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Abstract
We prove that ideal sheaves of lines in a Fano threefold X of Picard rank one and index

two are stable objects in the Kuznetsov component KupXq, with respect to the stability
conditions constructed by Bayer, Lahoz, Macrì and Stellari, giving a modular description to
the Hilbert scheme of lines in X. When X is a cubic threefold, we show that the Serre functor
of KupXq preserves these stability conditions. As an application, we obtain the smoothness
of non-empty moduli spaces of stable objects in KupXq. When X is a quartic double solid, we
describe a connected component of the stability manifold parametrizing stability conditions
on KupXq.

1 Introduction

The notion of stability condition on a triangulated category has been introduced by Bridgeland
in [10]. One of the main powerful aspect in this theory is that the set parametrizing stability
conditions on a triangulated category has a natural topology, which endows it of the structure
of a complex manifold. An interesting question is to understand the properties of the stability
manifold, e.g. if it is non-empty, simply-connected or connected, or giving a description of a
connected component.

Even in the geometric setting, considering the case of the bounded derived category DbpXq
of coherent sheaves on a smooth projective variety X, these questions are very hard to treat. A
complete description of the stability manifold is known only if X is a smooth projective curve
by [10], [38] and [34], where the authors consider elliptic curves, P1, and curves of genus ě 1,
respectively. A connected component of the stability manifold of a K3 or abelian surface is
described in [11] (see also [18] for the case of twisted K3 or abelian surfaces, and [3] for a further
description for K3 surfaces of Picard rank one). More generally, in [2] the authors construct a
family of stability conditions when X is a surface. In dimension three, stability conditions are
constructed for Fano threefolds (see for example [7], [35] for the projective space, [26] when the
Picard rank is one, [9], [42] for the general case), abelian threefolds (see [6], [32] and [33]), some
resolutions of finite quotients of abelian threefolds (see [6]) and quintic threefolds (see [27]). See
also [31] for the construction of stability conditions on products with curves.

On the other hand, having stability conditions, it is possible to consider moduli spaces of
stable complexes and investigate their properties, like non-emptyness, projectivity, smoothness.
We recall that if X is a K3 or abelian surface, then Inaba generalized in [19] Mukai’s smoothness
result in [37] to moduli spaces of simple objects in DbpXq.
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Recently, in [4] Bayer, Lahoz, Macrì and Stellari have introduced a general criterion to induce
stability conditions on the right orthogonal of an exceptional collection in a triangulated category
T, from a weak stability condition on T (see Section 2.2). They applied this result to the case of
Fano threefolds of Picard rank one and of cubic fourfolds. As another application, we mention
the construction of stability conditions on Gushel-Mukai varieties in [39].

In this paper, we focus on the case of a Fano threefold X of Picard rank one and index two.
The bounded derived category has a semiorthogonal decomposition of the form

DbpXq “ xKupXq,OX ,OXpHqy,

where H :“ ´1
2KX . Here, by definition KupXq is the right orthogonal complement of the line

bundles OX and OXpHq, i.e.

KupXq :“ tE P DbpXq : HomDbpXqpOX , Erpsq “ HomDbpXqpOXpHq, Erpsq “ 0,@p P Zu.

The subcategory KupXq is called the Kuznetsov component. We denote by σpα, βq the stability
conditions on KupXq constructed in [4]. As recalled in Theorem 3.3, the values of α and β vary
in the set

V :“ tpα, βq P Rą0ˆR : ´
1

2
ď β ă 0, α ă ´β, or ´ 1 ă β ă ´

1

2
, α ď 1` βu.

In Proposition 3.6, we show that the stability conditions σpα, βq parametrized by V are in the
same orbit K with respect to the right action of the universal covering space G̃L

`

2 pRq of GL`2 pRq
on the stability manifold StabpKupXqq of KupXq.

The first result gives an interpretation of the Hilbert scheme of lines in X as a moduli space
of objects in KupXq which are stable with respect to a stability condition in the orbit K.

Theorem 1.1. Let X be a Fano threefold of Picard rank one and index two. If X has degree
‰ 1, then for any σ P K, the Hilbert scheme of lines ΣpXq in X is isomorphic to a moduli space
MσpKupXq, rI`sq of σ-stable objects in KupXq with the same numerical class as the ideal sheaf of
a line in X. If X has degree 1, then ΣpXq is an irreducible component of MσpKupXq, rI`sq.

In the second part, we consider X of degree 3, i.e. a cubic threefold. We show an analogous
of Mukai’s smoothness result in this setting.

Theorem 1.2. If X is a cubic threefold, then non-empty moduli spaces of stable objects in KupXq
with respect to a stability condition in K are smooth.

A key point in the proof of Theorem 1.2 is the fact that the Serre functor of KupXq preserves
the orbit K, as shown in Corollary 5.5. As another application of this property, in Theorem 5.17
we give an alternative proof of the categorical Torelli Theorem proved in [8, Theorem 1.1].

Finally, in the degree-2 case, we describe a connected component of the stability manifold of
KupXq.

Theorem 1.3. Let X be a quartic double solid. Then the orbit K is a connected component of
maximal dimension of StabpKupXqq.

Related works. The first example of a stability condition on the Kuznetsov component of a
cubic threefold is given in [8]. In particular, the authors prove that ideal sheaves of lines are
stable with respect to this stability condition and that they are the only stable objects with
numerical class rI`s. In Propositions 4.4 and 4.6 we prove that the same results hold for the
stability conditions in the connected component K, containing those constructed in [4] and for
every degree d ‰ 1. If d “ 1, we show the stability of ideal sheaves of lines in Proposition 4.4.
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The d “ 1 case is further investigated in the recent preprint [41], where the authors classify
all the stable objects in the moduli space containing the Hilbert scheme of lines.

In [30, Theorem 1.1] the analogous of Theorem 1.1 is proved in the case of the Fano variety
of lines in a cubic fourfold.

The analogous of Inaba’s smoothness result has been proved in [29] for smooth projective sur-
faces with a Poisson structure and in [5] for moduli spaces of simple complexes in the Kuznetsov
component of a cubic fourfold. In the upcoming paper [40] this result is generalized to families
of two-dimensional Calabi-Yau categories.

In [1] the authors study certain moduli spaces of stable objects in KupXq with torsion class
in the numerical Grothendieck group, with application to Torelli type questions in the case of
quartic double solids.

Further questions. The category KupXq can be considered as a non-commutative curve, e.g.
the numerical Grothendieck group of KupXq is the same of that of a curve. We hope that the
results in this paper could be useful to understand whether StabpKupXqq has a unique connected
component when the degree of X is 2 or 3, completing the analogy with curves. Note that this is
already known in the degree-4 case applying [34, Theorem 2.7], as the Kuznetsov component is
equivalent to the bounded derived category of a genus-2 curve by [22, Theorem 4.4]. Moreover,
if X has degree 5, then StabpKupXqq is completely described by [14, Theorem 1.1] (see Remark
3.12).

In the case of cubic threefolds, it would be interesting to understand if the stability condition
σ̄ constructed in [8] is in the orbit K containing the stability conditions constructed in [4].
Theorem 1.1 and, more generally, the properties proved in Section 5 give an evidence to this
guess.

Plan. In Section 2 we review the definition of (weak) stability conditions on a triangulated
category and their construction in the case of DbpXq. In Section 3 we discuss the method to
induce stability conditions on the Kuznetsov component of a Fano threefold X of index two and
Picard rank one introduced in [4] and we prove that these stability conditions are in the same
orbit K with respect to the G̃L

`

2 pRq-action (Proposition 3.6). In Section 4 we prove Theorem
1.1, showing that ideal sheaves of lines are σ-stable and that if X has degree ‰ 1, the only σ-
stable objects with that numerical class are ideal sheaves of lines for σ P K (Propositions 4.4 and
4.6). Section 5 is devoted to cubic threefolds. We prove that the Serre functor of the Kuznetsov
component preserves the orbit K (Corollary 5.5). This computation is rather technical and based
on [29, Lemma 3] (see also [15, Lemma 3.1]), which allows to control the phase of semistable
factors when deforming the stability condition. After explaining some consequences of this result,
we prove Theorem 1.2 and the categorical Torelli Theorem 5.17. In Section 6 we consider quartic
double solids and we prove Theorem 1.3.
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2 Construction of (weak) stability conditions

In this section we review the definition of (weak) stability conditions on a triangulated cate-
gory, the general criterion to induce stability conditions on Kuznetsov components proved in [4,
Proposition 5.1] and the construction of weak stability conditions by double tilting on DbpXq
given in [4, Section 2].

2.1 (Weak) stability conditions

A (weak) stability condition on a triangulated category T is essentially given by a heart of a
bounded t-structure and a (weak) stability function, satisfying some conditions. Let us recall
precisely these notions.

Definition 2.1. A heart of a bounded t-structure on T is a full subcategory A Ă T such that

(i) for E,F P A and k ă 0 we have HompE,F rksq “ 0, and

(ii) for every object E P T there is a sequence of morphisms

0 “ E0
φ1
// E1

// ¨ ¨ ¨
φm
// Em “ E

such that Conepφiq is of the form Airkis for some sequence k1 ą k2 ą ¨ ¨ ¨ ą km of integers
and objects Ai P A.

Definition 2.2. Let A be an abelian category. A weak stability function on A is a group
homomorphism

Z : KpAq ÝÑ C
E ÞÝÑ <ZpEq ` i=ZpEq,

where KpAq denotes the Grothendieck group of A, such that for every non-zero object E P A,
we have

=ZpEq ě 0, and =ZpEq “ 0 ñ <ZpEq ď 0.

We say that Z is a stability function onA if in addition for E ‰ 0, =ZpEq “ 0 implies <ZpEq ă 0.

Fix a finite rank lattice Λ and a surjective homomorphism υ : KpTq� Λ.

Definition 2.3. A weak stability condition on T with respect to the lattice Λ is a pair σ “ pA, Zq,
where A is the heart of a bounded t-structure and Z : Λ Ñ C is a group homomorphism, such
that the following conditions hold:

(i) The composition KpAq “ KpTq
υ
ÝÑ Λ

Z
ÝÑ C is a weak stability function on A; for simplicity,

we denote ZpEq :“ ZpυpEqq. The function Z allows to define a slope for any object E P A
by

µσpEq :“

#

´
<ZpEq
=ZpEq if=ZpEq ą 0;

`8 otherwise;

and a notion of stability : an object 0 ‰ E P A is called σ-semistable (resp. σ-stable)
if for every non-zero proper subobject F Ă E, we have µσpF q ď µσpEq (resp. µσpF q ă
µσpE{F q).

(ii) (HN-filtrations) Any object of A has a Harder-Narasimhan filtration in σ-semistable ones.

(iii) (Support property) There is a quadratic form Q on Λ b R such that Q|kerZ is negative
definite, and QpEq ě 0 for all σ-semistable objects E P A.
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Definition 2.4. A weak stability condition σ “ pA, Zq on T with respect to the lattice Λ is
called a Bridgeland stability condition if Z is a stability function.

