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A spinorial analogue of the Brezis-Nirenberg theorem

involving the critical Sobolev exponent

Thomas Bartsch, Tian Xu∗

Abstract

Let (M, g, σ) be a compact Riemannian spin manifold of dimension m ≥ 2, let S(M)
denote the spinor bundle on M , and let D be the Atiyah-Singer Dirac operator acting on

spinors ψ : M → S(M). We study the existence of solutions of the nonlinear Dirac equa-

tion with critical exponent

Dψ = λψ + f(|ψ|)ψ + |ψ|
2

m−1ψ (NLD)

where λ ∈ R and f(|ψ|)ψ is a subcritical nonlinearity in the sense that f(s) = o
(
s

2
m−1

)
as

s → ∞. A model nonlinearity is f(s) = αsp−2 with 2 < p < 2m
m−1 , α ∈ R. In particular

we study the nonlinear Dirac equation

Dψ = λψ + |ψ|
2

m−1ψ, λ ∈ R. (BND)

This equation is a spinorial analogue of the Brezis-Nirenberg problem. As corollary of our

main results we obtain the existence of least energy solutions (λ, ψ) of (BND) and (NLD)

for every λ > 0, even if λ is an eigenvalue of D. For some classes of nonlinearities f we

also obtain solutions of (NLD) for every λ ∈ R, except for non-positive eigenvalues. If

m 6≡ 3 (mod 4) we obtain solutions of (NLD) for every λ ∈ R, except for a finite number

of non-positive eigenvalues. In certain parameter ranges we obtain multiple solutions of

(NLD) and (BND), some near the trivial branch, others away from it.

The proofs of our results are based on variational methods using the strongly indefinite

energy functional associated to (NLD).
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1 Introduction

Let (M, g) be an m-dimensional compact manifold. We assume that M is spin, and we fix a

spin structure σ on M . We denote by S(M) = Spin(TM)×ρ Sm the spinor bundle on M with

hermitian metric (·, ·) and compatible spin connection ∇S. The Clifford multiplication

TM ⊗ S(M) → S(M)

is denoted by X ⊗ ψ 7→ X · ψ. Let D = DM be the (Atiyah-Singer) Dirac operator defined on

Γ(S(M)), i.e. D =
∑m

k=1 ek · ∇
S

ek
for a local orthonormal frame {e1, . . . , em} of TM .

In this paper, we want to find solutions ψ ∈ Γ(S(M)) of the nonlinear Dirac equation

Dψ = λψ + f(|ψ|)ψ + |ψ|
2

m−1ψ, (NLD)

where f : [0,+∞) → R satisfies f(0) = 0, f(s)/s
2

m−1 → 0 as s → ∞. In particular, f(s)

grows subcritically for s→ ∞. An important special case is f ≡ 0. The exponent 2∗ := 2m
m−1

=

2 + 2
m−1

is critical here because the form domain H
1
2 (M, S(M)) of the Dirac operator embeds

into Lq(M, S(M)) for 1 ≤ q ≤ 2∗, and the embedding is compact precisely if q < 2∗. This is

closely related to the fact that on Rm with Dirac operator DRm the equation

DRmψ = |ψ|2
∗−2ψ
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has a family ψε of solutions given by

ψε(x) = ε2
∗−2ψ1(εx) with ψ1(x) =

1

(1 + |x|2)(m−1)/2
(1− x) · ψ0

where ψ0 ∈ Sm is a spinor with |ψ0| =
m(m−1)/2

√
2

; here the dot “·” denotes the Clifford multipli-

cation of an element of the Clifford algebra Cl(Rm) and a spinor.

Nonlinear Dirac equations on space-time R4 with various types of nonlinearities have been

investigated in [23] or [12], for instance. We refer the reader to the surveys [24, 25] for refer-

ences to the literature. Results about nonlinear Dirac equations on spin manifolds, motivated by

geometry or physics, can be found in [2, 4, 5, 15, 16, 19, 28, 30–34, 37].

Concerning problem (NLD) on a compact spin manifold the case λ = 0 and f = 0 is of

particular geometric relevance, called the spinorial Yamabe-type equation. A nontrivial solution

ψ0 of

Dψ0 = |ψ0|
2∗−2ψ0 (1.1)

leads to a generalized metric g0 =
(

|ψ0|
‖ψ0‖2∗

)4/(m−1)

g in the conformal class [g] of g. It is a

metric if |ψ0| > 0. There holds volg0(M) = 1 and the Bär-Hijazi-Lott invariant

λ+min(M, [g], σ) = inf
g̃∈[g]

λ+1 (g̃)volg̃(M)
1
m

is achieved by g0. Here λ+1 (g̃) is the smallest positive eigenvalue of the associated Dirac operator

Dg̃ on (M, g̃, σ). Equivalently, the functional

J(ψ) =

(∫
M
|Dψ|

2m
m+1 dvolg

)m+1
m

∫
M
(Dψ, ψ) dvolg

achieves its infimum at ψ0 and J(ψ0) = λ+1 (g0) = λ+min(M, [g], σ) where the infimum is taken

over the set Γ+(S(M)) of all smooth spinor fields with
∫
M
((Dψ, ψ) dvolg > 0.

In [3–5] it was shown that

λ+min(M, [g], σ) ≤ λ+min(S
m) =

m

2
ω

1
m
m (1.2)

where λ+min(S
m) = λ+min(S

m, [gSm ], σ) denotes the Bär-Hijazi-Lott invariant for the standard

sphere Sm equipped with the canonical metric and the unique spin structure, and ωm stands for

the volume of Sm. It is known that λ+min(S
m) = m

2
ω
1/m
m is achieved. Moreover, λ+min(M, [g], σ)

is achieved if the strict inequality in (1.2) holds. We refer the reader to [2, 4, 7, 27, 29, 36] for

these results.

The spinorial analogue of the Brezis-Nirenberg equation

Dψ = λψ + |ψ|2
∗−2ψ (BND)



4

has been treated by Isobe [30]. The energy functional

Eλ(ψ) =
1

2

∫

M

(Dψ, ψ)dvolg −
λ

2

∫

M

|ψ|2dvolg −
1

2∗

∫

M

|ψ|2
∗

dvolg. (1.3)

associated to (BND) is strongly indefinite because the spectrum spec(D) consists of an infinite

sequence of eigenvalues . . . < λ−1 < λ0 ≤ 0 < λ1 < λ2 < . . . with |λk| → ∞ as |k| → ∞.

Consequently, a critical point of Eλ has infinite Morse index and infinite co-index. In order

to avoid this indefiniteness Isobe used a dual variational principle. Then he could apply the

classical mountain pass theorem provided m ≥ 4, λ /∈ spec(D), and λ > 0.

In the present paper we deal with the more general equation (NLD) and present a different

variational approach that works in all dimensions m ≥ 2 and also when λ ∈ spec(D). We do

not use a dual functional but work instead with the strongly indefinite functional

Lλ(ψ) =
1

2

∫

M

(Dψ, ψ)dvolg −
λ

2

∫

M

|ψ|2dvolg −

∫

M

F (|ψ|)dvolg −
1

2∗

∫

M

|ψ|2
∗

dvolg (1.4)

where F (s) :=
∫ s
0
f(t)t dt. Equation (NLD) is the Euler-Lagrange equation associated to (1.4).

We show that Lλ satisfies the Palais-Smale condition below a critical value γcrit. Then we min-

imize Lλ on the Nehari-Pankov manifold Pλ if λk−1 < λ < λk. In order to prove γ(λ) :=

infPλ
Lλ < γcrit we construct suitable test spinors ϕ̄ε using the Bourgignon-Gauduchon trivial-

ization. Since these do not lie on Pλ we have to find modifications of the test spinors that lie on

the Nehari-Pankov manifold, and we have to control the energy of these modifications. This is

the main technical difficulty that we have to overcome, in particular when λ ∈ spec(D). In that

case we use a new idea, replacing the test spinors ϕ̄ε by ϕ̄ε − T (ϕ̄ε) where T (ψ) ∈ ker(D− λ)

is the nearest neighbor of ψ in ker(D − λ) with respect to the L2∗ norm. Observe that T is a

nonlinear projection.

The minimization argument yields a least energy spinor ψλ solving (NLD) provided λ ∈

spec(D)\{λk : k ≤ 0}. For k ≥ 1 and λ < λk close to λk we obtain a second solution ψ̃λ using

a new min-max scheme. Essentially, we minimize Lλ on a suitably constructed submanifold of

the Nehari-Pankov manifold Pλ of codimension dk := dim ker(D − λk). The energy of the

solution ψ̃λ satisfies Lλ(ψ̃λ) → Lλk(ψλk) > 0 as λ ր λk, hence it may be considered as

a continuation of the least energy solution ψλ, λk ≤ λ < λk+1. Clearly ψ̃λ differs from ψλ

because Lλ(ψλ) → 0 as λ ր λk. We would like to mention that standard bifurcation theory

for potential operators yields dk pairs of spinors ±ψλ,j solving (NLD) for λ < λk close to

λk. The solution ψ̃λ cannot be obtained in this way. The construction of ψ̃λ is new and can be

generalized to other parameter-dependent variational problems.

As a last result we provide a uniform bound ν > 0 such that the solutions that bifurcate from

λk continue to exist for λ ∈ (λk − ν, λk). The Weyl formula for the Dirac operator implies that

the number of solutions of (NLD) and (BND) becomes arbitrarily large as |λ| → ∞, provided

m 6≡ 3 (mod 4).
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Setting

Sk := {(λ,Lλ(ψλ)) : λk−1 ≤ λ < λk} ∪ {(λ,Lλ(ψ̃λ)) : λ < λk−1 close to λk−1}

we can visualize the energy branches bifurcating from λk and λk+1 in Figure 1.

γcrit

0 · · · λk − ν λk λk+1 · · ·
λ

Energy

Sk Sk+1

Figure 1: Least energy branches Sk,Sk+1 plus one high energy branch bifurcating from λk

2 Statement of the main results

Let (M, g, σ) be a compact spin manifold of dimension m ≥ 2. The spectrum spec(D) = {λk :

k ∈ Z} consists only of eigenvalues with finite multiplicity which may be ordered as follows:

. . . < λ−1 < λ0 ≤ 0 < λ1 < λ2 < . . . ; |λk| → ∞ as |k| → ∞. We consider the following

assumptions on the nonlinearity f ; recall F (s) =
∫ s
0
f(t)t dt .

(f1) f : [0,∞) → [0,∞) is continuous and satisfies f(0) = 0.

(f2)
f(s)

s
2

m−1

→ 0 as s→ +∞.

(f3) The function s 7→ f(s) + s
2

m−1 is strictly increasing.

(f4)
f(s)s

F (s)
m+1
2m

→ 0 as s→ +∞.

(f5) lim
ε→0+

εm−1

| ln ε|max{3−m, 0}

∫ 1
ε

0

F

(
ε−

m−1
2

(1 + r2)
m−1

2

)
rm−1dr = ∞.

Now we can state our first main theorem.
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Theorem 2.1. a) If (f1), (f2) and (f3) hold then (NLD) has a least energy solution ψλ for

every λ > 0. The function

R
+ → R

+, λ 7→ Lλ(ψλ),

is continuous and nonincreasing on each interval [λk, λk+1), k ≥ 1, and on (0, λ1). More-

over, ψλ → 0 hence Lλ(ψλ) ց 0 as λր λk.

b) If f ∈ C1, f ′(s) > 0 and (f1), (f4) and (f5) hold then (NLD) has a least energy solution

for every λ ∈ R \ {λk : k ≤ 0}. The function

R \ {λk : k ≤ 0} → R
+, λ 7→ Lλ(ψλ)

is continuous and nonincreasing on each interval [λk−1, λk), if k ≥ 2, respectively on

(λk−1, λk), if k ≤ 1. Moreover, ψλ → 0 hence Lλ(ψλ) ց 0 as λր λk.

Remark 2.2. a) Assumptions (f1) and (f4) imply:

for every ε > 0 there exists Cε > 0 such that F (s) ≤ Cε + εs2
∗

and f(s) ≤ Cε + εs2
∗−2.

This allows that F (s) grows almost critically as s→ ∞. It also implies (f2), hence the assump-

tions of Theorem 2.1 b) imply (f1)− (f3). For later use we observe that (f1)− (f3) imply that

the functions g(s) := f(s) + s
2

m−1 = f(s) + s2
∗−2 and G(s) :=

∫ s
0
g(t)t dt = F (s) + 1

2∗
s2

∗

have the following properties:

(i) R
+
0 → R

+
0 , s 7→ g(s)s2 − 2G(s) is strictly increasing.

(ii) For every s0 > 0 there exists c0 > 0 such that g(s)s2 − 2G(s) ≥ c0s
2 for all s ≥ s0.

b) The function F (s) = αsp with α > 0 and p ∈ (2, 2∗) satisfies all conditions from

Theorem 2.1 b). The same is true for the function F (s) = αs2
∗

ln(1+sq)
provided α > 0 and q ∈

(0, 2
m−1

].

c) It is a challenging open problem whether (NLD) has a least energy solution for λ ≤ 0 in

the situation of Theorem 2.1 a), or for λ = λk ≤ 0 in the situation of Theorem 2.1 b). This may

depend on an intricate combination of conditions on the geometry of (M, g, σ) and properties

of f .

As a consequence of Theorem 2.1 we obtain the following corollaries.

Corollary 2.3. The spinorial Brezis-Nirenberg equation (BND) has a least energy solution for

every λ > 0.

