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Abstract

In this work we devote to investigate some interesting aspects of a multi-component
Reaction-Diffusion system of the form

∂tz = D∆xz +M(x)z +W (x)|z|p−2βz, z : R× RN → R2K , N ≥ 2

whereM ,W are external potential functions, D and β are matrices of diffusion coefficients
and coupling constants respectively. When the diffusion rate is small, we show that the geo-
metric shapes of the external potential functions will influence the multiplicity of solutions
to the system. It is also of interest to know that, for z = (u, v), we shall deal with standard
diffusion coefficients Du > 0 and the incongruent diffusion coefficients Dv < 0 which has
generally been overlooked in the study of Reaction-Diffusion systems.
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1 Introduction

1.1 Some backgrounds and previous results

A system of Reaction-Diffusion (RD) equations comprises reaction terms and diffusion terms,
i.e. the typical form is as follows:

(1.1) ∂tz = divx
(
D∇xz

)
+M(x)z + f(x, z)

where z(t, x) ∈ Rm, m > 1, is a state variable and describes density or concentration of multi-
component substances, populations at position x ∈ RN at time t. The first term on the right
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hand side describes the ”diffusion”, including D as a matrix of diffusion coefficients Dij (the
diagonal elements of D describe the main-term diffusion rate and the off-diagonal elements
express the the cross-terms diffusion which was suggested firstly in 1932 see [21]). Creation
and killing in the reaction process (birth, death, etc) are described by the scalar field M(x)
which could be a matrix-valued function, and the nonlinear part, f(x, z) is a smooth function
f : RN × Rm → Rm called reaction kinetics and describes processes with really ”change” the
present z, i.e. something happens to it (coupling actions, chemical reactions), not just diffuse in
the space.

Being one of the major transport processes in liquids. Reaction-Diffusion processes, espe-
cially in multi-component systems, have attracted increasing attention from the scientific com-
munity in recent years as investigators have begun to seek insights into the fascinating patterns
that occur in living organisms, in ecological systems, in geochemistry and in physicochemical
systems. The rapid growth of the field of systems biology has further contributed to interest in
RD systems (1.1). Unfortunately, multi-component diffusion is more complicated than is often
realized. In general, systems of RD equations allow for much more complex behaviour than a
scalar RD equation does. For example, a ternary system (two solutes in a solvent) may has four
coefficients in the diffusion matrix, not just two. And the diffusion coefficients can be large or s-
mall and be positive or negative, thus having a substantial effect on flows of matter. Meanwhile,
the interacting reaction terms are of interest and lead to interesting behaviour. For instance,
oscillating phenomena can evolve - as these oscillations can spread in space via diffusion and
instabilities may develop spatial phenomena like pattern formation can be observed. Here for a
detailed survey, we would refer the readers to [18].

On the macroscopic level, fluxes of chemical components (species) are due to convection and
molecular fluxes, where the latter essentially refers to diffusive transport. The almost exclusively
employed constitutive ”law” to model diffusive fluxes within continuum mechanical models is
Fick’s law (which requires positive diffusion coefficients), stating that the flux of a chemical
component is proportional to the gradient of the concentration of this species, directed against
the gradient. This leads to positive coefficients Dii in D, however, thermodynamic conditions
do not require the diagonal of D to be positive. Contrary to popular belief, there are systems
with negative Dii for a particular choice of the solvent component. Typical example is acetic
acid + chloroform with water being chosen as solvent, a totally unexpected result is the negative
chloroform main term diffusion coefficient, that is a negative D22 value (see [17, 25] for the
Chemistry details). This behavior has been interpreted as a thermodynamic effect caused by
the diffusion of salted-out chloroform down the water concentration gradient produced by the
chloroform gradient under conditions of constant acetic acid concentration.

Our current work is motivated exactly by the unusual phenomenon of negative main term
diffusion. Let us consider the multi-component nonlinear RD system (1.1) in the situation z =
(u, v) ∈ R2K , some K ≥ 1, and

(1.2) D =

(
Du ∗
∗ Dv

)
= ε2J , where J =

(
id 0
0 −id

)
and ε > 0 being a parameter characterizing the pace of the diffusion process (for simplicity we
have ignored the cross-term diffusions). To the best of our knowledge negative main term dif-
fusion, the phenomenon in which one species to be driven from lower to higher concentrations,
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has generally been neglected in the study of RD systems, only a few results are available so far.
An early work of Brézis and Nirenberg [6] considered the 2-component coupled system

(1.3)

{
∂tu = ∆xu− v5 + f(x)

∂tv = −∆xv − u3 + g(x)
in (0, T )× Ω,

where Ω ⊂ RN is a bounded domain and f, g ∈ L∞(Ω). Subject to the boundary conditions
u(t, x) = v(t, x) = 0 on (0, T ) × ∂Ω and u(0, x) = v(T, x) = 0 on Ω, the authors obtained a
solution (u, v) with u ∈ L4 and v ∈ L6 of (1.3) by using Schauders fixed point theorem. And
in [8], Clément, Felmer and Mitidieri considered the problem (with a Fujita-type nonlinearity,
see [11, 12])

(1.4)

{
∂tu = ∆xu+ |v|q−2v

∂tv = −∆xv − |u|p−2u
in (−T, T )× Ω,

where Ω is a smoothly bounded domain in RN , and N
N+2 <

1
p+ 1

q < 1. By variational arguments,
they proved that there exists T0 > 0 such that for each T > T0, (1.4) has at least one positive
solution satisfying the 0-boundary condition: u(t, ·)|∂Ω = 0 = v(t, ·)|∂Ω for all t ∈ (−T, T ),
and the periodicity condition: u(−T, ·) = u(T, ·), v(−T, ·) = v(T, ·). Moreover, by passing to
the limit as T → ∞, they showed that (1.4) has at least one positive solution defined on R× Ω
satisfying the 0-boundary condition and

lim
t→∞

u(t, x) = lim
t→∞

v(t, x) = 0 uniformly in x ∈ Ω.

For later developments, we would mention that Bartsch and Ding [3] investigated the following
2K-component system

(1.5)

{
∂tu = ∆xu− V (x)u+ ∂vH(x, u, v)

∂tv = −∆xv + V (x)v − ∂uH(x, u, v)
in R× RN .

In [3] , the authors established a proper variational framework and proved the existence and
multiplicity of solutions of homoclinic type to (1.5) under appropriate conditions on the nonlin-
earities (see also [9]). All the above mentioned systems have constant diffusion coefficients, and
if denoted by z = (u, v), they all in the form of

∂tz = J∆xz +M(x)z + f(x, z)

with different types of creation and killing field M and reaction kinetics f .
For the case where the diffusion is parameterized by ε, a very resent paper [10] considered

exactly the system (1.1) with D being defined in (1.2) and the creation and killing field being
specified as

M(x) =

(
−id −V (x)
V (x) id

)
for some bounded function V : RN → R. In [10], the authors express that there must be a so-
lution concentrating around the local minimums of the scalar potential V (x) for small diffusion
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coefficients. This provides a natural and intrinsic characterization of the pattern generalizing
dependence on the varying parameters and the spatial distributions of chemical potentials.

In this paper, we are interested in the following aspects which have not been dealt with
before and is new in the case of RD systems:

(1) to apply concentration and rescaling techniques to non-autonomous nonlinearities, and
particularly to characterize the concentration phenomenon in terms of the different poten-
tial functions;

(2) to show that the field M and a non-autonomous nonlinearity f give better information
than the existence of a solution, i.e., they can give a multiplicity result to problem (1.1).

1.2 Specific models and main results

In this paper we study the evolution of patterns in solutions of a singularly perturbed RD system,
and the simplest model is the following:

(1.6) ∂tz = D∆xz +M(x)z +W (x)|z|p−2βz, z : R× RN → R2K , N ≥ 2, K ≥ 1

where D is defined in (1.2) with ε > 0 being a small parameter, 2 < p < 2(N + 2)/N , the
external potential M is defined by one of the following form

(1.7) M(x) =

(
−id− V (x) 0

0 id + V (x)

)
or M(x) =

(
−id −V (x)
V (x) id

)
with V : RN → R bounded (probably changes sign) and W : RN → R is positive, and β is a
coupling matrix defined by

β =

(
0 id
−id 0

)
.

Let us introduce, for r ≥ 1, the Banach space

Br(R× RN ,R2K) := W 1,r
(
R, Lr(RN ,R2K)

)
∩ Lr

(
R,W 2,r(RN ,R2K)

)
equipped with the norm

(1.8) ‖z‖Br :=

(∫∫
R×RN

(
|z|r + |∂tz|r + |∆xz|r

)
dxdt

)1/r

,

and in the sequel when no confusion can arise, we will use Br for short. By variational frame-
works as developed by [3] and [10], we consider (1.6) in the function space E := [B2, L2] 1

2

which is an interpolation space between B2 and L2(R×RN ,R2K). We point out here that this
space embeds into the corresponding Lq-spaces for 2 ≤ q ≤ 2(N + 2)/N . And it is easy to see
that (1.6) is subcritical in the sense that p is smaller than the critical embedding exponent.

In order to gain further insight into the effect of potential functions on the concentrating
process and the multiplicity of solutions, we will deal with the following more general class of
RD system with critical growth, namely

(1.9) ∂tz = D∆xz +M(x)z +
(
W (x)|z|p−2 +Q(x)|z|

4
N
)
βz, (t, x) ∈ R× RN .

4



Of course, (1.9) reduces to (1.6) when Q is identically zero. Associated to (1.9), let us introduce
the following problem

(1.10) ∂tz = J∆xz − (J + βων)z +
(
λ|z|p−2 + κ|z|

4
N
)
βz

where ν ∈ (−1, 1), λ > 0, κ ≥ 0 and ω is in one of the following form (accordingly to M(x))

ων = ν or ων =

(
0 ν
ν 0

)
.

This equation appears as the limit equation for (1.9).
Let us remark that systems (1.9) and (1.10) can be viewed as infinite-dimensional Hamilto-

nian systems of the form

β
dz

dt
= ∇H(z),

where H is some energy functional on a real Hilbert space H ⊂ L2(RN ,R2K), and the matrix
β can be regarded as a skew-symmetric operator. Such an interesting feature of these prob-
lems makes variational method applicable, especially, the techniques developed for variational
problems with strongly indefinite structure can be employed.

Now, let us state our main results. To be more precisely, we shall apply the global varia-
tional arguments, described in Section 3, to define the minimal energy (or ground state energy)
associated to (1.10) as γ(ων , λ, κ). Roughly speaking, γ(ων , λ, κ) is a positive function, and is
increasing in the factor ν and decreasing in the factors λ and κ. To relate (1.9) with γ(ων , λ, κ),
let us introduce the function c0 : RN → R as

c0(y) := γ(ωV (y),W (y),Q(y)).

By letting

ν∞ := lim inf
|x|→∞

V (x), λ∞ := lim sup
|x|→∞

W (x), κ∞ := lim sup
|x|→∞

Q(x)

and
c∗ = min

y∈RN
c0(y), C =

{
y ∈ RN : c0(y) = c∗

}
,

then our main theorem can be formulated as

Theorem 1.1. Assume the matrix M is in one of the form in (1.7), p ∈
(
2, 2(N+2)

N

)
and V , W ,

Q are bounded, Hölder continuous functions on RN satisfying

(A1) ‖V ‖L∞ < 1, inf
x∈RN

W (x) > 0 and Q(x) ≥ 0 for all x.

