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Abstract

We prove that ideal sheaves of lines in a Fano threefold X of Picard rank one and index
two are stable objects in the Kuznetsov component Ku(X), with respect to the stability
conditions constructed by Bayer, Lahoz, Macri and Stellari, giving a modular description to
the Hilbert scheme of lines in X. When X is a cubic threefold, we show that the Serre functor
of Ku(X) preserves these stability conditions. As an application, we obtain the smoothness
of non-empty moduli spaces of stable objects in Ku(X). When X is a quartic double solid, we
describe a connected component of the stability manifold parametrizing stability conditions
on Ku(X).

1 Introduction

The notion of stability condition on a triangulated category has been introduced by Bridgeland
in [10]. One of the main powerful aspect in this theory is that the set parametrizing stability
conditions on a triangulated category has a natural topology, which endows it of the structure
of a complex manifold. An interesting question is to understand the properties of the stability
manifold, e.g. if it is non-empty, simply-connected or connected, or giving a description of a
connected component.

Even in the geometric setting, considering the case of the bounded derived category Db(X )
of coherent sheaves on a smooth projective variety X, these questions are very hard to treat. A
complete description of the stability manifold is known only if X is a smooth projective curve
by [10], [38] and [34], where the authors consider elliptic curves, P!, and curves of genus > 1,
respectively. A connected component of the stability manifold of a K3 or abelian surface is
described in [11] (see also [18] for the case of twisted K3 or abelian surfaces, and [3] for a further
description for K3 surfaces of Picard rank one). More generally, in [2] the authors construct a
family of stability conditions when X is a surface. In dimension three, stability conditions are
constructed for Fano threefolds (see for example [7], [35] for the projective space, [26] when the
Picard rank is one, [9], [42] for the general case), abelian threefolds (see [6], [32] and [33]), some
resolutions of finite quotients of abelian threefolds (see [6]) and quintic threefolds (see [27]). See
also [31] for the construction of stability conditions on products with curves.

On the other hand, having stability conditions, it is possible to consider moduli spaces of
stable complexes and investigate their properties, like non-emptyness, projectivity, smoothness.
We recall that if X is a K3 or abelian surface, then Inaba generalized in [19] Mukai’s smoothness
result in [37] to moduli spaces of simple objects in D(X).
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Recently, in [4] Bayer, Lahoz, Macri and Stellari have introduced a general criterion to induce
stability conditions on the right orthogonal of an exceptional collection in a triangulated category
T, from a weak stability condition on T (see Section 2.2). They applied this result to the case of
Fano threefolds of Picard rank one and of cubic fourfolds. As another application, we mention
the construction of stability conditions on Gushel-Mukai varieties in [39].

In this paper, we focus on the case of a Fano threefold X of Picard rank one and index two.
The bounded derived category has a semiorthogonal decomposition of the form

DP(X) = (Ku(X),Ox,Ox (H)),

where H := —%K x. Here, by definition Ku(X) is the right orthogonal complement of the line
bundles Ox and Ox(H), i.e.

Ku(X) := {E € D*(X) : Hompys xy(Ox, E[p]) = Hompp ) (Ox (H), E[p]) = 0,¥p € Z}.

The subcategory Ku(X) is called the Kuznetsov component. We denote by o(«, 3) the stability
conditions on Ku(X') constructed in [4]. As recalled in Theorem 3.3, the values of o and S vary
in the set

1
Vi={(o,f)eRogxR: —= < <0,aa < —p, or —1<B<—§,a<1+ﬂ}.

N

In Proposition 3.6, we show that the stability conditions o(«, 3) parametrized by V are in the
same orbit I with respect to the right action of the universal covering space G:L;r (R) of GLj (R)
on the stability manifold Stab(Ku(X)) of Ku(X).

The first result gives an interpretation of the Hilbert scheme of lines in X as a moduli space
of objects in Ku(X) which are stable with respect to a stability condition in the orbit K.

Theorem 1.1. Let X be a Fano threefold of Picard rank one and index two. If X has degree
# 1, then for any o € K, the Hilbert scheme of lines (X)) in X is isomorphic to a moduli space
My(Ku(X), [Z¢]) of o-stable objects in Ku(X) with the same numerical class as the ideal sheaf of
a line in X. If X has degree 1, then ¥(X) is an irreducible component of My(Ku(X),[Z]).