We need to introduce some terminology we will use in the following. Let σ be a (weak)
stability condition for T.

Definition 2.5. The phase of a σ-semistable object E P A is

φpEq :“
1

π
argpZpEqq P p0, 1s.

If ZpEq “ 0, then φpEq “ 1. For F “ Erns, we set

φpErnsq :“ φpEq ` n.

A slicing P of T is a collection of full additive subcategories Ppφq Ă T for φ P R, such that:

(i) for φ P p0, 1s, the subcategory Ppφq is given by the zero object and all σ-semistable objects
with phase φ;

(ii) for φ` n with φ P p0, 1s and n P Z, we set Ppφ` nq :“ Ppφqrns.

We will both use the notation σ “ pA, Zq and σ “ pP, Zq for a (weak) stability condition with
heart A “ Ppp0, 1sq, where P is a slicing.

We denote by StabpTq the set of stability conditions on T. A very deep result of Bridgeland
is that StabpTq is actually a complex manifold, as stated below.

Theorem 2.6 (Bridgeland Deformation Theorem, [10]). The continuous map Z : StabpTq Ñ
HompΛ,Cq defined by pA, Zq ÞÑ Z, is a local homeomorphism. In particular, the topological space
StabpTq has the structure of a complex manifold of dimension rkpΛq.

Recall that the universal covering space G̃L
`

2 pRq of GL`2 pRq has a right action on StabpTq,
defined as follows. For g̃ “ pg,Mq P G̃L

`

2 pRq, where g : RÑ R is an increasing function such that
gpφ` 1q “ gpφq ` 1 and M P GL`2 pRq, and σ “ pP, Zq P StabpTq, we have that σ ¨ g̃ “ pP 1, Z 1q
is a stability condition with Z 1 “M´1 ˝ Z and P 1pφq “ Ppgpφqq (see [10, Lemma 8.2]). We will
sometimes use the notation P 1 “ P ¨ g̃. Also the group of linear exact autoequivalences AutpTq
of T acts on the left of StabpTq by Φ ¨ σ “ pΦpPq, Z ˝ Φ´1

˚ q, where Φ P AutpTq and Φ˚ is the
automorphism of KpTq induced by Φ.

The construction of Bridgeland stability conditions is in general a difficult task. However,
starting from a weak stability condition σ “ pA, Zq on T, it is possible to produce a new heart of
a bounded t-structure, by tilting A. Let us recall this method. Let µ P R; we define the following
subcategories of A:

T µ
σ :“ tE P A : all HN factors F of E have slope µσpF q ą µu

“ xE P A : E is σ-semistable with µσpEq ą µy

and

Fµ
σ :“ tE P A : all HN factors F of E have slope µσpF q ď µu

“ xE P A : E is σ-semistable with µσpEq ď µy.

Here, the symbol x´y means the extension closure, i.e. the smallest full additive subcategory of
T containing the objects in the brackets which is closed with respect to extensions.
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Proposition 2.7 ([16]). The category

Aµ
σ :“ xT µ

σ ,Fµ
σ r1sy

is the heart of a bounded t-structure on T .

We say that the heart Aµ
σ is obtained by tilting A with respect to the weak stability condition

σ at the slope µ. In Section 2.3, we will explain how to construct weak stability conditions on
DbpXq by tilting CohpXq with respect to slope stability.

2.2 Inducing stability conditions

Let T be a triangulated category with Serre functor ST. If tE0, E1, ¨ ¨ ¨ , Elu is an exceptional
collection in T, then there exists a semiorthogonal decomposition of the form

T “ xD1,D2y,

where D2 :“ xE0, E1, ¨ ¨ ¨ , Ely and D1 :“ DK2 . The next proposition gives a criterion in order to
induce a stability condition on D1 from a weak stability condition on T.

Proposition 2.8 ([4, Proposition 5.1]). Let σ “ pA, Zq be a weak stability condition on T.
Assume that the exceptional collection tE0, E1, ¨ ¨ ¨ , Elu satisfies the following conditions:

1. Ei P A;

2. STpEiq P Ar1s;

3. ZpEiq ‰ 0 for all i “ 0, 1, ¨ ¨ ¨ , l.

If moreover there are no objects 0 ‰ F P A1 :“ AXD1 with ZpF q “ 0, i.e., Z1 :“ Z|A1 is a
stability function on A1, then the pair σ1 “ pA1, Z1q is a stability condition on D1.

2.3 Weak stability conditions on Db
pXq

Let X be a smooth projective variety of dimension n and H be an ample divisor on X. Following
[4, Section 2], we review the construction of weak stability conditions on DbpXq.

For any j P t0, 1, 2, ¨ ¨ ¨ , nu, consider the lattice ΛjH – Zj`1 generated by

pHn ch0, H
n´1 ch1, ¨ ¨ ¨ , H

n´j chjq P Qj`1,

with the surjective map υjH : KpXq Ñ ΛjH induced by the Chern character. Then the pair

σH :“ pCohpXq, ZHq,

where ZH : Λ1
H Ñ C is given by

ZHpEq :“ ´Hn´1 ch1pEq ` iH
n ch0pEq,

defines a weak stability condition on DbpXq with respect to the lattice Λ1
H (see [4, Example

2.8]). Note that the slope µH defined by the weak stability function ZH coincides with the
classical notion of slope stability. Moreover, any µH -semistable sheaf E satifies the following
Bogomolov-Gieseker inequality:

∆HpEq :“ pHn´1 ch1pEqq
2 ´ 2Hn ch0pEq ¨H

n´2 ch2pEq ě 0.
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Given a parameter β P R, we denote by

CohβpXq

the heart of a bounded t-structure obtained by tilting the weak stability condition σH at the
slope µH “ β. For E P DbpXq, we set

chβpEq :“ e´β chpEq.

Explicitly, the first three terms are

chβ0 pEq :“ ch0pEq, chβ1 pEq :“ ch1pEq ´ βH ch0pEq

and

chβ2 pEq :“ ch2pEq ´ βH ch1pEq `
β2H2

2
ch0pEq.

Proposition 2.9 ([4], Proposition 2.12). For any pα, βq P Rą0ˆR, the pair

σα,β “ pCohβpXq, Zα,βq

with
Zα,βpEq :“

1

2
α2Hn chβ0 pEq ´H

n´2 chβ2 pEq ` iH
n´1 chβ1 pEq

defines a weak stability condition on DbpXq with respect to Λ2
H . The quadratic form Q can be

given by the discriminant ∆H . Moreover, these weak stability conditions vary continuously as
pα, βq P Rą0ˆR varies.

By definition the slope with respect to Zα,β is

µα,βpEq “ ´
<Zα,βpEq
=Zα,βpEq

for =Zα,βpEq ‰ 0.

We can visualize the weak stability conditions σα,β in the upper half plane

tpα, βq P RˆR : α ą 0u.

Definition 2.10. Let v be a vector in Λ2
H .

1. A numerical wall for v is the set of pairs pα, βq P Rą0ˆR such that there is a vector
w P Λ2

H verifying the numerical relation µα,βpvq “ µα,βpwq.

2. A wall for F P CohβpXq is a numerical wall for v :“ chď2pF q, where chď2pF q :“
pch0pF q, ch1pF q, ch2pF qq, such that for every pα, βq on the wall there is an exact sequence
of semistable objects 0 Ñ E Ñ F Ñ G Ñ 0 in CohβpXq such that µα,βpF q “ µα,βpEq “
µα,βpGq gives rise to the numerical wall.

3. A chamber is a connected component in the complement of the union of walls in the upper
half plane.

A key property is that the weak stability conditions σα,β satisfy well-behaved wall-crossing: walls
with respect to a class v P Λ2

H are locally finite. In particular, if v “ chď2pEq with E P CohβpXq,
then the stability of E remains unchanged as pα, βq varies in a chamber by [6, Proposition B.5].

We end this section by recalling the following variant of the weak stability conditions of
Proposition 2.9, which will be used in the next sections. Fix µ P R and let u be the unit vector
in the upper half plane with µ “ ´<u

=u . We denote by

Cohµα,βpXq

the heart obtained by tilting the weak stability condition σα,β “ pCohβpXq, Zα,βq at the slope
µα,β “ µ.
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Proposition 2.11 ([4, Proposition 2.15]). The pair σµα,β :“ pCohµα,βpXq, Z
µ
α,βq, where

Zµα,β :“
1

u
Zα,β,

is a weak stability condition on DbpXq.

3 Fano threefolds of Picard rank 1 and index 2

In this section we explain how to induce stability conditions on the Kuznetsov component of a
Fano threefold of Picard rank one and index two, as proved in [4, Section 6]. Then we prove
that these induced stability conditions are in the same orbit with respect to the G̃L

`

2 pRq-action
on StabpKupXqq.

3.1 Classification and Kuznetsov component

Let X be a Fano threefold with PicpXq – Z. Assume that X has index 2, i.e. KX “ ´2H,
where H is a positive generator of PicpXq. The degree of X is d :“ H3. Recall the following
classification result.

Theorem 3.1 ([22], Theorem 2.3, [20]). If X is a Fano threefold with Picard rank 1 and index
2, then 1 ď d ď 5. For each d, the deformation class is unique and there is the following explicit
description:

• if d “ 5, then X “ Grp2, 5q X P6 Ă P9;

• if d “ 4, then X is an intersection of two 4-dimensional quadrics in P5;

• if d “ 3, then X is a cubic hypersurface in P4;

• if d “ 2, then X Ñ P3 is a double covering ramified in a quartic;

• if d “ 1, then X is a hypersurface of degree 6 in the weighted projective space Pp3, 2, 1, 1, 1q.

By [22, Corollary 3.5], the bounded derived category of coherent sheaves onX has a semiorthog-
onal decomposition of the form

DbpXq “ xKupXq,OX ,OXpHqy,

where KupXq is called the Kuznetsov component of X.

Remark 3.2. For d “ 4 or 5 the Kuznetsov component has an explicit description. Indeed, if
d “ 4, then KupXq – DbpCq, where C is a smooth curve of genus 2 (cf. [22, Theorem 4.4]). If
d “ 5, then KupXq – DbpKp3qq, where Kp3q is the Kronecker quiver with three arrows (cf. [22,
Theorem 4.2]).

3.2 Stability conditions on the Kuznetsov component

In this section, we apply Proposition 2.8 to induce stability conditions on KupXq of a Fano
threefold X of index 2 from the weak stability conditions σ0

α,β of Proposition 2.11. This com-
putation appeared in [4, Theorem 6.8]. Here we explicit the values of α and β for which the
inducing method works. We set Apα, βq :“ Coh0

α,βpXq X KupXq and Zpα, βq :“ Z0
α,β|KupXq,

where Z0
α,β “ ´iZα,β . We define the lattice

Λ2
H,KupXq :“ ImpKpKupXqq Ñ KpXq Ñ Λ2

Hq – Z2 .
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Theorem 3.3 ([4, Theorem 6.8]). Suppose ´1
2 ď β ă 0, 0 ă α ă ´β, or ´1 ă β ă ´1

2 ,
α ď 1` β. Then the pair

σpα, βq :“ pApα, βq, Zpα, βqq

is a Bridgeland stability condition on KupXq with respect to Λ2
H,KupXq – Z2.