There exits a constant κ̂ > 0 such that if ‖Q‖L∞ < κ̂ and

(A2) there exists x0 ∈ RN such that Q(x0) = max
x∈RN

Q(x) and

ν∞ ≥ ν0 := V (x0), λ∞ ≤ λ0 := W (x0), κ∞ ≤ Q(x0)

with one of the first two inequalities being strict,
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then RD system (1.9) possesses at least θ distinct solutions zkε , k = 1, . . . , θ for small ε > 0,
where θ is the largest integer such that

(1.11) θ <
(1 + ν∞

1 + ν0

) 4−N(p−2)
2(p−2)

( λ0

λ∞

) 2
p−2

.

Moreover, among these solutions, z1
ε lies in the ground state energy level and has the following

properties:

(1) |z1
ε (t, ·)| has exactly one global maximum point at some xε with lim

ε→0
dist(xε,C ) = 0 and

lim
R→∞
ε→0

‖z̃ε(t, ·)‖L∞(RN\BεR(xε)) = 0 uniformly for t ∈ R;

(2) the rescaled function wε(t, x) = zε(t, εx+xε) converges as ε→ 0 uniformly to a ground
state solution z : R× RN → R2K of

∂tz = J∆xz +M(y0)z +
(
W (y0)|z|p−2 +Q(y0)|z|

4
N
)
βz.

Remark 1.2. (1) A possible explicit formula for the constant κ̂ could be defined in terms of
the factors ‖V ‖L∞ and inf W ; see (5.1). It satisfies κ̂→ c(p) > 0 as ‖V ‖L∞ → 0. Thus
we do allow critical growth in the nonlinear part but the function Q cannot be too large. It
is an interesting open problem whether this restriction on Q can be removed.

(2) Assumptions p ∈
(
2, 2(N+2)

N

)
and (A2) imply that

L(ν0, ν∞, λ0, λ∞, p) :=
(1 + ν∞

1 + ν0

) 4−N(p−2)
2(p−2)

( λ0

λ∞

) 2
p−2

> 1.

This suggests that (1.9) has at least one solution. Due to the fact that we can always find
a function W to make the ratio λ0

λ∞
large, hence there are examples showing that (1.9) has

a very large number of solutions. We would like to mention here that assumption (A2)
inherited a similar spirit of [23], and it makes the variational structure of (1.9) satisfy a
variant of Palais-Smale condition.

(3) Concerning the number of solutions in Theorem 1.1, for the case thatL(ν0, ν∞, λ0, λ∞, p)
is an integer, we have θ = L(ν0, ν∞, λ0, λ∞, p)− 1. And hence the choice of θ is slightly
different from the function of taking the integer part of L(ν0, ν∞, λ0, λ∞, p). Moreover,
we can see from the statement of Theorem 1.1 that the number θ is irrelevant to the func-
tion Q. And hence the number of solutions is dominated by the functions V and W .

As a consequence of Theorem 1.1, we obtain the following corollary for the subcritical
equation (1.6).

Corollary 1.3. Under the hypotheses of Theorem 1.1 and assumingQ vanishes identically. Then
RD system (1.6) possesses at least θ distinct solutions zkε , k = 1, . . . , θ for small ε > 0, where θ
is the integer in (1.11). Moreover, among these solutions, z1

ε lies in the ground state energy level
and has the following properties:
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(1) |z1
ε (t, ·)| has exactly one global maximum point at some xε with lim

ε→0
dist(xε,C ) = 0 and

lim
R→∞
ε→0

‖z̃ε(t, ·)‖L∞(RN\BεR(xε)) = 0 uniformly for t ∈ R;

(2) the rescaled function wε(t, x) = zε(t, εx+xε) converges as ε→ 0 uniformly to a ground
state solution z : R× RN → R2K of

∂tz = J∆xz +M(y0)z +W (y0)|z|p−2βz.

Remark 1.4. In terms of V ,W andQ, the assumptions (A2) is sufficient conditions to guarantee
c0(x0) < lim sup|y|→∞ c0(y), and hence, C is a compact set in RN . Without loss of generality,
throughout this paper, we may always make the assumption that x0 = 0 ∈ RN . We emphasize
that (A2) can be replaced by other sufficient conditions, for example,

(1) ν∞ = supRN V , λ∞ = infRN W , Q ≡ constant.

(2) Denoted by

g(x) =
Q(x)

W (x)
4

N(p−2)

and µ∞ := lim sup
|x|→∞

g(x),

there exists x0 ∈ RN such that g(x0) = max
x∈RN

g(x) and

ν∞ ≥ ν0 := V (x0), λ∞ ≤ λ0 := W (x0), µ∞ ≤ g(x0)

with one of the first two inequalities being strict.

If V and W are not all constants, then each of the above (1), (2) is a sufficient condition to
guarantee c0(x0) < lim sup|y|→∞ c0(y).

Remark 1.5. The nonlinearity of power functions was considered firstly by H. Fujita in his
classical papers [11, 12] on Cauchy problems for a single RD equation; and such nonlinearity
also plays an important role in the analysis of steady-state solutions to RD equations (see a series
of remarkable papers of Ni and Takagi [19, 20], and with Lin [13]). Here in this work, we focus
on (1.6) and (1.9) as multi-component versions of nonlinear problems in Fujita’s type. It is quite
natural that, in the case Q ≡ 0, the set C is defined as the ”middle ground” between minima of
V and maxima of W . Indeed, as one will see in Section 3, minimum points of c0(·) coincides

with minimum points of the function V (x)
N+4

2
+ 2

p−2 /W (x)
2

p−2 provided thatM(x) is of the first
form in (1.7). As a consequence, if V is constant, then C coincides with the global maxima set
of the potential W . And conversely, if W is constant, then C is the set of global minima of the
function V . However, in the general case (M(x) is of the second form in (1.7), and Q 6≡ 0), it
is impossible to have an explicit formula for c0(y), and hence we cannot explicitly characterize
the location of concentration of minimal energy solutions in term of the functions V , W and Q.
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The proof of Theorem 1.1 will be done by variational techniques. Since we are working
on the unbounded domain R × RN , we will employ the concentration-compactness argument
explored in [16]. It consists in finding a suitable energy threshold for the energy functional
of (1.9) such that the Palais-Smale condition holds below this threshold, constructing different
minimax levels and then showing these minimax levels are indeed below the energy threshold.
We emphasize here that, in the usual concept, the energy threshold tricks are well adapted for
the study of variational problems in geometry and physics where lack of compactness occurs.
The most notorous example is Yamabe’s problem. Here, due the Hamiltonian structure of the
RD system, we note that it is not easy to obtain compactness in view of the critical growth of
the nonlinearity even in finding the energy threshold. To overcome this, we will need a delicate
analysis for the limit problem (1.10) on the ground state energy level and use the concentration-
compactness principle to control the factor Q in the critical growth.

To obtain multiple solutions of the problem, the main ingredient is making use of the invari-
ance of (1.9) under some group actions, for instance the multiplication by±1 and the translation
in time-coordinate will not change a solution to (1.9). This kind of invariance will lead us to build
a pseudo-index theoy for the associated functional. More precisely, the number of solutions is
related to the frequency that the pseudo-index changes, see an abstract setting in Theorem 2.11.

The remainder part of the paper is organized as follows. Sect. 2 is devote to introduce
some notations and to briefly recall some preliminary results such as the linking geometry and
a Lyapunov-Schmidt type reduction. An abstract theorem regarding the multiplicity of critical
points for strongly indefinite functionals is also introduced, and the proof will be postponed to
Appendix B. In Sect. 3, we investigate the associated autonomous problem (1.10). This study
allow us to show the role which the critical factor κ plays in the ground state energy level. The
Palais-Smale condition, which does not hold in general case since we allow critical growth, will
then be studied in Sect. 4. And we perform the crucial criterion for compactness in terms of
a energy threshold. Next, in Sect. 5, we provide the main components of our proof. The first
part is the analysis on the concentration behavior of the ground state energy solution for (1.9).
And as the second part, we build a finite-dimensional linking argument to construct specific
minimax schemes which can be applied to (1.9) such that these minimax levels stay below the
energy threshold. The proof will be then completed by applying our abstract theorem in Sect.
2. Finally, for the sake of completeness, in the Appendix A we collect some regularity results
which are used in the paper.

Acknowledgment. The authors would like to thank the anonymous reviewer for his/her helpful
comments.

2 Notation, known results and main ingredients

In this section we establish some preliminary results which are needed for the proof of our main
theorems. Given V , W and Q as in the previous section, we consider the RD system

(2.1) ∂tz = D∆xz +M(x)z +
(
W (x)|z|p−2 +Q(x)|z|4/N

)
βz

with coefficients D defined in (1.2) and M(x) being of the form (1.7).
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For a clearer expression let us set

J0 =

(
0 id
id 0

)
,

and by noting that D = ε2J , we shall consider the scaling x → εx so that (2.1) equivalently
transforms as

(2.2) ∂tz = J∆xz +Mε(x)z +
(
Wε(x)|z|p−2 +Qε(x)|z|4/N

)
βz

with Mε(x) = M(εx), Wε(x) = W (εx) and Qε(x) = Q(εx). Remark that β−1 = −β, hence
if denoted by L = −β∂t + J0(−∆x + 1) and V(x) = either V (x) or V (x)J0, we have (2.2)
to be rewritten as

(2.3) L z + Vε(x)z = Wε(x)|z|p−2z +Qε(x)|z|4/Nz for z(t, x) ∈ R2M

where obviously we have used Vε(x) = V(εx).
In what follows, we will focus on the equivalent system (2.3), and, throughout the paper we

make use of the following notations: for 1 ≤ q ≤ ∞ we set Lq := Lq(R × RN ,R2K), and by
| · |q we denote the usual Lq-norm, and particularly denoted by (·, ·)2 the usual L2-inner product.

Considering the differential operator L acts on the Hilbert space L2, it is quite standard to
see that L is a self-adjoint operator with domain

D(L ) = B2 := W 1,2
(
R, L2(RN ,R2K)

)
∩ L2

(
R,W 2,2(RN ,R2K)

)
.

Let σ(L ) and σe(L ) be respectively the spectrum and essential spectrum of L , we have
σ(L ) = σe(L ) = R\ (−1, 1) (cf. [9, Lemma 8.7]). And as a direct consequence, L2 possesses
the orthogonal decomposition:

(2.4) L2 = L+ ⊕ L−, z = z+ + z−,

so that L is positive definite (resp. negative definite) in L+ (resp. L−).
In order to construct the energy functionals whose critical points are the solutions of (2.3),

we introduce E := D(|L |1/2) (which is the form domain of L) be equipped with the inner
product

〈z1, z2〉 =
(
|L |1/2z1, |L |1/2z2

)
2

and the induced norm ‖z‖ = 〈z, z〉1/2, where |L | and |L |1/2 denote respectively the absolute
value of L and the square root of |L |. Since σ(L ) = R \ (−1, 1), one has

(2.5) |z|22 ≤ ‖z‖2 for all z ∈ E.