In the second part, we consider X of degree 3, i.e. a cubic threefold. We show an analogous
of Mukai’s smoothness result in this setting.

Theorem 1.2. If X is a cubic threefold, then non-empty moduli spaces of stable objects in Ku(X)
with respect to a stability condition in IC are smooth.

A key point in the proof of Theorem 1.2 is the fact that the Serre functor of Ku(X) preserves

the orbit I, as shown in Corollary 5.5. As another application of this property, in Theorem 5.17

we give an alternative proof of the categorical Torelli Theorem proved in [8, Theorem 1.1].
Finally, in the degree-2 case, we describe a connected component of the stability manifold of

Ku(X).

Theorem 1.3. Let X be a quartic double solid. Then the orbit K is a connected component of
mazximal dimension of Stab(Ku(X)).

Related works. The first example of a stability condition on the Kuznetsov component of a
cubic threefold is given in [8]. In particular, the authors prove that ideal sheaves of lines are
stable with respect to this stability condition and that they are the only stable objects with
numerical class [Zy]. In Propositions 4.4 and 4.6 we prove that the same results hold for the
stability conditions in the connected component C, containing those constructed in [4] and for
every degree d # 1. If d = 1, we show the stability of ideal sheaves of lines in Proposition 4.4.



The d = 1 case is further investigated in the recent preprint [41], where the authors classify
all the stable objects in the moduli space containing the Hilbert scheme of lines.

In [30, Theorem 1.1] the analogous of Theorem 1.1 is proved in the case of the Fano variety
of lines in a cubic fourfold.

The analogous of Inaba’s smoothness result has been proved in [29] for smooth projective sur-
faces with a Poisson structure and in [5] for moduli spaces of simple complexes in the Kuznetsov
component of a cubic fourfold. In the upcoming paper [40] this result is generalized to families
of two-dimensional Calabi-Yau categories.

In [1] the authors study certain moduli spaces of stable objects in Ku(X') with torsion class
in the numerical Grothendieck group, with application to Torelli type questions in the case of
quartic double solids.

Further questions. The category Ku(X) can be considered as a non-commutative curve, e.g.
the numerical Grothendieck group of Ku(X) is the same of that of a curve. We hope that the
results in this paper could be useful to understand whether Stab(Ku(X)) has a unique connected
component when the degree of X is 2 or 3, completing the analogy with curves. Note that this is
already known in the degree-4 case applying [34, Theorem 2.7], as the Kuznetsov component is
equivalent to the bounded derived category of a genus-2 curve by [22, Theorem 4.4]. Moreover,
if X has degree 5, then Stab(Ku(X)) is completely described by [14, Theorem 1.1] (see Remark
3.12).

In the case of cubic threefolds, it would be interesting to understand if the stability condition
o constructed in [8] is in the orbit K containing the stability conditions constructed in [4].
Theorem 1.1 and, more generally, the properties proved in Section 5 give an evidence to this
guess.

Plan. In Section 2 we review the definition of (weak) stability conditions on a triangulated
category and their construction in the case of DP(X). In Section 3 we discuss the method to
induce stability conditions on the Kuznetsov component of a Fano threefold X of index two and
Picard rank one introduced in [4] and we prove that these stability conditions are in the same

orbit K with respect to the G:L;r (R)-action (Proposition 3.6). In Section 4 we prove Theorem
1.1, showing that ideal sheaves of lines are o-stable and that if X has degree # 1, the only o-
stable objects with that numerical class are ideal sheaves of lines for o € K (Propositions 4.4 and
4.6). Section 5 is devoted to cubic threefolds. We prove that the Serre functor of the Kuznetsov
component preserves the orbit K (Corollary 5.5). This computation is rather technical and based
on [29, Lemma 3| (see also [15, Lemma 3.1]), which allows to control the phase of semistable
factors when deforming the stability condition. After explaining some consequences of this result,
we prove Theorem 1.2 and the categorical Torelli Theorem 5.17. In Section 6 we consider quartic
double solids and we prove Theorem 1.3.
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2 Construction of (weak) stability conditions

In this section we review the definition of (weak) stability conditions on a triangulated cate-
gory, the general criterion to induce stability conditions on Kuznetsov components proved in [4,
Proposition 5.1] and the construction of weak stability conditions by double tilting on DP(X)
given in [4, Section 2|.