This improves the result from [30] who could only treat dimensions m ≥ 4 and required

λ /∈ spec(D).
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Corollary 2.4. The equation

Dψ = λψ + α|ψ|p−2ψ + |ψ|2
∗−2ψ (2.1)

has a least energy solution for every λ ∈ R \ {λk : k ≤ 0}, α > 0, 2 < p < 2∗.

Now we turn to the existence of high energy solutions.

Theorem 2.5. Suppose the hypotheses of Theorem 2.1 a) or b) hold. Then for k ≥ 1 there exists

ak ∈ (λk−1, λk) such that (NLD) has for λ ∈ (ak, λk) a solution ψ̃λ so that the map

(ak, λk+1) → R
+, λ 7→

{
Lλ(ψ̃λ) if λ < λk

Lλ(ψλ) if λ ≥ λk

is continuous and non-increasing.

Remark 2.6. By Theorem 2.5, and its proof, the least energy solution ψλ for λ ∈ [λk, λk+1)

can be continued to λ ∈ (ak, λk+1) in the sense that the energy, and the corresponding min-max

description, changes continuously. We do not know whether the solutions ψλ and ψ̃λ depend

continuously on λ. Since Lλ(ψ̃λ) → Lλk(ψλk) > 0 and Lλ(ψλ) → 0 as λր λk, we see that ψ̃λ

is different from ψλ. From a variational point of view ψλ is a minimizer of Lλ on the Nehari-

Pankov manifold Pλ, λ ∈ [ak, λk), whereas ψ̃λ minimizes Lλ on a submanifold Qλ,k of Pλ of

codimension dimker(D − λk), λ ∈ (ak, λk). Qλ,k is a continuation of Pλk for λ < λk close to

λk.

Next we state several multiplicity results. Observe that given a solution ψ of (NLD) and

ζ ∈ S1 ⊂ C then ζψ is also a solution. Therefore we only count S1-orbits of solutions in our

multiplicity results. Clearly the solutions ψλ and ψ̃λ from Theorems 2.1 and 2.5 lie on different

S1-orbits because they lie on different energy levels. The proof of the following local bifurcation

theorem is standard and will not be given here.

Theorem 2.7. For k ∈ Z there exists bk < λk such that the following holds. For each λ ∈

(bk, λk) problem (NLD) has at least dk = dimC ker(D − λk) S
1-orbits of solutions ψλ,j , j =

1, . . . , dk. These satisfy ψλ,j → 0 as λր λk.

This theorem follows immediately from [11, Theorem (3.1)]. That the bifurcation is subcrit-

ical is a consequence of the sign of our nonlinearity. Theorem 2.8 and its proof actually give a

lower bound λk − bk ≥ ν that is uniform in k ∈ Z.

Combining Theorems 2.5 and 2.7 we obtain a multiplicity result for solutions of (NLD)

and (BND) provided λ < λk is close to λk. If we order the ψλ,j by Lλ(ψλ,j) ≤ Lλ(ψλ,j+1)

then the least energy solution ψλ corresponds to ψλ,1. As a consequence of our results, for

max{ak, bk} < λ < λk we have dk + 1 S1-orbits of solutions, namely the S1-orbits of the



8

high energy solutions ψ̃λ from Theorem 2.5, and the dk S
1-orbits of low energy solutions from

Theorem 2.7 which bifurcate from the trivial branch {(λ, 0) : λ ∈ R}.

Theorem 2.5 and its proof essentially yield that, for k ≥ 1 the least energy solution ψλ =

ψλ,1 bifurcating from λk+1 can be continued a bit below λk, turning into the “bound state” ψ̃λ

for λ < λk−1. If dk > 1 then it is of course an interesting problem whether the bound states

ψλ,j , j = 2, . . . , dk, bifurcating from λk+1 can also be extended to below λk, in the sense of

Remark 2.6. Our last result and its proof suggest that all solutions bifurcating from λk can be

extended to λ ∈ (λk − ν, λk) with

ν :=
m

2

(
ωm

Vol(M, g)

) 1
m

> 0. (2.2)

This holds for all k ∈ Z.

Theorem 2.8. For λ ∈ R problem (NLD) has at least

ℓ(λ) =
∑

λ<λk<λ+ν

dimC ker(D − λk)

distinct S1-orbits of solutions ψλ,j , j = 1, . . . , ℓ(λ).

The Weyl formula and the symmetry of the eigenvalues of D in dimension m 6≡ 3 (mod 4)

imply for Λ > 0 that

d+(Λ) := dimC

(
⊕

0<λk≤Λ

ker(D − λk)

)
∼ cMΛm

and

d−(Λ) := dim

(
⊕

−Λ≤λk<0

ker(D − λk)

)
∼ cMΛm

where cM > 0 is a constant depending on m = dim(M) and vol(M, g); see Proposition 3.1

below. From this we immediately obtain the following result.

Proposition 2.9. If m 6≡ 3 (mod 4) then ℓ(λ) → ∞ as |λ| → ∞, hence the number of S1-orbits

of solutions of (NLD) becomes unbounded as |λ| → ∞.

Remark 2.10. a) If m ≡ 3 (mod 4) the Schrödinger-Lichnerowicz formula only yields the

following lower bound for the number n(λ) of solutions of (NLD):

n(λ) + n(−λ) ≥
∑

λk∈(λ,λ+ν)∪(−λ−ν,−λ)
dk → ∞ as λ→ ∞.

b) We recall that Theorems 2.1 and 2.5 do not yield any solution of (BND) with λ < 0 or for

(NLD) with λ = λk, k ≤ 0, whereas Theorems 2.7, 2.8, and Proposition 2.9 do not distinguish

between the sign of λ or whether λ lies in spec(D). Theorems 2.1 b) and 2.8 yield the existence

of a solution of (NLD) for every λ ∈ R except for a finite number of nonpositive eigenvalues.
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Finally we compare our theorems with some related results for the classical Brezis-Nirenberg

problem {
−∆u = λu+ |u|

4
N−2u in Ω

u = 0 on ∂Ω
(2.3)

on a smooth bounded domain Ω ⊂ RN .

Remark 2.11. a) An interesting observation is that our results about (NLD) and (BND) do

not depend on the dimension unlike the classical result about (2.3) from [17] where dimension

N = 3 is special.

b) Theorem 2.8 corresponds to the multiplicity result from [18] for (2.3).

c) Other multiplicity results for sign-changing solutions of (2.3) have been proved in [20,22].

These also depend on the dimension, in particular they differ for 4 ≤ N ≤ 6 and N ≥ 7. It

would be very interesting whether analogous results hold for (BND).

3 Preliminaries on spinors

3.1 Spin structure and the Dirac operator

Let (M, g) be an m-dimensional Riemannian manifold with a chosen orientation. Let PSO(M)

be the set of positively oriented orthonormal frames on (M, g). This is a SO(m)-principal

bundle over M . A spin structure on M is a pair σ = (PSpin(M), ϑ) where PSpin(M) is a

Spin(m)-principal bundle overM and ϑ : PSpin(M) → PSO(M) is a map such that the diagram

PSpin(M)× Spin(m) //

ϑ×Θ
��

PSpin(M)

ϑ
��

((❘
❘❘

❘❘
❘❘

M

PSO(M)× SO(m) // PSO(M)

66❧❧❧❧❧❧❧

commutes, where Θ : Spin(m) → SO(m) is the nontrivial double covering of SO(m). There

is a topological condition for the existence of a spin structure, namely, the vanishing of the

second Stiefel-Whitney class ω2(M) ∈ H2(M,Z2). Furthermore, if a spin structure exists, it

need not be unique. For these results we refer to [26, 35].

In order to introduce the spinor bundle, we recall that the Clifford algebra Cl(Rm) is the

associative R-algebra with unit, generated by Rm satisfying the relation x · y− y ·x = −2(x, y)

for x, y ∈ Rm (here (·, ·) is the Euclidean scalar product on Rm). It turns out that Cl(Rm) has a

smallest representation ρ : Spin(m) ⊂ Cl(Rm) → End(Sm) of dimension dimC(Sm) = 2[
m
2
]

such that Cl(Rm) := Cl(Rm)⊗C ∼= EndC(Sm) as C-algebra. The spinor bundle is then defined

as the associated vector bundle

S(M) := PSpin(M)×ρ Sm.
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Note that the spinor bundle carries a natural Clifford multiplication, a natural hermitian metric

and a metric connection induced from the Levi-Civita connection on TM (see [26, 35]), this

bundle satisfies the axioms of Dirac bundle in the sense that

(i) for any x ∈M , X, Y ∈ TxM and ψ ∈ Sx(M)

X · Y · ψ + Y ·X · ψ + 2g(X, Y )ψ = 0;

(ii) for any X ∈ TxM and ψ1, ψ2 ∈ Sx(M),

(X · ψ1, ψ2) = −(ψ1, X · ψ2),

where (·, ·) is the hermitian metric on S(M);

(iii) for any X, Y ∈ Γ(TM) and ψ ∈ Γ(S(M)),

∇S

X(Y · ψ) = (∇XY ) · ψ + Y · ∇S

Xψ,

where ∇S is the metric connection on S(M).

The Dirac operator is then defined on the spinor bundle S(M) as the composition

D : Γ(S(M))
∇S

// Γ(T ∗M ⊗ S(M)) // Γ(TM ⊗ S(M))
m

// Γ(S(M))

where m denotes the Clifford multiplication m : X ⊗ ψ 7→ X · ψ.

3.2 The Dirac spectrum and H
1

2 spinors

Let spec(D) denote the spectrum of the Dirac operator D. It is well-known that D is essen-

tially self-adjoint in L2(M, S(M)) and has compact resolvents (see [26, 27, 35]). Moreover,

spec(D) = {λk : k ∈ Z} is a closed subset of R consisting of a two-sided unbounded discrete

sequence of eigenvalues with finite multiplicities. And the eigenspaces of D form a complete

orthonormal decomposition of L2(M, S(M)).

Proposition 3.1. If m 6≡ 3 (mod 4), then the growth of the Dirac eigenvalues satisfies Weyl’s

asymptotic law:

lim
Λ→+∞

d±(Λ)

Λm
= CmVol(M, g)

where

d+(Λ) = dimC

(
⊕

0<λk≤Λ

ker(D − λk)

)
, d−(Λ) = dimC

(
⊕

−Λ≤λk<0

ker(D − λk)

)

and Cm > 0 is a dimensional constant.
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Proof. For Λ > 0 let

N(Λ) = dim

(
⊕

|λk|≤Λ

ker(D − λk)

)
.

be the sum of the multiplicities of eigenvalues with modulus at most Λ. Then the Schrödinger-

Lichnerowicz formula for the Dirac operator yields

lim
Λ→+∞

N(Λ)

Λm
= cmVol(M, g)

for some positive dimensional constant cm; see [13, Corollary 2.43], for instance.

If the dimension m 6≡ 3 (mod 4) then spec(D) is symmetric about the origin including the

multiplicities [27, Theorem 1.3.7], hence

d+(Λ) = d−(Λ) =
N(Λ)− dimker(D)

2
.

The proposition follows with Cm = cm/2.

Remark 3.2. In dimension m ≡ 3 (mod 4) the spectrum spec(D) is not symmetric. In order to

measure the lack of symmetry of spec(D) in this case, Atiyah, Patodi and Singer [6] introduced

the so-called η-invariant of D, denoted by η(D). In particular η(D) = 0 as soon as spec(D)

is symmetric. However, only few η-invariants are know explicitly. It was shown in [21] that,

if m ≡ 3 (mod 4), for arbitrary large Λ > 0, j ∈ N and 0 < l1 < · · · < lj < Λ there

exists a Riemannian metric g such that spec(Dg) ∩ (0,Λ) = {l1 < · · · < lj} and spec(Dg) ∩

(−Λ, 0) = ∅. The distribution of the spectrum in these dimensions becomes complicated. For

further information about spectral theory for Dirac operators and for related topics we refer to

the monograph by Ginoux [27].

We now define the operator |D − λ|
1
2 : L2(M, S(M)) → L2(M, S(M)) by

ψ =
∑

k∈Z
akηk 7→ |D − λ|

1
2ψ :=

∑

k∈Z
|λk − λ|

1
2akηk

where ηk ∈ ker(D − λk) and
∫
M
|ηk|2dvolg = 1 for k ∈ Z. The Hilbert space

H
1
2 (M, S(M)) :=

{
ψ ∈ L2(M, S(M)) : |D|

1
2ψ ∈ L2(M, S(M))

}
.

coincides with the Sobolev space W
1
2
,2(M, S(M)) (see [1, 2]). Let P 0

λ : L2(M, S(M)) →

ker(D − λ) denote the projector. We can endow H
1
2 (M, S(M)) with the inner product

〈ψ, ϕ〉λ = Re
(
|D − λ|

1
2ψ, |D − λ|

1
2ϕ
)
2
+ Re(P 0

λψ, P
0
λϕ)2

and the induced norm ‖·‖λ = 〈·, ·〉
1
2
λ , where (ψ, ϕ)2 =

∫
M
(ψ, ϕ)dvolg is the L2-inner product on

spinors. Clearly E := H
1
2 (M, S(M)) with this inner product has the orthogonal decomposition

of three subspaces

E = E+
λ ⊕ E0

λ ⊕ E−
λ (3.1)
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where E±
λ is the positive (resp. negative) eigenspace of D − λ, and E0

λ = ker(D − λ) is its

kernel (which may be trivial). The dual space of E will be denoted by E∗
λ = H− 1

2 (M, S(M)).

By P±
λ : E → E±

λ and P 0
λ : E → E0

λ we denote the orthogonal projections. If λ is clear from

the context, we simply write ψ± = P±
λ (ψ) and ψ0 = P 0

λ (ψ) for ψ ∈ E.