As an interpolation space between B2 and L2, E (being a Hilbert space) has the decomposition

E = E+ ⊕ E−, where E± = E ∩ L±

which is orthogonal with respect to both (·, ·)2 and 〈·, ·〉. We write z = z+ + z− for z ∈ E
according to this decomposition. Remarkably, this decomposition of E induces also a natural
decomposition of Lq for every q ∈ (1,+∞):
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Proposition 2.1. LetE+⊕E− be the decomposition ofE according to the positive and negative
part of σ(L ). Then, set E±q := E± ∩ Lq for q ∈ (1,∞), there holds

Lq = clq E
+
q ⊕ clq E

−
q

with clq denoting the closure in Lq. More precisely, there exists dq > 0 for every q ∈ (1,∞)
such that

dq|z±|q ≤ |z|q for all z ∈ E ∩ Lq.

In Lq’s (for q 6= 2), by ⊕ we mean the topologically direct sum. Before proving Proposition
2.1 we would like to introduce the following definition for Multipliers (see [24, Chapter 4])
which plays an important role in our arguments.

Definition 2.2. Let m be a bounded measurable function on Rn, we associate a linear operator
Tm on L2 ∩ Lq by (Tmu)̂ (ξ) = m(ξ)û(ξ) where û denotes the Fourier transform of u. We say
that m is a multiplier for Lq (1 ≤ q ≤ ∞) if whenever u ∈ L2 ∩ Lq then Tmu ∈ Lq (notice it is
automatically in L2), and Tm is bounded, that is,

(2.6) |Tmu|q ≤ C · |u|q, u ∈ L2 ∩ Lq (with C independent of u).

Observe that if (2.6) is satisfied, and p <∞, then Tm has a unique bounded extension to Lq,
which again satisfies the same inequality.

Proof of Proposition 2.1. First we remark that in this context, the spatial domain is R × RN .
Now recall the definitions for the matrices β and J0, let us study L := −β∂t + J0(−∆x +
1). It is a differential operator with real constant coefficients. In the Fourier domain ξ =
(ξ0, ξ1, ξ2, . . . , ξN ), it becomes the operator of multiplication by the matrix:

L̂ (ξ) =

(
0 A(ξ)

A(ξ) 0

)
with A(ξ) =

(
iξ0 + 1 +

N∑
k=1

ξ2
k

)
· id.

Here ”id” denotes the K ×K identity matrix.

Denoted by λ(ξ) =
√
ξ2

0 +
(
1 +

∑N
k=1 ξ

2
k

)2. By classical calculus, we have that L̂ (ξ)

has two eigenvalues: ±λ(ξ). Now, denote P± the projections on E with kernel E∓. We see
that in the Fourier domain, P± are multiplication operators by bounded smooth matrix-valued
functions of ξ:

(P+z)̂ (ξ) =
1

2λ(ξ)

(
λ(ξ) A(ξ)

A(ξ) λ(ξ)

)(
û

v̂

)
,

(P−z)̂ (ξ) =
1

2λ(ξ)

(
λ(ξ) −A(ξ)

−A(ξ) λ(ξ)

)(
û

v̂

)
.

Here we have used the notation z = (u, v) and ẑ = (û, v̂).
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In order that P± are multipliers for Lq, we need to use the Marcinkiewicz multiplier theorem
on R×RN (see [24, Chapter 4, Theorem 6’]). A direct calculation shows that, for each 0 < k ≤
N + 1, there holds∣∣∣∣∂k

(
A(ξ)/λ(ξ)

)
∂ξi1 · · · ∂ξik

∣∣∣∣ ≤ B

Πk
j=1|ξij |

for some constant B > 0.

And hence, as an immediate consequence, P± are multipliers for Lq for all q ∈ (1,∞). This
implies that P± are continuous with respect to the Lq-norms. By noting that P±(E∓) = {0},
one easily sees that P± extend to continuous projections on Lq (still denoted by P±) with
P±(clqE

∓
q ) = {0}. And this completes the proof.

The embedding from E into Lq’s can be concluded in the following lemma.

Lemma 2.3 (see e.g. [9]). E is continuously embedded in Lq for q ∈ [2, 2(N +2)/N ] if N ≥ 2,
and compactly embedded in Lqloc for q ∈ [1, 2(N + 2)/N) if N ≥ 2.

On E we consider the functionals Φε and Φ0 defined by

Φε(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
Vε(x)z · z dtdx−Ψε(z),

Φ0(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
V(0)z · z dtdx−Ψ0(z),

where the nonlinear part is defined by

Ψε(z) =
1

p

∫∫
Wε(x)|z|p dtdx+

1

2∗

∫∫
Qε(x)|z|2∗ dtdx,

Ψ0(z) =
W (0)

p

∫∫
|z|p dtdx+

Q(0)

2∗

∫∫
|z|2∗ dtdx,

(for simplicity, we set 2∗ = 2(N+2)
N for the critical exponent and we shall omit the integration

set R × RN in the integrals). By virtue of Lemma 2.3, it is not difficult to check Φε is 2-times
Frechét differentiable on E and that its critical points correspond to the solutions of (2.3).

In order to study further the minimal energy level of Φε, let us recall some known facts
on a Lyapunov-Schmidt type reduction. Such reduction technique depends on the convexity
of the nonlinearities, specifically, it requires that the second order derivative of Φε is negative
definite on E−. And by the anti-coercion and concavity properties of Φε|E− , we can define
`ε : E+ → E− to be the bounded reduction map correspondingly such that, for any u ∈ E+,

Φε

(
z + `ε(z)

)
= max

w∈E−
Φε(z + w).

And denote Iε(z) = Φε

(
z + `ε(z)

)
, we shall call (`ε, Iε) : E+ ×E+ → E− ×R the reduction

couple associated to Φε on E+ (for details we refer to [1, 10]). Then, it is all clear that Iε ∈
C2(E+,R) and critical points of Iε and Φε are in one-to-one correspondence via the injective
map z 7→ z + `ε(z) from E+ to E.
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Now, on E+, let us introduce

(2.7) Nε =
{
z ∈ E+ \ {0} : I ′ε(z)[z] = 0

}
.

The following lemmas collect the properties Φε and Iε have when the assumptions of our theo-
rems hold.

Lemma 2.4. Φε possesses the linking structure:

(1). There are r, ρ > 0, both independent of ε, such that Φε|B+
r
≥ 0, Φε|S+

r
≥ ρ, where

B+
r = Br ∩ E+ = {z ∈ E+ : ‖z‖ ≤ r},

S+
r = ∂B+

r = {z ∈ E+ : ‖z‖ = r}.

(2). For any finite dimensional subspace M ⊂ E+, there exist constants C = CM > 0 and
R = RM > 0, both independent of ε, such that

sup Φε(M ⊕ E−) < C and sup Φε(M ⊕ E− \BR) < 0.

Lemma 2.5. Palais-Smale sequence for Φε is bounded independent of the choice for ε > 0.

Lemma 2.6. For all ε > 0, Nε is a smooth manifold; and there exist θ > 0 independent of ε
such that for any z ∈ Nε

‖z‖ ≥ θ and Iε(z) ≥ θ;

Moreover, critical points of Iε constrained on Nε are free critical points of Iε in E+.

Lemma 2.7. Let cε, c0 denote the minimax levels of Φε and Φ0 deduced by the linking structure:

cε = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φε(z) and c0 = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φ0(z).

Then we have

(1). cε = infz∈Nε Iε(z);

(2). cε ≤ c0 + oε(1) as ε→ 0 provided that c0 is attained.

The above listed results could be referred as geometric properties which are basically derived
from the formulation of Φε and Proposition 2.1. A general discussion of the properties of Φε

and its reduction couple (`ε, Iε) in an abstract setting can be found in [10, Section 4].

Remark 2.8. It is worth pointing out that Nε is the graph of a C1 function mε defined on S+
1

by
mε(z) = tε(z)z z ∈ S+

1 ,

tε(z) being the unique positive number which realizes the maximum of the function t 7→ Iε(tz)
and that tε : S+

1 → R is a C1 function. It can be also seen that

Nε =
{
tε(z)z : z ∈ E+ \ {0}, 0 < tε(z) <∞

}
.
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For the sake of a multiplicity result, let us consider a critical point theorem involving strongly
indefinite character. And before stating our abstract result, let first remark that Φε (being as a
even functional) not only admits the group action of Z2 (i.e. the multiplication by ±1) but
also the group action of the time-axis translation. This is due to the fact that the RD system
(2.1) or (2.3) is invariant by translations in time (the coefficients in the RD systems are time-
independent). Hence, Φε is invariant under the action of R, a noncompact Lie group.

In the sequel, we will write it briefly by G -invariant if a functional Φ admits a action of some
group G . Recall that a sequence {zn} ⊂ E is called to be a (PS)c-sequence for a functional
Φ ∈ C1(E,R) if Φ(zn) → c and Φ′(zn) → 0. We remark that if Φ is G -invariant then {gnzn}
is also a (PS)c-sequence for any {gn} ⊂ G provided that {zn} is a (PS)c-sequence. And for
any two elements z1 and z2, by G -distinct we mean z1 6= gz2 for all g ∈ G .

Definition 2.9. We say that a G -invariant functional Φ ∈ C1(E,R) satisfies the G -(PS)c-
condition if every (PS)c-sequence has a subsequence which converges after an accordingly
G -action:

Φ(zn)→ c

Φ′(zn)→ 0

}
⇒ gnzn → z ∈ E along a subsequence for some {gn} ⊂ G .

For the abstract settings, let us consider a splittingE = X⊕Y ofE into complete subspaces
X and Y with associated projectors PX and P Y . We write zX := PXz and zY := P Y z for
z ∈ E. In addition to the norm topology we need the topology T on E which is the product
of the norm topology in X and the weak topology in Y . In particular, zn

T−→ z provided
that zX

n → zX and zY
n ⇀ zY . On bounded subsets of E the topology T coincides with the

metrizable topology considered by Bartsch and Ding [4] and for Hilbert spaces by Kryszewski
and Szulkin [14]. And denoted by Tw∗ the weak∗-topology of E∗. For a functional Φ and
real numbers a, b we write Φb := {z ∈ E : Φ(z) ≤ b}, Φa := {z ∈ E : Φ(z) ≥ a} and
Φb
a := Φb ∩ Φa. The following assumptions will be needed.

(Φ1) Φ ∈ C1(E,R), Φ : (E, T ) → R is upper semi-continuous, and Φ′ : (Φa, T ) →
(E∗, Tw∗) is continuous for every a ∈ R.

(Φ2) There exists r > 0 with ρ := inf Φ(SX
r ) > Φ(0) = 0 where SX

r := {z ∈ X : ‖z‖ = r}.

(Φ3) There exists a finite dimensional subspace X0 ⊂ X and R > r such that for E0 :=
X0 ⊕ Y and B0 := {z ∈ E0 : ‖z‖ ≤ R} there holds d := sup Φ(E0) < ∞ and
sup Φ(E0 \B0) < inf Φ(BX

r ), where BX
r := {z ∈ X : ‖z‖ ≤ r}.

