u+ v).

We remark that S|u|26 ≤ |∇u|22, and if denote by F : L2 → L2 the Fourier transform, there
holds ∫

R3 |ξ|2|Fu(ξ)|2 dξ
|u|26

=
|F∇u|22
|u|26

=
|∇u|22
|u|26

≥ S, ∀u ∈ H1(R3,C4).

Then, by virtue of Calderón-Lions interpolation theorem, we have∫
R3 |ξ||Fu(ξ)|2 dξ

|u|23
≥ S

1
2 , ∀u ∈ H

1
2 (R3,C4).

It follows that, in the Fourier domain, we have ‖u‖2 =
∫
R3(a2 + |ξ|2)

1
2 |Fu(ξ)|2 dξ. And hence,

we have for any u ∈ E+ \ {0}

sup
v∈E−

Fω(u+ v) ≥ Fω(u) =
‖u‖2 + ω|u|22
|u|23

=

∫
R3 [(a2 + |ξ|2)

1
2 + ω]|Fu(ξ)|2 dξ
|u|23

.

Taking into account that

inf
|ξ|>0

(a2 + |ξ|2)
1
2 + ω

|ξ|
=


1 if ω ≥ 0,(a2 − ω2

a2

) 1
2 if ω < 0,

we have

(3.3) Tω ≥ inf
u∈E+\{0}

Fω(u) ≥
(a2 − ω2

∗
a2

) 1
2
S

1
2 with ω∗ = min{ω, 0}.

Next, let us consider the equation

(3.4) L u+ ωu = |u|u on R3

and the corresponding functional

Φ̂(u) =
1

2

(
‖u+‖2 − ‖u−‖2

)
+
ω

2
|u|22 −

1

3
|u|33 on E = E+ ⊕ E−.

Denoted by (ˆ̀, Î) the reduction couple for Φ̂ and set N̂ = {u ∈ E+ \ {0} : Î ′(u)[u] = 0}. It
would be also standard to see that γ̂ω := infN̂ Î > 0, and in particular, we have

Lemma 3.2. Tω = (6γ̂ω)
1
3 .

9



Proof. We sketch the proof as follows: Let u ∈ E+ \ {0} be fixed, and set πu(·) = Fω(u + ·),
then elementary calculation shows that for v ∈ E− such that π′u(v)[w] = 0 for all w ∈ E− there
holds π′′u(v)[w,w] < 0. Hence, πu has a unique critical point in E− which realize its maximum
(if there exists).

For any u ∈ N̂ , we have ‖u‖2 − ‖ˆ̀(u)‖2 + ω|u + ˆ̀(u)|22 − |u + ˆ̀(u)|33 = 0, and hence
πu(ˆ̀(u)) = |u+ ˆ̀(u)|3. Moreover, it is standard to check that π′u(ˆ̀(u))[w] = 0 for all w ∈ E−.
Thus, we have |u+ ˆ̀(u)|3 = maxv∈E− πu(v).

Now, using the fact Fω(z) = Fω(tz) for all z ∈ E and t > 0, we can conclude

Tω = inf
u∈S+

1

sup
v∈E−

Fω(u+ v) = inf
u∈N̂

sup
v∈E−

Fω(u+ v)

= inf
u∈N̂

|u+ ˆ̀(u)|3 = inf
u∈N̂

(
6Î(u)

) 1
3

= (6γ̂ω)
1
3

as is desired.

Now, we give the proof of the proposition.

Proof of Proposition 3.1. We only give the proof when κ > 0 since it is much easier for the case
κ = 0.

Let {un} ⊂ N be a minimizing sequence for I . It is not difficult to check that {wn =
un + `(un)} is bounded in E. Then by Lion’s result (see [35]) it follows that {wn} is either
vanishing or non-vanishing.