4 The Palais-Smale condition

Equation (NLD) is the Euler-Lagrange equation of the functional

Lλ(ψ) =
1

2

∫

M

(Dψ, ψ)dvolg −
λ

2

∫

M

|ψ|2dvolg −

∫

M

F (|ψ|)dvolg −
1

2∗

∫

M

|ψ|2
∗

dvolg

with F (s) =
∫ s
0
f(t)t dt. In the sequel, by Lq we denote the Banach space Lq(M, S(M)) for

q ≥ 1 and by | · |q we denote the usual Lq-norm.

The functional Lλ is well defined onE = H
1
2 (M, S(M)) and is of class C1 as a consequence

of the assumptions in Theorem 2.1 and since E embeds into Lq(M, S(M)) for q ∈ [1, 2∗]. We

write ψ = ψ+ + ψ0 + ψ− ∈ E = E+
λ ⊕ E0

λ ⊕ E−
λ according to the decomposition (3.1). Then

Lλ has the form

Lλ(ψ) =
1

2

(
‖ψ+‖2λ − ‖ψ−‖2λ

)
−

∫

M

F (|ψ|)dvolg −
1

2∗

∫

M

|ψ|2
∗

dvolg.

Obviously the functional E defined in (1.3) coincides with Lλ when f ≡ 0.

We now investigate the Palais-Smale condition for Lλ. Due to the non-compactness of the

critical embedding E = H
1
2 (M, S(M)) →֒ L2∗(M, S(M)), one cannot expect that Lλ and E

satisfy the Palais-Smale condition on E. We shall see that the Palais-Smale condition holds

below a critical value.

Lemma 4.1. Suppose f ∈ C[0,∞) satisfies (f2). Then a (PS)c-sequence (ψn)n for Lλ is

bounded, for any c ∈ R. Moreover, c = 0 if and only if ψn → 0.

Proof. Assumption (f2) implies: for every ε > 0 there exists Cε > 0 such that

max{f(s)s2, F (s)} ≤ Cε + εs2
∗

. (4.1)

Now let (ψn)n be a (PS)c-sequence, then

Lλ(ψn) =
1

2

(
‖ψ+

n ‖
2
λ − ‖ψ−

n ‖
2
λ

)
−

∫

M

F (|ψn|)dvolg −
1

2∗

∫

M

|ψn|
2∗dvolg = c + on(1), (4.2)

L′
λ(ψn)[ψn] = ‖ψ+

n ‖
2
λ − ‖ψ−

n ‖
2
λ −

∫

M

f(|ψn|)|ψn|
2dvolg −

∫

M

|ψn|
2∗dvolg = o(‖ψn‖λ),

(4.3)
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and

L′
λ(ψn)[ψ

+
n − ψ−

n ] = ‖ψ+
n + ψ−

n ‖
2
λ − Re

∫

M

f(|ψn|)(ψn, ψ
+
n − ψ−

n )dvolg

− Re

∫

M

|ψn|
2∗−2(ψn, ψ

+
n − ψ−

n )dvolg

= o(‖ψ+
n + ψ−

n ‖λ).

(4.4)

Thus, we have for every C > 2c and n large:

C + o(‖ψn‖λ) ≥ 2Lλ(ψn)− L′
λ(ψn)[ψn]

=

∫

M

(
f(|ψn|)|ψn|

2 − 2F (|ψn|)
)
dvolg +

1

m
|ψn|

2∗

2∗

≥
1

2m
|ψn|

2∗

2∗ − C ′,

(4.5)

where in the last inequality we have used (4.1). By (4.4), we can deduce that

‖ψ+
n + ψ−

n ‖
2
λ ≤

∫

M

(
f(|ψn|)|ψn|+ |ψn|

2∗−1
)
|ψ+
n − ψ−

n |dvolg + o(‖ψ+
n + ψ−

n ‖λ).

From this and the Hölder and Sobolev inequalities we get

‖ψ+
n + ψ−

n ‖
2
λ ≤ C|ψn|

2
2 + (C + 1)|ψn|

2∗−1
2∗ |ψ+

n − ψ−
n |2∗ + o(‖ψ+

n + ψ−
n ‖λ)

≤ C ′|ψn|
2
2∗ + C ′|ψn|

2∗−1
2∗ ‖ψ+

n + ψ−
n ‖λ + o(‖ψ+

n + ψ−
n ‖λ)

(4.6)

where we have used f(s) ≤ C(1 + s
2

m−1 ). Now, by taking into account (4.5), we get

‖ψ+
n + ψ−

n ‖
2
λ ≤ C

(
1 + o(‖ψn‖

2
2∗

λ )
)
+ C

(
1 + o(‖ψn‖

1− 1
2∗

λ )
)
‖ψ+

n + ψ−
n ‖λ.

Note that dimE0
λ <∞, hence any two norms on E0

λ are equivalent. Therefore we have

‖ψ0
n‖

2
λ = |ψ0

n|
2
2 ≤ |ψn|

2
2 ≤ C|ψn|

2
2∗ ≤ C

(
1 + o(‖ψn‖

2
2∗

λ )
)

(4.7)

which implies

‖ψn‖
2
λ ≤ C

(
1 + o(‖ψn‖

2
2∗

λ )
)
+ C

(
1 + o(‖ψn‖

1− 1
2∗

λ )
)
‖ψn‖λ.

Now the boundedness of (ψn)n follows from 2∗ > 2.

If c = 0 then (4.5) and the boundedness of (ψn)n imply |ψn|2∗ → 0, hence ψn → 0 by (4.6)

and (4.7).

The next lemma has been proved in [30]. Let

E0(ψ) =
1

2

∫

M

(Dψ, ψ)dvolg −
1

2∗

∫

M

|ψ|2
∗

dvolg.

be the functional associated to (1.1).
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Lemma 4.2. Let (ψn)n be a Palais-Smale sequence for E0 such that ψn ⇀ 0 in E and

lim inf
n→∞

∫

M

|ψn|
2∗dvolg > 0.

Then

lim inf
n→∞

E0(ψn) = lim inf
n→∞

1

2m
|ψn|

2∗

2∗ ≥
1

2m

(m
2

)m
ωm.

As a consequence of Lemma 4.2, we obtain the following compactness result below the

critical value

γcrit :=
1

2m

(m
2

)m
ωm. (4.8)

Proposition 4.3. Suppose f ∈ C[0,∞) satisfies (f2). Then the functionalLλ satisfies the (PS)c-

condition for any c < γcrit.

Proof. Let (ψn)n be a (PS)c-sequence for Lλ on E. By Lemma 4.1, (ψn)n is bounded and

ψn → 0 if (and only if) c = 0. Now suppose c > 0 and, up to a subsequence if necessary,

ψn ⇀ ψ0 in E. Then we have

ψn → ψ0 in Lp for any 1 ≤ p < 2∗ (4.9)

and the limit spinor ψ0 satisfies

Dψ0 = λψ0 + f(|ψ0|)ψ0 + |ψ0|
2∗−2ψ0 on M. (4.10)

We claim that ψ0 6= 0 in E. Indeed, assume to the contrary that ψ0 = 0. Then it follows from

(4.9) that (ψn)n is also a (PS)-sequence for E0. Moreover,

lim inf
n→∞

1

2m

∫

M

|ψn|
2∗dvolg = lim inf

n→∞
Lλ(ψn)−

1

2
L′
λ(ψn)[ψn] = c > 0.

Therefore, by Lemma 4.2 we have

c = lim inf
n→∞

Lλ(ψn) = lim inf
n→∞

E0(ψn) ≥
1

2m

(m
2

)m
ωm

which contradicts the assumption c < 1
2m

(
m
2

)m
ωm.

Now let us set ϕn = ψn − ψ0. Then ϕn ⇀ 0 in E. By the compact embedding E →֒ Lp for

1 ≤ p < 2∗, we easily get

∫

M

F (|ψn|)dvolg =

∫

M

F (|ψ0|)dvolg + on(1) (4.11)

and, for arbitrarily ψ ∈ E with ‖ψ‖λ ≤ 1,

Re

∫

M

f(|ψn|)(ψn, ψ)dvolg = Re

∫

M

f(|ψ0|)(ψ0, ψ)dvolg + on(1). (4.12)
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On the other hand, arguing exactly as in [30, Lemma 5.2], we obtain the Brezis-Lieb type result

for the integrand of critical part, that is,

∫

M

|ψn|
2∗dvolg =

∫

M

|ϕn|
2∗dvolg +

∫

M

|ψ0|
2∗dvolg + on(1) (4.13)

and, for arbitrarily ψ ∈ E with ‖ψ‖λ ≤ 1,

Re

∫

M

|ψn|
2∗−2(ψn, ψ) = Re

∫

M

|ϕn|
2∗−2(ϕn, ψ) + Re

∫

M

|ψ0|
2∗−2(ψ0, ψ) + on(1). (4.14)

Therefore, combining (4.11)-(4.14), we infer that

Lλ(ψn) = E0(ϕn) + Lλ(ψ0) + on(1) (4.15)

and

L′
λ(ψn) = E ′

0(ϕn) + on(1), (4.16)

where we have used (4.10), i.e. L′
λ(ψ0) = 0, in the last equality.

(4.15) and (4.16) imply that (ϕn)n is a (PS)-sequence for E0. If |ϕn|2∗ → 0 then we easily

get ϕn → 0 inE which gives the compactness of (ψn)n (cf. Lemma 4.1). If lim infn→∞ |ϕn|2∗ >

0, then it follows from Lemma 4.2 that

lim inf
n→∞

E0(ϕn) ≥
1

2m

(m
2

)m
ωm.

But this, together with (4.15), implies lim infn→∞Lλ(ψn) ≥
1
2m

(
m
2

)m
ωm which contradicts our

assumption. Hence we must have that (ψn)n is compact in E.

5 The min-max scheme

The functional Lλ ∈ C1(E) has the form

Lλ(ψ) =
1

2

(
‖ψ+‖2λ − ‖ψ−‖2λ

)
−K(ψ)

with

K(ψ) =

∫

M

F (|ψ|)dvolg +
1

2∗

∫

M

|ψ|2
∗

dvolg.

We need to investigate the properties of K. In the sequel we always assume (f1)− (f3).

Lemma 5.1. K(0) = 0 and 1
2
K′(ψ)[ψ] > K(ψ) > 0 for every ψ 6= 0.

Proof. Using (f3) we obtain for s > 0:

F (s) +
1

2∗
s2

∗

=

∫ s

0

f(t)t + t2
∗−1dt <

∫ 1

0

(
f(s) + s2

∗−2
)
t dt =

1

2

(
f(s)s2 + s2

∗
)

The lemma follows immediately.
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Lemma 5.2. K is strictly convex, hence weakly lower semi-continuous .

Proof. Observe that K(ψ) =
∫
M
G(|ψ|)dvolg and the function G(s) = F (s) + 1

2∗
s2

∗

is strictly

convex as a consequence of (f3).

Recall the decomposition E = E+
λ ⊕ E0

λ ⊕ E−
λ and let

S+
λ := {φ ∈ E+

λ : ‖φ‖λ = 1}.

For φ ∈ S+
λ we set

Eλ(φ) := Rφ⊕ E0
λ ⊕E−

λ and Êλ(φ) := {tφ+ χ : t ≥ 0, χ ∈ E0
λ ⊕E−

λ } ⊂ Eλ(φ).

Lemma 5.3. For each φ ∈ S+
λ there exists a unique nontrivial critical point µλ(φ) ∈ Êλ(φ) of

the constrained functional Lλ|Êλ(φ)
. Moreover the following hold:

a) µλ(φ) is the global maximum of Lλ|Êλ(φ)
.

b) µλ(φ)
+ is bounded away from 0, i.e. ‖µλ(φ)+‖λ ≥ δ for some δ > 0.

c) µλ : S
+
λ → Êλ(φ) is bounded on compact subsets of S+

λ .

Proof. We first prove that supLλ|Êλ(φ)
> 0 is achieved. Observe that there exists a constant

C > 0 such that

C
(
|tφ|2∗ + |χ0|2∗ + |χ−|2∗

)
≤ |tφ+ χ|2∗ for all tφ+ χ ∈ Êλ(φ) (5.1)

because Rφ⊕ E0
λ is of finite dimension. This and F ≥ 0 imply

Lλ(tφ+ χ) ≤
t2

2
−

1

2
‖χ−‖2λ − C ′(|tφ|2∗ + |χ0|2∗ + |χ−|2∗

)2∗

on Êλ(φ), hence Lλ(ψ) ≤ 0 if ‖ψ‖λ is large. On the other hand, supÊλ(φ)
Lλ ≥ α > 0 because

Lλ(tφ) = t2

2
+ o(t2) as t → 0, uniformly in φ ∈ S+

λ . Here we used that for every ε > 0

there exists Cε > 0 such that F (s) ≤ εs2 + Cεs
2∗ . This together with the weak upper semi-

continuity of Lλ on Êλ(φ) implies that the supremum is achieved at some µλ(φ). It also follows

that ‖µλ(φ)+‖ is bounded away from 0, and that µλ is bounded on compact sets.

Now we prove that any critical point ψ 6= 0 of Lλ|Êλ(φ)
is a strict global maximum of

Lλ|Êλ(φ)
, hence it is unique. Let ψ ∈ Êλ(φ) be a nontrivial critical point of Lλ|Êλ(φ)

and ϕ =

(1+ s)ψ+χ ∈ Êλ(φ) \ {ψ} be an arbitrary element of Êλ(φ); here s ≥ −1 and χ ∈ E0
λ⊕E−

λ .