In the case in which Φ is even, i.e. Φ admits a Z2-action, let us introduce the notations as was
introduced in [4,9]: for c ∈ R, denoted byM(Φc) the collection of maps h : Φc → E satisfying

(i) h is T -continuous and odd;

(ii) h(Φa) ⊂ Φa for all a ∈ [ρ, d ];

(iii) each z ∈ Φc has a T -open neighbourhoodO ⊂ E such that (id−h)(O∩Φc) is contained
in a finite dimensional linear subspace.
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Then a pseudo-index of Φc can be defined by

(2.8) ψ(c) := min
{

gen(h(Φc) ∩ SX
r ) : h ∈M(Φc)

}
∈ N ∪ {∞}

where gen(·) denotes the classical Z2-genus.
Let us emphasize here the situation that Φ may admits a group action of G in addition to

the Z2-action is a considerable issue in our abstract settings. If G is a compact group, then a
generalized index theory can be employed as was introduced by Rabinowitz [22] (see also [2]
for related material). However, in general, the group G may be noncompact and quotient space
E/G will no longer be a linear space or a manifold. Therefore classical results can not be
applied. One way to treat such G ×Z2-invariant problem is to separate these two group actions.
For such, in the sequel, let us introduce the following concept

Definition 2.10. Let E be a Hilbert space (or Banach space) associated with a group action of
G × Z2. We say that G is separated with respect to Z2 if and only if, for all closed Z2-invariant
subset A ⊂ E, the G -orbit G (A) := {gz : g ∈ G , z ∈ A} is closed and gen(A) = gen(G (A)).

Let us remark that, for a separated G -action, there holds G (z1) ∩ G (z2) = ∅ for any G -distinct
elements z1 and z2. Hence, for a closed Z2-invariant subset A, G (A) is the disjoint union of all
the G -orbits of its elements.

Then our general existence result comes as follows

Theorem 2.11. Let Φ be a even functional satisfying (Φ1)-(Φ3). If Φ also admits another
separated group action for some noncompact group G and satisfies the G -(PS)c-condition for
every c ∈ [ρ, d ]. Then Φ has at least n := dimX0 pairs of G -distinct critical points. In
particular, if Φ has only finitely many G -distinct critical points in Φd

ρ, then

(2.9) ci = inf
{
c : ψ(c) ≥ i

}
∈ [ρ, d ], i = 1, 2, . . . , n

are critical values satisfying ρ ≤ c1 < c2 < · · · < cn ≤ d.

Remark 2.12. Theorem 2.11 generalizes Theorem 4.6 of [4] (see also [9, Page 31]) in the
sense that Φ is allowed to carry a G -invariant property for some noncompact group action. This
generalization permits us to treat such as RD systems of the form (2.1). Setting X = E+ and
Y = E−, it follows from the definition, Proposition 2.1 and Lemma 2.4 that the functional Φε is
even and satisfies (Φ1)-(Φ3). And it is also evident that the group action of time-axis translation
is separated with respect to Z2-action. We postpone the proof of Theorem 2.11 to Appendix B.

Remark 2.13. Theorem 2.11 holds true for more general classes of symmetries, typical example
is Φ admits a group action of G × G where G is some compact group and G is separated.
Typical examples of G include the case of a finite group such as Zp for a prime number p
and a compact Lie group such as S1, SU(2), et al. In all these cases, there exists an index
i : {A ⊂ E : A is G-invariant} → N ∪ {∞} for G-action satisfying the monotonicity, sub-
additivity, super-variance as well as a dimension property: i(F \ {0}) = c · dimF for any
finite-dimensional G-invariant linear subspace F ⊂ E. We refer the readers to [2, 5, 7] for a
discussion of group actions, index theories, examples and applications.
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3 Variational framework for superlinear systems

In what follows, we consider weak solutions to the equation

(3.1) L z + ωz = λ|z|p−2z + κ|z|4/Nz on R× RN

belonging to the class B2 with ω being a 2K × 2K symmetric constant matrix with its eigen-
values σ(ω) ⊂ (−1, 1), λ > 0 and κ ≥ 0. As before, let us introduce the associated functional

Φ(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
ωz · z dtdx− λ

p
|z|pp −

κ

2∗
|z|2∗2∗ on E = E+ ⊕ E−.

And denoted by (`, I) the reduction couple for Φ and set N = {u ∈ E+ \ {0} : I ′(u)[u] = 0}.
Then, by the same arguments used in [1, 10], we have N is a smooth manifold of codimension
1 in E+, and N is diffeomorphic to S+

1 by a C1 diffeomorphism. Particularly, the function
t 7→ I(tu) attains its unique critical point t = t(u) > 0 for each u ∈ E+ \ {0}, and t : S+

1 → R
is a C1 function. If denoted by

γ(ω, λ, κ) ≡ inf
e∈E+\{0}

sup
u∈Re⊕E−

Φ(u),

it can be also seen that γ(ω, λ, κ) = infN I > 0. We will write γ(ω, λ) for simplicity in the
case when κ ≡ 0.

The main result of this section is the following:

Proposition 3.1. Let ν(ω) = min{ν : ν ∈ σ(ω)}, and set ν∗ = min{ν(ω), 0}. Then γ(ω, λ, κ)
is attained provided that

(3.2) (1 + ν∗)
−N+2

2 · κ
N
2 · γ(ω, λ, κ) <

S
N+2

2

N + 2

where S denotes the best constant for the embedding E ↪→ L2∗ .

This proposition yields information about the competing effect of ω, λ against κ. In the case
κ vanishes, (3.2) is satisfied automatically, and hence γ(ω, λ) is always attained. Before proving
Proposition 3.1, we begin with some preliminary materials. Let us first consider the following
functional

Fω : E \ {0} → R, z 7→
‖z+‖2 − ‖z−‖2 +

∫∫
ωz · z dtdx

|z|22∗
,

and the minimax scheme
Tω = inf

z∈E+\{0}
sup
w∈E−

Fω(z + w).

Denoted by F : L2 → L2 the Fourier transform, then in Fourier domain ξ = (ξ0, ξ1, . . . , ξN )

we have ‖z‖2 =
∫∫ (

ξ2
0 +

(
1 +

∑N
k=1 ξ

2
k

)2) 1
2 |Fz(ξ)|2 dξ. Remark that S denotes the best con-

stant for the embedding E ↪→ L2∗ , i.e. S|z|22∗ ≤ ‖z‖22, and that ν(ω) is the smallest eigenvalue

15



of ω, we soon infer that for any z ∈ E+ \ {0}

sup
w∈E−

Fω(z + w) ≥ Fω(z) =
‖z‖2 +

∫∫
ωz · z dtdx
|z|22∗

≥

∫∫ [(
ξ2

0 +
(
1 +

∑N
k=1 ξ

2
k

)2) 1
2 + ν(ω)

]
|Fz(ξ)|2 dξ

|z|22∗
.

Taking into account that

inf
|ξ|>0

(
ξ2

0 +
(
1 +

∑N
k=1 ξ

2
k

)2) 1
2 + ν(ω)(

ξ2
0 +

(
1 +

∑N
k=1 ξ

2
k

)2) 1
2

=

{
1 if ν(ω) ≥ 0,

1 + ν(ω) if ν(ω) < 0,

we have

(3.3) Tω ≥ (1 + ν∗)S with ν∗ = min{ν(ω), 0}.

Next, let us consider the equation

(3.4) L z + ωz = |z|4/Nz on R× RN

and the corresponding functional

Φ̂(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
ωz · z dtdx− 1

2∗
|z|2∗2∗ on E = E+ ⊕ E−.

Denoted by (ˆ̀, Î) the reduction couple for Φ̂ and set N̂ = {u ∈ E+ \ {0} : Î ′(u)[u] = 0}.
We have N̂ is a smooth manifold of codimension 1 in E+, and N̂ is diffeomorphic to S+

1

by a C1 diffeomorphism. Particularly, the function t 7→ Î(tu) attains its unique critical point
t̂ = t̂(u) > 0 for each u ∈ E+ \ {0}. It would be also standard to see that γ̂ω := infN̂ Î > 0,
and in particular, we have

Lemma 3.2. Tω =
(
(N + 2)γ̂ω

) 2
N+2 .

Proof. We sketch the proof as follows: Let z ∈ E+\{0} be fixed, and set πz(·) = Fω(z+·), then
elementary calculation shows that any critical point w ∈ E− for πz satisfies π′′z (w)[η, η] < 0
for all η ∈ E−. Hence, πz has a unique critical point in E− which realize its maximum (if there
exists).

For any z ∈ N̂ , we have ‖z‖2−‖ˆ̀(z)‖2+
∫∫

ω·(z+ˆ̀(z))·(z+ˆ̀(z))dtdx−|z+ˆ̀(z)|2∗2∗ = 0,
and hence πz(ˆ̀(z)) = |z+ ˆ̀(z)|2∗−2

2∗ . Moreover, it is standard to check that π′z(ˆ̀(z))[w] = 0 for
all w ∈ E−. Thus, we have |z + ˆ̀(z)|2∗−2

2∗ = maxw∈E− πz(w), i.e. ˆ̀(z) is the unique critical
point for πz .

Now, using the fact Fω(z) = Fω(tz) for all z ∈ E and t > 0, we can conclude

Tω = inf
z∈S+

1

sup
w∈E−

Fω(z + w) = inf
z∈N̂

sup
w∈E−

Fω(z + w)

= inf
z∈N̂
|z + ˆ̀(z)|2∗−2

2∗ = inf
z∈N̂

(
(N + 2)Î(z)

) 2
N+2

=
(
(N + 2)γ̂ω

) 2
N+2
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as is desired. For further reference, we mention that the uniqueness of ˆ̀(z) as critical point for
πz also implies that ˆ̀(tz) = tˆ̀(z) for all z ∈ E+ \ {0}.

Now, we give the proof of the proposition.

Proof of Proposition 3.1. We only give the proof when κ > 0 since it is much easier for the case
κ = 0.

Let {zn} ⊂ N be a minimizing sequence for I . It is no difficult to check that {wn =
zn + `(zn)} is bounded in E. Then by Lion’s result (see [16]) it follows that {wn} is either
vanishing or non-vanishing.

If {wn} is non-vanishing then we are done, so let us assume contrarily that {wn} is vanish-
ing. Then |wn|s → 0 for all s ∈ (2, 2∗). And thus we have

κ
N
2 Φ(wn) = Φ̂

(
κ

N
4 wn

)
+ on(1) ≤ Φ̂(ŵn) + on(1) ≤ κ

N
2 Φ(wn) + on(1)

where we used the notation ŵn := t̂nun + ˆ̀(t̂nun) with t̂n = t̂(un) being bounded and such
that t̂nun ∈ N̂ (the last inequality comes from the fact that ˆ̀(tz) = tˆ̀(z) guarantees {ŵn} is
vanishing).

By the above observation, and Φ(wn) = I(zn) = γ(ω, λ, κ)+on(1), we easily deduce from
Lemma 3.2 and (3.3) that

κ
N
2 · γ(ω, λ, κ) + on(1) = Φ̂(ŵn) ≥ γ̂ω =

1

N + 2
T

N+2
2

ω ≥ (1 + ν∗)
N+2

2
S

N+2
2

N + 2
,

which contradict to (3.2). Therefore we have {wn} is non-vanishing, and this ends the proof.