2.1 (Weak) stability conditions

A (weak) stability condition on a triangulated category T is essentially given by a heart of a
bounded t-structure and a (weak) stability function, satisfying some conditions. Let us recall
precisely these notions.

Definition 2.1. A heart of a bounded t-structure on T is a full subcategory A < T such that

(i) for E, F € A and k < 0 we have Hom(E, F[k]) = 0, and

(ii) for every object E € T there is a sequence of morphisms

0=E" B —... B, - F

such that Cone(¢;) is of the form A;[k;] for some sequence ki > kg > -+ > ky, of integers
and objects A; € A.

Definition 2.2. Let A be an abelian category. A weak stability function on A is a group
homomorphism
Z: KA — C
E +— RZ(E)+iSZ(E),
where K (A) denotes the Grothendieck group of A, such that for every non-zero object F € A,

we have

SZ(E) =20, and SZ(F) =0= RZ(E) <0.
We say that Z is a stability function on A if in addition for E # 0, SZ(FE) = 0 implies RZ(E) < 0.
Fix a finite rank lattice A and a surjective homomorphism v : K(7) — A.

Definition 2.3. A weak stability condition on T with respect to the lattice A is a pair o = (A, Z),
where A is the heart of a bounded ¢-structure and Z : A — C is a group homomorphism, such
that the following conditions hold:

(i) The composition K (A) = K(T) - A Z, Cis a weak stability function on A; for simplicity,
we denote Z(F) := Z(v(FE)). The function Z allows to define a slope for any object E € A
by

RZ(E .
() = ~SHE SZ(E) > 0;
+0 otherwise;

and a notion of stability : an object 0 # E € A is called o-semistable (resp. o-stable)
if for every non-zero proper subobject F' < E, we have u,(F) < po(E) (resp. po(F) <

po (E/F)).
(ii) (HN-filtrations) Any object of A has a Harder-Narasimhan filtration in o-semistable ones.

(iii) (Support property) There is a quadratic form @ on A ® R such that Q| z is negative
definite, and Q(E) = 0 for all o-semistable objects E € A.



Definition 2.4. A weak stability condition o = (A, Z) on T with respect to the lattice A is
called a Bridgeland stability condition if Z is a stability function.

We need to introduce some terminology we will use in the following. Let o be a (weak)
stability condition for 7.

Definition 2.5. The phase of a o-semistable object F € A is

H(E) == Targ(Z(E)) € (0,1].

If Z(E) =0, then ¢(E) = 1. For F = E[n], we set

G(E[n]) i= 6(E) + n.
A slicing P of T is a collection of full additive subcategories P(¢) < T for ¢ € R, such that:

(i) for ¢ € (0,1], the subcategory P(¢) is given by the zero object and all o-semistable objects
with phase ¢;

(ii) for ¢ +n with ¢ € (0,1] and n € Z, we set P(¢ + n) := P(¢)[n].

We will both use the notation o = (A, Z) and o = (P, Z) for a (weak) stability condition with
heart A = P((0,1]), where P is a slicing.

We denote by Stab(7T) the set of stability conditions on T. A very deep result of Bridgeland
is that Stab(7T) is actually a complex manifold, as stated below.

Theorem 2.6 (Bridgeland Deformation Theorem, [10]). The continuous map Z : Stab(T) —
Hom(A, C) defined by (A, Z) — Z, is a local homeomorphism. In particular, the topological space
Stab(T) has the structure of a complex manifold of dimension rk(A).

Recall that the universal covering space GNL; (R) of GLJ (R) has a right action on Stab(T),
defined as follows. For g = (g, M) € GfL;r (R), where g : R — R is an increasing function such that
g(¢+1) =g(¢) +1 and M € GLJ (R), and o = (P, Z) € Stab(T), we have that o - g = (P', Z’)
is a stability condition with Z/ = M~ o Z and P'(¢) = P(g(¢)) (see [10, Lemma 8.2]). We will
sometimes use the notation P’ = P - g. Also the group of linear exact autoequivalences Aut(T)
of T acts on the left of Stab(T) by ® - o = (®(P),Z o ®;!), where ® € Aut(T) and P, is the
automorphism of K (T) induced by ®.