Proof. Note that OX ,OXpHq P CohpXq; applying the Serre functor of DbpXq we get

SXpOXq “ OXpKXqr3s “ OXp´2Hqr3s P CohpXqr3s

and
SXpOXpHqq “ OXpH `KXqr3s “ OXp´Hqr3s P CohpXqr3s.

In the next, we check that OX , OXpHq, OXp´2Hqr2s and OXp´Hqr2s belong to the heart
Coh0

α,βpXq under the previous assumptions.
Since

µHpOXq “ 0 ą β

µHpOXp´2Hqq “ ´2 ă β

µHpOXpHqq “ 1 ą β

µHpOXp´Hqq “ ´1 ă β,

and these are µH -stable line bundles, it follows that OX ,OXp´2Hqr1s,OXpHq,OXp´Hqr1s P
CohβpXq. Then, by [6, Corollary 3.11 (a)], OX , OXp´2Hqr1s, OXpHq and OXp´Hqr1s are
σα,β-stable for α ą 0.

Note the following inequalities:

<Zα,βpOXq “
1

2
α2H3 ´

β2

2
H3 ă 0,

<Zα,βpOXp´2Hqr1sq “ ´
1

2
α2H3 `

pβ ` 2q2

2
H3 ą 0,

<Zα,βpOXpHqq “
1

2
α2H3 ´

p1´ βq2

2
H3 ă 0,

<Zα,βpOXp´Hqr1sq “ ´
1

2
α2H3 `

p1` βq2

2
H3 ě 0.

As =Zα,β ą 0 on OX , OXp´2Hqr1s, OXpHq and OXp´Hqr1s, it follows that

µα,βpOXq ą 0, µα,βpOXpHqq ą 0

and
µα,βpOXp´2Hqr1sq ă 0, µα,βpOXp´Hqr1sq ď 0.

As a consequence, we obtain OX ,OXp´2Hqr2s,OXpHq,OXp´Hqr2s P Coh0
α,βpXq. By [4,

Lemma 2.16], there are no nonzero objects F P Coh0
α,βpXq X KupXq with Z0

α,βpF q “ 0. The
claim follows from Proposition 2.8.

Remark 3.4. Note that [4, Theorem 6.8] and Theorem 3.3 hold for Fano threefolds of index
two without the assumption on the Picard rank.

Remark 3.5. In [28, Section 1] the authors introduce an alternative way to visualize the weak
stability conditions σα,β , which will be used in some computations of the last section. More
precisely, a complex E P DbpXq such that chď2pEq ‰ p0, 0, 0q is represented by the point

9



rH3 ch0pEq : H2 ch1pEq : H ch2pEqs in a projective space, and when rkpEq ‰ 0, by the affine
coordinates

pspEq :“
H2 ch1pEq

H3 ch0pEq
, qpEq :“

H ch2pEq

H3 ch0pEq
q P A2

R.

For every ps, qq P A2
R with q ą 1

2s
2, the pair σ1q,s “ pCoh

spXq, Z 1q,sq, where

Z 1q,spEq :“ ´
`

H ch2pEq ´ qH
3 ch0pEq

˘

`
?
´1

`

H2 ch1pEq ´ sH
3 ch0pEq

˘

,

is a weak stability condition on DbpXq with respect to Λ2
H , as

σα,β “ σ1β2`α2
2

,β
and µα,β “ µ1β2`α2

2
,β
´ β.

Thus by Theorem 3.3 the weak stability conditions σ1q,s which after tilting at µ1q,s “ ´
1
2 restrict

to stability conditions on KupXq are in the area

tps, qq P A2
R : ´

1

2
ď s ă 0,

1

2
s2 ă q ă s2 or ´ 1 ă s ă ´

1

2
,
1

2
s2 ă q ď s2 ` s`

1

2
u.

Note that we will use the notation pσ1q,sq
´ 1

2 for the weak stability condition obtained by tilting
σ1q,s at µ1q,s “ ´

1
2 . Also for a point P “ pspP q, qpP qq over the parabola q ´ 1

2s
2 “ 0, we will use

the notation σP :“ σ1qpP q,spP q.

3.3 Orbit of σpα, βq

Let X be a Fano threefold with PicpXq – Z and of index 2 with polarization H :“ ´1
2KX . We

set
V :“ tpα, βq P Rą0ˆR : ´

1

2
ď β ă 0, α ă ´β, or ´ 1 ă β ă ´

1

2
, α ď 1` βu.

By Theorem 3.3, we have a map

ϕ : V Ñ StabpKupXqq

defined by
pα, βq ÞÑ σpα, βq “ pApα, βq, Zpα, βqq.

Using slicings (see Definition 2.5), we write σpα, βq “ pPpα, βq, Zpα, βqq, with

Ppα, βqpp0, 1sq “ Apα, βq.

Note that if P0
α,β is the slicing in DbpXq such that P0

α,βpp0, 1sq “ Coh0
α,βpXq, then

P0
α,βpφq X KupXq Ă Ppα, βqpφq.

We will also denote by Pα,β the slicing such that Pα,βpp0, 1sq “ CohβpXq.
The main result of this section states that the stability conditions in ϕpV q are in the same

orbit of a fixed one σpα0,´
1
2q with respect to the G̃L

`

2 pRq-action.

Proposition 3.6. Fix 0 ă α0 ă
1
2 . For every pα, βq P V , there is g̃ P G̃L

`

2 pRq such that
σpα, βq “ σpα0,´

1
2q ¨ g̃.

We need the following starting lemmas.
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Lemma 3.7. If ´1
2 ă β ă 0, then CohβpXq is a tilt of Coh´

1
2 pXq. If ´1 ă β ă ´1

2 , then
CohβpXq is a tilt of Coh´

1
2 pXqr´1s.

Proof. Consider the case ´1
2 ă β ă 0. Let F be a µH -semistable object in CohpXq. If µHpF q ą

β ą ´1
2 , then F P CohβpXq X Coh´

1
2 pXq. If µHpF q ď β, then F r1s P CohβpXq. We have the

following possibilities. If ´1
2 ă µHpF q ď β, then F P Coh´

1
2 pXq, and thus F r1s P Coh´

1
2 pXqr1s.

Otherwise, if µHpF q ď ´1
2 , then F r1s P Coh

´ 1
2 pXq. As every element in CohβpXq is an extension

of semistable coherent sheaves as above, we conclude that

CohβpXq Ă xCoh´
1
2 pXq,Coh´

1
2 pXqr1sy.

This implies the first part of the statement by [36, Exercise 6.5].
Now assume ´1 ă β ă ´1

2 . Let F be a µH -semistable object in CohpXq. If µHpF q ą β,
then F P CohβpXq. When µHpF q ą ´1

2 , we have F P Coh´
1
2 pXq, while if β ă µHpF q ď ´

1
2 ,

then F r1s P Coh´
1
2 pXq, i.e. F P Coh´

1
2 pXqr´1s. Otherwise, if µHpF q ď β ă ´1

2 , then F r1s P
CohβpXq X Coh´

1
2 pXq. It follows that

CohβpXq Ă xCoh´
1
2 pXqr´1s,Coh´

1
2 pXqy.

This ends the proof of the statement.

As a consequence, we get the following relation between the hearts on KupXq.

Lemma 3.8. Fix 0 ă α0 ă
1
2 . If ´1

2 ă β ă 0 and pα, βq P V , then Apα, βq is a tilt of
Apα0,´

1
2q. If ´1 ă β ă ´1

2 and pα, βq P V , then Apα, βq is a tilt of Apα0,´
1
2qr´1s. If β “ ´1

2
and pα, βq P V , then Apα, βq “ Apα0, βq.

Proof. Firstly, we observe that CohβpXq “ P0
α,βpp´

1
2 ,

1
2 sq for every α ą 0 up to objects supported

on points. Indeed, an object F P DbpXq is σα,β-semistable if and only if it is σ0
α,β-semistable up

to objects supported on points (see [4, Proof of Proposition 2.15]). This is a consequence of the
fact that we are tilting a weak stability condition, so the stability is preserved up to objects with
vanishing central charge. Consider a σα,β-semistable object F P CohβpXq. Then <pZ0

α,βpF qq “

=pZα,βpF qq ě 0. Note that, if =pZα,βpF qq “ 0, then =pZ0
α,βpF qq “ ´<pZα,βpF qq ě 0. This

implies that F P P0
α,βp

1
2q. Assume =pZα,βpF qq ą 0. If µα,βpF q ą 0, then F P Coh0

α,βpXq. It
follows that F P P0

α,βpp0,
1
2qq. On the other hand, if µα,βpF q ď 0, then F P Coh0

α,βpXqr´1s.
Then, we have F P P0

α,βpp´
1
2 , 0sq. We deduce that CohβpXq Ă P0

α,βpp´
1
2 ,

1
2 sq. Since they are

both hearts, we conclude that they are the same up to objects supported on points, as we claimed.
Now, assume ´1

2 ă β ă 0. As a consequence, by Lemma 3.7 we have

CohβpXq “ P0
α,βpp´

1

2
,
1

2
sq Ă P0

α0,´
1
2

pp´
1

2
,
3

2
sq “ xCoh´

1
2 pXq,Coh´

1
2 pXqr1sy,

up to objects supported on points. The same relation holds after rotating by π
2 , namely

Coh0
α,βpXq “ P0

α,βpp0, 1sq Ă P0
α0,´

1
2

pp0, 2sq “ xCoh0
α0,´

1
2

pXq,Coh0
α0,´

1
2

pXqr1sy, (1)

up to objects supported on points. An analogous relation holds when ´1 ă β ă ´1
2 . If β “ ´

1
2 ,

then by Lemma 3.7, we have

Coh´
1
2 pXq “ P0

α,βpp´
1

2
,
1

2
sq “ P0

α0,βpp´
1

2
,
1

2
sq, (2)
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up to objects supported on points.
Finally, we restrict to the heart Apα, βq. By construction, the cohomology with respect to

Apα, βq of an object F P KupXq is the same as the cohomology with respect to Coh0
α,βpXq (see

[4, Lemma 4.3]). Thus, the statement is a consequence of (1) or (2), and the fact that KupXq
does not contain objects supported on points.

The next lemma implies that the central charges Zpα, βq for pα, βq P V are in the same
orbit by the action of GL`2 pRq. Recall that by [22, Proposition 3.9]), a basis for the numerical
Grothendieck group N pKupXqq of KupXq is

κ1 :“ rI`s “ 1´
H2

d
, κ2 :“ H ´

H2

2
`
d´ 6

6d
H3.