We set G(s) = F (s) + 1
2∗
s2

∗

, g(s) = f(s) + s2
∗−2 and fix χ. Setting

h(s) :=
s2 + 2s

2
g(|ψ|)|ψ|2 + (s+ 1)g(|ψ|) Re(ψ, χ) +G(|ψ|)−G(|(1 + s)ψ + χ|) (5.2)
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an elementary calculation shows:

Lλ(ϕ)−Lλ(ψ) =
1

2

∫

M

(
(Dχ, χ)− λ|χ|2

)
dvolg +K′(ψ)

[s2 + 2s

2
ψ + (1 + s)χ

]

+K(ψ)−K((1 + s)ψ + χ)

= −
1

2
‖χ−‖2λ +

∫

M

h(s)dvolg.

(5.3)

It is sufficient to prove that the integrand h(s)(x) is negative if ψ(x) 6= 0. Observe that h(−1) =

−1
2
g(|ψ|)|ψ|2 + G(|ψ|) − G(|χ|) < 0 and lim

s→∞
h(s) = −∞. We may assume that h attains its

maximum at some s∗ ∈ (−1,∞), otherwise we are done. We distinguish s and s∗ here and

emphasize that s∗ is a real function depending on x, and we can set s∗(x) = −1 provided that

h(−1)(x) is the extremum. We drop the argument x ∈ M in the sequel. Then, denoted by

ϕ∗ = (1 + s∗)ψ + χ, we have:

0 = h′(s∗) =
(
g(|ψ|)− g(|ϕ∗|)

)
Re(ψ, ϕ∗).

Now, if Re(ψ, ϕ∗) 6= 0 hypothesis (f3) implies |ψ| = |ϕ∗| > 0, hence for ϕ∗ 6= ψ:

h(s) ≤ h(s∗) = g(|ψ|) Re
(
ψ,
s2∗ + 2s∗

2
ψ + (1 + s∗)χ

)

= −
s2∗
2
g(|ψ|)|ψ|2 − (1 + s∗)g(|ψ|)

(
|ψ|2 − Re(ψ, ϕ∗)

)

= −
1

2
g(|ψ|)|χ|2 < 0

(5.4)

If Re(ψ, ϕ∗) = 0, i.e. Re(ψ, χ) = −(1 + s∗)|ψ|2 then

h(s) ≤ h(s∗) = −
(s∗ + 1)2

2
g(|ψ|)|ψ|2 −

1

2
g(|ψ|)|ψ|2 +G(|ψ|)−G(|ϕ∗|)

< −
1

2
g(|ψ|)|ψ|2 +G(|ψ|) < 0.

(5.5)

Now we consider the functional

Mλ : S
+
λ → R, Mλ(φ) := Lλ(µλ(φ)).

Proposition 5.4. a) Mλ ∈ C1(S+
λ ) and

M′
λ(φ)[χ] = ‖µλ(φ)

+‖λL
′
λ(µλ(φ))[χ] for all χ ∈ Tφ(S

+
λ ).

b) If (φn)n is a Palais-Smale sequence for Mλ then (µλ(φn))n is a Palais-Smale sequence

for Lλ. If (ψn)n is a bounded Palais-Smale sequence for Lλ then
(

1
‖ψ+

n ‖λ
ψ+
n

)
n

is a Palais-

Smale sequence for Mλ.



18

c) φ ∈ S+
λ is a critical point of Mλ if and only if µλ(φ) is a nontrivial critical point of Lλ.

The corresponding critical values coincide.

Proof. By Lemmas 5.1-5.3 we may apply [38, Corollary 33].

Remark 5.5. The set Pλ := {µλ(φ) : φ ∈ S+
λ } is the Nehari-Pankov manifold associated to

Lλ. It is a topological manifold homeomorphic to S+
λ via the homeomorphism µλ : S+

λ → Pλ.

Neither µλ nor Pλ need to be of class C1 since K is not C2. It is therefore surprising that Mλ =

Lλ ◦ µλ is C1. A general discussion of the construction and the properties of the Nehari-Pankov

manifold Pλ in an abstract setting can be found in [38, Chapter 4].

Theorem 2.1 follows if we can show that infMλ < γcrit. This will be proved in section 7.1

for λ > 0. For the proof of Theorem 2.5 we define for k ∈ Z and λk−1 < λ < λk close to λk

a submanifold Qλ,k ⊂ Pλ which has codimension dk = dimE0
λk

. We can then minimize Lλ on

Qλ,k in order to obtain a second solution. For λ = λk there holds Qλk ,k = Pλk .

Lemma 5.6. For k ∈ Z and σ > 0, there exists δk,σ > 0 such that for λ ∈ (λk − δk,σ, λk] and

φ ∈ S+
λk

with |φ|22 ≥ σ there exists a unique global maximum point νλ,k(φ) ∈ Êλk(φ) of the

constrained functional Lλ|Êλk
(φ). Moreover, P+

λk
(νλ,k(φ)) is bounded away from 0 uniformly in

λ ∈ (λk − δk,σ, λk] and φ ∈ S+
λk

.

Proof. The existence of a global maximizer of Lλ|Êλk
(φ) is analogous to the one in the proof of

Lemma 5.3. We only need to show the uniqueness for λ < λk close to λk. Let ψ ∈ Êλk(φ) be a

global maximum of Lλ|Êλk
(φ), and observe that

Lλ(ψ) ≥ infMλk > 0, (5.6)

hence
∫

M

g(|ψ|)|ψ|2dvolg = ‖ψ+‖2λ − ‖ψ−‖2λ = 2Lλ(ψ) + 2

∫

M

G(|ψ|)dvolg ≥ α (5.7)

and

Lλ(ψ)−
1

2
L′
λ(ψ)[ψ] =

1

2
K′(ψ)[ψ]−K(ψ) =

∫

M

1

2
g(|ψ|)|ψ|2 −G(|ψ|)dvolg ≥ α. (5.8)

for some α > 0. These estimates hold uniformly in φ ∈ S+
λk

, ψ ∈ Êλk(φ) a global maximum of

Lλ|Êλk
(φ). Morover, (5.1) implies

sup
χ∈E0

λk
⊕E−

λk

Lλ(χ) ≤ max
η∈S+

λ ∩E0
λk

max
t>0

[
λk − λ

2
t2|η|22 −

C

2∗
t2

∗

|η|2
∗

2∗

]

= max
η∈S+

λ ∩E0
λk

(λk − λ)m|η|2m2

2mCm−1|η|2
∗(m−1)

2∗

= O
(
(λk − λ)m

)
.
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Hence, for λ close to λk, we have P+
λk
(ψ) = tφ is bounded away from 0 uniformly in λ and

φ ∈ S+
λk

.

For φ ∈ S+
λk

with |φ|22 ≥ σ we consider an arbitrary element ϕ = (1 + s)ψ + χ ∈ Êλk(φ) \

{ψ}, i.e. s ≥ −1 and χ = χ0 + χ− ∈ E0
λk

⊕E−
λk

with s 6= 0 or χ 6= 0. We fix χ, define h(s) as

in (5.2), and deduce as in (5.3):

Lλ(ϕ)−Lλ(ψ) =
1

2

∫

M

(Dχ, χ)dvolg −
λ

2

∫

M

|χ|2dvolg +

∫

M

h(s) dvolg

= −
1

2
‖χ−‖2λk +

λk − λ

2

∫

M

|χ0|2dvolg +

∫

M

h(s) dvolg.

Here the quadratic part is not negative definite. In order to prove Lλ(ϕ) < Lλ(ψ) it is sufficient

to consider ϕ in a bounded region, i.e. ‖ϕ‖λ ≤ R for some constant R > 0 independent of λ,

because Lλ(ϕ) → −∞ as ‖ϕ‖λ → ∞ uniformly for λ in a bounded interval. We also point out

that Pλk(ψ) = tφ, hence |ψ|22 ≥ τ > 0 is bounded away from 0 as mentioned above.

Observe that (5.4) and (5.5) imply

h(s) ≤ −
1

2
min

{
g(|ψ|)|χ|2, g(|ψ|)|ψ|2 − 2G(|ψ|)

}
.

Now we divide M into two parts:

Ω1 = {x ∈M : g(|ψ|)|χ|2 ≥ g(|ψ|)|ψ|2 − 2G(|ψ|)},

and

Ω2 = {x ∈ M : g(|ψ|)|χ|2 < g(|ψ|)|ψ|2 − 2G(|ψ|)}.

CASE 1:
∫
Ω1

|ψ|2 dvolg ≥
τ
2
.

In this case, setting s0 :=
√

τ
4Vol(M,g)

, Remark 2.2 a) yields a constant c0 > 0 such that

∫

Ω1

g(|ψ|)|ψ|2 − 2G(|ψ|) dvolg ≥

∫

{x∈Ω1: |ψ|≥s0}
c0|ψ|

2 ≥
c0τ

4
.

Then Lλ(ϕ) ≤ Lλ(ψ) −
cτ
8

for λk − λ is small. Recall that we only need to consider ϕ, hence

χ0 in a bounded region.

CASE 2:
∫
Ω2

|ψ|2dvolg ≥
τ
2
.

Here we observe that

τ

2
≤

∫

Ω2

|ψ|2dvolg ≤

(∫

Ω2

|ψ|2
∗−2dvolg

)1−θ (∫

Ω2

|ψ|2
∗

dvolg

)θ

with θ = m−2
m−1

. Now the H1/2-boundedness of ψ and g(s) = f(s) + s2
∗−2 ≥ s2

∗−2 imply that

∫

Ω2

g(|ψ|)dvolg ≥

∫

Ω2

|ψ|2
∗−2dvolg ≥ τ > 0 (5.9)
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is bounded away from 0. We now claim that the quadratic form

χ 7→ −‖χ−‖2λk −

∫

Ω2

g(|ψ|)|χ|2dvolg

is negative definite on E0
λk

⊕ E−
λk

, uniformly in φ. Indeed, since E0
λk

is finite dimensional and

the nodal set of any eigenspinor in E0
λk

is of measure zero [8], it follows from (5.9) that there

exists a positive constant c0 > 0 such that

c0|χ
0|22 ≤

∫

M

g(|ψ|)|χ0|2dvolg ≤ |χ0|2∞

∫

M

g(|ψ|)dvolg

The constant c0 can be chosen independently of ψ because global maximizers of Lλ|Êλk
(φ) are

bounded in H1/2. Now we conclude:

L(ϕ)− L(ψ) ≤ −
1

2
‖χ−‖2λk +

λk − λ

2

∫

M

|χ0|2dvolg −

∫

Ω2

g(|ψ|)|χ|2dvolg < 0

provided λk − λ is small enough.

For σ > 0 and λk − δk,σ < λ ≤ λk, we have a map

νλ,k = νλ,k,σ : S
+
λk ,σ

=
{
φ ∈ S+

λk
: |φ|22 > σ

}
→ E.

Observe that νλ,k,σ(φ) = νλ,k,σ′(φ) for |φ|22 > σ > σ′ which justifies the notation νλ,k.

Remark 5.7. a) The map νλ,k : S
+
λk ,σ

→ E is an embedding, and its image Qλ,k,σ := νλ,k(S
+
λk,σ

)

is a topological manifold homeomorphic to S+
λk ,σ

. We claim that Qλ,k,σ ⊂ Pλ. Consider φ ∈

S+
λk,σ

, and let νλ,k(φ) = tφ + χ0 + χ− ∈ Êλ,k(φ) ⊂ Rφ ⊕ E0
λk

⊕ E−
λk

. This is a maximizer of

Lλ on Êλk(φ), hence on R+(tφ + χ0) + E−
λk

= Êλ

(
1

‖tφ+χ0‖λ (tφ+ χ0)
)
⊂ Êλk(φ). It follows

that νλ,k(φ) = µλ

(
1

‖tφ+χ0‖λ (tφ+ χ0)
)

.

b) The solution ψ̃λ from Theorem 2.5 will be a minimizer of Lλ on Qλ,k,σ. It is an interesting

problem to determine the range of λ < λk so that one can define Qλ,k,σ, for instance, whether

it can be defined up to or below λk−1. This will depend on the geometry of M and on the

nonlinearity f .

For σ > 0 and λ ∈ (λk − δk,σ, λk] we consider the functional

Nλ,k : S
+
λk ,σ

→ R, Nλ,k(φ) = Lλ(νλ,k(φ)).

We point out that νλk,k = µλk and Nλk,k = Mλk . The arguments from [38, Corollary 33] imply

the following proposition.

Proposition 5.8. Fix σ > 0 and λ ∈ (λk − δk,σ, λk].
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a) Nλ,k ∈ C1(S+
λk ,σ

) and

N ′
λ,k(φ)[χ] =

∥∥P+
λk
νλ,k(φ)

∥∥
λk

L′
λ(νλ,k(φ))[χ] for all χ ∈ Tφ(S

+
λk,σ

).

b) If (φn)n is a Palais-Smale sequence for Nλ,k in S+
λk,σ

then (νλ,k(φn))n is a Palais-Smale

sequence for Lλ.

c) φ ∈ S+
λk,σ

is a critical point of Nλ,k if and only if νλ,k(φ) is a nontrivial critical point of

Lλ. The corresponding critical values coincide.

Now we show that infNλ,k > infMλk is achieved for λ ≤ λk close to λk, and is non-

increasing and continuous in λ, provided infMλk < γcrit. In section 7.1 we shall prove that

infMλk < γcrit holds for all k ≥ 1. This proves Theorem 2.5.