Recalling the notations introduced in the previous section, let us go back to our model prob-
lems by denoting ων the constant matrix ν · id or νJ0, and consider

(3.5) L z + ωνz = λ|z|p−2z + κ|z|4/Nz on R× RN

with the associated functional

Φνλκ(z) =
1

2

(
‖z+‖2 − ‖z−‖2

)
+

1

2

∫∫
ωνz · z dtdx−

λ

p
|z|pp −

κ

2∗
|z|2∗2∗

and minimal energy γ(ων , λ, κ). We then end this section by concluding

Lemma 3.3. Let ν1, ν2 ∈ (−1, 1), λ1, λ2 > 0 and κ1, κ2 ≥ 0. If min{ν2 − ν1, λ1 −
λ2, κ1 − κ2} ≥ 0 and either (ων1 , λ1, κ1) or (ων2 , λ2, κ2) satisfies (3.2), then γ(ων1 , λ1, κ1) ≤
γ(ων2 , λ2, κ2). And if in additional max{ν2−ν1, λ1−λ2, κ1−κ2} > 0, then γ(ων1 , λ1, κ1) <
γ(ων2 , λ2, κ2).

Proof. We only prove the second statement.

Case 1. ων = ν · id.
As mentioned before, let us introduce the reduction couple (`j , Ij) for Φνjλjκj , j = 1, 2,

and
mj : S+ → Nj , j = 1, 2
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to be the C1 diffeomorphism between S+ := {z ∈ E+ : ‖z‖ = 1} and Nj := {z ∈ E+ \ {0} :
I ′j(z)[z] = 0}.

Let z ∈ S+ be arbitrary, there holds

(3.6)

γ(ων1 , λ1, κ1) ≤ I1

(
m1(z)

)
≤ I2

(
m1(z)

)
+
ν1 − ν2

2

∣∣m1(z) + `1(m1(z))
∣∣2
2

− λ1 − λ2

p

∣∣m1(z) + `1(m1(z))
∣∣p
p
− κ1 − κ2

2∗
∣∣m1(z) + `1(m1(z))

∣∣2∗
2∗

≤ I2

(
m2(z)

)
+
ν1 − ν2

2

∣∣m1(z) + `1(m1(z))
∣∣2
2

− λ1 − λ2

p

∣∣m1(z) + `1(m1(z))
∣∣p
p
− κ1 − κ2

2∗
∣∣m1(z) + `1(m1(z))

∣∣2∗
2∗
.

If (ων2 , λ2, κ2) satisfies (3.2), it is all clear that γ(ων2 , λ2, κ2) is achieved. Now, we can fix
z ∈ S+ be such that I2

(
m2(z)

)
= γ(ων2 , λ2, κ2), by (3.6) we have

γ(ων1 , λ1, κ1) ≤ γ(ων2 , λ2, κ2) +
ν1 − ν2

2

∣∣m1(z) + `1(m1(z))
∣∣2
2

− λ1 − λ2

p

∣∣m1(z) + `1(m1(z))
∣∣p
p
− κ1 − κ2

2∗
∣∣m1(z) + `1(m1(z))

∣∣2∗
2∗
.

Therefore, by max{ν2 − ν1, λ1 − λ2, κ1 − κ2} > 0, we have γ(ων1 , λ1, κ1) < γ(ων2 , λ2, κ2).
Else if (ων1 , λ1, κ1) satisfies (3.2), let us consider a sequence {zn} ⊂ S+ be such that

I2

(
m2(zn)

)
→ γ(ων2 , λ2, κ2).

Then the sequence {m2(zn)} is bounded. If {m2(zn)} is vanishing, as was argued in Proposition
3.1, we have

γ(ων1 , λ1, κ1) <

(
(1 + ν1∗)S

)N+2
2

κ
N
2

1 (N + 2)
≤
(
(1 + ν2∗)S

)N+2
2

κ
N
2

2 (N + 2)
≤ γ(ων2 , λ2, κ2),

where νj∗ = min{νj , 0} for j = 1, 2. And hence the proof is done.

Case 2. ων = νJ0.
In this situation, let us consider the scaling transform t 7→ (1 + ν)t, x 7→

√
1 + ν x. Then

system (3.5) is equivalent to

L z =
λ

1 + ν
|z|p−2z +

κ

1 + ν
|z|4/Nz

with the minimal energy denoted by γ̄(ων , λ, κ). Remark that, by the scaling transformation, we
always have

(3.7) γ(ων , λ, κ) = (1 + ν)
N+4

2 γ̄(ων , λ, κ).

And then, at this stage, we can go back to Case 1, and the monotonicity of γ̄ will directly imply
our desired conclusion for γ(ων , λ, κ) which completes the proof.
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Remark 3.4. Lemma 3.3 provides a criterion for checking (3.2). Indeed, since κ ≥ 0, we
always have γ(ων , λ, κ) ≤ γ(ων , λ). Hence, we can set an upper bound for κ as

κ̂(ν, λ) =

(
(1− |V |∞)S

)N+2
N(

(N + 2)γ(ων , λ)
) 2

N

such that (ων , λ, κ) satisfies (3.2) provided that 0 ≤ κ < κ̂(ν, λ). Furthermore, we can assert
form the relations (3.6) and (3.7) that κ̂(ν, λ) is decreasing in ν and increasing in λ. And hence
for fixed ν ∈ (−1, 1) and λ > 0, let κ ∈ [0, κ̂(ν, λ)), then the triple (ων′ , λ

′, κ) will satisfy (3.2)
provided that ν ′ ≤ ν and λ′ ≥ λ.

4 Palais-Smale condition

In order to apply the abstract multiplicity result stated in Theorem 2.11, we need Φε to satisfy
a compactness condition. However, due to the non-compactness of the Sobolev embedding
E ↪→ L2∗

loc, it is not difficult to see that such a condition is not fulfilled in general. Nevertheless,
recalling Φε admits a group action of the time-axis translation and denoting such action by
G := R, we can recover the compactness in the sense of G -(PS)c-condition holds below some
energy threshold, which related to the minimal energy ”at infinity”. For ease of notation, let us
set κ̄ = maxx∈RN Q(x). Then, inspired by the priori bound κ̂(ν, λ) for the factor κ in Remark
3.4, our compactness result can be stated as follows.

Proposition 4.1. Assume (A1) and (A2). Suppose that κ̄ < κ̂(ν∞, λ∞). Then, for any ε > 0,
the functional Φε satisfies G -(PS)c-condition in the sublevel {z ∈ E : Φε(z) < γ̄∞}, where
γ̄∞ := γ(ων∞ , λ∞, κ̄).

Let us mention here that for the case Q vanishes identically we can infer that (ων∞ , λ∞)
satisfies (3.2) automatically, and hence Φε will satisfy the G -(PS)c-condition with no more
additional assumptions except c < γ∞(ων∞ , λ∞). Before proving Proposition 4.1, let us remark
that the following lemma will be the key ingredient in the proofs.

Proof of Proposition 4.1. To begin with, let c < γ̄∞ and let {zn} be a Palais-Smale sequence
for Φε at level c, namely

Φε(zn) = c+ on(1), Φ′ε(zn) = on(1).

By Lemma 2.5, {zn} is bounded (independent of ε). Remark that, for any {gn} ⊂ G , the time-
axis translated sequence {gnzn} is also a (PS)c-sequence. Hence, up to a subsequence, it has a
associated weak limit z ∈ E and we have to prove that gnzn → z in E for some {gn} ⊂ G .

Without loss of generality, for arbitrary {gn} ⊂ G , let us denote z̄n := gnzn and z to be
its weak limit (here and subsequently, one should always keep in mind that such weak limit
will change correspondingly when {gn} is replaced by other elements). For simplicity, we set
ζn = z̄n−z, then ζn ⇀ 0 in E and ‖z̄±n ‖2 = ‖z±‖2 +‖ζ±n ‖2 +on(1). By using the Brézis-Lieb
type result (see for example [26]), we have∫∫

Wε(x)|z̄n|p dtdx =

∫∫
Wε(x)|z|p dtdx+

∫∫
Wε(x)|ζn|p dtdx,
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and ∫∫
Qε(x)|z̄n|2

∗
dtdx =

∫∫
Qε(x)|z|2∗ dtdx+

∫∫
Qε(x)|ζn|2

∗
dtdx.

Thus,

(4.1) Φε(z̄n) = Φε(z) + Φε(ζn) + on(1),

and
Φ′ε(z̄n)[z̄n] = Φ′ε(z)[z] + Φ′ε(ζn)[ζn] + on(1).

Obviously, Φ′ε(z) = 0. Therefore, Φ′ε(ζn)[ζn] = on(1).

Claim 4.1. Φ′ε(ζn)→ 0 as n→∞.

In fact, let ϕ ∈ E with ‖ϕ‖ ≤ 1 be arbitrary. We have

(4.2)

Φ′ε(z̄n)[ϕ] =
〈
z̄+
n , ϕ

+
〉
−
〈
z̄−n , ϕ

−〉+

∫∫
Vε(x)z̄n · ϕdtdx−Ψ′ε(z̄n)[ϕ]

=
〈
ζ+
n + z+, ϕ+

〉
−
〈
ζ−n + z−, ϕ−

〉
+

∫∫
Vε(x)(ζn + z) · ϕdtdx

−Ψ′ε(ζn + z)[ϕ]

=
〈
ζ+
n , ϕ

+
〉
−
〈
ζ−n , ϕ

−〉+
〈
z+, ϕ+

〉
−
〈
z−, ϕ−

〉
+

∫∫
Vε(x)ζn · ϕdtdx+

∫∫
Vε(x)z · ϕdtdx

−
∫∫

Wε(x)|ζn|p−2ζn · ϕdtdx−
∫∫

Wε(x)|z|p−2z · ϕdtdx

−
∫∫

Qε(x)|ζn + z|
4
N (ζn + z) · ϕdtdx+ on(‖ϕ‖).

Here the estimate for the subcritical part∫∫
Wε(x)|z̄n|p−2z̄n · ϕ−

∫∫
Wε(x)|ζn|p−2ζn · ϕ−

∫∫
Wε(x)|z|p−2z · ϕ = on(‖ϕ‖)

follows from a standard argument. To estimate the last integral in (4.2), we set ψn := |ζn +

z|
4
N (ζn+z)−|ζn|

4
N ζn−|z|

4
N z. It is not difficult to see that exists a constantC > 0 independent

of n such that |ψn| ≤ C|ζn|
4
N ·|z|+C|ζn|·|z|

4
N . Then using the Egorov theorem on any bounded

domains, we have ∫∫
|ψn| · |ϕ| dtdx = on(‖ϕ‖) as n→∞.

And hence,
Φ′ε(z̄n)[ϕ] = Φ′ε(ζn)[ϕ] + Φ′ε(z)[ϕ] + on(‖ϕ‖)

= Φ′ε(ζn)[ϕ] + on(‖ϕ‖)
where we have used the fact Φ′ε(z) = 0. The above estimation shows Φ′ε(ζn)→ 0 as n→∞ as
was claimed.

Now to show that ‖ζn‖ → 0 as n → ∞, the concentration compactness argument will be
used.
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Claim 4.2. There exists a sequence {gn} ⊂ G such that {ζn} is vanishing.