Lemma 3.9. For every pα, βq P V , the image of the stability function Zpα, βq is not contained
in a line and the basis tZpα, βqpκ1q, Zpα, βqpκ2qu of C have the same orientation.

Proof. The matrix
˜

´β 1
β2

2 ´
1
d ´

1
2α

2 ´β ´ 1
2

¸

has positive determinant for every β. Thus the basis Zpα, βqpκ1q, Zpα, βqpκ2q have the same
orientation for every α, β P R with respect to the standard basis of C.

Proof of Proposition 3.6. Fix pα, βq P V . By Lemma 3.9, there is an element g̃ P G̃L
`

2 pRq such
that σpα0,´

1
2q ¨ g̃ “ pA1, Zpα, βqq. By definition, denoting g̃ “ pg,Mq with g : R Ñ R and

M P GL`2 pRq, we have

A1 “ P 1pp0, 1sq “ Ppα0,´
1

2
qppr, r ` 1sq,

where r :“ gp0q. Up to shifting A1 by an integer, we can assume that A1 is a tilt of Apα0,´
1
2q.

On the other hand, by Lemma 3.8 the heart Apα, βq is a tilt of Apα0,´1{2q up to shift. Since
σpα0,´

1
2q ¨ g̃ and σpα, βq have the same stability function and their hearts are tilt of the same

heart, they are the same stability condition by [6, Lemma 8.11]. This proves the statement.

Remark 3.10. Proposition 3.6 implies that the map ϕ is continuous.

Fix a stability condition σpα0,´
1
2q with 0 ă α0 ă

1
2 . We set

K :“ σpα0,´
1

2
q ¨ G̃L

`

2 pRq Ă StabpKupXqq,

which is the universal covering space of M` :“ Zpα0,´
1
2q ¨ GL`2 pRq. By Proposition 3.6, the

image ϕpV q is contained in K, and by definition K is an open subset of a connected component
of StabpKupXqq.

Remark 3.11. Note that all elements in K satisfy the support property with respect to the
trivial quadratic form Q “ 0, because their central charge is injective. Recall the setting of [6,
Proposition A.5]. Consider the open subset of HompN pKupXqq,Cq containing central charges
which are not injective. Let U be the connected component containing Zpα0,´

1
2q of this open

subset. Let U be the connected component of the preimage Z´1pUq containing σpα0,´
1
2q. We

have that U “M`. Indeed, note that HompN pKupXqq,Cq is the disjoint union of M` with the
component of matrices with negative determinant and the component M0 containing matrices
with determinant equal to 0. Since central charges parametrized by M0 have non-trivial kernel,
we get the above equality. By [6, Proposition A.5], the restriction Z|U : U Ñ M` is a covering
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map. As K is the universal covering space of M`, there is a covering map K Ñ U commuting
with Z. But K is a subset of U , so we conclude that K “ U . In particular, we deduce that K is
a connected component of Z´1pUq.

Remark 3.12. If d “ 4, then KupXq – DbpCq, where C is a smooth curve of genus 2 (cf. [22,
Theorem 4.4]). By [34, Theorem 2.7], we have K – G̃L

`

2 pRq – StabpKupXqq.
If d “ 5, then KupXq – DbpKp3qq, where Kp3q is the Kronecker quiver with three arrows (cf.

[22, Theorem 4.2]). In this case, by [14, Theorem 1.1], it is known that StabpKupXqq – H ˆ C,
where H :“ tz P C : =z ą 0u.

4 Hilbert scheme of lines and stability

In this section, we study the stability of ideal sheaves of lines in X and of their dual object; then
we prove Theorem 1.1.

4.1 Lines and stability

Let X be a Fano threefold of Picard rank 1 and index 2. Given a line ` Ă X, we denote by I` the
ideal sheaf of ` in X. By [23, Proposition 3.12], we know that I` P KupXq. The Chern character
of I` is

chpI`q “ p1, 0,´
1

d
H2, 0q

and the twisted Chern character with respect to ´1
2 till degree 2 is

ch
´ 1

2
ď2 pI`q “ p1,

1

2
H,

d´ 8

8d
H2q.

Proposition 4.1. The ideal sheaf I` of a line ` Ă X is σpα,´1
2q-stable for every 0 ă α ă 1

2 .

Proof. The sheaf I` is slope stable, because it is a torsion-free sheaf of rank 1. As µHpI`q “ 0 ą

´1
2 , we have I` P Coh´

1
2 pXq. Since H2 ch

´ 1
2

1 pI`q ą 0, it follows from [6, Lemma 2.7] that I` is
σα,´ 1

2
-stable for any α " 0.

In the next we show that there are no walls for the stabilty of I` with respecto to σα,´ 1
2
. A

wall would be given by a short exact sequence in the heart Coh´
1
2 pXq of the form

0 Ñ E Ñ I` Ñ F Ñ 0,

such that the following conditions hold:

(i) µα,´ 1
2
pEq “ µα,´ 1

2
pI`q “ µα,´ 1

2
pF q;

(ii) ∆HpEq ě 0, ∆HpF q ě 0;

(iii) ∆HpEq ď ∆HpI`q, ∆HpEq ď ∆HpI`q.
The truncated twisted characters of E and F have to satisfy

p1,
1

2
H,

d´ 8

8d
H2q “ pa,

b

2
H,

c

8d
H2q ` p1´ a,

1´ b

2
H,

d´ 8´ c

8d
H2q,

for some a, b, c P Z. As E and F are in Coh´
1
2 pXq, we have

b ě 0 and 1´ b ě 0,

i.e. b “ 0 or b “ 1.
As µα,´ 1

2
pI`q “ d´8´4dα2

4d and ∆HpI`q “ 2
dpH

3q2, dividing the discriminant by d2, the previ-
ous conditions are
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(i) 1
b p

c
4d ´ α

2aq “ d´8´4dα2

4d “ 1
1´bp

d´8´c
4d ´ α2p1´ aqq;

(ii) p b2q
2 ´ ac

4d ě 0, p1´b
2 q

2 `
p1´aqpc`8´dq

4d ě 0;

(iii) p b2q
2 ´ ac

4d ď
2
d , p

1´b
2 q

2 `
p1´aqpc`8´dq

4d ď 2
d .

Assume b “ 0. If a ‰ 0, we get

4dα2 “
c

a
ą 0 and ´ 8 ď ac ď 0

which is impossible. If a “ 0, then c “ 0 by the first equation. If E has twisted character
p1, 1

2H,
d´8
8d H

2q, then I` has a subobject with the same slope for every α ą 0. This contradicts
the stability of I` above the wall. In the other case, I` would have a subobject with infinite
slope, in contradiction with the fact that it is stable for α large.

If b “ 1 and a ‰ 1, we get a contradiction from

4dα2 “
8´ d` c

a´ 1
ą 0 and ´ 8 ď pa´ 1qp8´ d` cq ď 0.

The case b “ a “ 1 can be excluded as done for b “ a “ 0.
Since there are no values of a, b, c satisfying all the required conditions, we deduce that I` is

σα,´ 1
2
-stable for any α ą 0. As a consequence, I` is σ0

α,´ 1
2

-stable and thus stable with respect to

σpα,´1
2q.

As explained in [23, Section 3.6], there is another object in KupXq naturally associated to a
line ` Ă X. Indeed, consider the triangle

OXp´1qr1s Ñ J` Ñ O`p´1q, (3)

where OXp1q :“ OXpHq. By [23, Lemma 3.4], we have J` P KupXq. The Chern character of J`
is

chpJ`q “ p´1, H,
2´ d

2d
H2,

d´ 6

6d
H3q.

We study the stability of this object, which will be used in the proof of Theorem 1.3.

Lemma 4.2. Set β “ ´1
2 . The complex J` is σα,β-stable for α " 0.

Proof. Note that OXp´1qr1s and O`p´1q belong to the heart CohβpXq. Thus the same property
holds for their extension J`.

Assume that J` is not stable. Then there exists a destabilizing sequence in CohβpXq of the
form

0 Ñ P Ñ J` Ñ QÑ 0,

where P and Q are µα,β-semistable for α " 0, with µα,βpP q ą µα,βpQq. Recall that we can check

the stability with rispect to σα,β for αÑ8 using the slope chβ1 p´q
rkp´q , as

lim
αÑ8

2

α2

chβ2 p´q ´
1
2α

2 rkp´q

chβ1 p´q
“ ´

rkp´q

chβ1 p´q

and taking the opposite of the inverse does not change the inequalities.
Consider the cohomology sequence

0 Ñ H´1pP q Ñ H´1pJ`q Ñ H´1pQq Ñ H0pP q Ñ H0pJ`q Ñ H0pQq Ñ 0,
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where H´1pJ`q “ OXp´1q and H0pJ`q “ O`p´1q by definition. Then rkpH´1pP qq “ 1 as it is
a subsheaf of a line bundle, and rkpH0pQqq “ 0 as it is the quotient of a torsion sheaf. Since
rkpH0pP qq ě 0, we have rkpP q ě ´1.

If rkpP q ě 1, then rkpQq ď ´2 as rkpP q ` rkpQq “ rkpJ`q “ ´1. Since Q is a destabilizing
quotient for J`, we have the relation

ch
´ 1

2
1 pJ`q

rkpJ`q
“ ´

1

2
ě

ch
´ 1

2
1 pQq

rkpQq
ě ´

ch
´ 1

2
1 pQq

2

which implies ch
´ 1

2
1 pQq ě 1. This contradicts the fact that 0 ď ch

´ 1
2

1 pQq ď ch
´ 1

2
1 pJ`q “ 1

2 . It
follows that the rank of P can be equal to 0 or ´1.

Assume that P has rank ´1. Then H´1pQq “ 0, because Q is a torsion object in the heart.
Thus we have the sequence

0 Ñ H0pP q Ñ O`p´1q Ñ QÑ 0,

where H0pP q is a sheaf supported on the line `. Note that O`p´1q has rank 1 and it is torsion
free as a sheaf on `. It follows that H0pP q is a rank 1 torsion free sheaf on `. As a consequence,
we have chď2pH0pP qq “ chď2pO`p´1qq, which implies

chď2pP q “ chď2pJ`q and µα,βpQq “ `8 for α " 0.

This is impossible for a destabilizing sequence.
Assume now that P has rank 0. If ch1pP q ‰ 0, then µα,βpP q would be a finite number, while

µα,βpQq “ `8 for α " 0, which is impossible. If ch1pP q “ rkpP q “ 0, then we have P – H0pP q,
H´1pQq – OXp´1q and the sequence

0 Ñ P Ñ O`p´1q Ñ H0pQq Ñ 0.