Lemma 5.9. a) For all φ ∈ S+
λk

there holds νλ,k(φ) → µλk(φ) as λր λk. The convergence

is uniform on compact subsets.

b) If infMλk < γcrit, then there exists σ > 0 such that

inf
Sλk,σ

Nλ,k < γcrit for all λ ∈ (λk − δk,σ, λk],

and the infimum is achieved.

c) The function (λk − δk,σ, λk] → R, λ 7→ infNλ,k, is non-increasing and continuous.

Proof. a) We fix φ ∈ S+
λk

and consider ψλ = νλ,k(φ). Observe that ψλ = tλφ + χλ with tλ > 0

and χλ ∈ E0
λk

⊕ E−
λk

. By the boundedness of {ψλ}, we have ψλ ⇀ ψ0 with tλ → t0 and

χλ ⇀ χ0 as λր λk. Then the weak lower semi-continuity of | · |2 and K on Êk(φ) implies

lim sup
λրλk

Nλ,k(φ) ≤
1

2

∫

M

(Dψ0, ψ0)dvolg −
λk
2

∫

M

|ψ0|
2dvolg −K(ψ0) ≤ Mλk(φ).

On the other hand, the monotonicity of Lλ with respect to λ yields

0 ≤ Nλ,k(φ)−Mλk(φ) ≤
λk − λ

2
|ψλ|

2
2 → 0 as λր λk.

It follows that ψ0 = µλk(φ) and

lim
λրλk

∥∥P−
λk
χλ
∥∥2
λ
=
∥∥P−

λk
χ0

∥∥2
λk
.

Since E0
λk

is of finite dimension, we have ψλ → µλk(φ) as λր λk.

b) Since cλk := infMλk < γcrit, the infimum is achieved and the set of minimizers

A := Aλk := {φ ∈ S+
λk

: Mλk(φ) = cλk}
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is compact. Let Uρ(A) ⊂ S+
λk

be the ρ-neighborhood of A with respect to ‖ · ‖λk . We choose

ρ > 0 so that the L2-norm is bounded away from 0 on U := Uρ(A), that is U ⊂ Sλk ,σ for

some σ > 0. Using again the Palais-Smale condition below γcrit there exists α > 0 with

cλk + 3α < γcrit and such that

infMλk(S
+
λk

\ U) ≥ cλk + 2α.

The setsB := µλk(A) and V := µλk(U) are contained in the Nehari-Pankov manifold Pλk from

Remark 5.7. By definition there holds

inf Lλk
(
Pλk \ V

)
≥ cλk + 2α and inf Lλk(A) = cλk .

Using the monotonicity of Lλ with respect to λ we obtain for λ < λk close to λk

inf Lλ
(
Qλ,k,σ \ Vλ

)
≥ cλk + 2α and inf Lλk(Bλ) ≤ cλk + α

where Vλ = νλ,k(U) and Bλ = νλ,k(A). This implies

infNλ,k

(
S+
λk,σ

\ U
)
≥ cλk + 2α and infNλ,k(A) ≤ cλk + α.

Then it follows that Nλ,k achieves its infimum on Sλk,σ in the set U .

c) The function infNλ,k is non-increasing in λ because Lλ(ψ) is decreasing with respect to λ.

For a given λ ∈ (λk − δk,σ, λk] there exists a spinor field φ ∈ S+
λk

such that Nλ,k(φ) = infNλ,k.

Then we have for λ′ < λ:

infNλ,k ≤ infNλ′,k ≤ Nλ′,k(φ) → Nλ,k(φ) = infNλ,k as λ′ ր λ,

hence λ 7→ infNλ,k is continuous from the left. In order to prove continuity from the right at

λ ∈ (λk−δk,σ, λk), consider a sequence λ′n ց λ and let φn ∈ S+
λk

be a minimizer of Nλ′n,k. Then

ψn := νλ′n,k(φn) is a critical point of Lλ′n and Lλ′n(ψn) = Nλ′n,k(φn) = infNλ′n,k ≤ infNλ,k ,

hence (ψn)n is a Palais-Smale sequence for Lλ at a level c = limn→∞ infNλ′n,k ≤ infNλ,k <

γcrit. It follows that ψn → ψ along a subsequence, and ψ is a critical point of Lλ at the level c.

Equivalently, φn → φ ∈ S+
λk

with ψ = νλ,k(φ), and φ is a critical point of Nλ,k. This implies

c ≥ infNλ,k, and the continuity from the right follows.

6 Test spinors and auxiliary estimates

Our proof relies on the construction of a test spinor onM in order to show infMλ < γcrit under

the conditions of Theorem 2.1. The test spinor comes from a spinor on Rm being cut-off and

transplanted to M so that it has support in a small neighborhood of an arbitrary point p0 ∈ M .

We first need to recall a construction from the paper [4] of Ammann et al.
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To begin with we fix ψ0 ∈ Sm with |ψ0| = m
m−1

2 arbitrarily, set µ(x) = 1
1+|x|2 for x ∈ Rm

and define

ψ(x) = µ(x)
m
2 (1− x) · ψ0

where. Then it is standard to verify that

DRmψ =
m

2
µψ (6.1)

and

|ψ| = m
m−1

2 µ
m−1

2 =

(
m

1 + |x|2

)m−1
2

. (6.2)

We choose δ < i(M)/2 where i(M) > 0 is the injectivity radius of M . Let η : Rm → R be a

smooth cut-off function satisfying η(x) = 1 if |x| ≤ δ and η(x) = 0 if |x| ≥ 2δ. Now we define

ψε : R
m → Sm by

ϕε(x) = η(x)ψε(x) where ψε(x) = ε−
m−1

2 ψ(x/ε). (6.3)

In order to transplant the test spinor onM , we recall the Bourguignon-Gauduchon-trivialization.

Here we fix p0 ∈M arbitrarily, and let (x1, . . . , xm) be the normal coordinates given by the ex-

ponential map

expp0 : R
m ∼= Tp0M ⊃ U → V ⊂M, x 7→ p = expp0(x).

For p ∈ V let G(p) = (gij(p))ij denote the corresponding metric at p. Since G(p) is symmetric

and positive definite, the square root B(p) = (bij(p))ij of G(p)−1 is well defined, symmetric

and positive definite. It can be thought of as linear isometry

B(p) : (Rm ∼= Texp−1
p0

(p)U, gRm) → (TpV, g).

We obtain an isomorphism of SO(m)-principal bundles:

PSO(U, gRm)
φ

//

��

PSO(V, g)

��

Tp0M ⊃ U
expp0

// V ⊂M

where φ(y1, . . . , ym) = (By1, . . . , Bym) for an oriented frame (y1, . . . , ym) on U . Notice that φ

commutes with the right action of SO(m), hence it induces an isomorphism of spin structures:

Spin(m)× U = PSpin(U, gRm) //

��

PSpin(V, g) ⊂ PSpin(M)

��

Tp0M ⊃ U
expp0

// V ⊂M
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Thus we obtain an isomorphism between the spinor bundles S(U) and S(V ):

S(U) := PSpin(U, gRm)×ρ Sm −→ S(V ) := PSpin(V, g)×ρ Sm ⊂ S(M) (6.4)

where (ρ, Sm) is the complex spin representation.

Setting ei = B(∂i) =
∑

j bij∂j we obtain an orthonormal frame (e1, . . . , em) of (TV, g). In

order to simplify the notation, we use ∇ and ∇̄, respectively, for the Levi-Civita connections on

(TU, g
Rm) and (TV, g) and for the natural lifts of these connections to the spinor bundles S(U)

and S(V ), respectively. For the Clifford multiplications on these bundles, we shall write “·” in

both cases, that is,

ei · ψ̄ = B(∂i) · ψ̄ = ∂i · ψ.

Now a spinor ϕ ∈ Γ(S(U)) corresponds via the isomorphims (6.4) to a spinor φ̄ ∈ Γ(S(V )).

In particular, since the spinors ϕε ∈ Γ(S(U)) from (6.3) have compact support in U they corre-

spond to spinors ϕ̄ε ∈ Γ(S(M)) with compact support in V . These are not quite our test spinors,

because they do not lie in M. In the rest of this subsection we prove some estimates that will

be needed in order to control the critical values in the next section.

We write D and D̄ for the Dirac operators acting on Γ(S(U)) and Γ(S(V )), respectively.

By [4, Proposition 3.2] there holds

D̄ϕ̄ε = Dϕε +W · ϕ̄ε +X · ϕ̄ε +
∑

i,j

(bij − δij)∂i · ∇∂jϕε (6.5)

with W ∈ Γ(Cl(TV )) and X ∈ Γ(TV ) given

W =
1

4

∑

i,j,k
i 6=j 6=k 6=i

∑

α,β

biα(∂αbjβ)b
−1
βk ei · ej · ek,

and

X =
1

4

∑

i,k

(
Γ̄iik − Γ̄kii

)
ek =

1

2

∑

i,k

Γ̄iikek;

here (b−1
ij )ij denotes the inverse matrix of B, and Γ̄kij := g(∇̄ejej, ek). In the sequel we identify

x ∈ Rm with p = expp0 x ∈ M for notational convenience. As remarked in [4, 30], observing

that B = (G−1)
1
2 and G = I +O(|x|2) as |x| → 0, we deduce

bij = δij +O(|x|2), W = O(|x|3) and X = O(|x|) as |x| → 0. (6.6)

In the sequel we use the notation fε . gε for two functions fε and gε, when there exists a

constant C > 0 independent of ε such that fε ≤ Cgε.

Lemma 6.1. Let ϕ̄ε ∈ S(V ) be as above and set R̄ε := D̄ϕ̄ε − |ϕ̄ε|2
∗−2ϕ̄ε. Then

‖ϕ̄ε‖E∗

λ
.





ε
1
2 if m = 2,

ε| ln ε|
2
3 if m = 3,

ε if m ≥ 4,
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and

‖R̄ε‖E∗

λ
.





ε
m−1

2 if 2 ≤ m ≤ 4,

ε2| ln ε|
3
5 if m = 5,

ε2 if m ≥ 6.

Proof. For ψ ∈ E with ‖ψ‖ ≤ 1 and ε small we have

∣∣∣∣
∫

M

(ϕ̄ε, ψ)dvolg

∣∣∣∣ =
∣∣∣∣
∫

B2δ(p0)

(ϕ̄ε, ψ)dvolg

∣∣∣∣ ≤
(∫

B2δ(p0)

|ϕ̄ε|
2m
m+1dvolg

)m+1
2m

|ψ|2∗

.

(∫

|x|≤2δ

|ψε|
2m
m+1dx

)m+1
2m

.

(
ε

2m
m+1

∫ 2δ
ε

0

rm−1

(1 + r2)
m(m−1)

m+1

dr

)m+1
2m

.





ε
1
2 if m = 2,

ε| ln ε|
2
3 if m = 3,

ε if m ≥ 4,

(6.7)

This implies the estimate on ‖ϕ̄ε‖E∗

λ
.

In order to estimate R̄ε, (6.1) and (6.2) yield

Dϕε = ∇η · ψε + ηDψε

= ∇η · ψε + |ϕε|
2∗−2ϕε + (η − η2

∗−1)|ψε|
2∗−2ψε.

(6.8)

Using (6.5), we obtain

R̄ε = A1 + A2 + A3 + A4 + A5 + A6

where

A1 = ∇η · ψε,

A2 = (η − η2
∗−1)|ψ̄ε|

2∗−2ψ̄ε,

A3 = ηW · ψ̄ε,

A4 = ηX · ψ̄ε,

A5 = η
∑

i,j

(bij − δij)∂i · ∇∂jψε,

A6 =
∑

i,j

(bij − δij)∂jη ∂i · ψε.

In the following estimates we use that the support of η is contained in B2δ(0) ⊂ R
m. Anal-

ogous to (6.7), using (6.2) and (6.6) we estimate:

‖A1‖E∗

λ
.

(∫

B2δ(p0)

∣∣∇η · ψε
∣∣ 2m
m+1dvolg

)m+1
2m

.

(∫

δ≤|x|≤2δ

|ψε|
2m
m+1dx

)m+1
2m

.

(
ε

2m
m+1

∫ 2δ
ε

δ
ε

rm−1

(1 + r2)
m(m−1)

m+1

dr

)m+1
2m

. ε
m−1

2
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‖A2‖E∗

λ
.

(∫

B2δ(p0)

(
η − η

m+1
m−1

) 2m
m+1 |ψ̄ε|

2m
m−1dvolg

)m+1
2m

.

(∫

δ≤|x|≤2δ

|ψε|
2m
m−1dx

)m+1
2m

.

(∫ 2δ
ε

δ
ε

rm−1

(1 + r2)m
dr

)m+1
2m

. ε
m+1

2

‖A3‖E∗

λ
.

(∫

B2δ(p0)

|W |
2m
m+1 |ψ̄ε|

2m
m+1dvolg

)m+1
2m

.

(∫

|x|≤2δ

|x|
6m
m+1 |ψε|

2m
m+1dx

)m+1
2m

.

(
ε

8m
m+1

∫ 2δ
ε

0

r
6m
m+1

+m−1

(1 + r2)
m(m−1)

m+1

dr

)m+1
2m

.





ε
m−1

2 if 2 ≤ m ≤ 8

ε4| ln ε|
5
9 if m = 9

ε4 if m ≥ 10

‖A4‖E∗

λ
.

(∫

B2δ(p0)

|X|
2m
m+1 |ψ̄ε|

2m
m+1dvolg

)m+1
2m

.

(∫

|x|≤2δ

|x|
2m
m+1 |ψε|

2m
m+1dx

)m+1
2m

.