If {wn} is non-vanishing then we are done, so let us assume contrarily that {wn} is vanishing.
Then |wn|s → 0 for all s ∈ (2, 3). And thus we have

κ2Φ(wn) = Φ̂(κwn) + on(1) ≤ Φ̂(ŵn) + on(1) ≤ κ2Φ(wn) + on(1)

where we used the notation ŵn := t̂nun + ˆ̀(t̂nun) with t̂n = t̂(un) be such that t̂nun ∈ N̂ .
By the above observation, and Φ(wn) = I(un) = γ(ω, κ) + on(1), we easily deduce from

Lemma 3.2 and (3.3) that

κ2 · γ(ω, κ) + on(1) = Φ̂(ŵn) ≥ γ̂ω =
T 3
ω

6
≥
(a2 − ω2

∗
a2

) 3
2 S

3
2

6
,

which contradicts to (3.2). Therefore we have {wn} is non-vanishing, and this ends the proof.

Remark 3.3. (1) Given f ∈ C[0,∞) ∩ C1(0,∞) satisfying the hypotheses (f1) − (f4), we
introduce the following equation which corresponds to a limiting case to Eq. (1.4) as
ε→ 0,

(3.5) L u+ ωu = f(|u|)u,

Its solutions are critical points of the functional

Tω(u) :=
1

2

(
‖u+‖2 − ‖u−‖2

)
+
ω

2

∫
|u|2 −Ψ(u)

defined for u = u+ + u− ∈ E = E+ ⊕ E− where Ψ(u) :=
∫
R3 F (|u|) dx. Let us denote

by γω the corresponding ground state critical level for Tω, that is,

(3.6) γω = inf
{
Tω(u) : u 6= 0 and T ′ω(u) = 0

}
.
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Then we have that γω > 0 is achieved provided the factor κ is small. Indeed, by (f3),
we have Tω(u) ≤ Φ(u) for all u ∈ E. Moreover, thanks to the linking structure (see for
example [39]), we have

(3.7) γω = inf
e∈E+\{0}

sup
u∈Re⊕E−

Tω(u) ≤ inf
e∈E+\{0}

sup
u∈Re⊕E−

Φ(u) = γ(ω, κ)

Clearly, by using the fact γ(ω, κ) decreases dependently with respect to κ, we can infer
that γ(ω, κ) ≤ γ(ω, 0) and the condition (3.2) is valid when κ is not large, say

(3.8) κ2 <
(a2 − ω2

∗
a2

) 3
2 S

3
2

6γ(ω, 0)
.

Therefore, by using the invariance by translation of the problem and the concentration-
compactness argument, we see that the conclusion follows. Moreover, it is evident to
check that

Rω := {u ∈ E : Tω(u) = γω, T ′ω(u) = 0, |u(0)| = |u|∞}

is a compact set in E (similar results can be found in [26]).

(2) The upper bound for κ in (3.8) is explicitly defined. We may apply the argument in [27,
Section 3] to deduce that the map (−a, a) → R+, ω 7→ γ(ω, 0) is increasing. And as
a consequence, the upper bound for κ increases as ω approaches 0 from the right side.
For negative ω’s, the picture becomes unclear. Our argument do allow critical growth
f(s)s ∼ κs2 at infinity but the factor κ cannot go too large.

(3) As before, we can introduce the reduction couple (Jω, Jω) for Tω as

Jω : E+ → E−, Tω

(
u+ Jω(u)

)
= max

v∈E−
Tω(u+ v) ,

Jω : E+ → R, Jω = Tω

(
u+ Jω(u)

)
;

and set Mω = {u ∈ E+ \ {0} : J ′ω(u)[u] = 0}. Then we have

γω = inf
u∈E+\{0}

max
t≥0

Jω(tu) = inf
u∈Mω

Jω(u).

4 The Palais-Smale condition

Due to the non-compactness of the Sobolev embedding H
1
2 (R3,C4) ↪→ L3

loc(R3,C4), it is not
difficult to see that Φε does not satisfy the Palais-Smale condition on E = H

1
2 (R3,C4). How-

ever, it will satisfy such compactness condition for certain energy levels. In this section, for
notation convenience, let us denote Λε = {x ∈ R3 : εx ∈ Λ}, gε(x, s) = g(εx, s) and
Gε(x, s) = G(εx, s). Inspired by the priori bound for the factor κ in (3.8), our compactness
result can be stated as follows.

