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A spinorial analogue of the Brezis-Nirenberg theorem
involving the critical Sobolev exponent

Thomas Bartsch, Tian Xu*

Abstract

Let (M, g, o) be a compact Riemannian spin manifold of dimension m > 2, let S(M)
denote the spinor bundle on M, and let D be the Atiyah-Singer Dirac operator acting on
spinors ¢ : M — S(M ). We study the existence of solutions of the nonlinear Dirac equa-
tion with critical exponent

Dy = A+ F([¥])e + |7 1o (NLD)

2
where A € R and f(|1|)¢ is a subcritical nonlinearity in the sense that f(s) = o(s™1) as
s — o0o. A model nonlinearity is f(s) = asP~2 with2 < p < %, a € R. In particular
we study the nonlinear Dirac equation

Dy = M+ [T, A eER. (BND)

This equation is a spinorial analogue of the Brezis-Nirenberg problem. As corollary of our
main results we obtain the existence of least energy solutions (A, 1)) of (BND) and (NLD)
for every A > 0, even if A is an eigenvalue of D. For some classes of nonlinearities f we
also obtain solutions of (NLD) for every A € R, except for non-positive eigenvalues. If
m Z% 3 (mod 4) we obtain solutions of (NLD) for every A € R, except for a finite number
of non-positive eigenvalues. In certain parameter ranges we obtain multiple solutions of
(NLD) and (BND), some near the trivial branch, others away from it.

The proofs of our results are based on variational methods using the strongly indefinite
energy functional associated to (NLD).
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1 Introduction

Let (M, g) be an m-dimensional compact manifold. We assume that M is spin, and we fix a
spin structure o on M. We denote by S(M) = Spin(T'M) x, S, the spinor bundle on M with
hermitian metric (-, -) and compatible spin connection V°. The Clifford multiplication

TM ®S(M) — S(M)

is denoted by X ® ¢ — X - . Let D = D), be the (Atiyah-Singer) Dirac operator defined on
I(S(M)),ie. D =3, e - Vs, foralocal orthonormal frame {ey, ..., e, } of TM.
In this paper, we want to find solutions ¢ € I'(S(M)) of the nonlinear Dirac equation

Dip = M+ f([0)w + ], (NLD)

where f : [0,4+00) — R satisfies f(0) = 0, f(s)/s% — 0 as s — oo. In particular, f(s)

2m
m—1

2 + —%- is critical here because the form domain H 2(M,S(M)) of the Dirac operator embeds
into L4(M,S(M)) for 1 < ¢ < 2*, and the embedding is compact precisely if ¢ < 2*. This is
closely related to the fact that on R"™ with Dirac operator Dy~ the equation

grows subcritically for s — co. An important special case is f = 0. The exponent 2* :=

Demp = [0 %9




has a family ). of solutions given by

. 1
we(l’) = 52 _2¢1(5$) with 7pl(m) = (1 + ‘$|2)(m_1)/2 (1 - I‘) ' w(]

m(m— 1)/

where ¢ € S,, is a spinor with |1y = ; here the dot *“-” denotes the Clifford multipli-
cation of an element of the Clifford algebra Cl(]Rm) and a spinor.

Nonlinear Dirac equations on space-time R* with various types of nonlinearities have been
investigated in [23]] or [12], for instance. We refer the reader to the surveys [24.125] for refer-
ences to the literature. Results about nonlinear Dirac equations on spin manifolds, motivated by
geometry or physics, can be found in [2}/4,5,[15,16419,28.130-34.377]].

Concerning problem on a compact spin manifold the case A = 0 and f = 0 is of
particular geometric relevance, called the spinorial Yamabe-type equation. A nontrivial solution
thg of

Do = [tho]* ~*4ho (1.1)

4/(m—1)
leads to a generalized metric g, = n%ﬁl g in the conformal class [g] of g. It is a

metric if [1)g| > 0. There holds vol, (M) = 1 and the Bdér-Hijazi-Lott invariant

Aiin(M. [g], @) = inf AT ()volg(M) 7
g€lg]
is achieved by g,. Here A (g) is the smallest positive eigenvalue of the associated Dirac operator
D; on (M, g, o). Equivalently, the functional

m—+1

 (fy1Dwf dvol,)
B fM(D’l/), 1Y) dvol,

achieves its infimum at ¥y and J(¢)y) = A (g,) = AL, (M, [g], o) where the infimum is taken

min

over the set I'* (S(A/)) of all smooth spinor fields with [ ((D1), 1) dvol, > 0.
In [3H5]] it was shown that

Noan (M, 8], 7) < Xy (5™) = T (12)

min min

where AT, (S™) = A1, (S™, [ggm], o) denotes the Bir-Hijazi-Lott invariant for the standard

sphere S™ equipped with the canonical metric and the unique spin structure, and w,,, stands for
the volume of S™. It is known that \f, (S™) = —w},{ is achieved. Moreover, A}, (M, [g], o)
is achieved if the strict inequality in (I.2)) holds. We refer the reader to [2,417,27.29,36] for
these results.

The spinorial analogue of the Brezis-Nirenberg equation

Dy = X + [¢]* % (BND)




has been treated by Isobe [30]. The energy functional

A .
E(®) = % /M (D, )dvol, — 5 /M 1| 2 dvol,. (1.3)

associated to is strongly indefinite because the spectrum spec(D) consists of an infinite
sequence of eigenvalues ... < A_; < A\ <0< A < Ay < ... with|\;| — o0 as |k] — co.
Consequently, a critical point of £, has infinite Morse index and infinite co-index. In order
to avoid this indefiniteness Isobe used a dual variational principle. Then he could apply the
classical mountain pass theorem provided m > 4, A ¢ spec(D), and A > 0.

In the present paper we deal with the more general equation and present a different
variational approach that works in all dimensions m > 2 and also when A\ € spec(D). We do
not use a dual functional but work instead with the strongly indefinite functional

1 A 1 .
L(Y) = —/ (D), p)dvol, — = W|2dvolg — / F(|¢])dvoly, — — [y? dvol, (1.4)
2 Ju 2 Ju M 2" Ju
where F(s) := [; f(t)t dt. Equation (NLD) is the Euler-Lagrange equation associated to (L4).

We show that E A satisfies the Palais-Smale condition below a critical value 7,,.;;. Then we min-
imize £, on the Nehari-Pankov manifold P, if \y_1 < A < Ax. In order to prove v(\) :=
infp, £y < 7erit We construct suitable test spinors ¢, using the Bourgignon-Gauduchon trivial-
ization. Since these do not lie on P, we have to find modifications of the test spinors that lie on
the Nehari-Pankov manifold, and we have to control the energy of these modifications. This is
the main technical difficulty that we have to overcome, in particular when A\ € spec(D). In that
case we use a new idea, replacing the test spinors ¢. by ¢. — T'(¢.) where T'(¢)) € ker(D — \)
is the nearest neighbor of 1 in ker(D — \) with respect to the L** norm. Observe that 7' is a
nonlinear projection.

The minimization argument yields a least energy spinor ¢, solving provided A €
spec(D)\{ A\, : k < 0}.Fork > 1and A < )\, close to \;, we obtain a second solution ¢, using
a new min-max scheme. Essentially, we minimize £ on a suitably constructed submanifold of
the Nehari-Pankov manifold P, of codimension dj, := dimker(D — \;). The energy of the
solution {EA satisfies E,\(iz,\) — L, (1) > 0as A 7 A, hence it may be considered as
a continuation of the least energy solution ¥y, A\p < A < Agyq. Clearly ’l’/)v)\ differs from )
because £)(¥y) — 0as A 7 \z. We would like to mention that standard bifurcation theory
for potential operators yields dj, pairs of spinors £, ; solving (NLD) for A < A close to
Ax- The solution @DA cannot be obtained in this way. The construction of @DA is new and can be
generalized to other parameter-dependent variational problems.

As a last result we provide a uniform bound © > 0 such that the solutions that bifurcate from
Aj continue to exist for A € (A, — v, \r). The Weyl formula for the Dirac operator implies that
the number of solutions of and becomes arbitrarily large as |A\| — oo, provided
m % 3 (mod 4).



Setting
S =L La(¥2)) s Abo1 <A < AP UL, La(82)) 1 A < Ay close to Ap_1}

we can visualize the energy branches bifurcating from A\, and Ay, in Figure 1.

Energy
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Figure 1: Least energy branches Sy, S.11 plus one high energy branch bifurcating from \j

2 Statement of the main results

Let (M, g, o) be a compact spin manifold of dimension m > 2. The spectrum spec(D) = { )y :
k € Z} consists only of eigenvalues with finite multiplicity which may be ordered as follows:
<A <A <0< <A< [ A] = o0 as |k| — oo. We consider the following

assumptions on the nonlinearity f; recall F'(s) = [ f(t)tdt .
(f1) f:]0,00) = [0, 00) is continuous and satisfies f(0) = 0.

f(s)

(fa) —5= — 0ass — +o0.

Ssm—1

(f3) The function s — f(s) + s is strictly increasing.

f(s)s

77,&1%0355—)“‘00.
2m

(/1) (s)

m—1

Em—l % g™ 2
, Pl m—ld — .
(f5) ai}%ﬂ |1n€|max{3—m,0}/Ov (1 _'_T2)m771 r T o0

Now we can state our first main theorem.