The construction of Bridgeland stability conditions is in general a difficult task. However,
starting from a weak stability condition o = (A, Z) on T, it is possible to produce a new heart of
a bounded t-structure, by tilting A. Let us recall this method. Let u € R; we define the following
subcategories of A:

T} :={E e A:all HN factors F' of E have slope u,(F) > p}
=(F € A: E is o-semistable with p,(E) > u)

and

Fl:={E e A:all HN factors F' of E have slope p,(F) < u}
=(F e A: FE is o-semistable with pu,(E) < p).

Here, the symbol (—) means the extension closure, i.e. the smallest full additive subcategory of
T containing the objects in the brackets which is closed with respect to extensions.



Proposition 2.7 (|16]). The category
Ay = (T3 FEILD
18 the heart of a bounded t-structure on T .

We say that the heart A% is obtained by tilting A with respect to the weak stability condition
o at the slope u. In Section 2.3, we will explain how to construct weak stability conditions on
DP(X) by tilting Coh(X) with respect to slope stability.

2.2 Inducing stability conditions

Let T be a triangulated category with Serre functor Sy. If {Ey, E1,---, E;} is an exceptional
collection in T, then there exists a semiorthogonal decomposition of the form

T =(D1,Dy),

where Dy := (Ep, Fy,--- , E)) and Dy := Dy. The next proposition gives a criterion in order to
induce a stability condition on Dy from a weak stability condition on 7.

Proposition 2.8 ([4, Proposition 5.1]). Let 0 = (A, Z) be a weak stability condition on T.
Assume that the exceptional collection {Ey, F1,--- , E}} satisfies the following conditions:

1. E; e A;

2. Sy(E;) € A[1];

3. Z(E;) #0 foralli=0,1,--- 1.
If moreover there are no objects 0 # F € Ay := AnDy with Z(F) = 0, i.e., Zy := Z|a, is a
stability function on Aj, then the pair o1 = (A1, Z1) is a stability condition on D;.

2.3 Weak stability conditions on D"(X)

Let X be a smooth projective variety of dimension n and H be an ample divisor on X. Following
[4, Section 2|, we review the construction of weak stability conditions on DP(X).

For any j € {0,1,2,--,n}, consider the lattice A}, = 77+ generated by
(H" chg, H" ' chy, -+, H" 7 ch;) e QT
with the surjective map vgq K(X) —> A%{ induced by the Chern character. Then the pair
or = (Coh(X), Zn),
where Zp : AL, — C is given by
Zg(E) := —H" ' chy(E) + iH" chy(E),

defines a weak stability condition on D”(X) with respect to the lattice A}, (see [4, Example
2.8]). Note that the slope upy defined by the weak stability function Zg coincides with the
classical notion of slope stability. Moreover, any ppg-semistable sheaf E satifies the following
Bogomolov-Gieseker inequality:

Ay (E) := (H" ' chy(FE))? = 2H" chy(E) - H* 2 chy(F) = 0.



Given a parameter 5 € R, we denote by
Coh”(X)

the heart of a bounded t-structure obtained by tilting the weak stability condition oy at the
slope pupy = . For E € DP(X), we set

ch?(E) := e P ch(E).
Explicitly, the first three terms are
ch(E) := cho(E), ch?(E):= chy(E) — BH chy(E)

and
2772

ch’g(E) :=cho(E) — BH chi(F) + 5

Cho(E)
Proposition 2.9 (|4], Proposition 2.12). For any (o, §) € R=g X R, the pair
Oap = (Cob’(X), Z, )

with
1
Zog(E) = §a2H" chi(E) — H" 2 chl(E) + iH" ' ch? (E)

defines a weak stability condition on Db(X) with respect to A%I. The quadratic form @ can be
given by the discriminant Ap. Moreover, these weak stability conditions vary continuously as
(a, B) € Rug x R wvaries.

By definition the slope with respect to Z, g is

 RZap(E)

E)=——"—= for SZ,p3(F 0.
/'60175( ) %Za”@(E) or s 0175( )7é

We can visualize the weak stability conditions o, g in the upper half plane
{(a, /) eR xR : x> 0}.
Definition 2.10. Let v be a vector in A%{.