Proposition 4.1. For any ε > 0, if c0 ∈ R satisfies κ2 · c0 <
(
a2−|V |2∞

a2

) 3
2 S

3
2

6 , then there exists a
δ0 > 0 in (2.5) such that the truncated functional Φε satisfies the (P.S.)c-condition on E for all
c ≤ c0.

Proof. Let {wn} ⊂ E be a (P.S.)c-sequence for Φε, where c ≤ c0, i.e.,

κ2 · Φε(wn)→ κ2 · c ≤ κ2 · c0 <
(a2 − |V |2∞

a2

) 3
2 S

3
2

6
, Φ′ε(wn)→ 0 as n→∞.
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By Lemma 2.3, {wn} is bounded and there existsw ∈ E such that, up to a subsequence,wn ⇀ w
in E. Moreover, wn → w strongly in Lqloc for q ∈ [2, 3).

In the following, we will prove that wn → w strongly in E. Let zn = wn − w, then zn ⇀ 0
in E and ‖w±n ‖2 = ‖w±‖2 + ‖z±n ‖2 + on(1). Note that

lim
s→0

f̃(s) = lim
s→∞

f̃(s)

s
= 0

and

lim
s→0

f(s) = lim
s→∞

f(s)

s
− κ = 0,

by the Brezis-Lieb type result (see for example [41]), we have∫
R3

Gε(x, |wn|) =

∫
R3

Gε(x, |w|) +

∫
R3\Λε

Gε(x, |zn|) +
κ

3

∫
Λε

|zn|3 + on(1),

and∫
R3

gε(x, |wn|)|wn|2 =

∫
R3

gε(x, |w|)|w|2 +

∫
R3\Λε

gε(x, |zn|)|zn|2 + κ

∫
Λε

|zn|3 + on(1).

Thus,
Φε(wn) = Φε(w) + Φε(zn) + on(1),

and
Φ′ε(wn)[wn] = Φ′ε(w)[w] + Φ′ε(zn)[zn] + on(1).

Obviously, Φ′ε(w) = 0. Therefore, Φ′ε(zn)[zn] = on(1).

Claim 4.1. Φ′ε(zn)→ 0 as n→∞.

In fact, let ϕ ∈ E with ‖ϕ‖ ≤ 1 be arbitrary and set g1(x, s) = g(x, s)− κχ(x)s.We have

(4.1)

Φ′ε(wn)[ϕ] =
〈
w+
n , ϕ

+
〉
−
〈
w−n , ϕ

−〉+ <
∫
R3

Vε(x)wn · ϕ̄−<
∫
R3

gε(x, |wn|)wn · ϕ̄

=
〈
z+
n + w+, ϕ+

〉
−
〈
z−n + w−, ϕ−

〉
+ <

∫
R3

Vε(x)(zn + w) · ϕ̄

−<
∫
R3

gε(x, |zn + w|)(zn + w) · ϕ̄

=
〈
z+
n , ϕ

+
〉
−
〈
z−n , ϕ

−〉+
〈
w+, ϕ+

〉
−
〈
w−, ϕ−

〉
+ <

∫
R3

Vε(x)zn · ϕ̄+ <
∫
R3

Vε(x)w · ϕ̄

−<
∫
R3

g1
ε(x, |zn|)zn · ϕ̄−<

∫
R3

g1
ε(x, |w|)w · ϕ̄

− κ · <
∫

Λε

|zn + w|(zn + w) · ϕ̄+ on(‖ϕ‖).

Here the estimate for the subcritical part

<
∫
R3

g1
ε(x, |wn|)wn · ϕ̄−<

∫
R3

g1
ε(x, |zn|)zn · ϕ̄−<

∫
R3

g1
ε(x, |w|)w · ϕ̄ = on(‖ϕ‖)

follows from a standard argument in [23, Lemma 7.10]. To estimate the last integral in (4.1), we
set ψn := |zn + w|(zn + w) − |zn|zn − |w|w. It is not difficult to see that |ψn| ≤ 2|zn| · |w|,
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and by the Egorov theorem, there exists Θσ ⊂ Λε such that meas(Λε \ Θσ) < σ and zn → 0
uniformly on Θσ as n→∞. Thus, by the Hölder inequality, we have∫

Λε

|ψn| · |ϕ| =
∫

Θσ

|ψn| · |ϕ|+
∫

Λε\Θσ
|ψn| · |ϕ|

≤
∫

Θσ

|ψn| · |ϕ|+ 2
(∫

Λε\Θσ
|zn|3

) 1
3 ·
(∫

Λε\Θσ
|w|3

) 1
3 ·
(∫

Λε\Θσ
|ϕ|3

) 1
3
.