Theorem 2.1.  a) If (f1), (f2) and (f3) hold then has a least energy solution 1, for
every \ > 0. The function

RY = R", A= Ly(n),

is continuous and nonincreasing on each interval [\, \g11), k > 1, and on (0, \y). More-
over, 1y — 0 hence Ly(10y) \ 0as A 7 Ag.

b) If f € CY, f'(s) > 0and (f1), (fs) and (f5) hold then has a least energy solution
forevery A € R\ {\; : k < 0}. The function

R\ {\: <0} =RY A= Ly(¥h)

is continuous and nonincreasing on each interval [\y_1, \), if k > 2, respectively on

(Ae—1, A\&), if k < 1. Moreover, 1y — 0 hence L)(1)) \ 0 as A 7 Ag.
Remark 2.2. a) Assumptions (f1) and (f4) imply:
for every £ > 0 there exists C. > 0 such that F(s) < C. + es® and f(s) < C. + es* 72

This allows that F'(s) grows almost critically as s — oo. It also implies ( f5), hence the assump-
tions of Theorem 2.1/b) imply (f1) — (f3). For later use we observe that (f;) — (f3) imply that
the functions g(s) := f(s) + smol = f(s)+ s> 2and G(s) := [Jg(t)tdt = F(s) + 55>
have the following properties:

() Ry — R{, s+ g(s)s? — 2G(s) is strictly increasing.
(ii) For every sy > 0 there exists ¢y > 0 such that g(s)s*> — 2G(s) > cys? for all s > sq.

b) The function F'(s) = as? with « > 0 and p € (2,2*) satisfies all conditions from
Theorem 2.1 b). The same is true for the function F'(s) =
0, 7451

P m—1

% provided & > 0 and ¢ €

¢) It is a challenging open problem whether has a least energy solution for A < 0 in
the situation of Theorem[2.1la), or for A = A\;, < 0 in the situation of Theorem 2.1]b). This may
depend on an intricate combination of conditions on the geometry of (M, g, o) and properties
of f.

As a consequence of Theorem [2.1] we obtain the following corollaries.

Corollary 2.3. The spinorial Brezis-Nirenberg equation (BND) has a least energy solution for
every A > (.

This improves the result from [30] who could only treat dimensions m > 4 and required

A ¢ spec(D).



Corollary 2.4. The equation

Dip = M+ a7 + [ ) 2.1
has a least energy solution for every A € R\ { A\ : £ <0}, > 0,2 < p < 2%
Now we turn to the existence of high energy solutions.

Theorem 2.5. Suppose the hypotheses of Theorem 2.1 a) or b) hold. Then for k > 1 there exists
ax € (Ag_1, \x) such that has for \ € (ag, \i) a solution vy, so that the map

ﬁ)\(@ZA) lf)\ < )\k

A Rt A
(g, Aps1) = ’ = {E,\(%) i) > A

is continuous and non-increasing.

Remark 2.6. By Theorem [2.5] and its proof, the least energy solution v, for A € [Ag, Agy1)
can be continued to A € (ag, Ag+1) in the sense that the energy, and the corresponding min-max
description, changes continuously. We do not know whether the solutions v, and ’l/))\ depend
continuously on \. Since E,\(w,\) — Ly, (¥y,) > 0and L(¢)) — 0as A " g, we see that w,\
is different from ¢,. From a variational point of view v is a minimizer of £, on the Nehari-
Pankov manifold Py, A € [ay, \x), whereas {EA minimizes £ on a submanifold Q) ; of P, of
codimension dimker(D — ), A € (ax, A\x). Qax is a continuation of Py, for A < )y close to
)\k-

Next we state several multiplicity results. Observe that given a solution ¢ of and
¢ € St c C then (v is also a solution. Therefore we only count S!-orbits of solutions in our
multiplicity results. Clearly the solutions v, and 1Z » from Theorems 2.1l and 2.3]lie on different
S1-orbits because they lie on different energy levels. The proof of the following local bifurcation
theorem is standard and will not be given here.

Theorem 2.7. For k € 7 there exists by, < A such that the following holds. For each A €
(b, \i) problem (NLD) has at least dj, = dimc ker(D — i) S*-orbits of solutions 1 ;, j =
1,...,dy. These satisfy »; — 0as A /A

This theorem follows immediately from [[11, Theorem (3.1)]. That the bifurcation is subcrit-
ical is a consequence of the sign of our nonlinearity. Theorem 2.8] and its proof actually give a
lower bound A\, — b;, > v that is uniform in k € Z.

Combining Theorems and we obtain a multiplicity result for solutions of
and provided A < ) is close to \g. If we order the ¢, ; by L(¢y ;) < La(¥aj+1)
then the least energy solution v, corresponds to v, ;. As a consequence of our results, for
max{ag, by} < A < A\ we have d; + 1 S*-orbits of solutions, namely the S'-orbits of the



high energy solutions {5 » from Theorem [2.3] and the dj, S*-orbits of low energy solutions from
Theorem 2.7] which bifurcate from the trivial branch {(\,0) : A\ € R}.

Theorem and its proof essentially yield that, for £ > 1 the least energy solution v, =
11 bifurcating from A, can be continued a bit below ), turning into the “bound state” @ZA
for A < A\,_1. If d, > 1 then it is of course an interesting problem whether the bound states
¥xj, 7 = 2,...,dy, bifurcating from A;1; can also be extended to below A, in the sense of
Remark Our last result and its proof suggest that all solutions bifurcating from \; can be
extended to A € (\y — v, \y) with

m Wm

3=

This holds for all k£ € Z.
Theorem 2.8. For A\ € R problem has at least

(A= > dimgker(D — \)

A< AL <AHv
distinct S*-orbits of solutions \y ;, j = 1,...,L()\).

The Weyl formula and the symmetry of the eigenvalues of D in dimension m # 3 (mod 4)
imply for A > 0 that

d(A) := dimg¢ ( P ker(D - m) ~ ey A™

0<A\<A

and
d_(A) := dim ( P ker(D- m) ~ A
—A<\<0
where c¢); > 0 is a constant depending on m = dim(M) and vol(M, g); see Proposition
below. From this we immediately obtain the following result.

Proposition 2.9. If m # 3 (mod 4) then {(\) — oo as |\| — oo, hence the number of S*-orbits
of solutions of becomes unbounded as | \| — oo.

Remark 2.10. a) If m = 3 (mod 4) the Schrodinger-Lichnerowicz formula only yields the
following lower bound for the number n(\) of solutions of (NLD):

n(A) +n(=XA) > Z dp — 00 as A — oo.
A €EAAFP)U(=A—1,—N)
b) We recall that Theorems[2.1]and 2.3]do not yield any solution of with A < 0 or for
NLD) with A = )\, & < 0, whereas Theorems 2.8l and Proposition [2.9]do not distinguish
between the sign of A or whether A lies in spec(D). Theorems [2.11b) and 2.§] yield the existence
of a solution of for every A € R except for a finite number of nonpositive eigenvalues.



Finally we compare our theorems with some related results for the classical Brezis-Nirenberg
problem
4
—Au = A+ |[u|¥2u in )
(2.3)
u=20 on 0f2

on a smooth bounded domain 2 C R¥.

Remark 2.11. a) An interesting observation is that our results about and do
not depend on the dimension unlike the classical result about from [17]] where dimension
N = 3 is special.

b) Theorem [2.8] corresponds to the multiplicity result from [[18]] for (2.3).

¢) Other multiplicity results for sign-changing solutions of (2.3)) have been proved in [20,22].
These also depend on the dimension, in particular they differ for4 < N < 6and N > 7. It
would be very interesting whether analogous results hold for (BND)).

3 Preliminaries on spinors

3.1 Spin structure and the Dirac operator

Let (M, g) be an m-dimensional Riemannian manifold with a chosen orientation. Let Pso (M)
be the set of positively oriented orthonormal frames on (M, g). This is a SO(m)-principal
bundle over M. A spin structure on M is a pair 0 = (Pspi(M), V) where Psy;, (M) is a
Spin(m)-principal bundle over M and ¥ : Py, (M) — Pso(M) is a map such that the diagram

Pspin (M) x Spin(m) —— Pspin(M)

Joxo o

Pso(M) X SO(m) —>P30(M)

commutes, where O : Spin(m) — SO(m) is the nontrivial double covering of SO(m). There
is a topological condition for the existence of a spin structure, namely, the vanishing of the
second Stiefel-Whitney class wo(M) € H?*(M,Z,). Furthermore, if a spin structure exists, it
need not be unique. For these results we refer to [26,35].

In order to introduce the spinor bundle, we recall that the Clifford algebra C'1(R™) is the
associative R-algebra with unit, generated by R™ satisfying the relation z -y —y - x = —2(z,y)
for x,y € R™ (here (-, -) is the Euclidean scalar product on R™). It turns out that C'I(R™) has a
smallest representation p : Spin(m) C CI(R™) — End(S,,) of dimension dim¢(S,,) = 2[%
such that CI(R™) := CI(R™)®C = Endc(S,,) as C-algebra. The spinor bundle is then defined
as the associated vector bundle

S(M) := Pspin(M) %, Sp,.
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Note that the spinor bundle carries a natural Clifford multiplication, a natural hermitian metric
and a metric connection induced from the Levi-Civita connection on T M (see [26,/35]), this
bundle satisfies the axioms of Dirac bundle in the sense that

(i) foranyz € M, X,Y € T,M and ¢ € S, (M)

XV p+Y X ¢+28X, Y)Y =0;
(7i) forany X € T, M and ¢1,15 € Sp(M),

(X - 1h1,4h2) = = (U1, X - n),
where (-, -) is the hermitian metric on S(M);
(7ii) forany X, Y € I'(TM) and ¢ € T'(S(M)),
VEY - 0) = (VxY) 4 +Y - Vi,
where V¥ is the metric connection on S(M).

The Dirac operator is then defined on the spinor bundle S()/) as the composition
D :T'(S(M)) >, D(T*M @ S(M)) —T(TM @ S(M)) —=T(S(M))

where m denotes the Clifford multiplicationm : X ® ¢ +— X - ).

3.2 The Dirac spectrum and H 2 spinors

Let spec(D) denote the spectrum of the Dirac operator D. It is well-known that D is essen-
tially self-adjoint in L?(M,S(M)) and has compact resolvents (see [26}27,33]). Moreover,
spec(D) = {\; : k € Z} is a closed subset of R consisting of a two-sided unbounded discrete
sequence of eigenvalues with finite multiplicities. And the eigenspaces of D form a complete
orthonormal decomposition of L?*(M,S(M)).