1. A numerical wall for v is the set of pairs (o, ) € R-¢ x R such that there is a vector
w € A% verifying the numerical relation pg 5(v) = fia g(w).

2. A wall for F € Coh®(X) is a numerical wall for v := chey(F), where chey(F) :=
(cho(F),chi(F),cha(F)), such that for every («, ) on the wall there is an exact sequence
of semistable objects 0 — E — F — G — 0 in Coh?(X) such that ji, g(F) = 10 (E) =
ta,3(G) gives rise to the numerical wall.

3. A chamber is a connected component in the complement of the union of walls in the upper
half plane.

A key property is that the weak stability conditions o, g satisfy well-behaved wall-crossing: walls
with respect to a class v € A% are locally finite. In particular, if v = ch<o(E) with E € Coh?(X),
then the stability of F remains unchanged as (o, 3) varies in a chamber by [6, Proposition B.5].

We end this section by recalling the following variant of the weak stability conditions of
Proposition 2.9, which will be used in the next sections. Fix u € R and let u be the unit vector
in the upper half plane with u = —%. We denote by

Cohy, 4(X)

the heart obtained by tilting the weak stability condition ¢, 5 = (Coh?(X), Z, 5) at the slope
Ha,p = W



Proposition 2.11 (|4, Proposition 2.15|). The pair 055 := (Coh! 5(X), Zgﬂ), where

1
[
Z()é,ﬁ T E a,Bs

is a weak stability condition on D°(X).

3 Fano threefolds of Picard rank 1 and index 2

In this section we explain how to induce stability conditions on the Kuznetsov component of a
Fano threefold of Picard rank one and index two, as proved in [4, Section 6]. Then we prove

that these induced stability conditions are in the same orbit with respect to the G:LQ+ (R)-action
on Stab(Ku(X)).

3.1 Classification and Kuznetsov component

Let X be a Fano threefold with Pic(X) = Z. Assume that X has index 2, i.e. Kx = —2H,
where H is a positive generator of Pic(X). The degree of X is d := H3. Recall the following
classification result.

Theorem 3.1 (|22], Theorem 2.3, [20]). If X is a Fano threefold with Picard rank 1 and index
2, then 1 < d < 5. For each d, the deformation class is unique and there is the following explicit
description:

e ifd =05, then X = Gr(2,5) nP6 = PY;

o if d =4, then X is an intersection of two 4-dimensional quadrics in P5;

e ifd =3, then X is a cubic hypersurface in P*;

o ifd=2, then X — P2 is a double covering ramified in a quartic;

e ifd =1, then X is a hypersurface of degree 6 in the weighted projective space P(3,2,1,1,1).

By [22, Corollary 3.5], the bounded derived category of coherent sheaves on X has a semiorthog-
onal decomposition of the form

D°(X) = (Ku(X), Ox, Ox(H)),
where Ku(X) is called the Kuznetsov component of X.

Remark 3.2. For d = 4 or 5 the Kuznetsov component has an explicit description. Indeed, if
d = 4, then Ku(X) = DP(C), where C is a smooth curve of genus 2 (cf. [22, Theorem 4.4]). If
d = 5, then Ku(X) = DP(K(3)), where K (3) is the Kronecker quiver with three arrows (cf. [22,
Theorem 4.2|).

3.2 Stability conditions on the Kuznetsov component

In this section, we apply Proposition 2.8 to induce stability conditions on Ku(X) of a Fano
threefold X of index 2 from the weak stability conditions 087 g of Proposition 2.11. This com-
putation appeared in |4, Theorem 6.8|. Here we explicit the values of a and (8 for which the
inducing method works. We set A(a, ) := Cohg”@(X) N Ku(X) and Z(a, f) := Zg,g‘Ku(X)y
where Zgﬁ = —iZq,5. We define the lattice

A% ku(xy = (K (Ku(X)) — K(X) — A%y) = 22,

8



Theorem 3.3 ([4, Theorem 6.8]). Suppose —% <KP<0,0<a<—F,or—-1<p< —%,
a <1+ 8. Then the pair
o(a,B8) := (Ala, B), Z(a, B))

is a Bridgeland stability condition on Ku(X) with respect to AH Ku(x) = 72
Proof. Note that Oy, Ox (H) € Coh(X); applying the Serre functor of D’(X) we get
Sx(0x) = Ox(Kx)[3] = Ox(—2H)[3] € Coh(X)][3]

and
Sx(Ox(H)) = Ox(H + Kx)[3] = Ox(—H)[3] € Coh(X)[3].