(
ε

4m
m+1

∫ 2δ
ε

0

r
2m
m+1

+m−1

(1 + r2)
m(m−1)

m+1

dr

)m+1
2m

.





ε
m−1

2 if 2 ≤ m ≤ 4

ε2| ln ε|
3
5 if m = 5

ε2 if m ≥ 6

‖A5‖E∗

λ
.

(∫

|x|≤2δ

|x|
4m
m+1 |∇ψε|

2m
m+1dx

)m+1
2m

.

(
ε

4m
m+1

∫ 2δ
ε

0

r
4m
m+1

+m−1

(1 + r2)
m2

m+1

dr

)m+1
2m

≤

(
ε

4m
m+1

∫ 2δ
ε

0

r
2m
m+1

+m−1

(1 + r2)
m(m−1)

m+1

dr

)m+1
2m

.





ε
m−1

2 if 2 ≤ m ≤ 4

ε2| ln ε|
3
5 if m = 5

ε2 if m ≥ 6

Here we used the inequality |∇ψ(x)| . µ(x)
m
2 and the same estimate as for ‖A4‖E∗

λ
. Finally

there holds:

‖A6‖E∗

λ
.

(∫

|x|≤2δ

|x|
6m
m+1 |ψε|

2m
m+1dx

)m+1
2m

.





ε
m−1

2 if 2 ≤ m ≤ 8

ε4| ln ε|
5
9 if m = 9

ε4 if m ≥ 10

Here we used |∇η(x)| . |x| and the same estimate as for ‖A3‖E∗

λ
.

From these estimates we finally obtain:

‖R̄ε‖E∗

λ
.





ε
m−1

2 if 2 ≤ m ≤ 4

ε2| ln ε|
3
5 if m = 5

ε2 if m ≥ 6

Lemma 6.2. Let ϕ̄ε ∈ S(V ) be as above and let ωm stand for the volume of the standard sphere
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Sm. Then ∫

M

|ϕ̄ε|
2dvolg &

{
ε| ln ε|+O(ε) if m = 2

ε+O(ε2) if m ≥ 3
(6.9)

and

1

2

∫

M

(D̄ϕ̄ε, ϕ̄ε)dvolg −
1

2∗

∫

M

|ϕ̄ε|
2∗dvolg ≤

1

2m

(m
2

)m
ωm +





O(ε) if m = 2,

O(ε2| ln ε|) if m = 3,

O(ε2) if m ≥ 4,
(6.10)

Proof. For the first estimate, by taking into account dvolg = dvolRm + O(|x|2) in normal coor-

dinates at p0 we have

∫

M

|ϕ̄ε|
2dvolg =

∫

B2δ(p0)

|ϕ̄ε|
2dvolg

=

∫

|x|≤δ
|ψε|

2dx+O

(∫

δ<|x|≤2δ

|ψε|
2dx

)
+O

(∫

|x|≤2δ

|x|2|ψε|
2dx

)

= εmm−1ωm−1

∫ δ
ε

0

rm−1

(1 + r2)m−1
dr +O

(
ε

∫ 2δ
ε

δ
ε

rm−1

(1 + r2)m−1
dr

)

+O

(
ε3
∫ 2δ

ε

0

rm+1

(1 + r2)m−1
dr

)

= A(ε) +O(εm−1) +





O(εm−1) if m = 2, 3,

O(ε3| ln ε|) if m = 4,

O(ε3) if m ≥ 5

= A(ε) +





O(εm−1) if m = 2, 3,

O(ε3| ln ε|) if m = 4,

O(ε3) if m ≥ 5,

where

A(ε) =

{
ε
(
ln(ε2 + δ2)− 2 ln ε

)
mm−1ωm−1 if m = 2

εmm−1ωm−1

∫∞
0

rm−1

(1+r2)m−1dr if m ≥ 3

This implies (6.9).

Now we come to (6.10). Analogously to the arguments in Lemma 6.1, we shall use (6.5) and

(6.8) in order to get ∫

M

(D̄ϕ̄ε, ϕ̄ε)dvolg = J1 + J2 + · · ·+ J7

where

J1 = Re

∫

M

η · (∇η · ψε, ψ̄ε)dvolg
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J2 =

∫

M

|ϕ̄ε|
2∗dvolg

J3 =

∫

M

(η − η2
∗−1) · η · |ψ̄ε|

2∗dvolg

J4 = Re

∫

M

η2 · (W · ψ̄ε, ψ̄ε)dvolg

J5 = Re

∫

M

η2 · (X · ψ̄ε, ψ̄ε)dvolg

J6 = Re
∑

i,j

∫

M

η2(bij − δij)(∂i · ∇∂jψε, ψ̄ε)dvolg

J7 = Re
∑

i,j

∫

M

η · (bij − δij)∂jη · (∂i · ψε, ψ̄ε)dvolg.

We have:

J1 = 0

J2 =

∫

|x|≤δ
|ψε|

2∗dx+O

(∫

δ<|x|≤2δ

|ψε|
2∗dx

)
+O

(∫

|x|≤2δ

|x|2|ψε|
2∗dx

)

= mmωm−1

∫ δ
ε

0

rm−1

(1 + r2)m
dr +O

(∫ 2δ
ε

δ
ε

rm−1

(1 + r2)m
dr

)

+O

(
ε2
∫ 2δ

ε

0

rm+1

(1 + r2)m
dr

)

= mmωm−1

∫ ∞

0

rm−1

(1 + r2)m
dr +O(εm) +

{
O(ε2| ln ε|), if m = 2

O(ε2), if m ≥ 3

= mmωm−1

∫ ∞

0

rm−1

(1 + r2)m
dr +

{
O(ε2| ln ε|) if m = 2

O(ε2) if m ≥ 3

J3 .
∫
δ≤|x|≤2δ

|ψε|2
∗

dx . εm

J4 .

∫

|x|≤2δ

|x|3|ψε|
2dx . ε4

∫ 2δ
ε

0

rm+2

(1 + r2)m−1
dr .





εm−1 if 2 ≤ m ≤ 4

ε4| ln ε| if m = 5

ε4 if m ≥ 6

J5 = 0

J6 .

∫

|x|≤2δ

|x|2|∇ψε| · |ψε|dx . ε2
∫ 2δ

ε

0

rm+1

(1 + r2)m− 1
2

dr .





ε if m = 2

ε2| ln ε| if m = 3

ε2 if m ≥ 4

Here we used the inequality |∇ψ(x)| . µ(x)
m
2 .
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J7 .

∫

|x|≤2δ

|x|3|ψε|
2dx .





εm−1 if 2 ≤ m ≤ 4

ε4| ln ε| if m = 5

ε4 if m ≥ 6

Here we used the inequality |∇η(x)| . x and the same estimate as for J4.

Combining these estimates we deduce that

1

2

∫

M

(D̄ϕ̄ε, ϕ̄ε)dvolg −
1

2∗

∫

M

|ϕ̄ε|
2∗dvolg

≤
1

2
mm−1ωm−1

∫ ∞

0

rm−1

(1 + r2)m
dr +





O(ε) if m = 2

O(ε2| ln ε|) if m = 3

O(ε2) if m ≥ 4

Finally (6.10) follows upon taking into account that

ωm =

∫

Rm

(
2

1 + |x|2

)m
dx = 2mωm−1

∫ ∞

0

rm−1

(1 + r2)m
dr.

7 Proof of the main results

As a consequence of the results from sections 4 and 5 we need to prove

infMλ < γcrit, (7.1)

where M : S+ → R is defined in Proposition 5.4. The strategy is to find suitable modifications

of the test spinors that lie on M, and to control the energy of these modifications.

7.1 Proof of Theorem 2.1 for λ > 0 and of Theorem 2.5

Since F ≥ 0 by (f1), we have

Lλ(ψ) ≤ Eλ(ψ) =
1

2

(
‖ψ+‖2λ − ‖ψ−‖2λ

)
−

1

2∗

∫

M

|ψ|2
∗

dvolg

for all ψ ∈ E. Let

Tλ : L2∗ = L2∗(M, S(M)) → E0
λ = ker(D − λ), Tλ(ψ) = arg min

φ∈E0
λ

|ψ − φ|2
∗

2∗ ,

i.e. Tλ(ψ) ∈ E0
λ is the best approximation of ψ ∈ L2∗ in E0

λ. This exists and is unique because

the L2∗ norm is uniformly convex and E0
λ is finite-dimensional. Of course, T is not linear in

general, and T ≡ 0 when E0
λ = {0}. Clearly we have |ψ|2

∗

2∗ ≥ |ψ − Tλ(ψ)|2
∗

2∗ and therefore

Eλ(ψ) ≤ Ẽλ(ψ) := Eλ(ψ−Tλ(ψ)) =
1

2

(
‖ψ+‖2λ−‖ψ−‖2λ

)
−

1

2∗

∫

M

|ψ−Tλ(ψ)|
2∗dvolg. (7.2)
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This implies

infMλ = inf
φ∈S+

max
ψ∈Êλ(φ)

Lλ(ψ) ≤ inf
φ∈S+

λ

max
ψ∈Êλ(φ)

Ẽλ(ψ). (7.3)

We need to collect some properties of Tλ and of the functionals

Fλ : L
2∗ → R, Fλ(ψ) =

1

2∗
|ψ − Tλ(ψ)|

2∗

2∗

and

Ẽλ : E → R, Ẽλ(ψ) = Eλ(ψ − Tλ(ψ)) =
1

2
(‖ψ+‖2λ − ‖ψ−‖2λ)− Fλ(ψ).

Lemma 7.1. a) For ψ ∈ L2∗ , φ ∈ E0
λ and t ∈ R there holds: Tλ(tψ) = tTλ(ψ), Tλ(ψ+φ) =

Tλ(ψ) + φ and Fλ(ψ + φ) = Fλ(ψ).

b) Tλ is of class C1 on L2∗ \ E0
λ. Moreover, T ′

λ(ψ)[ψ] = Tλ(ψ) for all ψ ∈ L2∗ \ E0
λ.

c) Fλ is of class C2 on L2∗ \ E0
λ with derivative

F ′
λ(ψ)[φ] = Re

∫

M

|ψ − Tλ(ψ)|
2∗−2(ψ − Tλ(ψ), φ)dvolg.

d) Fλ is convex.

e) If ψ ∈ Ẽ = E+
λ ⊕ E−

λ is a critical point of Ẽλ then ψ − Tλ(ψ) ∈ E is a critical point of

Eλ.

Proof. a) is trivial. For the proof of b) we fix ψ ∈ L2∗ \E0
λ and consider the map Fλ,ψ : E0

λ → R

defined by Fλ,ψ(φ) := Fλ(ψ+φ) =
1
2∗
|ψ−φ|2

∗

2∗ . Observe that φ = Tλ(ψ) is the unique solution

of F ′
λ,ψ(φ) = 0 because Fλψ is of class C2 and strictly convex. A simple computation yields for

φ ∈ E0
λ:

F ′′
λ,ψ(Tλ(ψ))[φ, φ] ≥

∫

M

|ψ − Tλ(ψ)|
2∗−2 · |φ|2dvolg. (7.4)

Since the nodal set of any φ ∈ E0
λ \ {0} is of measure zero by [8], F ′′

λ,ψ(Tλ(ψ)) is posi-

tive definite. Now the differentiability of Tλ follows from the implicit function theorem, and

T ′
λ(ψ)[ψ] = Tλ(ψ) follows from a).

In order to prove c) observe that F ′
λ(ψ) is trivial on E0

λ by a). This implies for φ ∈ L2∗ :

F ′
λ(ψ)[φ] = Re

∫

M

|ψ − Tλ(ψ)|
2∗−2

(
ψ − Tλ(ψ), φ− T ′

λ(ψ)[ϕ]
)
dvolg

= Re

∫

M

|ψ − Tλ(ψ)|
2∗−2(ψ − Tλ(ψ), φ)dvolg.

Now Fλ is C2 because Tλ is C1.
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d) For ψ0, ψ1 ∈ L2∗ and α ∈ [0, 1] we obtain using the definition of Tλ:

∣∣(1− α)ψ0 + αψ1 − Tλ
(
(1− α)ψ0 + αψ1

)∣∣2∗
2∗

≤
∣∣(1− α)ψ0 + αψ1 −

(
(1− α)Tλ(ψ0) + αTλ(ψ1)

)∣∣2∗
2∗

≤ (1− α)
∣∣ψ0 − Tλ(ψ0)

∣∣2∗
2∗
+ α

∣∣ψ1 − Tλ(ψ1)
∣∣2∗
2∗

e) Observe that E ′
λ(ψ−Tλ(ψ)) vanishes on E0

λ by the definition of Tλ. If ψ is a critical point

of Ẽλ then E ′
λ(ψ − Tλ(ψ)) vanishes also on Ẽ.

The second derivative of Fλ is given by

F ′′
λ(ψ)[φ, χ] = Re

∫

M

|ψ − Tλ(ψ)|
2∗−2(χ− T ′

λ(ψ)[z], φ)dvolg

+
2

m− 1

∫

M

|ψ − Tλ(ψ)|
2∗−4Re(ψ − Tλ(ψ), χ− T ′

λ(ψ)[z]) · Re(ψ − Tλ(ψ), φ)dvolg.