Proposition 3.1. If m # 3 (mod 4), then the growth of the Dirac eigenvalues satisfies Weyl’s

asymptotic law:

. de(A)
AEIEOO A = C,Vol(M, g)
where
dy(A) = dimg < P ker(D - m) , d_(A) = dimg < B ker(D- m)
0< A\ <A —A<A<0

and C,, > 0 is a dimensional constant.
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Proof. For A > 0 let

N(A) = dim ( P ker(D - )\k)>.

[Akl<A
be the sum of the multiplicities of eigenvalues with modulus at most A. Then the Schrodinger-
Lichnerowicz formula for the Dirac operator yields

. N
Vi T = ea Wl

for some positive dimensional constant ¢,,; see [[13, Corollary 2.43], for instance.
If the dimension m # 3 (mod 4) then spec(D) is symmetric about the origin including the
multiplicities [27, Theorem 1.3.7], hence

N(A) — dimker(D)
5 .
The proposition follows with C,,, = ¢,,, /2. L

di(A) = d_(A) =

Remark 3.2. In dimension m = 3 (mod 4) the spectrum spec(D) is not symmetric. In order to
measure the lack of symmetry of spec(D) in this case, Atiyah, Patodi and Singer [6] introduced
the so-called n-invariant of D, denoted by 7(D). In particular (D) = 0 as soon as spec(D)
is symmetric. However, only few n-invariants are know explicitly. It was shown in [21]] that,
if m = 3 (mod 4), for arbitrary large A > 0,j € Nand 0 < [; < --- < [; < A there
exists a Riemannian metric g such that spec(D,) N (0,A) = {l; < --- < [;} and spec(D,) N
(—A,0) = (. The distribution of the spectrum in these dimensions becomes complicated. For
further information about spectral theory for Dirac operators and for related topics we refer to
the monograph by Ginoux [27].

We now define the operator [D — A|2z : L2(M,S(M)) — L2(M,S(M)) by

Y= Zakﬁk = D — )\‘%w = Z A — )\‘%aknk

kEZ kEZ

where 7, € ker(D — ;) and [}, |nx|*dvol, = 1 for k € Z. The Hilbert space
H (M, S(M)) = {v € L*(M,S(M)) : | DI}y € L2(M,S(M))}.

coincides with the Sobolev space W22(M,S(M)) (see [TL2]). Let PY : L*(M,S(M)) —
ker(D — \) denote the projector. We can endow H2 (M, S(M)) with the inner product

(¥, ), = Re(|D — A2, |D — A|2¢), + Re (P, PYo)s

and the induced norm || || = (-, >§ , where (1, p)2 = [,,(1, ¢)dvoly is the L*-inner product on
spinors. Clearly F := Hz (M, S(M)) with this inner product has the orthogonal decomposition
of three subspaces

E=Ef®E\a® E; (3.1)
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where E/\i is the positive (resp. negative) eigenspace of D — ), and EY = ker(D — \) is its
kernel (which may be trivial). The dual space of £ will be denoted by E; = H~z (M, S(M)).
By Pf B — EAjE and P} : F — EY we denote the orthogonal projections. If \ is clear from
the context, we simply write 1)* = P;=(1)) and ¢° = P(v)) for ¢ € E.

4 The Palais-Smale condition

Equation (NLD) is the Euler-Lagrange equation of the functional

1

== —é 2dvol, — _ 1 Zdv
£xt0) =5 [ (Dwwdvol, =5 [ olavol, ~ [ F(uavol, — o [ ol avol,

with F(s) = [ f(t)tdt. In the sequel, by L? we denote the Banach space LI(M,S(M)) for
q > land by | - |, we denote the usual L?-norm.

The functional £, is well defined on E = Hz (M, S(M)) and is of class C* as a consequence
of the assumptions in Theorem 2.1l and since E embeds into L(M,S(M)) for ¢ € [1,2*]. We
write p = T +¢* + ¢~ € E = E @ E} @ E; according to the decomposition (3.I). Then
L has the form

1 1 .
£x0) = 510715 = 17 13) = | Plulavol, = 5 [ o avol,

Obviously the functional £ defined in coincides with £, when f = 0.

We now investigate the Palais-Smale condition for £,. Due to the non-compactness of the
critical embedding £ = H=z(M,S(M)) < L* (M,S(M)), one cannot expect that £ and &
satisfy the Palais-Smale condition on . We shall see that the Palais-Smale condition holds
below a critical value.

Lemma 4.1. Suppose f € C|0,00) satisfies (f2). Then a (PS).-sequence ({y,), for Ly is
bounded, for any c € R. Moreover, ¢ = 0 if and only if ¢, — 0.

Proof. Assumption ( f) implies: for every ¢ > 0 there exists C. > 0 such that
max{f(s)s>, F(s)} < C. +es”. (4.1)

Now let (¢,,),, be a (PS).-sequence, then

1 .
L) = (1018 = 1, 1) = [ Faliavol, = - [ ol dvol, =+ 0,(1), @2)
M M

N —

LA@n)al = 9013 — 17 113 - /M F([ton]) [¢n[*dvol, — /M [l dvolg = o(|[all),
(4.3)
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and

Ly W)U — 7] = | + 6|2 - Re /M F (1) o, 0 — 7)o,

~Re [ 6 00— 07 vl @4
= ([l + 7).
Thus, we have for every C' > 2¢ and n large:
C + o([[tnlln) = 2L7(¥n) — L5 () [¥n]
= [ (DIl = 2P () vl + @5)
e
where in the last inequality we have used (@.1). By @.4), we can deduce that
lof +onlIX < /M (fuDlnl + a1 [ = Wby |dvoly + o([lvy + 47, [15)-
From this and the Holder and Sobolev inequalities we get
1y + ¥ l1X < Clenls + (O + D37 b — o + ol + ¥ [13) 46)
< C'lye + C' bl 18 + g n+ ol + 47 [15)
where we have used f(s) < C(1+ s%). Now, by taking into account (4.3), we get
I+ 1§ < O+ o(0alIF) + O L+ ol + 7 .
Note that dim Eg < 00, hence any two norms on EE are equivalent. Therefore we have
16213 = 10213 < (a3 < Clunls. < C(1+oflunlly)) @)

which implies

16all2 < C(1+ o(l[nllF)) + C(1+ o(lgnlly ™)) [ ¥nla.

Now the boundedness of (1),,),, follows from 2* > 2.
If ¢ = 0 then (.5)) and the boundedness of (¢, ),, imply |¢,, |2« — 0, hence v, — 0 by (4.6)
and (4.7). O

The next lemma has been proved in [30]]. Let

1 1
fot0) =5 [ (Du,wydvol,— 5 [ o

2*alvolg.

be the functional associated to (L.
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Lemma 4.2. Let (), be a Palais-Smale sequence for &y such that 1, — 0 in E and

liminf/ |4, % dvol, > 0.
M

n—oo

Then 1
m m
lim inf £(44,) = liminf [y} > — (5)" wm
1m1n o(tn) = 1m1n \w 2. > 5o \y) @
As a consequence of Lemma 4.2] we obtain the following compactness result below the
critical value ]
m m
cry a m- 48
Terit - " om ( 2 ) “ (4.8)

Proposition 4.3. Suppose f € C[0, 00) satisfies ( f2). Then the functional L satisfies the (PS).-

condition for any ¢ < Vet

Proof. Let (1,), be a (PS).-sequence for £, on E. By Lemma (¥n)n is bounded and
¥, — 0 if (and only if) ¢ = 0. Now suppose ¢ > 0 and, up to a subsequence if necessary,
¥, — g in E. Then we have

U, = g inLPforany 1 < p < 2* 4.9)
and the limit spinor vy satisfies

Dyg = Mo + f(|1bo])o + [wo|* ~24y  on M. (4.10)

We claim that ¢y # 0 in F. Indeed, assume to the contrary that ¢)y = 0. Then it follows from
4.9) that (v,,),, is also a (P.S)-sequence for &. Moreover,

hmlnf—/ | |?

Therefore, by Lemma4.2] we have

“dvol, = liminf £,(4,) — %L;wn)[zpn] — >0

¢ =liminf £y(¢,) = hm 1nf Eo(thn) > 2; (%)me

n—o0

. . . 1 m
which contradicts the assumption ¢ < 5= (2)" w,,.

Now let us set ,, = 9, — 1. Then ¢,, — 0 in E. By the compact embedding £ — L? for
1 <p < 2% we easily get

/F(|¢n|)dvolg:/ F([tho])dvol, + 0n(1) @.11)
M

M

and, for arbitrarily ) € E with ||¢]|, < 1,

Re /M F(1thul) (s ) ol = Re / F(loD) (o, 0)dvoly +0,(1). (@4.12)
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On the other hand, arguing exactly as in [30, Lemma 5.2], we obtain the Brezis-Lieb type result
for the integrand of critical part, that is,

U0 2*dvolg:/ |gpn\2*dvolg+/ |1bo|* dvol, + 0,,(1) (4.13)
M M M

and, for arbitrarily ) € E with |||, < 1,

Re /M [l 2(0, ) = Re /M onl? (0, ) + Re /M "

Therefore, combining - , we infer that

22 (Yo, ) + 0n(1). (4.14)

Lx(¢n) = Eo(pn) + La(tho) + 0n(1) (4.15)

and
L\(¥n) = E(pn) + 0n(1), (4.16)

where we have used (.10), i.e. £ (¢)0) = 0, in the last equality.
and imply that (,,), is a (PS)-sequence for &. If |, ]2« — 0 then we easily
get ¢, — 0in E which gives the compactness of (1),,),, (cf. Lemmald.1)). If lim inf,, o |[pn |2 >
0, then it follows from Lemma[4.2] that
1 mm
lim inf n) > — (=) whn,.
im inf & (@) > 2m(2) w

n—oo

But this, together with , implies lim inf,, oo £ (1n) > 5 (%)™ w;, which contradicts our
assumption. Hence we must have that (¢, ),, is compact in E. ]
5 The min-max scheme

The functional £, € C*(E) has the form

1 _
LA() = 5 (713 = 1971R) = K@)
with 1
K() = / F([gl)dvolg + o / |y |* dvol,.
M M
We need to investigate the properties of . In the sequel we always assume (f1) — (f3).