AsO`p´1q is locally free on ` and P is a subsheaf ofO`p´1q, we must have ch2pP q “ ch2pO`p´1qq;
thusH0pQq is supported in codimension 3. On the other hand, consider the commutative diagram

0 //

��

P
– //

��

P //

��

0

��

OXp´1qr1s //

–

��

J` //

��

O`p´1q
ψ
//

φ
��

OXp´1qr2s

–

��

OXp´1qr1s // Q // H0pQq
γ
// OXp´1qr2s,

where ψ, φ ‰ 0. Note that HompH0pQq,OXp´1qr2sq “ 0, asH0pQq is supported on points and by
Serre duality. It follows that γ “ 0, which is impossible. This proves J` is stable as claimed.

Proposition 4.3. The complex J` is σpα,´1
2q-stable for every 0 ă α ă 1

2 .

Proof. Set β “ ´1
2 . By Lemma 4.2, it is enough to check that there are no walls for the stability

of J` with respect to σα,β . As in the case of the ideal sheaf I`, this is enough to prove the
statement.

Note that
chβď2pJ`q “ p´1,

1

2
H,

8´ d

8d
H2q
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and

µα,βpJ`q “
8´ d` 4dα2

4d
, ∆HpJ`q “

2

d
pH3q2.

Assume there is a short exact sequence in the heart CohβpXq of the form

0 Ñ E Ñ J` Ñ F Ñ 0,

corresponding to a wall for J`. The twisted characters of E and F have to satisfy

p´1,
1

2
H,

8´ d

8d
H2q “ pa,

b

2
H,

c

8d
H2q ` p´1´ a,

1´ b

2
H,

8´ d´ c

8d
H2q,

for some a, b, c P Z. As E and F are in CohβpXq, we have b “ 0 or b “ 1.
Assume b “ 0. From the equality of slopes and the bounds on ∆H , we get

c “ 4dα2 and ´
8d

3
ď ac ď 0.

This is impossible, unless a “ 0. But in this case, we have c “ 0 and J` would have either a
subobject with infinite slope or a subobject with the same slope. Both possibilities would give a
contradiction with Lemma 4.2. The case b “ 1 can be excluded similarly.

4.2 Proof of Theorem 1.1

Assume again that X is a Fano threefold of Picard rank one and index two and of degree
1 ď d ď 5. We denote by ΣpXq the Hilbert scheme parametrizing lines in X. Let us summarize
what is known on ΣpXq (see also [13, Section 5]):

• If d “ 1, then ΣpXq is a projective and irreducible scheme given by a smooth surface with
an embedded curve, whose reduced scheme is smooth (see [43, Theorem 4]).

• If d ě 2, then ΣpXq is irreducible, 2-dimensional and generically smooth (see [25, Lemma
2.2.6]).

• If d ě 3, then ΣpXq is a smooth and irreducible surface. In particular:

– if d “ 3, then ΣpXq is a minimal surface of general type;

– if d “ 4, then ΣpXq is an abelian surface;

– if d “ 5, then ΣpXq – P2;

(see [25, Proposition 2.2.10]).

Making use of the results in the previous section, we describe ΣpXq as a moduli space of
objects in KupXq.

Proposition 4.4. The ideal sheaf I` of a line ` Ă X is σ-stable for every σ P K.

Proof. Note that it is enough to check the stability with respect to σpα,´1
2q for a certain 0 ă

α ă 1
2 , as G̃L

`

2 pRq-action preserves the stability. This is provided by Proposition 4.1.

Remark 4.5. Similarly, Proposition 4.3 imply that J` is σ-stable for every σ P K.

Proposition 4.6. Assume d ‰ 1. If F P KupXq is σ-stable for σ P K with rF s “ rI`s P
N pKupXqq, then F – I`1r2ks for some line `1 Ă X and k P Z.
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Proof. Set chpF q :“ pa0, a1H, a2H
2, a3H

3q. As rF s “ rI`s P N pKupXqq and χpI`, I`q “ ´1, the
following conditions hold:

χpOX , F q “ 0, χpOXp1q, F q “ 0, χpI`, F q “ ´1, χpF, I`q “ ´1.

Recall that
tdpXq “ p1, H, p

1

3
`

1

d
qH2,

1

d
H3q

(cf. case 3 of [27, Lemma 1.2]). By Hirzebruch-Riemann-Roch Theorem, we get
$

’

’

’

’

&

’

’

’

’

%

a0 `
d`3

3 a1 ` da2 ` da3 “ 0
6´d

6 a1 ` da3 “ 0
d
3a1 ` da2 ` da3 “ ´1

´d
3a1 ` da2 ´ da3 “ ´1.

If d ‰ 2, then a0 “ 1, a1 “ 0, a2 “ ´
1
d , a3 “ 0. If d “ 2, the condition χpF, F q “ ´1 implies

chpF q “ chpI`q.
Now by assumption and Proposition 3.6, F is σpα, βq-stable for every pα, βq P V . In particu-

lar, F r2k` 1s P Apα, βq for some integer k. Up to shifting, we may assume G :“ F r1s P Apα, βq
is σpα, βq-stable with slope

µ0
α,βpGq “

´β
2´dβ2

2d ` 1
2α

2
.

In particular, we have µ0
α,βpGq “ `8 if

2´ dβ2 ` dα2 “ 0. (4)

We distinguish the cases d ě 3 and d “ 2. If d ě 3 we can find pairs pᾱ, β̄q P V such that
(4) holds (in this case β̄ satisfies ´d`2

2d ă β̄ ă ´
b

2
d). Then G is σ0

ᾱ,β̄
-semistable, since G has

the largest slope in the heart. A similar computation as in Proposition 4.1 shows that β “ ´1 is
not on a wall for the σ0

α,β-stability of G. Moreover, the semicircle C in the pα, βq-plane of center
p0,´d`2

2d q and ray d´2
2d gives a numerical wall for G, which could be realized for instance by the

object OXp´1qr2s P Coh0
α,βpXq.

Assume that C is not an actual wall for G. All the other numerical walls would be nested
semicircles in C. Thus we may choose pᾱ, β̄q “ pd´2

2d ,´
d`2
2d q, so that G is σ0

ᾱ,β̄
-semistable and G

remains semistable for β̄ approaching ´1
2 (see Figure 1).

Now we argue as in [41, Lemma 2.15]. By definition of Coh0
α,´ 1

2

pXq, we have a triangle

Ar1s Ñ GÑ B

such that A (resp. B) is in Coh´
1
2 pXq with σα,´ 1

2
-semistable factors having slope µα,´ 1

2
ď 0 (resp.

ą 0). Since G is σ0
α,´ 1

2

-semistable, we have that B is either supported on points or 0. Moreover,

Ar1s is σ0
α,´ 1

2

-semistable and, since A P Coh´
1
2 pXq, we have that A is σα,´ 1

2
-semistable. Hence

chpAq “ p1, 0,´1
dH

2,mq, where m ě 0 is the length of the support of B. The walls computation
in Proposition 4.1 shows that A is σα,´ 1

2
-semistable for every α ą 0. Hence by [27], [6, Conjecture

4.1] holds for α “ 0, β “ ´1
2 , so that

4p
d´ 8

8
q2 ´ 6

d

2
ch
´ 1

2
3 pAq ě 0.

17



β

α

´1
2

|
´1

2

|
´1

‚

´d`2
2d

‚
pᾱ, β̄q

Figure 1: The point pᾱ, β̄q lies above the first wall for G.

Performing the computation, we get that ch3pAq “ m ă 1 for d ‰ 1. We deduce that m “ 0, so
B “ 0. We conclude that G “ Ar1s, equivalently F “ A is σα,´ 1

2
-semistable for every α ą 0. By

[6, Lemma 2.7], it follows that F is a slope semistable torsion free sheaf. As chpF q “ chpI`q and
PicpXq – Z, we must have F – I`1 for some line `1 P X.

Assume instead that C defines an actual wall for G and that G becomes unstable for β Ñ ´1
2 .

Set pᾱ, β̄q “ pd´2
2d ,´

d`2
2d q. Then G is strictly σ0

ᾱ,β̄
-semistable and there is a sequence

0 Ñ P Ñ GÑ QÑ 0

in Coh0
ᾱ,β̄
pXq where P,Q are µ0

ᾱ,β̄
-semistable with the same slope `8. A computation shows

that chď2pP q “ p1,´H,
1
2H

2q, chď2pQq “ p´2, H, 2´d
2d H

2q and d ‰ 5.
Note that P – OXp´1qr2s. Indeed, we have HompOXp´1qr2s, P risq “ 0 for every i ‰ 0, 1, by

Serre duality and the fact that they are in Coh0
ᾱ,β̄
pXq. Denote by HipP q the degree-i cohomology

of P in Cohβ̄pXq. Then H0pP q is either 0 or supported on points. Then

HompOXp´1qr2s, P r1sq “ HompOXp´1qr1s, P q “ HompOXp´1q,H´1pP qq “ 0,

since OXp´1q is stable with the same character of H´1pP q till degree 2. As χpOXp´1q, P q ‰ 0,
we deduce that HompOXp´2qr2s, P q ‰ 0. The stability of OXp´2qr2s implies the claim.

As a consequence, χpP,Qq ‰ 0 and HompP,Qrisq “ 0 for i ‰ 1, since P and Q are in the
same heart and by Serre duality. So we can define G1 as the extension

0 Ñ QÑ G1 Ñ P Ñ 0

in Coh0
ᾱ,β̄
pXq. Now G1 is σ0

α,β-semistable for β Ñ ´1
2 . But then the computation done in the

previous case for β “ ´1
2 shows that G1 – I`r1s. However, this would imply G1 P KupXq, so that

HompG1, P q “ 0 giving a contradiction. This proves the statement for d ą 2.
If d “ 2, note that (4) holds for pᾱ, β̄q “ p0,´1q. Since there are no walls intersecting the

vertical line β “ ´1, we deduce that G is σ0
α,β-semistable for β “ ´1 and α ą 0. As explained

before, G sits in a sequence
Ar1s Ñ GÑ B
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where B is either 0 or supported on points and A is σα,´1-semistable in Coh´1pXq. Applying
[6, Conjecture 4.1] for α “ 0, we deduce G “ Ar1s. The argument applied in the previous case
proves the statement for d “ 2.

Proof of Theorem 1.1. Assume d ‰ 1. By Proposition 4.4 and Proposition 4.6 there is a bi-
jection between ΣpXq and MσpKupXq, rI`sq. Moreover, the universal ideal sheaf on X ˆ ΣpXq
is a universal family of stable objects on X ˆMσpKupXq, rI`sq. Thus the bijection induces an
isomorphism, arguing as in [8, Section 5.2]. The case d “ 1 follows from Proposition 4.4 by a
similar argument as above.

Remark 4.7. By [23, Section 3.6] the complex J` is the (derived) dual of I`p1q shifted by 1. In
fact I` and J` are exchanged by the autoequivalence

Φp´q :“ RHomp´,OXp´1qqr1s : KupXq Ñ KupXq.

As a consequence, we deduce that ΣpXq –MσpKupXq, rI`sq –MΦ¨σpKupXq, rJ`sq for d ‰ 1.