Assuming Claim 4.2 for the moment, we have ζn → 0 in Lq for q ∈ (2, 2∗). And it follows from
Claim 4.1 that

‖ζn‖2 +

∫∫
Vε(x)ζn · (ζ+

n − ζ−n ) dtdx =

∫∫
Qε(x)|ζn|

4
N ζn · (ζ+

n − ζ−n ) dtdx+ on(1).

By noting that |V |∞ < 1, we soon obtain

(1− |V |∞)‖ζn‖2 ≤
(∫∫

Qε(x)|ζn|2
∗
dtdx

) N+4
2(N+2)

(∫∫
Qε(x)|ζ+

n − ζ−n |2
∗
dtdx

) 1
2∗

+ on(1).

It should be point out that, since Q(x) ≤ κ̄ := maxQ, there holds(∫∫
Qε(x)|z|2∗dtdx

) 2
2∗ ≤ κ̄

2
2∗ · S−1 · ‖z‖2, ∀z ∈ E

where S is the best constant for the embedding E ↪→ L2∗ . Then, we deduce

(4.3) (1− |V |∞) · S · κ̄−
2
2∗ ≤

(∫∫
Qε(x)|ζn|2

∗
dtdx

) 4
2(N+2)

+ on(1)

provided that ζn 6→ 0 in L2∗ . On the other hand, by (4.1) and Claim 4.1, we have

γ(ων∞ , λ∞, κ̄) = γ̄∞ > Φε(ζn)− 1

2
Φ′ε(ζn)[ζn] =

1

N + 2

∫∫
Qε(x)|ζn|2

∗
dtdx+ on(1)

as n→∞. Thus, by (4.3), we can get

γ(ων∞ , λ∞) ≥ γ(ων∞ , λ∞, κ̄) >

(
(1− |V |∞)S

)N+2
2

N + 2
· κ̄−

N
2

which contradicts to the fact κ̄ < κ̂(ν∞, λ∞). Therefore, we have ζn → 0 in L2∗ and the
compactness for {z̄n} follows.

Now it remains to prove Claim 4.2. Suppose, contrary to our claim, that the G -dependent
sequence {ζn} is non-vanishing for any {gn} ⊂ G . Then there exists (tn, xn) ∈ R × RN and
R, δ > 0 such that ∫ tn+R

tn−R

∫
BR(xn)

|ζn|2 dtdx ≥ δ.

Without loss of generality we can assuming {tn} is bounded, and hence we have |xn| → ∞ as
n → ∞ since ζn → 0 in L2

loc. At this point, let us assume Vε(xn) → ν̃, Wε(xn) → λ̃ and
Qε(xn) → κ̃ as n → ∞. Consider the translated functions z̃n(t, x) = ζn(t, x + xn), it follows
that z̃n ⇀ z0 in E where z0 is a non-trivial solution to

L z + ων̃z = λ̃|z|p−2z + κ̃|z|
4
N z.

And then, we can argue similarly as in (4.1) to obtain

γ(ων∞ , λ∞, κ̄) > c ≥ Φε(ζn) ≥ Φν̃λ̃κ̃(z̃n) + on(1) ≥ γ(ων̃ , λ̃, κ̃) + on(1).

Since we have ν̃ ≥ ν∞, λ̃ ≤ λ∞ and κ̃ ≤ κ̄, the above inequality becomes absurd. This
completes the proof.
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5 Proof of the mian results

Now, we are ready to prove our main results. We emphasis here that, according to the threshold
found in Proposition 4.1, we only need to check the minimax levels introduced in Section 2 are
below γ̄∞ := γ(ων∞ , λ∞, κ̄). Since V,W,Q are functions on RN , according to Remark 3.4, we
can precisely fix Q in a range as

(5.1) 0 ≤ Q(x) < κ̂
(
|V |∞, inf W

)
, ∀x ∈ RN .

Note that κ̂
(
|V |∞, inf W

)
≤ κ̂(ν∞, λ∞), we have (ωV (y),W (y),Q(y)) satisfies (3.2) for all

y ∈ RN .

5.1 The minimal energy solution

Let us first go back to Lemma 2.7, and we can find cε is the minimal energy level for Φε and, par-
ticularly, c0 = γ(ωV (0),W (0),Q(0)). Remark that it is also not difficult to see that c0 is attained
and hence we have cε ≤ c0 + oε(1). By noting that γ(ωV (0),W (0),Q(0)) < γ(ων∞ , λ∞, κ̄) due
to Lemma 3.3, we thus conclude that Φε will satisfy the G -(PS)-condition at level cε for all
small ε > 0 thanks to Proposition 4.1. And therefore, we shall have the existence of a critical
point for Φε which lies in the minimal energy level associated to the equation (2.3).

Let us remark here that: let zε be a minimal energy solution to (2.3), taking into account
that the energy estimate 0 < cε ≤ c0 + oε(1), it is possible to prove that the family {zε} has a
concentration behavior. We will divide this proof into three steps.

Step I. For y ∈ RN being fixed arbitrarily, let us set V y
ε (x) = Vε(x + y/ε), W y

ε (x) =
Wε(x+ y/ε) and Qyε(x) = Qε(x+ y/ε). Then, we have V y

ε (0) = V (y), W y
ε (0) = W (y) and

Qyε(0) = Q(y). Now, let us consider the transformed equation

(5.2) L z + Vyε (x)z = W y
ε (x)|z|p−2z +Qyε(x)|z|

4
N z

where Vyε (x) = either V y
ε (x) or V y

ε (x)J0. Denoted by Φy
ε the associated energy functional to

(5.2) and Φy
0 the energy functional defined correspondingly by V (y), W (y) and Q(y), let us set

cε(y) = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φy
ε(z) and c0(y) = inf

e∈E+\{0}
sup

z∈Re⊕E−
Φy

0(z).

As was mentioned at the beginning of this section, we can immediately conclude the fact that
c0(y) = γ(ωV (y),W (y),Q(y)) is always attained. Then, repeated application of Lemma 2.7
enables us to have cε(y) ≤ c0(y) + oε(1) for each y ∈ RN .

Since a trivial verification would show that

cε(y) = inf
e∈E+\{0}

sup
z∈Re⊕E−

Φy
ε(z) ≡ inf

e∈E+\{0}
sup

z∈Re⊕E−
Φε(z) = cε ∀y ∈ RN ,

we thus have actually have that

cε ≤ min
y∈RN

c0(y) + oε(1) = min
y∈RN

γ(ωV (y),W (y),Q(y)) + oε(1).
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Step II. Due to the fact that the family {zε} is bounded and non-vanishing, let us choose
(tε, xε) ∈ R× RN and R, δ > 0 be such that∫ tε+R

tε−R

∫
BR(xε/ε)

|zε|2 dtdx ≥ δ.

Set wε(t, x) = zε(t+ tε, x+ xε/ε), we then have wε become a minimal energy solution to the
equation

(5.3) L z + Vxεε (x)z = W xε
ε (x)|z|p−2z +Qxεε (x)|z|

4
N z.

Suppose now V (xε) → V∞, W (xε) → W∞ and Q(xε) → Q∞ as ε → 0. By the Hölder
continuity, we then have

V xε
ε (x)→ V∞, W xε

ε (x)→W∞, Qxεε (x)→ Q∞ as ε→ 0

uniformly on bounded sets of x. Remark that, if denoted byw the weak limit ofwε, we soon have
w 6= 0. And hence, a multiplication by compactly supported functions in (5.3) will generally
imply us that w solves

L z + ωV∞z = W∞|z|p−2z +Q∞|z|
4
N z

with its critical level being estimated by

ΦV∞W∞Q∞(w) =
(1

2
− 1

p

)
W∞|w|pp +

(1

2
− 1

2∗

)
Q∞|w|2

∗
2∗

≥ γ(ωV∞ ,W∞,Q∞)

≥ min
y∈RN

γ(ωV (y),W (y),Q(y)).

On the other hand, by Fatou’s lemma and Step I, we have(1

2
− 1

p

)
W∞|w|pp +

(1

2
− 1

2∗

)
Q∞|w|2

∗
2∗

≤ lim inf
ε→0

(1

2
− 1

p

)∫∫
W xε
ε (x)|wε|p dtdx+

(1

2
− 1

2∗

)∫∫
Qxεε (x)|wε|2

∗
dtdx

= lim inf
ε→0

cε(xε) = lim inf
ε→0

cε ≤ lim sup
ε→0

cε ≤ min
y∈RN

γ(ωV (y),W (y),Q(y)).

Therefore, we can conclude

(5.4) lim
ε→0

cε = lim
ε→0

c0(xε) = min
y∈RN

γ(ωV (y),W (y),Q(y)).

Remark that by the Hölder continuity of V , W and Q, jointly with a similar estimate like
(3.6), we deduce that γ(ωV (·),W (·),Q(·)) is also Hölder continuous. Hence γ(ων∞ , λ∞, κ̄) >
γ(ωV (0),W (0),Q(0)) = c0 implies {xε} is bounded in RN . And due to

c0(y) = γ(ωV (y),W (y),Q(y)) > min
y∈RN

γ(ωV (y),W (y),Q(y)) provided that dist(y,C ) > 0,
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thus we conclude limε→0 dist(xε,C ) = 0 from (5.4).
Actually, by (5.4) and the Brézis-Lieb type result, we also get |wε − w|2∗ → 0 and then

|w±ε −w±|2∗ → 0 by Proposition 2.1. And using w±ε −w± as test functions in (5.3), we finally
get wε → w in E as ε→ 0.

Step III. According to Step II, let us assume without loss of generality that xε → y0 ∈ C
as ε→ 0. Then we have V (xε)→ V (y0), W (xε)→W (y0) and Q(xε)→ Q(y0) as ε→ 0 and
w solves the limit equation

(5.5) L z + V(y0)z = W (y0)|z|p−2z +Q(y0)|z|
4
N z, where V(y0) = ωV (y0).

Hence, by (5.3), we have

L (wε − w) =W xε
ε (x)|wε|p−2wε −W (y0)|w|p−2w +Qxεε (x)|wε|

4
Nwε

−Q(y0)|w|
4
Nw −

(
Vxεε (x)wε − V(y0)w

)
.

Using the fact wε → w inE and the uniform L∞ estimate (see Appendix Lemma A.2), it is easy
to check that |L(wε − w)|2 → 0 as ε→ 0. And therefore, we have wε → w in B2 as ε→ 0.

Next, let us remark that: for wε = (w1
ε , w

2
ε) : R × RN → R2K solves (5.5), if denoted by

ŵε(t, x) =
(
w1
ε(t, x), w2

ε(−t, x)
)
, it is clear that ŵε satisfies a equation of the form

∂tŵε −∆xŵε + ŵε = f̂ε(t, x) in R× RN .

By virtue of Lemma A.2, we have f̂ε ∈ Lq for all q ≥ 2. And according to the interpolation
theory, we infer that wε → w in Br for all q ≥ 2. So, we get f̂ε → f̂0 in Lq for some f0 and
all q ≥ 2. Then an trivial application of [10, Corollary A.4] would show that |ŵε(t, x)| → 0
uniformly as |(t, x)| → ∞, which yields the uniformly decay property of {wε}.