Lemma 5.1. K(0) = 0and 3K'(¢)[¢] > K(¥) > 0 for every i # 0.

Proof. Using (f3) we obtain for s > 0:

(f(s)s2 + 52*)

N~

s 1
F(s)+%82*=/0 f(t)t+t2*‘1dt</0 (F(s) + ")t dt =

The lemma follows immediately. L
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Lemma 5.2. K is strictly convex, hence weakly lower semi-continuous .

Proof. Observe that (1)) = [, G(|1])dvol, and the function G(s) = F(s) + 5= is strictly

convex as a consequence of (f3). ]
Recall the decomposition F = E) & EY & E; and let
Sy ={o € E{ : [l¢]lx = 1}.
For ¢ € S5 we set

Ex(¢) =R @ EY® E;  and  E\(¢):={té+x:t>0, y € ES® E;} C E\(¢).

A~

Lemma 5.3. For each ¢ € S there exists a unique nontrivial critical point j1\(¢) € Ex(¢) of
the constrained functional L | Br(6)" Moreover the following hold:

a) ux(9) is the global maximum of L|g, 4
b) (@) is bounded away from 0, i.e. || pux(p)T||x > 0 for some 6 > 0.
) py: Sy — E\(¢) is bounded on compact subsets of SY.

Proof. We first prove that sup L, | Ba(o) > 0 is achieved. Observe that there exists a constant
C > 0 such that

C(Itdla + |X° o« forall tg + y € Ex(¢) (5.1)

2+ X7 |2+) < [td +x
because R¢) & EY is of finite dimension. This and F' > 0 imply

21 ,
La(to+X) < 5 = SIXIE - (It

o2
2+ X%l + Ix ‘2)

on E\(¢), hence £ (1) < 0 if ||¢)]], is large. On the other hand, Supg, (4 £1 = @ > 0 because
Ly(tp) = % + o(t*) as t — 0, uniformly in ¢ € S . Here we used that for every ¢ > 0
there exists C. > 0 such that F(s) < s + C.s*. This together with the weak upper semi-
continuity of £ on E)(¢) implies that the supremum is achieved at some /2, (). It also follows
that ||2x(¢)7|| is bounded away from 0, and that 1 is bounded on compact sets.

Now we prove that any critical point ¢ # 0 of L,| Br(4) is a strict global maximum of
L35, (4> hence it is unique. Let ¢ € E,\(¢) be a nontrivial critical point of £,| B and @ =
(14 5)+ x € Ex(¢) \ {1} be an arbitrary element of E)(¢); here s > —1 and y € E® E; .
We set G(s) = F(s) + 552, g(s) = f(s) + s* ~% and fix x. Setting

(s) = T2 2 g (DI + (5 + Da(]) Re(wh, ) + Gll) — G101+ )+ xD) - 652




17

an elementary calculation shows:

2
i —;QS@D—I- (14—8))(}

+ K@) = K((1 + )9 +x) (5.3)

.
=513+ [ his)avol,
M

£a9) = £3(6) = 5 [ ((Dxx) = Aol + )]

It is sufficient to prove that the integrand h(s)(x) is negative if ¢)(x) # 0. Observe that h(—1) =
—29(JYD|v? + G([¢]) — G(|x]) < 0 and sli_)rgo h(s) = —oo. We may assume that / attains its
maximum at some s, € (—1,00), otherwise we are done. We distinguish s and s, here and
emphasize that s, is a real function depending on z, and we can set s,(x) = —1 provided that
h(—1)(zx) is the extremum. We drop the argument = € M in the sequel. Then, denoted by
0. = (14 s.)1 + x, we have:

0= h'(s.) = (9(1¥]) — g(l])) Re(®h, .).

Now, if Re(v, ¢.) # 0 hypothesis ( f3) implies )| = |@.| > 0, hence for p, # 1:

h(s) < h(s.) = () Re (12, 25 4 (14 5.)3)
= S (DI — (1+ s.)g(wl) (I — Re(v. ) (54
DN
If Re(t), ¢.) = 0, i.e. Re(¢), ) = —(1 + 5,)[¢)|? then
n(s) < his) = = gl - Toull + G(wD) - Gl s
< —ga(lwDleP + Gl <.
]

Now we consider the functional
M)\ : S;— — R, M)\(¢) = E)\(/i)\(¢>>
Proposition 5.4. a) M, € C'(S)) and

MA@ ] = laa(@) T lIx LA(ua(@))[X]  for all x € Ty(SY)-

b) If (¢n)n is a Palais-Smale sequence for M then (px(pn))n is a Palais-Smale sequence

for L. If () is a bounded Palais-Smale sequence for L then ( ”wi”A ¢:[)n is a Palais-

Smale sequence for M.
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¢) ¢ € Sy is a critical point of My, if and only if 1x(¢) is a nontrivial critical point of L.
The corresponding critical values coincide.

Proof. By Lemmas [5.1H5.3 we may apply [38, Corollary 33]. 0

Remark 5.5. The set Py := {ur(¢) : ¢ € Sy} is the Nehari-Pankov manifold associated to
L. It is a topological manifold homeomorphic to Sy via the homeomorphism 1y : Sy — P;.
Neither 11, nor Py need to be of class C! since K is not C2. It is therefore surprising that M, =
Lo iy is C'. A general discussion of the construction and the properties of the Nehari-Pankov
manifold P, in an abstract setting can be found in [38, Chapter 4].

Theorem 2.1l follows if we can show that inf M < ~..;;. This will be proved in section
for A > 0. For the proof of Theorem 2.5] we define for k € Z and A\y_; < A < A, close to Ay,
a submanifold Q) ; C Py which has codimension dj, = dim Egk. We can then minimize £, on
Q) in order to obtain a second solution. For A = A there holds Q) , = P»,.

Lemma 5.6. For k € Z and o > 0, there exists 0y, > 0 such that for X € (A, — 0x o, A\ and
o € S;fk with |¢|3 > o there exists a unique global maximum point vy x(¢) € E,\k(gb) of the
constrained functional L | By, (6) Moreover, P;; (vak(@)) is bounded away from O uniformly in
A€ (A — 0oy M) and ¢ € S;\rk.

Proof. The existence of a global maximizer of £, | By (6) is analogous to the one in the proof of
k

Lemma[5.3]l We only need to show the uniqueness for A < A close to \. Let ¢ € E A, (@) be a
global maximum of £, | By (6) and observe that
k

Ly(¥) > inf M, >0, (5.6)
hence
| stblufavol, = 16713 = 071 = 265000 +2 [ Gludvol, 20 6)
and

£30) = L3 = 5K~ K) = [ DIl - Glluavol, > 0. 58)

for some o > 0. These estimates hold uniformly in ¢ € S , ¢ € EA,C (¢) a global maximum of
L] B, (¢)- Morover, (5.1) implies
k

)\ - )\ C * *
p L0 < e | 2l - S
XEEY, ®F;, nes{nEy >0
(e = A)™[nl5™ -
= max oD O((\ = A)™).

nesynEy, 2mC™=1|n

2*
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Hence, for A close to \;, we have P;; (1) = t¢ is bounded away from 0 uniformly in A and
¢ €Sy .

For ¢ € S5 with |¢[3 > o we consider an arbitrary element ¢ = (1 + 5)) + x € E,\k (9) \
{¢}.ie.s> —land x = X"+ x~ € E} @ E,_with s # 0 or x # 0. We fix x, define h(s) as
in (3.2), and deduce as in (3.3)):

1 A
Ly(p) — La(v) = 5/ (Dx, x)dvol, — 5/ |X\2dvolg+/ h(s) dvol,
M M M
1 A — A
=—Ix7IA +k7/ |X0|2dvolg—i—/ h(s) dvol,.
2 k 2 M v

Here the quadratic part is not negative definite. In order to prove L, (¢) < L£,(?) it is sufficient
to consider ¢ in a bounded region, i.e. ||¢|/x» < R for some constant R > 0 independent of \,
because L, () — —oo as ||¢|[x — oo uniformly for A in a bounded interval. We also point out
that P, (¢) = t¢, hence [¢]3 > 7 > 0 is bounded away from 0 as mentioned above.

Observe that (5.4) and (5.3]) imply

h(s) < —% min {g([¥ X1, g(|w )L = 2G(0])}.

Now we divide M into two parts:

0 ={zeM: g(¥hIxI* = g(lwDWI* — 2G(1¥])},

and
Qy = {z e M: g(|[¥))xI* < g(lD|e* = 2G(|¢])}-
CASE 1: [, [4|*dvol, > Z.
In this case, setting sy := , /m, Remark 2.2]a) yields a constant ¢, > 0 such that
CoT

[ ol ~ 26l vl > aloP > 2
N {z€Qu: [¥|>s0}

Then Ly(p) < Li(y) — § for Ax — X is small. Recall that we only need to consider ¢, hence
X" in a bounded region.