In the next, we check that Ox, Ox(H), Ox(—2H)[2] and Ox(—H)[2] belong to the heart
Cohg’ 5(X) under the previous assumptions.

Since
/LH(O)() =0 > ﬁ
pr(Ox(—2H)) = -2 < f
ra(Ox(H)) =1 > f
pa(Ox(—H)) =-1 < B,

and these are pp-stable line bundles, it follows that Ox,Ox(—2H)[1],Ox(H),Ox(—H)[1] €
Coh”(X). Then, by [6, Corollary 3.11 (a)], Ox, Ox(—2H)[1], Ox(H) and Ox(—H)[1] are
0q,p-stable for oo > 0.

Note the following inequalities:

1 27173 62 3

RZ.5(0x) = Zo’H'—-H’ <0,

2
Rap(Ox(—2H)[1]) = _;Q2H3+(/3+22> i o,

_ 2

RZ,(Ox(H) = ormt— U g <

1 1 2
RZop(Ox(~B)1]) = —ta?mty U g

As SZ, 53> 0o0n Ox, Ox(—2H)[1], Ox(H) and Ox(—H)[1], it follows that

Ua,ﬂ(0X> > 0, Ma,B(OX(H» >0

and
fa,8(Ox (=2H)[1]) <0, pa,p(Ox(=H)[1]) <
As a consequence, we obtain Oy, Ox(—2H)[2],0x(H),Ox(—H)[2] € Coh?, 5(X). By [4,

Lemma 2.16], there are no nonzero objects F € Cohg (X) n Ku(X) with Z° ( ) = 0. The
claim follows from Proposition 2.8. O

Remark 3.4. Note that [4, Theorem 6.8] and Theorem 3.3 hold for Fano threefolds of index
two without the assumption on the Picard rank.

Remark 3.5. In [28, Section 1] the authors introduce an alternative way to visualize the weak
stability conditions o, g, which will be used in some computations of the last section. More
precisely, a complex E € DP(X) such that ch<y(E) # (0,0,0) is represented by the point



[H3cho(E) : H?chy(E) : Hchy(E)] in a projective space, and when rk(E) # 0, by the affine

coordinates 72 (5) H chy(E)
chi(F cha(E 2
F)i=—"2 q(F) = ————-) € A3.

For every (s,q) € A% with ¢ > %32, the pair oy , = (Coh®(X), Z; ,), where
Z, (E) := — (H chy(E) — qH® chy(E)) + v/—1 (H? chy(E) — sH® cho(E)) ,
is a weak stability condition on DP(X) with respect to A%, as

/ /
O-a75 = Uﬁ2+(¥2 and Maaﬁ = Mﬂ2+0¢2 - /B'
2 2

7/3 7B

Thus by Theorem 3.3 the weak stability conditions oy, ; which after tilting at u, ; = — 3 restrict
to stability conditions on Ku(X) are in the area

11 1
2 or —1<s<—7,732<q<32+s+§}.

{(S7q)EA%:_ 2 2

1
<s<0,552<q<3

N

Note that we will use the notation (o =3 for the weak stability condition obtained by tilting

a.s)
Ogs At iy s = —1. Also for a point P = (s(P),q(P)) over the parabola ¢ — 1s* = 0, we will use

; -
the notation op := Ty(P).s(P)"

3.3  Orbit of o(«, B)
Let X be a Fano threefold with Pic

set

—~

X) = Z and of index 2 with polarization H := —%KX. We

1
Vi={(a,8) eRsogxR: —= < <0, < —f, or —1<B<—§’a<1+5}_

N |

By Theorem 3.3, we have a map
¢ : V — Stab(Ku(X))

defined by
(OJ,B) = O'(Oé,ﬂ) = (A(O[,ﬂ),Z(OJ,B))

Using slicings (see Definition 2.5), we write o(a, 8) = (P(a, 8), Z(a, 8)), with
P(a, B)((0,1]) = A(e, B).
Note that if P9 4 is the slicing in D”(X) such that P9 4((0,1]) = Cohf 4(X), then
Pa,a(9) 0 Ku(X) < Pla, )(9)-

We will also denote by P, s the slicing such that Py 5((0,1]) = Coh”(X).
The main result of this section states that the stability conditions in ¢(V') are in the same

orbit of a fixed one o(ap, —3) with respect to the G:L;r (R)-action.