The first integral in the above estimation converges to 0 as n → ∞ and the remaining integrals
go to 0 uniformly in n as σ → 0. Therefore, we have∫

Λε

|ψn| · |ϕ| = on(‖ϕ‖) as n→∞.

By obtaining this, we can get

Φ′ε(wn)[ϕ] =
〈
z+
n , ϕ

+
〉
−
〈
z−n , ϕ

−〉+
〈
w+, ϕ+

〉
−
〈
w−, ϕ−

〉
+ <

∫
R3

Vε(x)zn · ϕ̄+ <
∫
R3

Vε(x)w · ϕ̄

−<
∫
R3

g1
ε(x, |zn|)zn · ϕ̄−<

∫
R3

g1
ε(x, |w|)w · ϕ̄

− κ · <
∫

Λε

|zn|zn · ϕ̄− κ · <
∫

Λε

|w|w · ϕ̄+ o(‖ϕ‖)

= Φ′ε(zn)[ϕ] + Φ′ε(w)[ϕ] + on(‖ϕ‖)
= Φ′ε(zn)[ϕ] + on(‖ϕ‖)

where we have used the fact Φ′ε(w) = 0. The above estimation shows Φ′ε(zn)→ 0 as n→∞ as
was claimed.

By the above observations, we have Φ′ε(zn)[z+
n − z−n ] = on(1), that is,

‖zn‖2 + <
∫
R3

Vε(x)zn · (z+
n − z−n ) =

∫
R3\Λε

gε(x, |zn|)zn · (z+
n − z−n )

+ κ · <
∫

Λε

|zn|zn · (z+
n − z−n ) + on(1).

Recall the fact that gε(x, s) ≤ δ0 for x ∈ R3 \ Λε, together with the estimate in (3.3), we shall
have

(4.2)
(a2 − (|V |∞ + δ0)2

a2

) 1
2
S

1
2

(∫
Λε

|zn|3
) 2

3 ≤ κ ·
∫

Λε

|zn|3 + on(1).

Without loss of generality, we assume that limn→∞
∫

Λε
|zn|3 = b ≥ 0. If b > 0, we get

κ3 · b+ on(1) = κ3 ·
∫

Λε

|zn|3 ≥
(a2 − (|V |∞ + δ0)2

a2

) 3
2
S

3
2 .

Plainly, if κ = 0, we will have a contradiction. Hence, let us suppose that κ > 0, and due to

Φε(w) =

∫
R3

1

2
gε(x, |w|)|w|2 −Gε(x, |w|) ≥ 0,

we then deduce from the facts Φε(wn) ≥ Φε(zn) + on(1) and Φ′ε(zn)[zn] = on(1) that

(4.3) κ2 · c+ on(1) ≥ κ3

6
· b+ on(1) ≥

(a2 − (|V |∞ + δ0)2

a2

) 3
2 S

3
2

6
+ on(1)
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However, by noticing we have assumed κ2 · c0 <
(
a2−|V |2∞

a2

) 3
2 S

3
2

6 , there is a chance to choose
δ0 small such that(a2 − |V |2∞

a2

) 3
2 S

3
2

6
≥
(a2 − (|V |∞ + δ0)2

a2

) 3
2 S

3
2

6
> κ2 · c0,

then we will also get a contradiction with (4.3). Thus, b = 0, i.e. ‖zn‖ = on(1) and wn → w
strongly in E. The proof is hereby completed.

Recall the reduction couple (`ε, Iε) defined for Φε in Section 2, the following result can be
viewed as an immediate corollary of Proposition 4.1.

Corollary 4.2. Under the assumptions of Proposition 4.1 and fix δ0 properly small, the reduced
functional Iε satisfies (P.S.)c condition for c ≤ c0.