CASE 2: [, [¢[*dvol, > 7.
Here we observe that

T < [ [Pdvol, < <
2=,

1-6 0
|¢|2*—2dvolg) ( |4 2*dvolg)
Qo

with § = ™=2 Now the H'/2-boundedness of 1 and g(s) = f(s) 4+ s> =2 > s*"~2 imply that

m—

Q2

—_

/ g(|2|)dvol, > [[* 2dvol, > 7 > 0 (5.9)
QZ Qz
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is bounded away from 0. We now claim that the quadratic form

NI / g(lo]) [xPdvol,

is negative definite on Egk ©® £, , uniformly in ¢. Indeed, since Egk is finite dimensional and
the nodal set of any eigenspinor in Egk is of measure zero [8], it follows from (3.9) that there
exists a positive constant ¢y > 0 such that

B < [ glubhCPdvol, < R [ allelivol
M M

The constant ¢, can be chosen independently of ¢) because global maximizers of £, | By (o) AT€
k

bounded in H/2. Now we conclude:

1, A — A
Llo) = L) < — Lz + 2 / X°Pdvol, - / g(1]) xdvol, < 0
2 2 M s

provided A\, — A is small enough. ]

For o0 > 0 and \;, — 0, < A < Ag, we have a map
Uk = Vxko Py o ORS PV Pla >0 :
Observe that vy 1. o (¢) = vk (¢) for |¢|3 > o > o’ which justifies the notation v ..

Remark 5.7. a) The map vy : Sy, — F is an embedding, and its image Qx 1o := vax(S}, ,)
is a topological manifold homeomorphic to Sj\rw. We claim that Q) ;, C P». Consider ¢ €
Sy gandlet vy k(@) = to + X"+ x~ € Ek,k(gb) C Ry @ EY, @ E, . This is a maximizer of

L) on E,, (¢), hence on R*(t¢ + \°) + E5, = E\ (m(w + XO)) C E\, (¢). It follows

that VA,k(¢) = (mgé + X()))'

b) The solution ¢, from Theorem [2.5]will be a minimizer of £, on Q) ;. ,. It is an interesting
problem to determine the range of A < ) so that one can define Q) ; ,, for instance, whether
it can be defined up to or below A;_;. This will depend on the geometry of M and on the
nonlinearity f.

For o > 0 and A € (\; — 0k, A\x] We consider the functional
Nk 155, o = R, M(9) = La(vai(9)).

We point out that vy, , = .y, and N, = M., . The arguments from [38], Corollary 33] imply
the following proposition.

Proposition 5.8. Fix o > 0 and A € (A — 6.0, Ai)-
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a) N)\,k c Cl(S;\i_kJ) and
W@ = [[PRar(@), LAar(@)X] forall x € Ty(S5, ,)-

b) If (¢n)n is a Palais-Smale sequence for N i in Sj\rk’o_ then (v k(¢n))n is a Palais-Smale
sequence for L.

c) ¢ € Sj{k’o is a critical point of Ny if and only if vy x(¢) is a nontrivial critical point of
L. The corresponding critical values coincide.

Now we show that inf NV, , > inf M, is achieved for A < X, close to A, and is non-
increasing and continuous in A, provided inf M), < 7., In section we shall prove that
inf M, < Yeri holds for all k& > 1. This proves Theorem 2.3

Lemma5.9. a) Forall p € S;’k there holds vy (¢) — pa, (@) as A 7 \i.. The convergence

is uniform on compact subsets.

b) Ifinf My, < Verit, then there exists o > 0 such that

Siﬂf Noak < Yerie forall X € (Mg — 00, Ai],

AL

and the infimum is achieved.
¢) The function (A, — 0.0, \e] = R, A +— inf N, , is non-increasing and continuous.

Proof. a) We fix ¢ € Sy and consider 1)y = vy ;(¢). Observe that 1y = ty¢ + x» with £y > 0
and y, € Egk @ E, . By the boundedness of {¥»}, we have ¢, — by with t, — t; and
X» — Xo as A 7 Ay Then the weak lower semi-continuity of | - |, and K on Ej(¢) implies

. 1 A
limsup Nou(8) < 5 [ (D, duldvol, = 5 [ Jundvol, — Klwn) < Moy (9.
YR M M
On the other hand, the monotonicity of £, with respect to \ yields
e — A
2

0 < Mai(9) = My, (¢) < [Yals =0 as A Ay

It follows that ¢y = p, (¢) and

t 175000 = 125l

Since EY is of finite dimension, we have 1y — fx, (¢) as A 7 Ay.
b) Since ¢y, := inf M, < 7, the infimum is achieved and the set of minimizers

A=A, ={¢¢€ S;\rk i My (9) = e}
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is compact. Let U,(A) C S} be the p-neighborhood of A with respect to || - ||,. We choose
p > 0 so that the L?-norm is bounded away from 0 on U := U,(A), thatis U C S, , for
some o > 0. Using again the Palais-Smale condition below ~,..;; there exists a > 0 with
¢y, + 3a < Yerir and such that

1nf./\/l,\k(5;; \U) Z Cxp, + 2a.

The sets B := 1, (A) and V' := p,, (U) are contained in the Nehari-Pankov manifold Py, from
Remark [5.7] By definition there holds

inf £, (Py, \V) > cr, +2a and  inf £, (A) = cy,.
Using the monotonicity of £, with respect to A we obtain for A < A\ close to A\,
inf E,\(QMM \ V,\) >cy F2a and  inf £, (B)) < ¢, +«
where V), = v ;(U) and By = v, ;(A). This implies
inf NV, x (S;rk,a \ U) >cy, +2a and  inf N, (A) <c), +a.

Then it follows that \V}, ; achieves its infimum on S}, , in the set U.

¢) The function inf NV, x is non-increasing in \ because £, (¢) is decreasing with respect to .
For a given A € (A — 0k, \i] there exists a spinor field ¢ € Sj{k such that NV}, x(¢) = inf N .
Then we have for \' < A:

inf./\/}\,k < inf./\f,\/,k < N)\/Jf((ﬁ) — N)\,k((ﬁ) = inf./\/}\,k as \ / )\,

hence A\ — inf NV, ; is continuous from the left. In order to prove continuity from the right at
A € (Ak—0k.0, Ak ), consider a sequence X/, N\, A and let ¢,, € S;rk be a minimizer of./\f,\;”k. Then
Uy, = vx k(¢y,) is a critical point of £, and Ly, (V) = Ny k(¢n) = inf Ny, o < inf Ny,
hence (1), is a Palais-Smale sequence for £, at a level ¢ = lim,,_,o inf Ny, < inf N, <
Yerit- It follows that 1),, — 1) along a subsequence, and 1) is a critical point of £, at the level c.
Equivalently, ¢, — ¢ € Sy with 1) = v x(¢), and ¢ is a critical point of Ny ;.. This implies
¢ > inf N, k> and the continuity from the right follows. O

6 Test spinors and auxiliary estimates

Our proof relies on the construction of a test spinor on M in order to show inf M < ~.,;; under
the conditions of Theorem The test spinor comes from a spinor on R™ being cut-off and
transplanted to M so that it has support in a small neighborhood of an arbitrary point p, € M.
We first need to recall a construction from the paper [4] of Ammann et al.
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To begin with we fix ¢y € S, with || = m™T arbitrarily, set p(x) = ﬁ for x € R™
and define
(@) = p(e)® (1 - ) - 3o
where. Then it is standard to verify that
m
Dgmt) = E'Mb 6.1)
and »
) m =
= — ) 6.2
[ =m" u" (1+|$‘2) (6.2)

We choose 0 < i(M)/2 where (M) > 0 is the injectivity radius of M. Letn : R™ — Rbe a
smooth cut-off function satisfying n(z) = 1if |z| < § and n(x) = 0if |z| > 2J. Now we define
Y.t R™ — §,, by

m

po(2) = n(x)(x) where () =T P(x/e). 6.3)

In order to transplant the test spinor on M, we recall the Bourguignon-Gauduchon-trivialization.
Here we fix py € M arbitrarily, and let (x4, . .., ,,) be the normal coordinates given by the ex-
ponential map

exp, :R"=T, M >U =V CM, xwp=exp, (z).

For p € V let G(p) = (g;;(p))i; denote the corresponding metric at p. Since G/(p) is symmetric
and positive definite, the square root B(p) = (b;;(p)):; of G(p)~" is well defined, symmetric
and positive definite. It can be thought of as linear isometry

B(p): R™ =T 1)U, 8rm) = (T,V, 8)-

€XPp,

We obtain an isomorphism of SO (m)-principal bundles:

Pso(U, ggm) ¢—>PSO(V78)

R

P
TpM>U—"5V M

where ¢(y1, ..., Ym) = (B, ..., By,) for an oriented frame (y1, . .., y,,) on U. Notice that ¢
commutes with the right action of SO(m), hence it induces an isomorphism of spin structures:

Spln(m> x U = PSpin(U7 gR7”> B PSpin(‘/a g) - PSpm(M>

| _

TPOMDU VcM
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Thus we obtain an isomorphism between the spinor bundles S(U) and S(V'):
S(U) := Pspin(U, grm) X Sy — S(V) := Pspin(V, 8) X, Sy C S(M) (6.4)

where (p, S,,) is the complex spin representation.

Setting ¢; = B(0;) = )_; b;;0; we obtain an orthonormal frame (e1, ..., e,,) of (T'V, g). In
order to simplify the notation, we use V and V, respectively, for the Levi-Civita connections on
(TU, ggm) and (T'V, g) and for the natural lifts of these connections to the spinor bundles S(U )

and S(V'), respectively. For the Clifford multiplications on these bundles, we shall write ““”” in
both cases, that is,
e =DB(0) =0

Now a spinor ¢ € I'(S(U)) corresponds via the isomorphims (6.4) to a spinor ¢ € I'(S(V)).
In particular, since the spinors ¢. € I'(S(U)) from (6.3]) have compact support in U they corre-
spond to spinors ¢. € I'(S(M)) with compact support in V. These are not quite our test spinors,
because they do not lie in M. In the rest of this subsection we prove some estimates that will
be needed in order to control the critical values in the next section.