Proposition 3.6. Fiz 0 < ag < 3. For every (o, 8) € V, there is j € GNL;(R) such that
o(a, B) = o(ao,—1) - .

We need the following starting lemmas.
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Lemma 3.7. If —% < B < 0, then Coh®(X) is a tilt of Coh*%(X). If-1<p8< —%, then

Coh?(X) is a tilt of coh—%(X)[—u.

Proof. Consider the case —5 < 8 < 0 Let F be a ppg-semistable object in Coh(X). If py(F) >
B> —1 then F e Coh”(X )m Coh™2(X). If pup(F) < B, then F[1] € Coh®(X). We have the
followmg possibilities. If —5 < pg(F) < B, then F' e Coh_%(X), and thus F[1] € Coh_%(X)[l].

Otherwise, if pug(F) < —5 then F[1] e Coh™2 (X). As every element in Coh®(X) is an extension
of semistable coherent 5heaveb as above, we conclude that

Coh?(X) < (Coh™2(X), Coh™2 (X)[1]).

This implies the first part of the statement by [36, Exercise 6.5].

Now assume —1 < 3 < —3. Let F be a pr-semistable object in Coh(X). If ug(F) > B,
then F € Coh”(X). When py(F) > 3, we have F' € Coh™ ( ), while if 8 < pp(F) < —3%
then F[1] € Coh™2(X), i.e. F € Coh™ ( )[—1]. Otherwise, if g (F) < 8 < —1, then F[1] e

Coh?(X) A Coh™2(X). Tt follows that
Coh?(X) < (Coh™2 (X)[—1], Coh™2 (X)).
This ends the proof of the statement. O

As a consequence, we get the following relation between the hearts on Ku(X).

Lemma 3.8. Fiz 0 < a9 < % If —
Alag, —3). If -1 < B < -3 and (a, B)
and (a ﬁ) eV, then A ﬁ) (040,5)

m D[ —

< B < 0 and (a,B) € V, then A(a,ﬂ) is a tilt of
, then A(a, B) is a tilt of A(ag, — ) —1]. If B = —%

Proof. Firstly, we observe that Coh?(X) = PO 5= 3, 2]) for every a > 0 up to objects supported

on points. Indeed, an object ' € DP (X) is 0q4 5 -semistable if and only if it is 00 ﬁ-semlstable up

to objects supported on points (see [4, Proof of Proposition 2.15]). This is a consequence of the
fact that we are tilting a weak stability condition, so the stability is preserved up to objects with
vanishing central charge. Consider a o, g-semistable object F' € Coh”(X). Then 3%(227 s(F)) =
S(Za,p(F)) = 0. Note that, if I(Zaps(F)) = 0, then S(Z] 4(F)) = —R(Za,p(F)) = 0. This
implies that F' € P 5(3). Assume $(Zag(F)) > 0. If o g(F) > 0, then F € Coh) 5(X). Tt
follows that F € P 4((0,3)). On the other hand, if yqg(F) < 0, then F € Coh), 5(X)[—1].
Then, we have F € 732’5((—%,0]). We deduce that Coh”(X) < P? ((—5, %]). Since they are
both hearts, we conclude that they are the same up to objects 5upported on points, as we claimed.
Now, assume —% < B < 0. As a consequence, by Lemma 3.7 we have
13

Coh(X) = PLs((~ 3, 31) € P, 4 ((~ 5, 51) = (Coh™3(X), Coh™ 3 (X)[1]),

up to objects supported on points. The same relation holds after rotating by 7, namely

Cohg 5(X) = Pa 5((0,1]) = 7’207_%((0, 2]) = <00h207_%(X), Cohgm_%(X)[l]% (1)

up to objects supported on points. An analogous relation holds when —1 < 8 < —%. Ifg= —%,
then by Lemma 3.7, we have

CobH () = PR((~2. 21 = 0, (5. 2D, ?