Remark 4.8. Note that there exist a non-trivial map I` Ñ J`1 if ` and `1 intersect in a point
and a non-zero morphism J` Ñ I`1r1s for disjoint ` and `1. As consequence, if I` and J` are
σ-stable of phases φI and φJ , respectively, for a stability condition σ, then

φJ ´ 1 ă φI ă φJ . (5)

Remark 4.9. Assume X is a cubic threefold (d “ 3) and let σ̄ be the stability condition on
KupXq constructed in [8]. By [8, Theorem 4.1] the ideal sheaves of lines are σ̄-stable. Moreover,
since HompJ`,J`risq “ HompI`, I`risq, by [8, Proposition 4.2], it follows that J` is σ̄-stable. An
interesting question would be to understand whether σ̄ belongs to K.

5 Cubic threefolds

Assume that X is a cubic threefold. In this section we show that the Serre functor of KupXq
preserves the orbit K. As a consequence, we deduce Theorem 1.2 and we give an alternative
proof of the categorical Torelli Theorem proved in [8].

5.1 Serre functor and stability

Let X be a cubic threefold. Recall that KupXq is a Calabi-Yau category of dimension 5{3, which
means that S3

KupXq – r5s by [21, Lemmas 4.1 and 4.2]. Moreover, if we denote by Φ : DbpXq Ñ

DbpXq the autoequivalence Φp´q “ p´qbOXpHq, by [21, Lemma 4.1] the Serre functor of KupXq
satisfies the relation

S´1
KupXq “ pLOX ˝ Φq ˝ pLOX ˝ Φqr´3s. (6)

Here LOX : DbpXq Ñ DbpXq is the left mutation functor with respect to OX . Let us firstly
study the action of the autoequivalence LOX ˝Φ of KupXq on a stability condition σpα,´1

2q. We
need the following lemmas.

Lemma 5.1. The heart ΦpCoh´
1
2 pXqq of DbpXq is a tilt of Coh´

1
2 pXq.

Proof. Let F P CohpXq be a slope semistable sheaf with µHpF q ą ´1
2 . Then ΦpF q is a slope

semistable sheaf with µHpΦpF qq ą 1
2 ą ´

1
2 . Thus ΦpF q P Coh´

1
2 pXq. If F P CohpXq is slope

semistable with µHpF q ď ´1
2 , then we can have either ´1

2 ă µHpΦpF qq ď
1
2 , or µHpΦpF qq ď ´

1
2 .

In the first case, ΦpF qr1s P Coh´
1
2 pXqr1s, in the second we have ΦpF qr1s P Coh´

1
2 pXq. We

deduce ΦpCoh´
1
2 pXqq Ă xCoh´

1
2 pXq,Coh´

1
2 pXqr1sy, as we wanted.

19



Lemma 5.2. Assume that E P Coh0
α,´ 1

2

pXq for every 0 ă α ă 1
2 . Then there exists ε ą 0 such

that for α1 :“ 1
2 ´ ε ą 0 we have

ΦpEq P xCoh0
α1,´ 1

2

pXq,Coh0
α1,´ 1

2

pXqr1s,OXr2sy.

Proof. Set k :“ dimHompOXp´Hqr2s, Eq and consider the exact triangle

OXp´Hq
‘kr2s Ñ E Ñ E1 (7)

withE1 satisfying HompOXp´Hqr2s, E1q “ 0. Denote by Coh´
1
2 pXqµ

α,´ 1
2
ą0 (resp. Coh´

1
2 pXqµ

α,´ 1
2
ď0)

the subcategory of Coh´
1
2 pXq generated by µα,´ 1

2
-semistable objects with slope µα,´ 1

2
ą 0 (resp.

ď 0). Let us summarize the argument of the proof. Firstly we note that up to choosing a α
close to 1

2 , we may assume that OXp´Hq
‘kr2s is the σα,´ 1

2
-semistable factor of E with big-

ger slope. In particular, E1 belongs to Coh0
α,´ 1

2

pXq. Thus there exist A P Coh´
1
2 pXqµ

α,´ 1
2
ď0,

B P Coh´
1
2 pXqµ

α,´ 1
2
ą0 and an extension

Ar1s Ñ E1 Ñ B

in Coh0
α,´ 1

2

pXq. We will show that, choosing a suitable α1 “ 1
2 ´ ε ą 0 with ε ą 0, we have

ΦpBq P xCoh´
1
2 pXqµ

α1,´ 1
2
ą0,Coh´

1
2 pXqr1sy (8)

and
ΦpAqr1s P xCoh´

1
2 pXqr1s,Coh´

1
2 pXqµ

α1,´ 1
2
ď0r2sy. (9)

Together with (7), this implies the statement as

xCoh´
1
2 pXqµ

α1,´ 1
2
ą0,Coh´

1
2 pXqr1sy Ă xCoh0

α1,´ 1
2

pXq,Coh0
α1,´ 1

2

pXqr1sy

and
xCoh´

1
2 pXqr1s,Coh´

1
2 pXqµ

α1,´ 1
2
ď0r2sy Ă xCoh0

α1,´ 1
2

pXq,Coh0
α1,´ 1

2

pXqr1sy.

We point out that E belongs to the heart after changing α by hypothesis.
In order to do the computation, it is convenient to use the setup introduced in [28, Section

1], recalled in Remark 3.5. Then we will prove the statement using the weak stability condition
σ1q,s with reparamentrized central charge, and the condition α1 “ 1

2 ´ε is equivalent to q “
1
4 ´ε.

Firstly, we claim that, up to changing q, we can assume that OXp´Hq
‘kr2s is the pσ1

q,´ 1
2

q´
1
2 -

semistable factor of E with bigger slope. Indeed, note that

pµ11
4
,´ 1

2

q´
1
2 pOXp´Hqr2sq “ `8;

thus the slope pµ1
q,´ 1

2

q´
1
2 pOXp´Hqr2sq converges to `8 for q Ñ 1

4 . Now assume that E has

a pσ1
q,´ 1

2

q´
1
2 -semistable factor Ai with pµ1q,´ 1

2

q´
1
2 pAiq ě pµ

1

q,´ 1
2

q´
1
2 pOXp´Hqr2sq. Then we can

choose ε ą 0 such that the slope pµ11
4
´ε,´ 1

2

q´
1
2 pAiq ă pµ

1
1
4
´ε,´ 1

2

q´
1
2 pOXp´Hqr2sq as required (see

Figure 2).
Secondly, we show (8), i.e. that

ΦpBq P xCoh´
1
2 pXqµ11

4´ε,´
1
2

ą´ 1
2
,Coh´

1
2 pXqr1sy.
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s

q

q “ 1
2s

2

‚

´1
4

´1
2

|
´1

2

|
´1

|

‚
OXp´Hqr2s

‚
Ai

‚
‚

OX

Q

P

Figure 2: In this picture we compare the slope of OXp´Hqr2s and Ai. The slope with respect to
P is determined by the dotted-dashed lines, while that with respect to Q by full lines. We use
red lines for the slope of Ai and black lines for that of OXp´Hq. Note that Ai has bigger slope
at P than OXp´Hqr2s, while for Q approaching p´1

2 ,
1
4q the slope of Ai with respect to Q is less

than that of OXp´Hqr2s.

By Lemma 5.1 we know that ΦpBq has semistable factors in Coh´
1
2 pXq and Coh´

1
2 pXqr1s.

Up to passing to a stable factor, we may assume that B is σ11
4
´ε,´ 1

2

-stable. Then ΦpBq is

σ11
4
´ε, 1

2

-stable. We can use [29, Lemma 3] (see also [15, Lemma 3.1]) to control the slope of the

σ11
4
´ε,´ 1

2

-semistable factors of ΦpBq. Indeed, let σR be a stability condition corresponding to

a point R on the segment connecting P “ p´1
2 ,

1
4 ´ εq and Q “ p1

2 ,
1
4 ´ εq. The point ΦpBq

has coordinate spΦpBqq “ spBq ` 1 and belongs to the parabola q ´ 1
2s

2 “ qpBq ´ 1
2spBq

2.
Denote by ΦpBq` and ΦpBq´ the points where the parabola q´ 1

2s
2 “ 0 and the line connecting

ΦpBq and Q intersect. By [29, Lemma 3] the slope of a σR-semistable factor F of ΦpBq satisfies
µRpΦpBq

´q ď µRpF q ď µRpΦpBq
`q (see Figure 3). Since µP pΦpBq´q ě µP pBq ą ´1

2 , we
deduce that the σP -semistable factors of ΦpBq are either in Coh´

1
2 pXq with slope µP ą ´1

2 or
in Coh´

1
2 pXqr1s, as we claimed.

Finally, we study ΦpAqr1s. By Lemma 5.1 the semistable factors of ΦpAqr1s are in Coh´
1
2 pXqr1s

and Coh´
1
2 pXqr2s. Up to considering a stable factor, we may assume that A is σ11

4
´ε,´ 1

2

-stable.

Note that by definition Ar1s determines a point between the parabola q ´ 1
2s

2 “ 0 and the line
lP passing through P and parallel to the line q “ ´1

2s.
Assume that Ar1s is in the region between the line lPOp´Hq connecting P with the point

p´1, 1
2q corresponding to OXp´Hqr2s and the parabola q ´ 1

2s
2 “ 0. Denote by ΦpAr1sq` and

ΦpAr1sq´ the intersection points of the line connecting ΦpAqr1s and Q. Then by [29, Lemma 3]
a σP -semistable factor F of ΦpAqr1s satisfies µP pΦpAr1sq´q ď µP pF q ď µP pΦpAr1sq

`q. Since
for such Ar1s, the point ΦpAr1sq` is on the left of the line lP , it follows that µP pF q ď ´1

2 (see
Figure 4). This implies that ΦpAqr1s has σ11

4
´ε,´ 1

2

-semistable factors in Coh´
1
2 pXqr1s and in

Coh´
1
2 pXqµ11

4´ε,´
1
2

ď´ 1
2
r2s, giving (9) in this case.
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q
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2s

2

‚

´1
4

´1
2

|
´1

2

|
´1

|

‚
OXp´Hqr2s

‚
Q

‚
P

OX

‚ΦpBq´

‚

‚

ΦpBq`

‚

B

ΦpBq

Figure 3: The slope with respect to P of the semistable factors of ΦpBq is between that of ΦpBq´

and ΦpBq`.

s

q

q “ 1
2s

2

‚
O

´1
4

´1
2

|‚
ΦpAqr1s

|
´1

2
1
2

|
´1

|

‚
OXp´Hqr2s

‚

Q
‚

P

q “ ´1
2s

‚

ΦpAr1sq´

‚

ΦpAr1sq`

lP

lPOp´Hq

‚
Ar1s

Figure 4: Case of Ar1s above the line connecting P and OXp´Hqr2s.