We write D and D for the Dirac operators acting on I'(S(U)) and T'(S(V)), respectively.
By [4, Proposition 3.2] there holds

Dp.=Do.+W-p.+X - ¢. + Z(bij —05)0; - Vo, e (6.5)
,J

with W e I'(CU(TV)) and X € I'(T'V) given

Z Z bm(aabjg)bgklei c €5 €,

5.k o,
i#jFERF
and ]
X= 21; (T8 —T5)er = Zf‘zkek,
here (bw )ij denotes the inverse matrix of B, and T'¥; := g(Vej e;, er). In the sequel we identify

r € R™ with p = exp,, & € M for notational convenience. As remarked in [4,130], observing
that B = (G~)2 and G = I + O(|z|?) as |z| — 0, we deduce

bij =0 +O(|z*), W =0(z’) and X =O(|z|) as|z|— 0. (6.6)

In the sequel we use the notation f. < g. for two functions f. and g., when there exists a
constant C' > 0 independent of ¢ such that f. < Cly..

Lemma 6.1. Let 5. € S(V) be as above and set R. = D@, — |¢.|* ~2p.. Then
ez ifm=2,

g S ellnels ifm =3,
€ ifm >4,

==
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and B
e if2<m <4,

IR ; < e2|lnels  ifm =5,

g? ifm > 6.

Proof. For ¢ € E with ||¢|| < 1 and ¢ small we have

JRCECINE ( [ e
Bas (po) Bas (po)
26 m+1

Wzl—Jrl m—1 =m
S (/ e "%Tldl“) S (6’5_%/ T—mmndr)
|lz|<26 0 (]_ + r2) mE1 (67)

1 .
€2 if m =2,

m-41

2m
|12

‘ /M(Spa Y)dvol, %dvolg)

<{e|lnels ifm =3,
e ifm >4,

This implies the estimate on ||p. || .
In order to estimate R., (6.1]) and (6.2)) yield

D¢ezvn'¢a+nD¢e (68)
= Ve + o o+ (0 — 07 T[0T e

Using (6.3), we obtain
R.=A + Ay + As + Ay + Ay + Ag

where
Al = v/r/ ) ¢Ea
Ay = (n— 0" e e,
A3 = 77W : 'J)m
A4 = 77X ) 77;87

As = nZ(bij — 045)0; - Vo, e,
2%
Ag = Z(bij — 045)0jn 0; - Y.
2%
In the following estimates we use that the support of 7 is contained in Bys(0) C R™. Anal-
ogous to (6.7), using (6.2)) and (6.6) we estimate:

m+1 m+1

__  2m 2m m 2m
[Arlle; S (/ V- ¢€‘m+1dVO].g) < </ |¢€‘i—+1dx)
Bas (po) 8<|z|<28

2m = pm—1 2m 1
SJ gm+l / mdr SJ e 2
g (1 —'— 7”2) m+1
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m—+1

| A2l

/ 77 nzﬂ)mﬂ |¢€|m T dvol,
Bas(po)

m—+1
om 2m
(/ |1 |m=1 dSC)
5<|z|<25

m—+1

26 ’["m_l 2m
< SR
~ (/; (1 + 7“2)7” T)

< Eerl
m+1 m+1
2m — 2m 2m 2m 2m
||A3 (/ |W m+1 W)a mt1 dVOlg) < / |[l?| T |’Q/) A1 d[l?)
Bas(po) || <26
1 .
20 6m +m—1 —7721:11 g 2 1f2 S m S 8
8m € rm+1 4 .
S|emtT ——— o dr S |ln5| ifm=9
0 2 m+1 .
(1+r?) ifm > 10
m—+1 m41
2m -, 2m_ 2m 2m 2m 2m
||A4’ E3 5 </ ‘X m+1 we‘erl dV01g> 5 ( gj m+1 we‘m+1 dx)
Bas(po) \x\<26
m+1 .
§ % T7727,T1+m_1 o if 2 S m S 4
0 (1+T ) m+1 lfm26
m—41
B dm gy Tm
am 2m 2m am rﬁ""m 1 2
||A5 E3 S |:L'|m+1 |V¢ m+1 S| emtt 77712617’
|z| <26 0 (1 + T2)m
m+1 m=1 .
28 2T1+m_1 om g 2 if2<m<H4
4n € rm .
0 2 m+1 .
(1+7%) g2 ifm>6

Here we used the inequality |V (x)| < u(z)* and the same estimate as for ||A,]
there holds:

;- Finally

m—1

mi1 €2 if2<m<8
||A6|E;5(/ 2] ¢|m+1dx) <l elmeff itm—09
l=l<28 o ifm > 10

Here we used |Vn(z)| < |z| and the same estimate as for || As||g

From these estimates we finally obtain:

m—1

e 2 if2<m<A4
e2lnels ifm=5
g2 itm > 6

O

Lemma 6.2. Let p. € S(V) be as above and let w,, stand for the volume of the standard sphere



27

S™. Then
| ] =2
/ (u[2dvol, > g|llne| + O(e) zfm 6.9)
M e+ 0(e?) ifm>3
and
) ) . O(e) ifm =2,
— * m\™
= / (D@.. p:)dvol, — - / el dvoly < 5 (5) wn+ { O] nel) ifm =3,
O(£?) ifm >4,
(6.10)

Proof. For the first estimate, by taking into account dvol, = dvolgn + O(|z|?) in normal coor-
dinates at p, we have

/ . Pdvol, — / . Pdvol,
M Bas(po)

= / || ?dx + O (/ |w€|2dx> +0 </ \x|2w€\2dx)
|z|<o 0<|z|<20 |x|<20

[} 29

! / G 5/? "y
=em™ Wy ———dr ———dr
! o (L4r2)m-1 s (14 r2)m-t

25—6 7Jn—l—l
+0 (53/0 Wdr)
O(e’:‘m_l) ifm=2,3,
=A(e) + O(E™ ) + ¢ O(?| Ing|) ifm =4,
O(g?) ifm>5
OE™ ) ifm=2,3,
= A(e) + ¢ O(3|Ing|) ifm =4,

)

O(e?) ifm > 5,
where
Ae) 6(111(82 + 0%) — 21n5)mm_1wm_1 ifm=2
€)= [e’e] m—1 .
6mm_1u)m_1 f(] W(ZT if m Z 3
This implies (6.9).

Now we come to (6.10). Analogously to the arguments in Lemmal6.1] we shall use (6.3) and
(6.8)) in order to get

/ (D@m@a)dvolg =J++--+J7
M

where

Jl = Re/ n- (Vn : ¢ea 77Ee)dVO1g
M



28

Jo = / |@-|* dvol,

—/(n 0> ) - ] P dvoly
M
J4:Re/ n2-(W-@EE,Q/3€)dvolg
M
Js = / (X B, ) dvol,
Jﬁ RGZ/ 2]_ 2] a vﬁ 'l/)mwa)dVOl

Jr = ReZ/ 1+ (05 - e, e )dvol,.

5= |wa|2*dx+0</ |¢e|2*dx)+0(/ |a:|2|w€|2*da:)
|z|<d 0<|z|<28 |z|<26

) 26

. - Tm—l d O = Tm—l d
=m wm_1/0 7(1+r2)m T+ /é 7(1+r2)m T
25
5 = Tm+1
+ O (5 /0 7(1 n 7ﬂz)malr)

o pmrl O(e*|ne|), ifm =2
= m" Wy, —————dr + O(e™) + ’
e 1/0 (1+r2)m " (™) {0(52), ifm >3

R /OO rmt 04 O(e*|Ine|) ifm =2
B ™y (42, O(e?) ifm >3
J3 S f6§|x|§26 |wa|2*d$ 5 €m

25 gm—1 if2<m<4

€ frm+2 .
e]4§/ <26|$‘3|¢5|2d$554A Wdrg €4|1H8| ifm =5
|z|< p e
Js =0
2 mt £ ifm =2
Js S |27|2|V?/)a|-|¢a|dx552 —dr <{e| ifm=3
|z|<26 o (1+7r2)"z
: e? itm >4

Here we used the inequality |V(z)| < p(z)?.
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eml if2<m<A4
Jr S / 2| Pde < < €Y lne| ifm=5
5 .
lol<2 gt ifm > 6
Here we used the inequality | V7 (x)| < 2 and the same estimate as for J,.
Combining these estimates we deduce that

1 _ 1
. Diaaia 1__ 75
2/M(<ps0)dvog 2*/M|s0
O(e) ifm=2

[e’¢) m—1
m—1 r :
m wm_l/o 7<1+T2>mdr+ O(e?| Inegl) %fm:?)
O(£?) ifm >4

z dvol,

<

N —

Finally (6.10) follows upon taking into account that

2 m oo ,r,m—l
Wm = P a——— de = 2mwm_1 ——dr.
w \ 1+ [2]? o (A+r2)m

O
7 Proof of the main results
As a consequence of the results from sections 4| and |3/ we need to prove
infM)\ < Yerits (71)

where M : ST — R is defined in Proposition[5.4l The strategy is to find suitable modifications
of the test spinors that lie on M, and to control the energy of these modifications.

7.1 Proof of Theorem 2.1/ for \ > 0 and of Theorem

Since F' > 0 by (f1), we have

1 *
L) < &) = 5 (I3 = 1107115) / [%]* dvol,
M

2

N —

forally € E. Let

T L* = L* (M,S(M)) — E} =ker(D — X), Tx(¢) = arg min [¢) — ¢|3.,
PEES

i.e. Th(v)) € EY is the best approximation of 1) € L?" in EY. This exists and is unique because
the L?" norm is uniformly convex and EY is finite-dimensional. Of course, T is not linear in

general, and 7' = 0 when EY = {0}. Clearly we have |¢|% > | — T)(¢))|3- and therefore

2 dvol,. (7.2)

8(0) < Bi) = ExW =) = 5 (IR~ 10718) — 57 [ 10=Ta(w)
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This implies

inf My = inf max £,(¢) < inf max g,\(@b) (7.3)
$EST YeEx(9) ¢€ST YeEN(9)

We need to collect some properties of T and of the functionals

2%
2*

Pl R RW) = o - H)

and
ExtE—=R, &) =& —Ta(Y)) = %(HWII? —[71%) = Fa(¥).