Proof. Let {un} ⊂ E+ be the (P.S.)c sequence for Iε, denote wn = un + `ε(un). From the
definition of `ε, we know that Φ′ε

(
u + `ε(u)

)
[v] = 0 for all u ∈ E+ and v ∈ E−. Hence, we

have {wn} is a (P.S.)c sequence for Φε. Then the conclusion follows.

Remark 4.3. Thanks to Lemma 2.5, we can define

cε = inf
ν∈Γε

max
t∈[0,1]

Iε
(
ν(t)

)
,

where Γε = {ν(t) ∈ C
(
[0, 1], E+

)
: ν(0) = 0, Iε

(
ν(1)

)
< 0}. Particularly, we have the

following characterizations (see an argument in [27, Lemma 3.8]):

(4.4) cε = inf
u∈E+\{0}

max
t≥0

Iε(tu) = inf
u∈Nε

Iε(u) = inf
w∈E+\{0}

sup
u∈Rw⊕E−

Φε(u).

Plainly, if we show that lim sup
ε→0

cε < c0 for a proper c0 > 0, then according to Proposition 4.1

and Corollary 4.2 we can fix some δ0 > 0 in the truncation of f in (2.5) and set an upper bound
for κ as

κ <
(a2 − |V |2∞

a2

) 3
4
(S 3

2

6c0

) 1
2

such that Φε (resp. Iε) satisfies the Palais-Smale condition at the level cε as ε goes to zero.

5 Construction of a homotopy

In this section, we introduce two maps φε : M → N
γω+σ
ε and ζε : N

γω+σ
ε →Mδ, where

N
γω+σ
ε :=

{
u ∈ Nε : Iε(u) ≤ γω + σ

}
for some σ > 0 (here γω is defined in (3.6) with subscript ω), such that their composition is
homotopically equivalent to the embedding j : M → Mδ where δ > 0 is small. In our case, the
main difficulty is to deal with the infinite dimensional negative space of Φε on E = H

1
2 (R3,C4)

due to its strongly indefinite character. To overcome this, by using the reduction couple (`ε, Iε),
we will build our construction on E+ instead of E.

14



5.1 The function φε

Recalling the notations introduced in Remark 3.3 and the hypothesis

ω = inf
Λ
V < inf

∂Λ
V

and M = {x ∈ Λ : V (x) = ω}, in what follows, let us fix a point ξ ∈ M and ε > 0 and
consider the function

wξ,ε(x) := w
(
x− ξ

ε

)
for x ∈ R3

where w ∈ Rω is a minimal energy solution that realizes γω. Let us define

φε : M → Nε ξ 7→ φε(ξ) := tξ,ε · w+
ξ,ε

where tξ,ε = tε(w
+
ξ,ε) is the unique t > 0 such that

tξ,ε · w+
ξ,ε ∈ Nε.

Proposition 5.1. For each ε > 0, φε : M → Nε is continuous. Moreover, for any σ > 0, there
exists εσ > 0 such that for ε < εσ there holds

φε(ξ) ∈ N
γω+σ
ε , ∀ξ ∈M.

Proof. By the continuity of u 7→ tε(u) on E+ \ {0}, the first conclusion follows evidently
because φε(ξk)→ φε(ξ) as k →∞ in E for any sequence {ξk} ⊂M convergent to ξ.

To prove the second statement, it suffices to show that

(5.1) Iε
(
φε(ξ)

)
≤ γω + oε(1) for all ξ ∈M as ε→ 0.

Indeed, by using the covariation of Iε under translation,

Iε
(
φε(ξ)

)
=

1

2

(
‖tξ,εw+‖2 − ‖`ε

(
tξ,εw

+
)
‖2
)

+
1

2

∫
V (εx+ ξ)|tξ,εw+ + `ε

(
tξ,εw

+
)
|2

−
∫
G
(
εx+ ξ, |tξ,εw+ + `ε

(
tξ,εw

+
)
|
)
.