Assume instead Ar1s is in the region between the lines lPOp´Hq and lP . Keeping the previous
notation, it might happen that ΦpAr1sq` appears on the right of lP . In this case, choosing a
suitable ε ą 0, we can require that ΦpAr1sq` is on the left of lP (see Figure 5). Then we reduce
to the previous situation and we conclude that

ΦpAqr1s P xCoh´
1
2 pXqr1s,Coh´

1
2 pXqµ11

4´ε,´
1
2

ď´ 1
2
r2sy.

Choosing ε as above, we deduce the stament for α1 “ 1
2 ´ ε.
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s

q

q “ 1
2s

2

´1
4

´1
2

| |
´1

2
1
2

|
´1

|

‚
OXp´Hqr2s

‚
Q

‚
P

q “ ´1
2s

‚

ΦpAr1sq´

‚

ΦpAqr1s

‚

ΦpAr1sq`

lP

lPOp´Hq

‚
Ar1s

Figure 5: Case of Ar1s below the line connecting P and OXp´Hqr2s. Moving P towards p´1
2 ,

1
4q,

the point ΦpAr1sq` moves to the left on the parabola q ´ 1
2s

2 “ 0, as represented by the green
lines in the picture.

Lemma 5.3. For 0 ă α ă 1
2 , the heart LOX pΦpApα,´1

2qqq is a tilt of Apα,´1
2q.

Proof. Note that LOX pΦp´qq “ ΦpLOXp´Hqp´qq as Φ is an equivalence. Take E P Apα,´1
2q and

set G :“ LOXp´HqpEq. Since OXp´Hqr2s,OXp´3Hqr2s are in Coh0
α,´ 1

2

pXq, by Serre duality we
have HompOXp´Hqr2s, Erisq “ 0 for every i R t0, 1, 2, 3u. In particular, G is defined by

OXp´Hq
‘k0r2s ‘OXp´Hq

‘k1r2sr´1s ‘OXp´Hq
‘k2r2sr´2s ‘OXp´Hq

‘k3r2sr´3s Ñ E Ñ G.

The induced long exact sequence of cohomology in Coh0
α,´ 1

2

pXq is given by

0 Ñ H´1pGq Ñ OXp´Hq
‘k0r2s Ñ E Ñ H0pGq Ñ OXp´Hq

‘k1r2s Ñ 0

and H1pGq – OXp´Hq
‘k2r2s, H2pGq – OXp´Hq

‘k3r2s.
Up to deforming αÑ 1

2 we may assume that OXp´Hq
‘k0r2s is the HN factor of E with max-

imal slope. Also E satisfies the hypothesis of Lemma 5.2, as E P Apα,´1
2q “ Apα1,´1

2q for every
0 ă α1 ă 1

2 by Lemma 3.8. So we can find α such that ΦpEq P xCoh0
α,´ 1

2

pXq,Coh0
α,´ 1

2

pXqr2s,OXr2sy.

As a consequence, we have H´1pGq “ 0; also writing

0 Ñ OXp´Hq
‘k0r2s Ñ E Ñ QÑ 0,

0 Ñ QÑ H0pGq Ñ OXp´Hq
‘k1r2s Ñ 0, (10)

it follows that the cohomology in Coh0
α,´ 1

2

pXq of ΦpEq in degree ´2 is O‘k0X and ΦpQq has non

trivial cohomology with respect to Coh0
α,´ 1

2

pXq only in the degrees 0,´1.
Applying Φ to (10) we get

ΦpQq Ñ ΦpH0pGqq Ñ O‘k1X r2s.
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The long exact sequence of cohomology in Coh0
α,´ 1

2

pXq is of the form

0 Ñ H´2pΦpH0pGqqq Ñ O‘k1X Ñ H´1pΦpQqq Ñ H´1pΦpH0pGqqq Ñ 0

and H0pΦpQqq – H0pΦpH0pGqqq. Note that H0pGq satisfies the hypothesis of Lemma 5.2, as Q
and OXp´Hqr2s are. As a consequence, H´2pΦpH0pGqqq – O‘mX .

On the other hand, by the previous computation of the cohomology of G, we can write

G1 Ñ ΦpGq Ñ ΦpH2pGqqr´2s – O‘k3X

and
ΦpH0pGqq Ñ G1 Ñ ΦpH1pGqqr´1s – O‘k2X r1s.

Then we have

HompOXr2s,ΦpH0pGqqq “ HompOXr2s, G
1q “ HompOXr2s,ΦpGqq “ 0.

This contradicts the fact that H´2pΦpH0pGqqq – O‘mX .
As a consequence, we deduce that ΦpH0pGqq P xCoh0

α,´ 1
2

pXq,Coh0
α,´ 1

2

pXqr1sy. Then G1

satisfies the same property and thus also ΦpGq does. In particular, we have proved that ΦpGq
has non trivial cohomology in Coh0

α,´ 1
2

pXq only in the degrees 0,´1. Since ΦpGq P KupXq, its

cohomology is also in KupXq by [4, Lemma 4.3]. We deduce that ΦpGq P xApα,´1
2q,Apα,´

1
2qr1sy

as we wanted.

We are now ready to prove that LOX ˝ Φ preserves the orbit K.

Proposition 5.4. There exists g̃ P G̃L
`

2 pRq such that

pLOX ˝ Φq ¨ σpα,´
1

2
q “ σpα,´

1

2
q ¨ g̃.

Proof. By definition the stability condition pLOX ˝ Φq ¨ σpα,´1
2q has heart LOXΦpApα,´1

2qq

and stability function Z 1 :“ Z ˝ pLOX ˝ Φq´1
˚ . On the other hand, the objects LOXΦpI`q and

LOXΦpJ`q are defined respectively by the triangles

O‘3
X Ñ I`pHq Ñ LOXΦpI`q and OX ‘OXr1s Ñ J`pHq Ñ LOXΦpJ`q.

A standard computation shows that pLOX ˝Φq´1
˚ prI`sq “ ´rJ`s and pLOX ˝Φq´1

˚ prJ`sq “ rI`s ´
rJ`s. Then it is possible to check that the basis tZpα,´1

2qp´rJ`sq, Zpα,´
1
2qprI`s ´ rJ`squ and

tZpα,´1
2qprI`sq, Zpα,´

1
2qprJ`squ have the same orientation. Thus there exists g̃ P G̃L

`

2 pRq such
that σpα,´1

2q ¨ g̃ “ σ1, where σ1 “ pA1, Z 1q. Up to shifting, we may assume A1 is a tilt of
Apα,´1

2q. Since by Lemma 5.3, the heart LOXΦpAq is a tilt of Apα,´1
2q, by [6, Lemma 8.11]

we conclude σ1 “ pLOX ˝ Φq ¨ σpα,´1
2q, as we claimed.

As a direct consequence, we obtain the following property of the Serre functor.

Corollary 5.5. The Serre functor of KupXq preserves the orbit K.

Proof. By (6) it is enough to prove the statement for LOX ˝ Φ. But this is a consequence of
Proposition 5.4 and the fact that the action of G̃L

`

2 pRq commutes with the action of AutpKupXqq.
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Remark 5.6. We point out that the proof of Proposition 5.4, and in particular of the previous
lemmas, works for every Fano threefold of Picard rank 1 and index 2. Indeed, we have never used
the fact that X is a cubic threefold. Moreover, by [21, Proposition 3.8] and ωX “ OXp´2Hq,
the Serre functor of KupXq still satisfies the relation

S´1
KupXq “ pLOX ˝ Φq ˝ pLOX ˝ Φqr´3s.

In this paper, we only need the result for d “ 3, but we state the more general proposition for
the reader convenience.

Proposition 5.7. Let X be a Fano threefold of Picard rank 1 and index 2. Then there exists
g̃ P G̃L

`

2 pRq such that

pLOX ˝ Φq ¨ σpα,´
1

2
q “ σpα,´

1

2
q ¨ g̃.

In particular, the Serre functor of KupXq preserves the orbit K.

5.2 SKupXq-invariant stability conditions

Let X be a cubic threefold. Let us introduce the following notion.

Definition 5.8. A stability condition σ on KupXq is SKupXq-invariant if SKupXq ¨ σ “ σ ¨ g̃ for
g̃ P G̃L

`

2 pRq.

In the next lemmas, we prove some properties of the heart of a SKupXq-invariant stability
condition.

Lemma 5.9. For every SKupXq-invariant stability condition σ, if F is a σ-semistable object of
phase φpF q, then the phase of SKupXqpF q satisfies φpF q ă φpSKupXqpF qq ă φpF q ` 2.

Proof. By definition, there exists g̃ “ pg,Mq P G̃L
`

2 pRq such that SKupXq ¨σ “ σ¨g̃. Thus for every
σ-semistable object F , the image SKupXqpF q is σ-semistable with phase φpSKupXqpF qq “ gpφpF qq.

Assume φpSKupXqpF qq ě φpF q ` 2. Then we have

φpS2
KupXqpF qq “ gpgpφpF qqq ě gpφpF q ` 2q “ gpφpF qq ` 2 ě φpF q ` 4,

as g is an increasing function. Similarly, we get φpS3
KupXqpF qq ě φpF q ` 6, in contradiction

with the fact that φpS3
KupXqpF qq “ φpF q ` 5. Also F and SKupXqpF q cannot have the same

phase with respect to σ, since otherwise we would have φpS3pF qq “ φpF q ` 5 “ φpF q, which is
impossible.

Lemma 5.10. For every SKupXq-invariant stability condition σ “ pA, Zq, the heart A has ho-
mological dimension 2.

Proof. Let A,B P A. The vanishing HomipA,Bq “ 0 for i ă 0 follows from the property of heart
of A. Note that by Lemma 5.9, the σ-semistable factors of SKupXqpAq have phase in the interval
p0, 3q. On the other hand, the σ-semistable factors of Bris have phase in the interval pi, i ` 1s.
By Serre duality, we deduce that

HompA,Brisq “ HompBris, SKupXqpAqq “ 0 for i ě 3,

since the semistable factors of Bris have phase greater than the phase of the semistable factors
of SKupXqpAq. This proves our claim.
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Lemma 5.11. For every SKupXq-invariant stability condition σ “ pA, Zq, there are no nonzero
objects A P A with Hom1pA,Aq “ 0 or Hom1pA,Aq – C.
Proof. This is the analogous of [8, Lemma 4.4]. By [8, Proposition 2.7(ii)] we know that
χpA,Aq ď ´1. Then if A P A, by Lemma 5.10, we must have hom1pA,Aq ě 2.

The previous lemmas allow to prove a weak version for cubic threefolds of the Mukai Lemma
proved in [3, Lemma 2.5] for K3 surfaces. Set hom1pA,Aq :“ dimHom1pA,Aq.

Lemma 5.12 (Weak Mukai Lemma). Let σ be a SKupXq-invariant stability condition. Let AÑ
E Ñ B be a triangle in KupXq such that HompA,Bq “ 0 and the σ-semistable factors of A have
phases greater or equal than the phases of the σ-semistable factors of B. Then

hom1pA,Aq ` hom1pB,Bq ď hom1pE,Eq.