Using T ′
λ(ψ)[ψ] = Tλ(ψ) and that F ′′

λ(ψ)[φ, χ] = 0 for ψ ∈ L2∗ \ E0
λ, φ ∈ L2∗ and χ ∈ E0

λ, an

elementary calculation yields for ψ ∈ L2∗ \ E0
λ and φ ∈ L2∗ :

(
F ′′
λ(ψ)[ψ, ψ]− F ′

λ(ψ)[ψ]
)
+ 2
(
F ′′
λ(ψ)[ψ, φ]−F ′

λ(ψ)[φ]
)
+ F ′′

λ(ψ)[φ, φ]

≥
2

m+ 1

∫

M

|ψ − Tλ(ψ)|
2∗dvolg > 0

(7.5)

Lemma 7.1 implies that Ẽλ(ψ + φ) = Ẽλ(ψ) for ψ ∈ E and φ ∈ E0
λ. Therefore we only need to

consider Ẽλ on Ẽλ = E+
λ ⊕ E−

λ , so from now on Ẽλ : Ẽλ → R. A straightforward calculation

shows for any ψ, φ ∈ Ẽλ:

Ẽ ′
λ(ψ)[φ] = Re

∫

M

(
Dψ − λψ − |ψ − Tλ(ψ)|

2∗−2(ψ − Tλ(ψ)), φ
)
dvolg.

Next we construct the Nehari-Pankov manifold for Ẽλ. We could refer to [38] as in section 5 but

we prefer a different 2-step procedure which will make the subsequent estimates more transpar-

ent.

Proposition 7.2. a) There exists a C1 map ηλ : E
+
λ → E−

λ such that for ψ ∈ Ẽλ:

Ẽ ′
λ(ψ)[χ] = 0 for all χ ∈ E−

λ =⇒ ψ− = ηλ(ψ
+)

Moreover, ηλ(φ) maximizes Ẽλ(φ+ χ) over all χ ∈ E−
λ .

b) The functional Jλ : E
+
λ → R, Jλ(φ) = Ẽλ

(
φ+ ηλ(φ)

)
, satisfies:

J ′
λ(φ) = 0 =⇒ Ẽ ′

λ

(
φ+ ηλ(φ)

)
= 0



32

c) For every φ ∈ E+
λ \ {0}, the map Jλ,φ : R → R, Jλ,φ(t) := Jλ(tφ), is of class C2 and

satisfies

J ′
λ,φ(t) = 0, t > 0 =⇒ J ′′

λ,φ(t) < 0.

Moreover Jλ,φ(0) = J ′
λ,φ(0) = 0, J ′′

λ,φ(0) > 0.

Proof. For φ ∈ E+
λ the map Ẽλ,φ : E−

λ → R defined by

Ẽλ,φ(χ) = Ẽλ(φ+ χ) =
1

2

(
‖φ‖2λ − ‖χ‖2λ

)
−Fλ(φ+ χ).

is strict concave because Fλ is convex. Moreover, it is anti-coercive, hence it has a unique

critical point ηλ(φ), which is a maximum point. That ηλ : E+
λ → E−

λ is of class C1 follows

from the implicit function theorem applied to the equation DχẼλ(φ + χ) = 0 which defines

χ = ηλ(φ). This proves a).

For the proof of b) recall that Ẽ ′
λ(φ+ ηλ(φ))[χ] = 0 for all χ ∈ E−

λ by construction of ηλ. If

J ′
λ(φ) = 0 then Ẽ ′

λ(φ+ ηλ(φ))[χ] = 0 holds also for all χ ∈ E+
λ as a simple calculation shows.

In order to see c) we compute J ′
λ,φ(t) = Ẽ ′

λ(tφ + ηλ(tφ))[φ] which implies that Jλ,φ is C2.

The implication in c) is equivalent to:

J ′
λ(φ)[φ] = 0, φ 6= 0 =⇒ J ′′

λ (φ)[φ, φ] < 0.

This is a consequence of the following computation where we set ψ = φ + ηλ(φ) and χ =

η′λ(φ)[φ]− ηλ(φ), and use that Ẽ ′
λ(ψ)|E−

λ
= 0.

J ′′
λ (φ)[φ, φ] = Ẽ ′′

λ(ψ)[φ+ η′λ(φ)[φ], φ] = Ẽ ′′
λ(ψ)[ψ + χ, ψ + χ]

= Ẽ ′′
λ(ψ)[ψ, ψ] + 2Ẽ ′′

λ(ψ)[ψ, χ] + Ẽ ′′
λ(ψ)[χ, χ]

= J ′
λ(φ)[φ] +

(
Fλ(ψ)[ψ]− F ′′

λ(ψ)[ψ, ψ]
)
+ 2
(
F ′
λ(ψ)[χ]−F ′′

λ(ψ)[ψ, χ]
)

−F ′′
λ(ψ)[χ, χ]− ‖χ‖2λ

≤ J ′
λ(φ)[φ]− ‖χ‖2λ −

2

m+ 1
|ψ − Tλ(ψ)|

2∗

2∗ .

(7.6)

Finally we have Jλ,φ(0) = Ẽλ(0) = 0, J ′
λ,φ(0) = Ẽ ′

λ(0)[φ] = 0, and J ′′
λ,φ(0) = Ẽ ′′

λ(0)[φ, φ] >

0.

The Nehari-Pankov manifold for Ẽλ is defined as

P̃λ := {φ ∈ E+
λ \ {0} : J ′

λ(φ)[φ] = 0}.

By Proposition 7.2 this is a smooth submanifold of codimension 1 in E+
λ , and it is a natural

constraint for the problem of finding non-trivial critical points of Jλ.
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Lemma 7.3. If ψn ∈ Ẽλ satisfies

∥∥Ẽ ′
λ(ψn)

∣∣
E−

λ

∥∥
λ
= sup

v∈E−

λ , ‖v‖=1

Ẽ ′
λ(ψn)[v] = on(1) (7.7)

then

‖ψ−
n − ηλ(ψ

+
n )‖λ = O

(∥∥Ẽ ′
λ(ψn)

∣∣
E−

λ

∥∥
λ

)
.

Moreover, if (ψn)n is a (PS)c-sequence for Ẽλ on Ẽλ, then (ψ+
n )n is a (PS)c-sequence for Jλ

on E+
λ .

Proof. For simplicity of notation we set ζn = ψ+
n +ηλ(ψ

+
n ) and ξn = ψn−ζn = ψ−

n −ηλ(ψ
+
n ) ∈

E−
λ . The we have by definition of ηλ:

0 = Ẽ ′(ζn)[ξn] = −
〈
ηλ(ψ

+
n ), ξn

〉
− Re

∫

M

|ζn − Tλ(ζn)|
2∗−2(ζn − Tλ(ζn), ξn)dvolg.

Next (7.7) implies

o(‖ξn‖λ) = Ẽ ′
λ(ψn)[ξn] = −

〈
ψ−
n , ξn

〉
λ
−Re

∫

M

|ψn−T (ψn)|
2∗−2(ψn−Tλ(ψn), ξn)dvolg. (7.8)

Therefore we have

o(‖ξn‖λ) = ‖ξn‖
2 + Re

∫

M

|ψn − Tλ(ψn)|
2∗−2(ψn − Tλ(ψn), ξn)dvolg

− Re

∫

M

|ζn − Tλ(ζn)|
2∗−2(ζn − Tλ(ζn), ξn)dvolg.

(7.9)

Since the functional ψ 7→ |ψ − Tλ(ψ)|2
∗

2∗ is convex, we obtain

Re

∫

M

|ψn − Tλ(ψn)|
2∗−2(ψn − Tλ(ψn), ξn)dvolg

− Re

∫

M

|ζn − Tλ(ζn)|
2∗−2(ζn − Tλ(ζn), ξn)dvolg ≥ 0.

Now (7.8), (7.9) and ξn ∈ E−
λ yield ‖ξn‖λ = O

(∥∥Ẽ ′
λ(ψn)

∣∣
E−

λ

∥∥
λ

)
.

If (ψn)n is a (PS)c-sequence for Ẽλ then
(
ψn−Tλ(ψn)

)
n

is a (PS)c-sequence for Eλ, hence

it is bounded by Lemma 4.1. Now a bound on the second derivative of Eλ implies that (ζn)n is

a (PS)c-sequence for Ẽλ, hence (ψ+
n )n is a (PS)c-sequence for Jλ on E+

λ .

It is not difficult to check that the functional

Hλ : E
+
λ → R, Hλ(φ) = J ′

λ(φ)[φ],

is of class C1 with derivative

H′
λ(φ)[χ] = J ′

λ(φ)[χ] + J ′′
λ (φ)[φ, χ]

for φ, χ ∈ E+
λ . Observe that P̃λ = H−1

λ (0) \ {0}.
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Lemma 7.4. For φ ∈ E+
λ and ψ := φ+ ηλ(φ) there holds

H′
λ(φ)[φ] ≤ 2Hλ(φ)−

2

m+ 1

∣∣ψ − Tλ(ψ)
∣∣2∗
2∗
.

Proof. This estimate follows immediately from (7.5) and a similar argument as in (7.6).

Proposition 7.5. For any c > 0, if (φn)n is a (PS)c-sequence forJλ then there exists a sequence

(tn)n in R such that tnφn ∈ P̃λ and |tn − 1| = (‖J ′
λ(φn)‖λ).

Proof. If (φn)n is a (PS)c-sequence for Jλ then
(
ψn = φn + η(φn)

)
n

is a (PS)c-sequence

for Ẽλ, hence (ψn − Tλ(ψn))n is a (PS)c-sequence for Eλ which is bounded by Lemma 4.1.

Therefore (φn)n is bounded. Moreover, since Jλ(φn) → c > 0 we obtain:

lim inf
n→∞

∣∣ψn − Tλ(ψn)
∣∣
2∗
> 0.

Now we define gn : (0,+∞) → R by gn(t) = Hλ(tφn). Then tg′n(t) = H′
λ(tφn)[tφn], hence,

by Lemma 7.4, Taylor’s formula and the uniform boundedness of g′n(t) on bounded intervals,

we get

tg′n(t) ≤ 2gn(1)−
2

m+ 1

∣∣ψn − Tλ(ψn)
∣∣2∗
2∗
+ C|t− 1|

for t close to 1 and some C > 0 independent of n. Since (φn)n is a (PS)-sequence for Jλ, we

have gn(1) = J ′
λ(φn)[φn] → 0. Therefore there exists a constant δ > 0 such that

g′n(t) < −δ for all t ∈ (1− δ, 1 + δ) and n large.

Moreover, since gn(1 − δ) > 0 and gn(1 + δ) < 0 the Inverse Function Theorem yields that

φ̄n := g−1
n (0)φn ∈ P̃λ ∩ span{φn} is well-defined for n large. Furthermore, g′n(t)

−1 is bounded

by a constant, say, c1 > 0 on (1− δ, 1 + δ) due to the boundedness of {φn}. As a consequence

‖φn− φ̄n‖λ = |g−1
n (0)− 1| · ‖φn‖λ =

∣∣g−1
n (0)− g−1

n (Hλ(φn))
∣∣ · ‖φn‖λ ≤ c1 · |Hλ(φn)| · ‖φn‖λ.

Now the conclusion follows from |Hλ(φn)| = O(‖J ′
λ(φn)‖λ).

Combining Lemma 7.3 and Proposition 7.5, we obtain

Corollary 7.6. For any c > 0, if (ψn)n is a (PS)c-sequence for Ẽλ, then there exists a sequence

(φn)n in P̃λ such that ‖ψn − φn − ηλ(φn)‖λ = O(‖Ẽ ′
λ(ψn)‖λ). In particular,

max
t>0

Jλ(tψ
+
n ) = Jλ(φn) ≤ Ẽλ(ψn) +O(‖Ẽ ′

λ

(
ψn)‖

2
λ

)
.

Proof. According to Lemma 7.3, we have ‖ψ−
n − ηλ(ψ

+
n )‖λ ≤ O(‖Ẽ ′

λ(ψn)‖λ) and (ψ+
n )n is a

(PS)c-sequence for Jλ. Then, by Proposition 7.5, there exists φn = tnψ
+
n such that

‖ψn − φn − ηλ(φn)‖λ ≤ ‖ψ−
n − ηλ(ψ

+
n )‖λ + ‖ψ+

n − φn‖λ + ‖ηλ(ψ
+
n )− ηλ(φn)‖λ

≤ O(‖Ẽ ′
λ(ψn)‖λ) +O(‖J ′

λ(ψ
+
n )‖λ).

(7.10)
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Here we used that (ψn)n is bounded due to Lemma 4.1, and the inequality

‖ηλ(ψ
+
n )− ηλ(φn)‖λ ≤ ‖η′λ(τnψ

+
n )‖λ · ‖ψ

+
n − φn‖λ = O(|tn − 1|)

which can be easily checked. The boundedness of the second derivative of Ẽλ and Lemma 7.3

yield

‖J ′
λ(ψ

+
n )‖λ = ‖Ẽ ′

λ(ψ
+
n + ηλ(ψ

+
n ))‖λ ≤ ‖Ẽ ′

λ(ψn)‖λ +O(‖ψ−
n − ηλ(ψ

+
n )‖λ) = O(‖Ẽ ′

λ(ψn)‖λ).

This together with (7.10) implies ‖ψn − φn − ηλ(φn)‖λ = O(‖Ẽ ′
λ(ψn)‖λ).

Next, Taylor’s formula and the boundedness of the second derivative of Ẽλ imply

Ẽλ(ψn) = Ẽ(φn + η(φn)) + Ẽ ′(φn + ηλ(φn))[ψn − φn − ηλ(φn)] +O(‖Ẽ ′
λ(ψn)‖

2
λ)

= Jλ(φn) + J ′
λ(φn)[ψ

+
n − φn] +O(‖Ẽ ′

λ(ψn)‖
2
λ).

Finally we have J ′
λ(φn)[ψ

+
n − φn] = 0 because φn ∈ P̃λ ∩ span{ψ+

n }. This implies the last

estimate of the corollary.