Since ξ ∈M ⊂ intΛ, χΛε(εx+ξ)→ 1 a.e. in R3 as ε→ 0. Thus , by the fact that V (εx+ξ)→ ω
as ε→ 0 uniformly on bounded set of R3 and the boundedness of {tξ,ε}, we have

Iε
(
φε(ξ)

)
= Tω

(
tξ,εw

+ + `ε
(
tξ,εw

+
))

+ oε(1) ≤ Tω

(
tξ,εw

+ + Jω

(
tξ,εw

+
))

+ oε(1)

= Jω(tξ,εw
+) + oε(1)

≤ 1

2

(
‖w+‖2 − ‖w−‖2

)
+
ω

2

∫
|w|2 −

∫
F (|w|) + oε(1)

= γω + oε(1) as ε→ 0

where in the last inequality we have used the fact γω = Jω(w+) = max
t>0

Jω(tw+). This com-

pletes the proof of (5.1).

Remark 5.2. By virtue of the inequality (3.7) and the monotonicity of the map ω 7→ γ(ω, 0), it
is all clear that γω < γ(|V |∞, 0). Thus, it can be derived from Proposition 5.1 that the minimax
value cε characterized in (4.4) satisfies

(5.2) lim sup
ε→0

cε < γ(|V |∞, 0).

Therefore from now on, according to Remark 4.3, we can precisely fix δ0 and set κ in a range as

(5.3) 0 ≤ κ <
(a2 − |V |2∞

a2

) 3
4
( S

3
2

6γ(|V |∞, 0)

) 1
2

so that Iε satisfies the Palais-Smale condition at the level cε as ε goes to zero.
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5.2 The function ζε

Now we introduce the function ζε : E+ \ {0} → R3 to construct the homotopy, which is used to
relate multiplicity of solutions to the topology of M . We define

ζε(u) =

∫
R3 ηε(x)|u|2dx
|u|22

,

where ηε(x) = η(εx) is the cut-off function:

η(x) =

x if |x| ≤ ρ
ρx

|x|
if |x| > ρ

where ρ > 0 is large enough such that M ⊂ Bρ.

Proposition 5.3. Let σ(ε) be any positive function tending to 0 as ε→ 0,

lim
ε→0

sup
u∈Nγω+σ(ε)

ε

dist
(
ζε(u),M

)
= 0.

Proof. For arbitrary εn → 0, we choose wn ∈ N
γω+σ(εn)
εn to be such that

(5.4) dist
(
ζεn(wn),M

)
≥ sup

u∈Nγω+σ(εn)
εn

dist
(
ζεn(u),M

)
− 1

n
.

Then our arguments start with the observation that the sequence {un} is bounded in E, where
un := wn + `εn(wn).

In what follows, we will divide our proof into four steps:
Step 1. The sequence {un} is non-vanishing.

Suppose contrarily that

sup
x∈R3

∫
BR(x)

|un|2dx→ 0 as ε→ 0

for all R > 0. Then, by Lion’s concentration principle [35], we have |un|q → 0 for q ∈ (2, 3).
Since u+

n = wn ∈ N
γω+σ(εn)
εn , it follows that Φεn(un) ≤ γω + σ(εn) and Φ′εn(un)[un] =

Φ′εn(un)[u+
n − u−n ] = 0. Therefore, similar to (4.2), we deduce(a2 − (|V |∞ + δ0)2

a2

) 1
2
S

1
2

(∫
Λεn

|un|3dx
) 2

3 ≤ κ ·
∫

Λεn

|un|3dx+ on(1).

Without loss of generality, we assume κ > 0 and lim
n→∞

∫
Λεn
|un|3 = b > 0. Then we get

κ2(γω + σ(εn)) ≥ κ2Φεn(un)− κ2

2
Φ′εn(un)[un] =

κ3

6
· b+ on(1)

≥
(a2 − (|V |∞ + δ0)2

a2

) 3
2 S

3
2

6
+ on(1).

This contradicts to the fact γω + σ(εn) < γ(|V |∞, 0) for large n and our choice of κ in (5.3).

Step 2. {χΛεn · un} is non-vanishing.
Indeed, if {χΛεn ·un} is vanishing, by Step 1 we have that {(1−χΛεn )·un)} is non-vanishing.