Lemma7.1. a) Fory € L*, ¢ € ES andt € R there holds: T\(t)) = tT\(v), Tx(¢+¢) =
T\(Y) + ¢ and Fr( + ¢) = FA().

b) Ty is of class C* on L*" \ EY. Moreover, T ()[1)] = Th () for all ) € L*" \ EY.

c) Fyisof class C> on L*" \ EY with derivative

FA(@)[¢] = Re y [ = Ta()[* (& — Ta(¥), ¢)dvol,.

d) F), is convex.

e) IfY € E = EY @ E is a critical point of & then v — T\(v)) € E is a critical point of
En

Proof. a) is trivial. For the proof of b) we fix 1) € L?"\ EY and consider the map F , : £ — R
defined by F (@) := F(+¢) = 2|1 — ¢|3-. Observe that ¢ = T (¢)) is the unique solution
of F /’W(qb) = 0 because F)y, is of class C* and strictly convex. A simple computation yields for
¢ € EY:

272 | p)2dvol,. (7.4)

FLJT@)), 6] > /M 1 — Ty()

Since the nodal set of any ¢ € Ef \ {0} is of measure zero by [8], Fy ,(Tx(¢)) is posi-
tive definite. Now the differentiability of 7} follows from the implicit function theorem, and
T3 () [v] = Tx(¢) follows from a).

In order to prove c) observe that F}(¢) is trivial on EY by a). This implies for ¢ € L?":

F{(4)[6] = Re /M W — Ta ()% 2 (1 — Ta(), 6 — T4()[e]) dvol,
= Re . [ — To()|* "2y — Ta(¥), ¢)dvol,.

Now F), is C? because 7T}, is C'.
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d) For 19,1 € L*" and a € [0, 1] we obtain using the definition of T}:

(1= a)ho + athy — Ta((1 — a)ibo + o) }2
< |(1 = a)ho + arhy — ((1 — a)Th(vo) + aTr(¥1)) |2,
< (1 - a)|vo — Ta(to)], 5 + ol = Th(vy) }2*

e) Observe that &5 (¢) — T)(v)) vanishes on EY by the definition of T}. If ¢ is a critical point
of &, then & (1) — T\()) vanishes also on E. O

The second derivative of F) is given by

FUW)[éy] = Re /M W — Ta ()% 2 (x — T()[], é)dvoll

= [ 1= TP Re(w = T(0).x = THW)[ED - Relts T (1), )l

Using T} (v)[¢)] = Th(v) and that F} (¢)[¢, x] = 0 foryp € L?" \ EY, ¢ € L?" and x € EY, an
elementary calculation yields for ¢ € L?" \ EY and ¢ € L*":

(FA@) [, 0] = FA@)W]) + 2(FR (@), ¢] = FA@)[0]) + FA()[¢, ]

2 . 7.5
> TH/M [ — T (¥)]? dvolg >0 -

Lemmal[7.1] 1mphes that £ ,\(¢ +¢) = (w) for ) € F and ¢ € EY. Therefore we only need to
consider & \ on EA = E @ E,, so from now on £ N EA — R. A straightforward calculation
shows for any ¥, ¢ € Ey:

E\(W)[0] = Re/M (D =X = [ = T ()7 2(4 = Ta (), @) dvol,.

Next we construct the Nehari-Pankov manifold for &, \. We could refer to [38]] as in section [3] but
we prefer a different 2-step procedure which will make the subsequent estimates more transpar-
ent.

Proposition 7.2. ) There exists a C* map ny : B} — E; such that for ¢ € E):
EWXI=0 forallxeEy = ¢ =mn@")
Moreover, 1y (¢) maximizes Ex(¢ + x) over all x € E.
b) The functional 7y, : EY — R, Jy\(¢) = &\ (qb + m(qﬁ)), satisfies:

T(e)=0 = &E(s+m(¢) =0
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c) Forevery ¢ € EY \ {0}, themap Ty : R = R, Ty 4(t) := Ji(t9), is of class C* and
satisfies
Tot)=0,t>0 = J{,t) <0.

Moreover J 4(0) = J, 4(0) =0, J{4(0) > 0.

Proof. For ¢ € Ej themap £, , : E; — R defined by

(II1% = IxI13) = Fa(é +x)-

|~

Exs(x) =Ex(B+x) =

is strict concave because F) is convex. Moreover, it is anti-coercive, hence it has a unique
critical point 77, (¢), which is a maximum point. That 7, : Ey" — FE} is of class C! follows
from the implicit function theorem applied to the equation D, E,(¢ + x) = 0 which defines

X = Na(¢). This proves a).
For the proof of b) recall that £} (¢ + 1x(4))[x] = 0 for all y € E; by construction of 7. If
T(¢) = 0 then E,(¢ + nx(4))[x] = 0 holds also for all x € E; as a simple calculation shows.
In order to see ¢) we compute J5 4(t) = El(td + nx(td))[¢] which implies that T is C2.
The implication in ¢) is equivalent to:

()] =0,0#0 = TV (#)[o, 4] < 0.

This is a consequence of the following computation where we set v = ¢ + 7,(¢) and x =
14(9)[6] — m(¢), and use that & ()] - = 0.

T () (6, 6] = EL (W) [+ 1A(D)[], ¢ = EX (W)W + X, ¥ + X]
= (W), ¥] + 285 (), X] + EX@)[x. V]
= T[] + (Fa()[¥] = F (@)W, ¢]) + 2(F @) = B x])  (7.6)
— FW) b x] = Xl

2 .
< J(@)le] — IXIA - e Lk ().

Finally we have J3 4(0) = &,(0) = 0, J5.4(0) = £4(0)[¢] = 0, and T54(0) = EN0)[¢, ¢] >
0. L

The Nehari-Pankov manifold for &, \ 18 defined as

Py = {o € Ef \ {0} : T(¢)[¢] = 0}.

By Proposition this is a smooth submanifold of codimension 1 in EY, and it is a natural
constraint for the problem of finding non-trivial critical points of 7).
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Lemma 7.3. If ¢, € E), satisfies

& @)y = s Ewn)lo] = oa(l) (7.7)

veE, [|lv]|=1

then

[0 =m@D)lx = O(|E W) ]l,)

Moreover if (V) is a (PS).-sequence for E on Ey, then (), is a (PS).-sequence for Jy
on E.

Proof. For simplicity of notation we set (;, = ;7 +n\(¢¥;7) and &, = ¥, —(, = ¥, —ma(Y)7) €
E . The we have by definition of 7,:

= g/(gn)[gn] == <77>\ §n> Re/ |Cn - TA Cn)‘2 _2( TA(CTL) gn)dVOI

Next (Z.7) implies

O(H&LH ) g)\(wn gn - <wna§n>)\ Re/ W)n_T ¢n)|2 _2(¢n_T)\(¢n) Sn)dvolg (7 8)

Therefore we have

o) = 117+ Re [ 115, = T (wh, = Ti(0h), &)l
(7.9)

- RG/ |Cn - T)\ Cn)|2 _2( T)\(Cn) Sn)dV(ﬂ

Since the functional 1 +— |1) — Ty (3|3 is convex, we obtain
Re/ ‘wn — TA<wn>|2*_2<wn - TA(wn>7 gn)dVOIg
M
“Re [ 160~ TG (G = TG )dvoly 2 .
M

Now (Z8). (7.9 and &, € Ey yield [|€]lx = O([|E ()] ,-|,)

If (¢,), is a (PS).-sequence for &, then (¢n — TA(?/)n))n isa (PS).-sequence for &,, hence
it is bounded by Lemma4.1l Now a bound on the second derivative of £, implies that (), is
a (PS),-sequence for £y, hence (1), is a (P.S),-sequence for 7, on EY. O

It is not difficult to check that the functional
Ha: By =R, Hi(o) = Tx(9)[9],
is of class C' with derivative

Hy(@)x] = Ta(@)X] + T (9)[6: ]
for ¢, x € E; . Observe that Py = #;'(0) \ {0}.
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Lemma 7.4. For ¢ € EY and ¢ := ¢ + n)(¢) there holds

2
2%

HA(6)10] < 2Ha(0) — —— [0~ Ti(w) [}

Proof. This estimate follows immediately from (Z.3]) and a similar argument as in (Z.6)). O

Proposition 7.5. Forany ¢ > 0, if (¢,,),, is a (PS).-sequence for [J\ then there exists a sequence
(tn)n in R such that t,,¢,, € Py and |t, — 1| = (|| T3 (dn)]|2)-

Proof. If (¢n)y is a (PS).-sequence for Jy then (¢, = ¢n + 1(¢n)), is a (PS).-sequence
for &£, hence (¢, — T\(¢n))n is a (PS).-sequence for £, which is bounded by Lemma 4.1
Therefore (¢,,),, is bounded. Moreover, since J)(¢,) — ¢ > 0 we obtain:

lim inf ¢, — T5(¢n) . > 0.

Now we define g,, : (0,4+00) — R by g¢,(t) = H(t¢,). Then tg),(t) = H)\(ton)[tdy,], hence,
by Lemma Taylor’s formula and the uniform boundedness of ¢/,(¢) on bounded intervals,
we get

/ 2 *
16, (1) < 200(1) = = |60 = Ta(Ga) . + Clt ~ 1]

for ¢ close to 1 and some C' > 0 independent of n. Since (¢,,), is a (P.S)-sequence for 7y, we
have g, (1) = J{(¢n)[¢n] — 0. Therefore there exists a constant 6 > 0 such that

gn(t) < =dforallt € (1 —4,1+4)and n large.