By collecting all the results proved in Step I - Step III, we actually proved that z̃ε(t, x) =
zε(t, x/ε) is a minimal energy solution to the multi-component incongruent RD system

∂tz = D∆xz +M(x)z +
(
W (x)|z|p−2 +Q(x)|z|4/N

)
βz

for all small ε > 0, and |z̃ε(t, ·)| has a maximum point xε which converge to a suitable y0 ∈ C .
Moreover, we have

lim
R→∞
ε→0

‖z̃ε(t, ·)‖L∞(RN\BεR(xε)) = 0.

After a translation in time-axis if necessary, the rescaled functions wε(t, x) = zε(t, x + xε/ε)
will converge in B2 (and hence in Br, r ≥ 2) to a minimal energy solution of the limit system

∂tz = J∆xz +M(y0)z +
(
W (y0)|z|p−2 +Q(y0)|z|4/N

)
βz,

and this finishes the whole characterization of the asymptotic behavior of the minimal energy
solution to our original problem.
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5.2 More distinct solutions

By virtue of Lemma 2.4, in order to show the existence of other critical points, it is sufficient to
construct a finite dimensional subspace X0 ⊂ E+ for Φε such that

(5.6) d := sup Φε(X0 ⊕ E−) < γ̄∞ = γ(ων∞ , λ∞, κ̄).

Thus, since the G -(PS)c-condition is satisfied in the sublevel {z ∈ E : Φε(z) < γ̄∞}, the
change of pseudo-index (2.8) will imply the existence of at least n := dimX0 distinct critical
points in the energy range (0, d ].

For simplify notation, we set ν0 = V (0), λ0 = W (0) and κ0 = Q(0). Since we have
assumed Q(0) = supx∈RN Q(x), we get κ0 = κ̄. In what follows, let us consider

L z + ων∞z = λ∞|z|p−2z + κ̄|z|
4
N z

and
L z + ων0z = λ0|z|p−2z + κ0|z|

4
N z

with the minimal energy γ(ων∞ , λ∞, κ̄) and γ(ων0 , λ0, κ0) respectively. And for a clear expres-
sion, let us rewrite the above equations as

(5.7) −β∂tz + J0(−∆x)z + (J0 + ων∞)z = λ∞|z|p−2z + κ̄|z|
4
N z

and

(5.8) −β∂tz + J0(−∆x)z + (J0 + ων0)z = λ0|z|p−2z + κ0|z|
4
N z.

Considering the scaling transform w(t, x) = bz(at,
√
ax) with a, b > 0, we have (5.7) is equiv-

alent to

(5.9) −β∂tw + J0(−∆x)w + a · (J0 + ων∞)w =
aλ∞
bp−2

|w|p−2w +
aκ̄

b
4
N

|w|
4
Nw

Now, let us take a = 1+ν0
1+ν∞

, b = a
N
4 and denote γ̃(ων∞ , λ∞, κ̄) the minimal energy for (5.9),

then we have

γ̃(ων∞ , λ∞, κ̄) =
b2

a
N
2

γ(ων∞ , λ∞, κ̄) = γ(ων∞ , λ∞, κ̄).

Moreover, by the choice of a and b, we also get

(5.10) a · (J0 + ων∞) ≥ (J0 + ων0) for the quadratic part,

and

(5.11)
aλ∞
bp−2

< λ0,
aκ̄

b
4
N

= κ̄ for the nonlinear coefficients.

Here in (5.10), for two matrices A and B, by A ≥ B we mean A − B is positive definite.
Denoted by λ′ = aλ∞

bp−2 , we are then led to the stage to consider the equation

(5.12) −β∂tw + J0(−∆x)w + (J0 + ων0)w = λ′|w|p−2w + κ̄|w|
4
Nw
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and its minimal energy γ(ων0 , λ
′, κ̄). Comparing (5.8) and (5.12), remark that we have the

relations κ0 = κ̄ and

γ(ων0 , λ, κ̄) = λ
− 2

p−2 · γ
(
ων0 , 1,

κ̄

λ4/N(p−2)

)
, ∀λ > 0

jointly with (5.10) and (5.11) we soon deduce that

γ(ων∞ , λ∞, κ̄)

γ(ων0 , λ0, κ0)
=
γ̃(ων∞ , λ∞, κ̄)

γ(ων0 , λ0, κ0)
≥ γ(ων0 , λ

′, κ̄)

γ(ων0 , λ0, κ̄)
=

(
λ0

λ′

) 2
p−2

·
γ
(
ων0 , 1,

κ̄
λ′4/N(p−2)

)
γ
(
ων0 , 1,

κ̄

λ
4/N(p−2)
0

) .
Let us emphasis here that the above estimate become an equality when ων is in the form of
ων = νJ0. Now, let us set n, n′ ∈ N to be the largest integers satisfying

n <

(
λ0

λ′

) 2
p−2

and n′ <

(
λ0

λ′

) 2
p−2

·
γ
(
ων0 , 1,

κ̄
λ′4/N(p−2)

)
γ
(
ων0 , 1,

κ̄

λ
4/N(p−2)
0

) ,
then we can infer from λ′ < λ0 that n ≥ 1. We should remark that n and n′ are not equal in gen-
eral because γ

(
ων0 , 1,

κ̄
λ′4/N(p−2)

)
< γ

(
ων0 , 1,

κ̄

λ
4/N(p−2)
0

)
, which implies n ≥ n′. Nevertheless,

we can still conclude from the continuity of γ in the third variable that: in addition to (5.1), if we
consider the function Q in a properly smaller range then n and n′ will be equal as an invariant
constant with respect to the factor κ̄. At this moment, there holds

(5.13) γ(ων∞ , λ∞, κ̄) > n · γ(ων0 , λ0, κ0).

Next, recalling the notations introduced in the previous subsection, let us take w ∈ E be the
minimal energy solution of

L z + V(y0)z = W (y0)|z|p−2z +Q(y0)|z|
4
N z

such that w is also the limit of the rescaled sequence wε defined in Step II. For r > 0 let us
choose a cut-off function ηr : RN → [0, 1] such that ηr(x) ≡ 1 for |x| ≤ r and ηr(x) ≡ 0 for
|x| ≥ r + 1. Set wr = ηr · w, then we have ‖wr − w‖ → 0 as r → ∞, particularly, {wr} is a
(PS)-sequence for Φy0

0 at the minimal energy level c0(y0) = γ(ωV (y0),W (y0),Q(y0)).
Now, let us take some xr ∈ RN with |xr| = 2(r + 1) and set xrj = (j − 1)xr for j =

1, . . . , n, where n ∈ N is fixed in (5.13). Define wrj(t, x) = wr(t, x − xrj), then it is all clear
that for r large enough {w+

rj}nj=1 is linearly independent. Indeed, for constants cj such that
ϕ+ =

∑n
j=1 cjw

+
rj = 0 where ϕ :=

∑n
j=1 cjwrj , we can deduce that

0 ≥ −‖ϕ−‖2 +

∫∫
V(y0)ϕ− · ϕ− dtdx ≥ ‖ϕ+‖2 − ‖ϕ−‖2 − |V |∞|ϕ|22

=

n∑
j=1

c2
j ·
(
‖w+

rj‖
2 − ‖w−rj‖

2 − |V |∞|wrj |22
)

=
(
‖w+

r ‖2 − ‖w−r ‖2 − |V |∞|wr|22
) n∑
j=1

c2
j
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which implies cj = 0 for all j thanks to the fact ‖w+
r ‖2−‖w−r ‖2−|V |∞|wr|22 is strictly positive

for large r. Having disposed of this preliminary step, we can now set

Xr
j = Rw+

rj = span{w+
rj} and Xr = ⊕nj=1X

r
j .

Then let xε ∈ RN be the maximum point of wε found in the previous subsection, by using the
Brézis-Lieb type result again, we can obtain

(5.14)

max
z∈Xr⊕E−

Φxε
ε (z) ≤ max

z∈Xr⊕E−
Φy0

0 (z) + oε(1)

≤
n∑
j=1

max
z∈Xr

j⊕E−
Φy0

0 (z) + or(1) + oε(1)

=

n∑
j=1

max
z∈Xr

1⊕E−
Φy0

0 (z) + or(1) + oε(1)

= n · γ(ωV (y0),W (y0),Q(y0)) + or(1) + oε(1)

where the first inequality can be derived from the Arzelà-Ascoli theorem (for related details, we
refer the readers to [10, Corollary 4.4]). Therefore, by setting wrjε(t, x) = wrj(t, x− xε/ε),

Xr
jε = Rw+

rjε = span{w+
rjε} and Xr

ε = ⊕nj=1X
r
jε,

we can conclude from (5.13) and (5.14) that, for r0 > 0 fixed large enough, there exists ε0 > 0
such that X0 := Xr0

ε0 ⊂ E+ satisfies (5.6) for all ε ∈ (0, ε0]. And then the proof is hereby
completed.

Appendices

A Regularity results

We devote this appendix to regularity results that were used in the text. For this purpose we set
Bρ := {x ∈ RN : |x| < ρ} for any ρ > 0. Recall

Br = W 1,r
(
R, Lr(RN ,R2M )

)
∩ Lr

(
R,W 2,r(RN ,R2M )

)
for r ≥ 1

denotes the Banach space equipped with the norm ‖ · ‖Br defined in (1.8) and Lr := Lr(R ×
RN ,R2M ) is equipped with the usual Lr norm. The operator L is defined by L = −β∂t +
J0(−∆x + 1) in Section 2. Let us give the following fundamental result in the study of the
system in the form of (2.3). Recall E := D(|L |1/2) is the Hilbert space equipped with the
norm ‖ · ‖. Denote M2K×2K(R) by the space of all 2K × 2K real matrixes equipped with the
usual vector norm. In order to give our key regularity result for critical nonlinearities, let us first
list the following regularity result for subcritical cases.

Lemma A.1. For N ≥ 2, let M ∈ L∞
(
R×RN ,M2M×2M (R)

)
and H : R×RN ×R2M → R

satisfy
|∇zH(t, x, z)| ≤ |z|+ c|z|p−1
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for some c > 0 and p ∈
(
2, 2∗

)
. If z ∈ E is a weak solution to

L z +M(t, x)z = ∇zH(t, x, z),

then z ∈ Br for all r ≥ 2 and ‖z‖Br ≤ C
(
‖M‖∞, ‖z‖, c, p, r

)
.

The proof of Lemma A.1 can be found in [9] (see Lemma 8.6 on page 149). Now we are
ready to give our key result:

Lemma A.2. For N ≥ 2, let M ∈ L∞
(
R×RN ,M2M×2M (R)

)
and h : R×RN ×R2M → R

satisfy

(A.1) |h(t, x, z)| ≤ c
(
1 + |z|4/N

)
for some c > 0. If z ∈ E is a weak solution to

(A.2) L z +M(t, x)z = h(t, x, z)z, (t, x) ∈ R× RN

then z ∈ L∞ and ‖z‖∞ ≤ C
(
‖M‖∞, ‖z‖, c

)
. Moreover, z ∈ Br for all r ≥ 2 and ‖z‖Br ≤

C
(
‖M‖∞, ‖z‖, c, r

)
.