This implies there exit xn ∈ R3 and R,µ > 0 such that BR(xn) ⊂ R3 \ Λεn and∫
BR(xn)

|un|2dx ≥ µ as n→∞.
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Set vn(x) = un(x+ xn), then vn satisfies

(5.5) L vn + V̂ε(x)vn = g(εn(x+ xn), |vn|)vn

where V̂ε(x) = V (εn(x + xn)). Moreover, we have vn ⇀ v in E and vn → v in Lqloc for
q ∈ [1, 3) for some v 6= 0. Now assuming without loss of generality that V (εnxn) → V∞, and
using ψ ∈ C∞c (R3,C4) as a test function in (5.5), one gets

0 = lim
ε→0
<
∫ (

L vn + V̂ε(x)vn − g(εn(x+ xn), |vn|)vn
)
· ψ̄dx

= <
∫ (

L v + V̂∞v − f̃(|v|)v
)
· ψ̄dx

And hence v ∈ E is a non-trivial solution to

(5.6) L v + V̂∞v − f̃(|v|)v.

However, using the test function v+ − v− in (5.6), we have

0 = ‖v‖2 + V∞

∫
v · (v+ − v−)−

∫
f̃(|v|)v · (v+ − v−)

≥ ‖v‖2 − |V |∞
a
‖v‖2 − a− |V |∞

2a
‖v‖2

=
a− |V |∞

2a
‖v‖2.

Therefore, we have v = 0, which is a contradiction.

Step 3. Let xn ∈ R3 and R,µ > 0 be such that∫
BR(xn)

|χΛεn · un|
2dx ≥ µ.

Then εnxn → x0 ∈M as n→∞.
In order to see this, first of all, we choose xn ∈ Λεn , i.e., εnxn ∈ Λ. And suppose that, up to

a subsequence, εnxn → x0 ∈ Λ̄ as n→∞. Then, as argued in Step 2, it is possible to show that
the sequence vn(·) := un(·+ xn) weakly converges to some v in E which satisfies

(5.7) L v + V (x0)v = g∞(x, |v|)v ,

with g∞ in the form of g∞(x, s) = χ∞ ·f(s)+(1−χ∞) · f̃(s). Here χ∞ is either a characteristic
function of a half-space in R3 provided

lim sup
n→∞

dist(xn, ∂Λεn) < +∞

or χ∞ ≡ 1 (this is due to the fact χ∞ is the pointwise limit of the function χΛ(εn(· + xn)) as
n→∞).

Denote S∞ to be the associate energy functional to (5.7):

S∞(u) :=
1

2

(
‖u+‖2 − ‖u−‖2

)
+
V (x0)

2
|u|22 −Ψ∞(u) ,

where
Ψ∞(u) :=

∫
G∞(x, |u|) and G∞(x, s) =

∫ s

0
g∞(x, τ)τ dτ .

By noting that Ψ∞(u) ≤ Ψ(u) =
∫
R3 F (|u|)dx, we have

S∞(u) ≥ TV (x0)(u) = Tω(u) +
V (x0)− ω

2
|u|22 for all u ∈ E .
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Now let us define (h∞, I∞) as the reduction couple of S∞, then, by the definition, we have

S∞
(
u+ h∞(u)

)
= max

v∈E−
S∞(u+ v) and I∞(u) = S∞

(
u+ h∞(u)

)
.

It is standard to see that: if u ∈ E+ \ {0} satisfies I ′∞(u)[u] = 0, then I ′′∞(u)[u, u] < 0 (see for
instance [27]). Since we already have v 6= 0 is a critical point of S∞, we then infer v+ is a critical
point of I∞ and I∞(v+) = maxt≥0 I∞(tv+). Let τ > 0 such that Jω(τv+) = maxt≥0 Jω(tv+),
we infer

(5.8)

S∞(v) = I∞(v+) = max
t≥0

I∞(tv+)

≥ I∞(τv+) = S∞
(
τv+ + h∞(τv+)

)
≥ S∞

(
τv+ + Jω(τv+)

)
≥ Tω

(
τv+ + Jω(τv+)

)
+
V (x0)− ω

2

∣∣τv+ + Jω(τv+)
∣∣2
2

≥ γω +
V (x0)− ω

2

∣∣τv+ + Jω(τv+)
∣∣2
2
.