Moreover, since g,(1 —d) > 0 and g,(1 + 6) < 0 the Inverse Function Theorem yields that
bn = g4(0)¢, € Py N span{g,} is well-defined for n large. Furthermore, ¢/,(t) ! is bounded
by a constant, say, ¢; > 0 on (1 — 6,1 + ) due to the boundedness of {¢,, }. As a consequence

16 = dnllx = 192(0) = 11 8nllx = |92 (0) = g5 (Ha(9n))| - [|@nllx < €1 [Ha(dn)] - | dnll-
Now the conclusion follows from |H(¢,)| = O(||Tx(én)][2)- O
Combining Lemma([7.3and Proposition [7.3] we obtain

Corollary 7.6. Forany c > 0, if (V) is a (PS).-sequence for &, then there exists a sequence
(@n)n in Py such that ||, — ¢ — nx(0n) |3 = O(||EX(WUn)||A)- In particular,

max T (H65) = Ta(6n) < En(n) + O(IIEL (¥)3)-

Proof. According to Lemma 7.3, we have [|¢; — na(:5)|1x < O(IEL(¢n)|lx) and (4;),, is a
(PS).-sequence for 7. Then, by Proposition[7.5] there exists ¢,, = t,,¢; such that

[thn = dn = ma(@n)llx < Mo = ma()lIx + 19 = dulla + ma(e) — ma(dn)lln

_ (7.10)
< O(IEX(Wn)1I2) + OUITX (W) 1)
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Here we used that (¢, ), is bounded due to Lemma/4.1] and the inequality

I (@) = ma(@n)llx < 5 (Fatb)lIx - 10 = énllx = O(|tn — 1)

which can be easily checked. The boundedness of the second derivative of &, and Lemma 73]
yield

T3y = I +m@i ) In < IEWn)lIx + Ol = ma(&)l1n) = OUIENWn)1)-

This together with (ZIQ) implies ||t — ¢n — 7x(dn)|lx = O(1EL (1) |10)- N
Next, Taylor’s formula and the boundedness of the second derivative of £, imply

Ex(tn) = E(bn +1(60)) + € (dn + mr(0n))[n — Sn — ma(60)] + OUIEN()IIR)
= Tn(9n) + TA(Sn) s — da] + OUIENW)I3).

Finally we have J}(¢,)[¢;” — ¢n] = 0 because ¢, € Py N span{t} }. This implies the last
estimate of the corollary. ]

Now we address the main inequality using our test spinor @, in (6.3). Clearly we have

m—1

Igoallz/ [eldvoly e and o, g::}z/ - ldvoly S e (71D
M M
Since dim EY < oo we obtain

D@ S o S and [TA(@)] S [Th(@)l S 77 (7.12)

It follows that
JREEEES
M
< [ le. - 0730
M

< T2 (72) oo / 1.
M

> - |95a|2* dVOlg

S| [ 16— 0T 2. = 0T (52). () dvl,

T (@2 dvoly S / || TN (@) + [Ta(@2)|* dvol,
M

Ldvol, + |Ta(pe)|% S emt

oo

(7.13)
where 0 < 6 < 1. Moreover, for any ¢» € E with |||y < 1, we can deduce from and
that

N e O N N R N e R T

<@ /M 5 — 6T3(3.)

s/m
M

P72 TN (@) - ] dvol

P72 TN - [0+ TN (@) - [l dvol
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STl ([ lodidvol) ™ 4T e
M
€ ifm =2,
< {e?nels  ifm =3, (7.14)
e if m > 4.

Therefore (3. := @. — T\(@.))- is a (PS)-sequence for &, on E. Combining these facts and
Lemmal6.1l Lemmal6.2] Corollary[7.6] we finally obtain

—ACe|llne|+0(e)  ifm=2,

1 /rmym
max Ji(t¢7) < 5 (5) wnt § —ACe+ O meld) ifm =3, (7.15)
—ACe + O(&?) ifm >4
for some constant C' > 0 depending only on the dimension.
Now implies, setting ¢, = HWH o,
inf M, < max g(w)—maxj(t+)<i(@)mw = Yeri
A > weﬁk(qjs) A — 50 pYRA"ZN om 9 m = YVerit

for e > 0 small.
This concludes the proof of Theorem[2.1l As mentioned before Lemma(3.9]also Theorem[2.3]
follows.

7.2 Proof of Theorem 2.1lfor A\ <0

This situation is much simpler because hypothesis ( f5) is already an estimate of [, F'(|@.|)dvol,
needed below. Indeed, first of all, we have

_m-1 s _m-1
5m/ F(L)dy = MW 1/ F(Lml)rm_ldr
wi<d N1+ |y N

= 5m€mwm_1 /‘E F(Lﬁ)sm—lds
0 (14 0%s?)

where r = d0s and A > 0 is some constant. Thus, after rescaling ¢, hypothesis (f5) and

Lemmal6.2limply

Jos F(|@e)dvol, C.emt : ot 1
= F\ —— )" ds = 7.16
JurTePPavol e | Ty LA G
as ¢ — 0 for some constant C' > 0.

According to hypothesis (f;), for any § > 0 there is Cs > 0 such that f(s)s < Css +
§F(s)&n forall s > 0. Therefore we have

m—+1

g+ [ F(pbavol) ™

1/ (1)) 2|

g S Csl| e
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Since L has the form

£3w) = 3 (W13~ 19713) - K@)

with K(v) = [, F([¢])dvoly + o= [, [#|* dvol, being strictly convex, a straightforward cal-
culation shows that KC also satisfies the following inequality which is an analogue of (Z.3)). For
any ¢» € E'\ {0} and ¢ € E there holds:

(K" @), ¥] = K@) + 2L W), 6] - K W)lel) + K)o, 6] 2 —— |l

Therefore, for A & spec(D) N (—oo, 0] LemmalZ.2lapplies to £, and we can use the arguments
following it to conclude that

inf My < max L£5(1) < Lx(@.) + O LA(2.)]13)
¢€E(¢E)

where ¢. = m@j and (. is our test spinor.

Now we deduce from Lemmal[6.1] and Lemma[6.2] that

1 mum B ANCiellne| ifm =2
L) +OUIL IR < 5~ (5) wm—/MF(|go€|)dvolg—{>\C‘f€| e
5 =

m+1
482 C(/ F(|g5€|)dvolg>

M
This together with (Z.16) implies

max L£,(¢¥) < L(

m
peBx(¢:) 2m " 2

)mwm for £ small.

Now the existence result follows easily, completing the proof of Theorem

7.3 Proof of Theorem

To begin with we consider the functional R, : Ej \ {0} — R defined by

Ju (D, ) = AjgplPdvoly [ |5 — [[¢~ [

R)\ = 2 2
O - Do F 10 TR
Then we have
/ 2 R (?/)) 2-2" /
Rl = 5z (Re [ (0= Vo vl ~ a0 k) a7

— [ o= T dvol
M
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For any ¢ € E;" \ {0} and any ¢ > 0 the set {x € E : Rx(¢ + x) > c} is strictly convex
and bounded because

2%
2*

X = 013 = IxlIX = Ao+ x5 = c|¢ +x = Ta(é +x)

is strictly concave and anti-coercive on E; . Therefore the map y — R(¢ + x) has a unique
maximum point x, € F, . Now, let us define

Sx(¢) = Ra(o + xg)
Lemma 7.7. Sy(¢) = (2mJ4(¢)) ™ for ¢ € Ph.

Proof. Let ¢ € 75A, then

*

0= Jx(0)[0] = / (D(6+1(0)), $+1(9)) dvoly— A d-+m(6) 3~ | d-+ma ()~ Th (6+7(0))]

2*
M

*

Hence J)(6) = JA(6) = 373(8)[6] = 5[ + m(@) — Ta(6 +m(9))];..
On the other hand, implies

RA(&+mx(8))[x] =0 forall x € Ey.
This together with the fact R (¢ + nx(¢)) > 0 yields that x4, = 1, (¢) for ¢ € P,. And this in

turn implies

50 = ([ lo+m@) -6+ m@)") = (@mae)*

Theorem [2.8] follows from the next Proposition. Recall the definition of

1

()T
2\ Vol(M, g)
from 2.2)).

Proposition 7.8. For A € R the functional M admits at least

¢ =((\) = dimg ( P ker(D- )\k)) .

A< A <AV

distinct S*-orbits of critical points.
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Proof. Let v = vg: denote the S'-genus, i.e. for a topological space X # () on which the
group S! acts continuously without fixed points, (X)) is the infimum over all k& € N such
that there exist finite subgroups Hi,..., H; C S! and a continuous equivariant map X —
S1/H, % --- % S'/H, where x denotes the join. If no such & exists this means (X ) = oo. The
S'-genus has properties analogous to the Krasnoselski genus for spaces with an action of Z/2;
see [9,/10]]. Now we define

= inf max M forj > 1.
5] Acst deA A(Cb) J =

Y(A)2g
where we only consider S*-invariant subsets A C S}. Clearly we have 3; < 3;,1 forall j > 1.
If
X;¢ P ker(D-N)

A< A <AV
is any complex j-dimensional subspace, 1 < j < /, then X; N S is equivariantly homeo-
morphic to the unit sphere in X, hence v(X; N SY) = dim¢(X;). Now and Lemma [7.7]
imply
1
B; < max Mjy(¢) < max Ji(¢) = -— max_ Sy(¢)™.

PpeEX;NSY HEX NPy M peX;NP,

Observe that, for any ¢ € X; N ﬁ,\,

1913 = Ixollx < I8IIX < vlols < vl +xs — Ta(¢ + xo)l

where the last inequality follows from the fact that ¢ € E, x4 € Ey and T\(¢ + x,) € EY are
orthogonal in L?. Finally, using Holder’s inequality, we find for j = 1,..., ¢

v (|¢+X¢_TA(¢+X¢)|3>m<Vm‘VOI(Mag)

f; < — -+ max = Yerit-
T 2m e \JSF xo — Ta(@ + xo) B om
Since the Palais-Smale condition holds below 7,,;; each 3;, 7 = 1, ..., ¢, is a critical value, and
if 3; = (3,41 for some j then M, has infinitely many S*-orbits of critical points at the level 3;;
see [10, Theorem 2.19]. ]
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