Proof. Our proof starts with the observation that if we have proved z ∈ L∞ then the Br-
estimate follows as a direct application of Lemma A.1. For this end, let us denote Γρ :=
(−ρ2, ρ2)×Bρ for ρ > 0, and set Γρ(~x) := (−ρ2+t, ρ2+t)×Bρ(x) with ~x := (t, x) ∈ R×RN .

Now fix ~x ∈ R × RN , and let ρ̄ ∈ C∞c (Γ2(~x)) be arbitrary. Choose η̄ ∈ C∞c (Γ2(~x)) such
that η̄ ≡ 1 on supp ρ̄. We have that, by denoting D = −β∂t + J0(−∆x),

(A.3) D(ρ̄z) = ρ̄Dz +R(ρ̄, z) = η̄ · ρ̄Dz +R(ρ̄, z),

where R(ρ̄, z) = −∂tρ̄ · βz −∆xρ̄ · J0z − 2J0∇xρ̄ · ∇xz. Noting that, for a weak solution z,
there holds

Dz = −J0z −M(t, x)z + h(t, x, z)z,

then, we may rewrite (A.3) as

(A.4) R(ρ̄, z) = L (ρ̄z)− Tz(ρ̄z)

where Tz is a linear multiplier defined by

Tz(w) = η̄ ·
[
−M(t, x) + h(t, x, z)

]
w.

Remark that z ∈ E, we have z ∈ L2∩L2∗ and |∇xz| ∈ L2, and henceR(ρ̄, z) ∈ L2
(
Γ2(~x)

)
.

In the sequel, we want to improve this estimate iteratively: We first begin the proof for N ≥ 3
and assume that we have already obtained z ∈ Lq

(
Γ2(~x)

)
and R(ρ̄, z) ∈ Lq

(
Γ2(~x)

)
for some

q ∈ [2, N+2
2 ).

Let us consider the map

Tz : Bq
(
Γ2(~x)

)
→ Lq

(
Γ2(~x)

)
,
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then it follows form embedding results for t-Anisotropic Sobolev spaces (see [27]) that the above
linear multiplier Tz is well defined and, by using Minkowski’s and Hölder’s inequalities, the
operator norm can be estimated as

‖Tz‖Bq→Lq ≤ C1

(
|z|

4
N

L2∗ (B)
+ |B|

2
N+2

)
for some constant C1 (depends on |M |∞, c, q), where B := supp η̄. Thus, when |B| is fixed
small enough, we shall assert that L − Tz is invertible. Therefore, by (A.4), there is a unique
solution w ∈ Bq

(
Γ2(~x)

)
to

Lw − Tz(w) = R(ρ̄, z) in Γ2(~x)

which vanishes on the boundary of Γ2(~x).

On the other hand, we also have a well defined map

Tz : Lq
(
Γ2(~x)

)
→ B

q
q−1
(
Γ2(~x)

)∗
.

and the operator norm is estimated as before:

‖Tz‖Lq→(Bq)∗ ≤ C2

(
|z|

4
N

L2∗ (B)
+ |B|

2
N+2

)
.

for some constant C2 (depends on |M |∞, c, q). And thus, for small B, there exists uniquely
w̃ ∈ Lq

(
Γ2(~x)

)
to the equation

(A.5) L w̃ − Tzw̃ = R(ρ̄, z).

Notice that we have assumed z ∈ Lq
(
Γ2(~x)

)
solves (A.4), hence w̃ = ρ̄z. Using the

embedding Bq
(
Γ2(~x)

)
↪→ Lq

(
Γ2(~x)

)
, we have w ∈ Bq

(
Γ2(~x)

)
is also a Lq-solution to (A.5).

And thus, by the uniqueness, we obtainw = ρ̄z and ρ̄z ∈ Bq
(
Γ2(~x)

)
provided thatB = supp η̄

is small. Since ρ̄ and η̄ arbitrary (under the assumption that supp η̄ is small and η̄ ≡ 1 on supp ρ̄),
this implies that z ∈ Bq

(
Γ1(~x)

)
. Furthermore, due to the arbitrariness of ~x ∈ R×RN , we have

z ∈ Bq
loc

(
R× RN

)
.

Now, use the embedding result, we have z ∈ Lq
′

loc, |∇xz| ∈ L
q′

loc and R(ρ̄, z) ∈ Lq′
(
Γ2(~x)

)
for q′ := (N+2)q

N+2−q . Repeating this process, we shall prove that z ∈ B
N+2

2
loc

(
R× RN

)
.

It should be point out that, in the iterative process, we have the initial data z, |∇xz| ∈ L2.

Therefore, by the interior estimates (see for example [15]) and B
N+2

2
loc

(
R × RN

)
↪→ ∩q≥2L

q
loc,

we can conclude that z ∈ L∞ and

‖z‖∞ ≤ C
(
‖M‖∞, ‖z‖, c

)
.

This completes the proof for the case N ≥ 3.
Next, let us assume N = 2. For 1 < q < 2, as argued before, we have

Tz : Bq
(
Γ2(~x)

)
→ Lq

(
Γ2(~x)

)
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is well-defined and its operator norm is estimated as

‖Tz‖Bq→Lq ≤ C1

(
|z|2L4(B) + |B|

1
2

)
for some constant C1 (depends on |M |∞, c, q). And thus, if supp η̄ = B is fixed small, there
exists a unique solution w ∈ Bq

(
Γ2(~x)

)
to the equation

Lw − Tz(w) = R(ρ̄, z) in Γ2(~x)

vanishing on the boundary of Γ2(~x). Meanwhile, we also have

Tz : L4
(
Γ2(~x)

)
→ B

4
3
(
Γ2(~x)

)∗
is well-defined and its operator norm can be estimated as

‖Tz‖
L4→

(
B4/3

)∗ ≤ C2

(
|z|2L4(B) + |B|

1
2

)
.

for some constant C2 (depends on |M |∞, c, q). Therefore, for small B, there exists a unique
solution w̃ ∈ L4

(
Γ2(~x)

)
to the equation

L w̃ − Tzw̃ = R(ρ̄, z).

Since we already have z ∈ E ↪→ L4 and R(ρ̄, z) ∈ L2
(
Γ2(~x)

)
, the same conclusion can be

drawn here that w = ρ̄z = w̃ is a Bq-solution for all q ∈ [4
3 , 2). Therefore, we can conclude

z ∈ ∩q≥2L
q
loc. Once this is proved, together with the interior estimates, we have z ∈ L∞ and

hence
‖z‖∞ ≤ C

(
‖M‖∞, ‖z‖, c

)
.

In summary, we are here to complete the proof for all N ≥ 2 by invoking Lemma A.1.

B Proof of Theorem 2.11

Recall all the notations introduced in Section 2 and, for a subset S ⊂ E and σ > 0, let us denote
the σ-neighborhood of S as

Uσ(S) :=
{
z ∈ E : inf

w∈S
‖z − w‖ < σ

}
,

we remind the reader the following definition of (PS)-attractor (see [9, Chapter 3]):

Definition B.1. A subset A ⊂ E is said to be a (PS)c-attractor for Φ if any (PS)c-sequence
approaches the σ-neighborhood of A ∩ Φc+δ

c−δ for any σ, δ > 0:

Φ(zn)→ c

Φ′(zn)→ 0

}
⇒ zn ∈ Uσ

(
A ∩ Φc+δ

c−δ
)

for all n suitably large.

And given I ⊂ R, A ⊂ E is said to be a (PS)I-attractor if A is a (PS)c-attractor for all c ∈ I.
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For later arguments we introduce a comparison function ψl : [0, l] → N ∪ {∞}: let l > 0
and

M0(Φl) :=
{
h ∈M(Φl) : h is a homeomorphism from Φl to h(Φl)

}
,

for c ∈ [0, l], define

ψl(c) := min
{

gen(h(Φc) ∩ SX
r ) : h ∈M0(Φl)

}
.

Note that due toM0(Φl) ⊂ M(Φl) ↪→ M(Φc) via the restriction h 7→ h|Φc we have ψ(c) ≤
ψl(c) for all c ∈ [0, l].

Now, we can sketch the proof as follows: If ci ∈ [ρ, d] as was defined in (2.9) is not a critical
value, then for any sufficiently small δ̄ > 0 we have inf

{
‖Φ′(z)‖ : z ∈ Φci+δ̄

ci−δ̄
}
> 0. By

virtue of the Deformation Theorem (a version developed for strongly indefinite functionals can
be found in [9, Theorem 3.2]), we can infer the existence of η ∈ C

(
[0, 1] × Φci+δ,Φci+δ

)
for

some δ ∈ (0, δ̄) such that g := η(1, ·) ∈ M(Φci+δ) and g(Φci+δ) ⊂ Φci−δ. This is impossible
since we can deduce that

ψ(ci − δ) = min
{

gen(h(Φci−δ) ∩ SX
r ) : h ∈M(Φci−δ)

}
≥ min

{
gen(h ◦ g(Φci+δ) ∩ SX

r ) : h ∈M(Φci−δ)
}

≥ min
{

gen(h(Φci+δ) ∩ SX
r ) : h ∈M(Φci+δ)

}
= ψ(ci + δ),

and the monotonicity of the Z2-genus implies ψ(ci − δ) = ψ(ci + δ).
If Φ has only finitely many G -distinct critical points in Φd

ρ, then thanks to the G -(PS)-
condition we have

A :=
{

gz : g ∈ G and z ∈ Φd
ρ such that Φ′(z) = 0

}
is a (PS)I-attractor with I := [ρ, d]. Moreover, we also have that A /G is the critical set of Φ
in Φd

ρ which is finite. Hence, we deduce that

inf
{
‖PXz − PXw‖ : z, w ∈ A and PXz, PXw are G -distinct

}
> 0.

For σ > 0 small we then have thatUσ(PXA ) ⊂ X is the union of disjoint σ-G -orbits around the
elements of PXA . This, jointly with the fact the G -action is separated, implies that gen(Uσ) =
gen(Uσ(PXA )) = gen(PXA ) = 1 where Uσ := Uσ(PXA )× Y . Let η ∈ C

(
[0, 1]×Φd,Φd

)
be a deformation deduced from Theorem 3.5 a) in [9]. For δ > 0 small enough the map g :=
η(1, ·) satisfies g(Φci+δ) ⊂ Φci−δ ∪ Uσ. Let l = d + 1 and choose h0 ∈ M0(Φl) such that
ψl(ci − δ) = gen(h0(Φci−δ) ∩ SX

r ). And consequently,

ψl(ci + δ) = min
{

gen(h(Φci+δ) ∩ SX
r ) : h ∈M0(Φl)

}
≤ gen(h0 ◦ g(Φci+δ) ∩ SX

r )

≤ gen(h0(Φci−δ ∪ Uσ) ∩ SX
r )

≤ gen(h0(Φci−δ) ∩ SX
r ) + gen(h0(Uσ))

= gen(h0(Φci−δ) ∩ SX
r ) + 1

= ψl(ci − δ) + 1.
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It is then immediate that ψl(ci+ δ) = ψl(ci− δ) + 1, otherwise one would get a contradiction to
the definition of ci. And finally, the fact ψl(ci) ≥ i implies ρ ≤ c1 < c2 < · · · < cn ≤ d which
completes the proof.
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