On the other hand, by Fatou’s lemma, we deduce

γω + σ(εn) ≥ Φεn(un)− 1

2
Φ′εn(un)un =

∫
1

2
gεn(x, |un|)|un|2 −Gεn(x, |un|)

=

∫
1

2
g(εn(x+ xn), |vn|)|vn|2 −G(εn(x+ xn), |vn|)

≥
∫

1

2
g∞(x, |v|)|v|2 −G∞(x, |v|)

= S∞(v)− 1

2
S′∞(v)[v] = S∞(v).

Therefore, together with (5.8), we get V (x0) − ω ≤ O(σ(εn)) as n → ∞. Notice that x0 ∈ Λ
and ω = minx∈Λ V (x), we soon conclude V (x0) = ω and thus x0 ∈M .

Step 4. The final conclusion.
Remark that u+

n = wn ∈ N
γω+σ(εn)
εn , an argument of concentration-compactness type gives

that if vn ≡ un(·+ xn) is dichotomy, i.e. vn ⇀ v and {vn − v} is non-vanishing, then we must
have Φε(un) ≥ 2γω. And hence the translated sequence {vn} is in fact compact in the norm
topology of E, and thus we have vn → v as n→∞. Consequently, we obtain

ζεn(wn) =

∫
η(εnx)|wn|2dx∫
|wn|2dx

=

∫
η(εnx+ εnxn)|v+

n |2dx∫
|v+
n |2dx

= εnxn +

∫ (
η(εnx+ εnxn)− εnxn

)
|v+
n |2dx∫

|v+
n |2dx

.

And, for n large, we have dist
(
ζεn(wn),M

)
= on(1). Therefore, by (5.4), we obtain the

assertion.

6 Proof of the main result

Proof of Theorem 1.1. It follows from Remarks 4.3 and 5.2, for arbitrary positive function σ(·)
satisfying σ(ε)→ 0 as ε→ 0, we have γω + σ(ε) < γ(|V |∞, 0) for small ε and hence Φε (resp.
Iε) satisfies the Palais-Smale condition below the level γω + σ(ε).

Now let us analysis the relation between the topology of M and the number of critical points
for Iε. It follows from Proposition 5.1 and Proposition 5.3 that there exists ε̂ > 0 such that for
ε ∈ (0, ε̂) the following diagram of continuous maps is well defined,

M
φε−→ N

γω+σ(ε)
ε

ζε−→Mδ.
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Thus we see that ζε ◦ φε(·) is homotopic to the inclusion j : M → Mδ for small ε > 0. Hence,
by applying Theorem 2.9, we obtain that

]
{
u ∈ Nε : Iε(u) ≤ γω + σ(ε), I ′ε(u) = 0

}
≥ cat

(
N
γω+σ(ε)
ε

)
≥ catMδ

(M).

This means that for ε ∈ (0, ε̂), Iε has at least catMδ
(M) critical points and so does Φε.

To complete the proof we still have to show that these critical points are also solutions to
the original problem (2.1). Let {uε} be any sequence of the critical points such that Φε(uε) ≤
γω +σ(ε), we point out that, thanks to Lemma 2.4, the non-vanishing points {xε} can be chosen
to be the maximum points of |uε|. Due to fact uε(·+ xε) → u0 ∈ Rω, a similar decay estimate
of [27] implies there exist C, c > 0 such that

|uε(x)| ≤ Ce−c|x−xε| for all uε ∈
{
u ∈ E : Φ′ε(u) = 0, Φε(u) ≤ γω + σ(ε)

}
.

Moreover, we have V (εxε)→ V (x0) = ω as ε→ 0. From the assumption

min
Λ
V < min

∂Λ
V,

we note that d := dist(M,∂Λ) > 0. And thus for x 6∈ Λε we have |uε(x)| ≤ C exp(− c d
ε ). And

then we can choose ε > 0 small enough such that g(x, |uε|) = f(|uε|), and the proof is hereby
completed.
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