Proof. By Serre duality, we have HompB,Ar2sq “ HompAr2s, SKupXqpBqq. Assume for simplicity
that A and B are σ-semistable. Since σ is SKupXq-invariant and by Lemma 5.9, the object
SKupXqpBq is σ-semistable with phase φpSKupXqpBqq ă φpBq ` 2. Thus φpAr2sq ě φpBq ` 2 ą
φpSKupXqpBqq, which implies the vanishing HompAr2s, SKupXqpBqq “ 0. If A and B are not σ-
semistable, applying the same argument to their semistable factors, we get the required vanishing.
Then the argument of [3, Lemma 2.5] applies to this setting, implying the result.

The weak Mukai Lemma implies the stability of objects with hom1pE,Eq “ 2.

Lemma 5.13. Let σ be a SKupXq-invariant stability condition. Then every E P KupXq with
hom1pE,Eq “ 2 is σ-stable.

Proof. Assume E is unstable with respect to σ. Then there is a triangle AÑ E Ñ B in KupXq,
where B P Ppφq and A P Ppą φq. Since HompA,Bq “ 0, by the weak Mukai Lemma 5.12, we
have

hom1pA,Aq ` hom1pB,Bq ď hom1pE,Eq “ 2.

Note that B cannot have hom1pB,Bq “ 0 or 1 by Lemma 5.11. Moreover, if hom1pA,Aq “ 0,
then all its σ-semistable factors would satisfy the same property by Lemma 5.12, in contradiction
with Lemma 5.11. It follows that E is σ-semistable.

Now assume that E is strictly σ-semistable of phase φ. Up to shifting, we may assume that
E is in the heart of σ. Assume firstly that E has at least two non-isomorphic stable factors.
Then we have a sequence

0 Ñ AÑ E Ñ B Ñ 0

in Ppφq with HompA,Bq “ 0. By the weak Mukai Lemma 5.12, we have

hom1pA,Aq ` hom1pB,Bq ď hom1pE,Eq “ 2.

Since A and B with this property cannot exist in the heart of σ by Lemma 5.11, we deduce that
E is σ-stable.

Consider now the case that E has a unique stable factor A up to isomorphism. Note that
hom1pA,Aq “ 2 by Lemma 5.10. Since hom2pA,Aq “ hompAr2s, SKupXqpAqq “ 0 by Lemma 5.9,
it follows that χpA,Aq “ ´1. Then ´1 ď χpE,Eq “ n2χpA,Aq “ ´n2 for a positive integer n,
which is impossible unless n “ 1. This ends the proof of the claim and implies the statement.

Remark 5.14. By Lemma 5.13 the objects I` and J` are σ-stable for every SKupXq-invariant
stability condition σ. Thus by (5) we deduce that the image of the central charge Z of σ is not
contained in a line and Z P Zpα0,´

1
2q ¨GL`2 pRq.

Remark 5.15. As suggested by the referee, we point out that all the arguments in this section
work by replacing KupXq with any fractional Calabi-Yau category D of dimension ă 2 (see [24]
for the definition) with negative definite numerical K-theory.
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5.3 Applications

By Corollary 5.5 every σ P K is SKupXq-invariant. Thus the results of the previous section hold for
σ and allow to prove Theorem 1.2 and to give another proof of the categorical Torelli Theorem,
firstly showed in [8].

Proof of Theorem 1.2. Assume that MσpKupXq, κq is a non-empty moduli space of σ-stable ob-
jects in KupXq with numerical class κ, with σ “ pA, Zq P K. Consider E PMσpKupXq, κq. Up to
shift, we may assume E P A. By Lemma 5.10, we have the vanishing HomipE,Eq “ 0 for every
i ‰ 0, 1, 2. By Serre duality, we have

Hom2pE,Eq “ HompEr2s, SKupXqpEqq “ 0,

since by Corollary 5.5 and Lemma 5.9 the object SKupXqpEq is σ-stable with phase ă φpEq `

2. Since E is stable, we have that hom1pE,Eq “ 1 ´ χpE,Eq is constant. This proves that
MσpKupXq, κq is smooth, as we wanted.

For the categorical Torelli Theorem, we need this stronger version of Theorem 1.1.

Lemma 5.16. Let σ be a SKupXq-invariant stability condition on KupXq. ThenMσpKupXq, rI`sq –
ΣpXq.

Proof. Let E be a σ-stable object with rEs “ rI`s. Then χpE,Eq “ ´1. The same argument in
the proof of Theorem 1.2 implies that hom1pE,Eq “ 2. Thus by Lemma 5.13 E is σpα, βq-stable.
By Proposition 4.6 we deduce that E – I` for some line ` Ă X up to shifting. Together with
Lemma 5.13 this implies a bijection between the Fano surface of lines ΣpXq andMσpKupXq, rI`sq.
By [8, Section 5.2] this bijection defines an isomorphism of algebraic varieties.

Theorem 5.17 ([8], Theorem 1.1). Two cubic threefolds X and X 1 are isomorphic if and only
if there is an exact equivalence between KupXq and KupX 1q.

Proof. Assume there is an exact equivalence Φ : KupXq
„
ÝÑ KupX 1q. By [8, Lemma 2.8], up to

composing with a power of the Serre functor of KupXq, we may assume rΦ˚pI`qs “ rI`1s for `,
`1 lines in X and X 1, respectively. Set σ :“ σpα, βq P StabpKupXqq; by Theorem 1.1 and our
assumption we have

ΣpXq –MσpKupXq, rI`sq –MΦ¨σpKupX
1q, rI`1sq.

Note that Φ ¨ σ is a SKupX 1q-invariant stability condition. Indeed, we have SKupX 1q ¨ pΦ ¨ σq “
Φ ¨ pSKupXq ¨σq since the Serre functors commute with equivalences (see [17, Lemma 1.30]). Then
we have Φ ¨ pSKupXq ¨ σq “ Φ ¨ pσ ¨ g̃q “ pΦ ¨ σq ¨ g̃ by Corollary 5.5 and the fact that the actions of
Φ and G̃L

`

2 pRq commute. Then by Lemma 5.16 we deduce that MΦ¨σpKupX
1q, rI`1sq – ΣpX 1q.

Since the canonical bundle of the Fano surface of a cubic threefold is identified with the Plücker
polarization, by [12, Proposition 4] we conclude that X – X 1.

6 Quartic double solids

Let X be the double cover of P3 ramified in a quartic surface. By [24, Corollary 4.6], the Serre
functor of KupXq is

SKupXq “ ιr2s,

where ι is the autoequivalence of KupXq induced by the involution of the double covering. We
firstly study the action of ι on K and on its boundary.
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Lemma 6.1. The involution ι acts as the identity on the closure K of K in StabpKupXqq.

Proof. Note that ι ¨ σpα, βq “ σpα, βq. Indeed, ι preserves CohpXq and the Chern character.
Since the action of G̃L

`

2 pRq commutes with autoequivalences, the previous observation implies
that ι acts as the identity on K. Since the action of ι on the stability manifold is continuous, we
deduce the statement.

Lemma 6.1 allows to prove the following properties, in analogy to what was done in Section
5.2.

Lemma 6.2. For every σ “ pA, Zq in K, the heart A has homological dimension 2.

Proof. Let A,B be in A. The vanishing of HomipA,Bq “ 0 for i ă 0 follows from the property of
heart of A. By Lemma 6.1, ι preserves the phases of stable factors and the σ-semistable factors
of ιpAq are the image via ι of the semistable factors of A. Thus for every i ą 2 we have

HomipA,Bq “ HompB, ιpAqr2´ isq “ 0.

This proves that A has homological dimension 2.

Lemma 6.3. For every σ “ pA, Zq in K, there are no nonzero objects A P A with hom1pA,Aq “
0 or 1.

Proof. Using the computation of the pairing on the numerical K-theory of KupXq in [22], we get
χpA,Aq ď ´1. Then if A P A, by Lemma 6.2, we must have hom1pA,Aq ě 2.

In order to prove Theorem 1.3, we finally need a version of the Mukai Lemma in this setting.

Lemma 6.4 (Weak Mukai Lemma). Let AÑ E Ñ B be a triangle in KupXq with HompA,Bq “
HompA, ιpBqq “ 0. Then

hom1pA,Aq ` hom1pB,Bq ď hom1pE,Eq.

Proof. By Serre duality HompB,Ar2sq “ HompA, ιpBqq “ 0. Then the same argument of [3,
Lemma 2.5] applies, implying the result.

Proof of Theorem 1.3. Assume that D is a connected component of StabpKupXqq strictly con-
taining K. Then D contains the boundary of K in StabpKupXqq, which consists of stability
conditions whose central charge is not injective, by Remark 3.11. Denote by σ “ pP, Zq one of
them. By the support property, we may assume that there is σ1 :“ g̃ ¨ σpα0,´

1
2q such that if E

is σ1-stable of phase φ, then E P Ppφ´ ε, φ` εq. By assumption, the image of Z is contained in
a line; this implies E P Ppθq for a certain φ ´ ε ă θ ă φ ` ε. As a consequence, I` and J` are
σ-semistable, by Proposition 4.1 and Proposition 4.3.

We claim that I` and J` are σ-stable. As a consequence, we would have that (5) holds for
σ, contradicting the fact that Z has image in a line. This implies that such degenerate σ cannot
exist on the boundary of K, proving that K “ D.

It remains to prove the claim. Assume E “ I` or J` is strictly σ-semistable of phase φ. If
all stable factors of E are isomorphic, we get a contradiction with χpE,Eq “ ´1. Assume that
E has at least two non-isomorphic stable factors. Then by a standard argument (see [3, Proof
of Lemma 2.6] or [18, (2.4)]) we can write a sequence in Ppφq of the form

0 Ñ AÑ E Ñ B Ñ 0,

where A, B are σ-semistable, all the stable factors of B are isomorphic and HompA,Bq “ 0. If
HompA, ιpBqq “ 0, then Lemmas 6.3 and 6.4 imply the stability of E by the same argument as
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in Lemma 5.13. Assume that HompA, ιpBqq ‰ 0. By Lemma 6.1 the object ιpCq is σ-stable of
the same phase of C. Then we have HompA, ιpCqq ‰ 0. Moreover, ιpCq is a quotient of A and
C fl ιpCq. We can write a sequence D Ñ AÑ F , where D and F are σ-semistable, all the stable
factors of F are isomorphic to ιpCq, and C, ιpCq are not stable factors of D. Then we have the
following commutative diagram

D

id
��

// A

��

// F

��

D

��

// E

��

// G

��

0 // B
id // B,

where G is σ-semistable and whose stable factors are isomorphic to C or ιpCq. It follows that
HompD,Gq “ HompD, ιpGqq “ 0 by Lemma 6.1. By Mukai Lemma 6.4, we deduce that

hom1pD,Dq ` hom1pG,Gq ď hom1pE,Eq “ 2.

Since this is impossible by Lemma 6.3, we must have HompA, ιpBqq “ 0. This ends the proof of
the statement.
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