Now we address the main inequality (7.1) using our test spinor ϕ̄ε in (6.3). Clearly we have

|ϕ̄ε|1 =

∫

M

|ϕ̄ε|dvolg . ε
m−1

2 and |ϕ̄ε|
2∗−1
2∗−1 =

∫

M

|ϕ̄ε|
2∗−1dvolg . ε

m−1
2 (7.11)

Since dimE0
λ <∞ we obtain

|Tλ(ϕ̄ε)|1 . |ϕ̄ε|1 . ε
m−1

2 and |Tλ(ϕ̄ε)|2 . |Tλ(ϕ̄ε)|1 . ε
m−1

2 . (7.12)

It follows that

∣∣∣
∫

M

|ϕ̄ε − Tλ(ϕ̄ε)|
2∗ − |ϕ̄ε|

2∗dvolg

∣∣∣ .
∣∣∣
∫

M

|ϕ̄ε − θTλ(ϕ̄ε)|
2∗−2(ϕ̄ε − θTλ(ϕ̄ε), T (ϕ̄ε)) dvolg

∣∣∣

≤

∫

M

|ϕ̄ε − θTλ(ϕ̄ε)|
2∗−1 · |Tλ(ϕ̄ε)| dvolg .

∫

M

|ϕ̄ε|
2∗−1|Tλ(ϕ̄ε)|+ |Tλ(ϕ̄ε)|

2∗dvolg

. |Tλ(ϕ̄ε)|∞

∫

M

|ϕ̄ε|
2∗−1dvolg + |Tλ(ϕ̄ε)|

2∗

∞ . εm−1

(7.13)

where 0 < θ < 1. Moreover, for any ψ ∈ E with ‖ψ‖λ ≤ 1, we can deduce from (7.11) and

(7.12) that

∣∣∣
∫

M

|ϕ̄ε − Tλ(ϕ̄ε)|
2∗−2(ϕ̄ε − Tλ(ϕ̄ε), ψ)− |ϕ̄ε|

2∗−2(ϕ̄ε, ψ)dvolg

∣∣∣

≤ (2∗ − 1)

∫

M

|ϕ̄ε − θTλ(ϕ̄ε)|
2∗−2 · |Tλ(ϕ̄ε)| · |ψ|dvolg

.

∫

M

|ϕ̄ε|
2∗−2 · |Tλ(ϕ̄ε)| · |ψ|+ |Tλ(ϕ̄ε)|

2∗−1 · |ψ|dvolg
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. |Tλ(ϕ̄ε)|∞ ·
(∫

M

|ϕ̄ε|
4m

m2
−1dvolg

)m+1
2m

+ |Tλ(ϕ̄ε)|
2∗−1
∞

.





ε if m = 2,

ε2| ln ε|
2
3 if m = 3,

ε
m+1

2 if m ≥ 4.

(7.14)

Therefore (ϕ̃ε := ϕ̄ε − Tλ(ϕ̄ε))ε is a (PS)-sequence for Ẽλ on E. Combining these facts and

Lemma 6.1, Lemma 6.2, Corollary 7.6, we finally obtain

max
t>0

Jλ(tϕ̄
+
ε ) ≤

1

2m

(m
2

)m
ωm +





−λCε| ln ε|+O(ε) if m = 2,

−λCε+O(ε2| ln ε|
4
3 ) if m = 3,

−λCε+O(ε2) if m ≥ 4

(7.15)

for some constant C > 0 depending only on the dimension.

Now (7.3) implies, setting φε =
1

‖ϕ̄+
ε ‖λ

ϕ̄+
ε ,

infMλ ≤ max
ψ∈Êλ(φε)

Ẽλ(ψ) = max
t>0

Jλ(tϕ̄
+
ε ) <

1

2m

(m
2

)m
ωm = γcrit

for ε > 0 small.

This concludes the proof of Theorem 2.1. As mentioned before Lemma 5.9 also Theorem 2.5

follows.

7.2 Proof of Theorem 2.1 for λ ≤ 0

This situation is much simpler because hypothesis (f5) is already an estimate of
∫
M
F (|ϕ̄ε|)dvolg

needed below. Indeed, first of all, we have

εm
∫

|y|≤ δ
ε

F

(
Aε−

m−1
2

(1 + |y|2)
m−1

2

)
dy = εmωm−1

∫ δ
ε

0

F

(
Aε−

m−1
2

(1 + r2)
m−1

2

)
rm−1dr

= δmεmωm−1

∫ 1
ε

0

F

(
Aε−

m−1
2

(1 + δ2s2)
m−1

2

)
sm−1ds

where r = δs and A > 0 is some constant. Thus, after rescaling ε, hypothesis (f5) and

Lemma 6.2 imply

∫
M
F (|ϕ̄ε|)dvolg∫
M
|ϕ̄ε|2dvolg

≥
C · εm−1

| ln ε|max{3−m, 0}

∫ 1
ε

0

F

(
ε−

m−1
2

(1 + s2)
m−1

2

)
sm−1ds→ ∞ (7.16)

as ε→ 0 for some constant C > 0.

According to hypothesis (f4), for any δ > 0 there is Cδ > 0 such that f(s)s ≤ Cδs +

δF (s)
m+1
2m for all s ≥ 0. Therefore we have

‖f(|ϕ̄ε|)ϕ̄ε‖E∗ . Cδ‖ϕ̄ε‖E∗ + δ
(∫

M

F (|ϕ̄ε|)dvolg
)m+1

2m
.
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Since Lλ has the form

Lλ(ψ) =
1

2

(
‖ψ+‖2λ − ‖ψ−‖2λ

)
−K(ψ)

with K(ψ) =
∫
M
F (|ψ|)dvolg +

1
2∗

∫
M
|ψ|2

∗

dvolg being strictly convex, a straightforward cal-

culation shows that K also satisfies the following inequality which is an analogue of (7.5). For

any ψ ∈ E \ {0} and φ ∈ E there holds:

(
K′′(ψ)[ψ, ψ]−K′(ψ)[ψ]

)
+ 2
(
K′′(ψ)[ψ, φ]−K′(ψ)[φ]

)
+K′′(ψ)[φ, φ] ≥

2

m+ 1
|ψ|2

∗

2∗ .

Therefore, for λ 6∈ spec(D)∩ (−∞, 0] Lemma 7.2 applies to Lλ, and we can use the arguments

following it to conclude that

infMλ ≤ max
ψ∈Ê(φε)

Lλ(ψ) ≤ Lλ(ϕ̄ε) +O(‖L′
λ(ϕ̄ε)‖

2
λ)

where φε =
1

‖ϕ̄+
ε ‖λ

ϕ̄+
ε and ϕ̄ε is our test spinor.

Now we deduce from Lemma 6.1 and Lemma 6.2 that

Lλ(ϕ̄ε) +O(‖L′
λ(ϕ̄ε)‖

2
λ) ≤

1

2m

(m
2

)m
ωm −

∫

M

F (|ϕ̄ε|)dvolg −

{
λC ′

δε| ln ε| if m = 2

λC ′
δε if m ≥ 3

+ δ2 · C
(∫

M

F (|ϕ̄ε|)dvolg
)m+1

m
.

This together with (7.16) implies

max
ψ∈Êλ(φε)

Lλ(ψ) <
1

2m

(m
2

)m
ωm for ε small.

Now the existence result follows easily, completing the proof of Theorem 2.1.

7.3 Proof of Theorem 2.8

To begin with we consider the functional Rλ : Ẽλ \ {0} → R defined by

Rλ(ψ) =

∫
M
(Dψ, ψ)− λ|ψ|2dvolg

( ∫
M
|ψ − Tλ(ψ)|2

∗dvolg
) 2

2∗
=

‖ψ+‖2λ − ‖ψ−‖2λ
|ψ − Tλ(ψ)|22∗

Then we have

R′
λ(ψ)[ϕ] =

2

Aλ(ψ)
2
2∗

(
Re

∫

M

((D − λ)ψ, ϕ)dvolg −
Rλ(ψ)

2∗
Aλ(ψ)

2−2∗

2∗ ·A′
λ(ψ)[ϕ]

)
(7.17)

where

Aλ(ψ) =

∫

M

|ψ − Tλ(ψ)|
2∗dvolg
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For any φ ∈ E+
λ \ {0} and any c > 0 the set {χ ∈ E−

λ : Rλ(φ + χ) ≥ c} is strictly convex

and bounded because

χ 7→ ‖φ‖2λ − ‖χ‖2λ − λ|φ+ χ|22 − c
∣∣φ+ χ− Tλ(φ+ χ)

∣∣2∗
2∗

is strictly concave and anti-coercive on E−
λ . Therefore the map χ 7→ Rλ(φ + χ) has a unique

maximum point χφ ∈ E−
λ . Now, let us define

Sλ(φ) = Rλ(φ+ χφ)

Lemma 7.7. Sλ(φ) =
(
2mJλ(φ)

) 1
m for φ ∈ P̃λ.

Proof. Let φ ∈ P̃λ, then

0 = J ′
λ(φ)[φ] =

∫

M

(
D(φ+ηλ(φ)), φ+ηλ(φ)

)
dvolg−λ|φ+ηλ(φ)|

2
2−
∣∣φ+ηλ(φ)−Tλ(φ+ηλ(φ))

∣∣2∗
2∗

Hence Jλ(φ) = Jλ(φ)−
1
2
J ′
λ(φ)[φ] =

1
2m

∣∣φ+ ηλ(φ)− Tλ(φ+ ηλ(φ))
∣∣2∗
2∗

.

On the other hand, (7.17) implies

R′
λ(φ+ ηλ(φ))[χ] ≡ 0 for all χ ∈ E−

λ .

This together with the fact Rλ(φ + ηλ(φ)) > 0 yields that χφ = ηλ(φ) for φ ∈ P̃λ. And this in

turn implies

Sλ(φ) =

(∫

M

∣∣φ+ ηλ(φ)− Tλ(φ+ ηλ(φ))
∣∣2∗
)1− 2

2∗

=
(
2mJλ(φ)

) 1
m

Theorem 2.8 follows from the next Proposition. Recall the definition of

ν =
m

2

(
ωm

Vol(M, g)

) 1
m

from (2.2).

Proposition 7.8. For λ ∈ R the functional Mλ admits at least

ℓ = ℓ(λ) = dimC

(
⊕

λ<λk<λ+ν

ker(D − λk)

)
.

distinct S1-orbits of critical points.
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Proof. Let γ = γS1 denote the S1-genus, i.e. for a topological space X 6= ∅ on which the

group S1 acts continuously without fixed points, γ(X) is the infimum over all k ∈ N such

that there exist finite subgroups H1, . . . , Hk ⊂ S1 and a continuous equivariant map X →

S1/H1 ∗ · · · ∗ S1/Hk where ∗ denotes the join. If no such k exists this means γ(X) = ∞. The

S1-genus has properties analogous to the Krasnoselski genus for spaces with an action of Z/2;

see [9, 10]. Now we define

βj := inf
A⊂S+

λ
γ(A)≥j

max
φ∈A

Mλ(φ) for j ≥ 1.

where we only consider S1-invariant subsets A ⊂ S+
λ . Clearly we have βj ≤ βj+1 for all j ≥ 1.

If

Xj ⊂
⊕

λ<λk<λ+ν

ker(D − λk)

is any complex j-dimensional subspace, 1 ≤ j ≤ ℓ, then Xj ∩ S+
λ is equivariantly homeo-

morphic to the unit sphere in Xj , hence γ(Xj ∩ S
+
λ ) = dimC(Xj). Now (7.2) and Lemma 7.7

imply

βj ≤ max
φ∈Xj∩S+

λ

Mλ(φ) ≤ max
φ∈Xj∩P̃λ

Jλ(φ) =
1

2m
max

φ∈Xj∩P̃λ

Sλ(φ)
m.

Observe that, for any φ ∈ Xj ∩ P̃λ,

‖φ‖2λ − ‖χφ‖
2
λ < ‖φ‖2λ ≤ ν|φ|22 < ν|φ+ χφ − Tλ(φ+ χφ)|

2
2

where the last inequality follows from the fact that φ ∈ E+
λ , χφ ∈ E−

λ and Tλ(φ+χφ) ∈ E0
λ are

orthogonal in L2. Finally, using Hölder’s inequality, we find for j = 1, . . . , ℓ:

βj <
νm

2m
· max
φ∈Xj∩P̃λ

(
|φ+ χφ − Tλ(φ+ χφ)|22
|φ+ χφ − Tλ(φ+ χφ)|22∗

)m
≤ νm ·

Vol(M, g)

2m
= γcrit.

Since the Palais-Smale condition holds below γcrit each βj , j = 1, . . . , ℓ, is a critical value, and

if βj = βj+1 for some j then Mλ has infinitely many S1-orbits of critical points at the levelβj;

see [10, Theorem 2.19].
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métriques. Comm. Math. Phys. 144:3 (1992), no. 3, 581-599.

[15] V. Branding: Nonlinear Dirac equations, monotonicity formulas and Liouville theorems.

arXiv:1605.03453 (2016).

[16] V. Branding: Energy methods for Dirac-type equations in two-dimensional Minkowski

space. Lett. Math. Phys. 109:2 (2019), no. 4, 437-477.

[17] H. Brezis, L. Nirenberg: Positive solutions of nonlinear elliptic equations involving criti-

cal Sobolev exponents. Comm. Pure Appl. Math. 36:4 (1983), 295-325.

[18] G. Cerami, D. Fortunato, M. Struwe: Bifurcation and multiplicity results for nonlinear

elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré, Analyse
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