11



up to objects supported on points.

Finally, we restrict to the heart A(«, 3). By construction, the cohomology with respect to
A(a, B) of an object F' € Ku(X) is the same as the cohomology with respect to Cohgﬂ(X) (see
[4, Lemma 4.3]). Thus, the statement is a consequence of (1) or (2), and the fact that Ku(X)
does not contain objects supported on points. O

The next lemma implies that the central charges Z(a, ) for (a,8) € V are in the same
orbit by the action of GLj (R). Recall that by [22, Proposition 3.9]), a basis for the numerical
Grothendieck group N (Ku(X)) of Ku(X) is
H? H? d-6 5

=T =1— " kp=H - 472
r = (1] d"™ 2 " 6d
Lemma 3.9. For every (a, ) € V, the image of the stability function Z(a, ) is not contained

in a line and the basis {Z (e, B)(k1), Z(a, B)(k2)} of C have the same orientation.

Proof. The matrix

has positive determinant for every 5. Thus the basis Z(«, 5)(k1), Z(«, 5)(k2) have the same
orientation for every a, 8 € R with respect to the standard basis of C. O

Proof of Proposition 3.6. Fix (a, ) € V. By Lemma 3.9, there is an element g € GNL;r (R) such
that o(ap, —3) - § = (A, Z(a,B)). By definition, denoting § = (g, M) with g : R — R and
M € GLJ (R), we have

A= P((0,1]) = Plag, —)((rr + 1]),

where r := ¢(0). Up to shifting A’ by an integer, we can assume that A’ is a tilt of A(«p, —%)
On the other hand, by Lemma 3.8 the heart A(«, ) is a tilt of A(cp, —1/2) up to shift. Since

o(ayp, —%) - g and o(a, 8) have the same stability function and their hearts are tilt of the same

heart, they are the same stability condition by [6, Lemma 8.11]. This proves the statement. [

Remark 3.10. Proposition 3.6 implies that the map ¢ is continuous.
Fix a stability condition o(ap, —3) with 0 < ag < 5. We set

K = o(ao, f%) LGL] (R) < Stab(Ku(X)),

which is the universal covering space of M* := Z(ap,—3) - GLj (R). By Proposition 3.6, the
image ¢(V') is contained in K, and by definition K is an open subset of a connected component
of Stab(Ku(X)).

Remark 3.11. Note that all elements in K satisfy the support property with respect to the
trivial quadratic form @ = 0, because their central charge is injective. Recall the setting of [6,
Proposition A.5|. Consider the open subset of Hom(N (Ku(X)),C) containing central charges
which are not injective. Let U be the connected component containing Z(ay, —%) of this open
subset. Let U be the connected component of the preimage Z~!(U) containing o(ag, —3). We
have that U = M. Indeed, note that Hom(N (Ku(X)),C) is the disjoint union of M with the
component of matrices with negative determinant and the component M containing matrices
with determinant equal to 0. Since central charges parametrized by M° have non-trivial kernel,
we get the above equality. By [6, Proposition A.5]|, the restriction Z|y; : Y — M™ is a covering
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map. As K is the universal covering space of M, there is a covering map K — U commuting
with Z. But K is a subset of U, so we conclude that L = Y. In particular, we deduce that K is
a connected component of Z~(U).

Remark 3.12. If d = 4, then Ku(X) = D®(C), where C is a smooth curve of genus 2 (cf. [22,

Theorem 4.4]). By [34, Theorem 2.7|, we have K = G~L;r (R) = Stab(Ku(X)).

If d = 5, then Ku(X) = D”(K(3)), where K (3) is the Kronecker quiver with three arrows (cf.
[22, Theorem 4.2]). In this case, by [14, Theorem 1.1|, it is known that Stab(Ku(X)) = H x C,
where H := {z € C: 3z > 0}.

4 Hilbert scheme of lines and stability

In this section, we study the stability of ideal sheaves of lines in X and of their dual object; then
we prove Theorem 1.1.

4.1 Lines and stability

Let X be a Fano threefold of Picard rank 1 and index 2. Given a line £ ¢ X, we denote by Z; the
ideal sheaf of £ in X. By |23, Proposition 3.12|, we know that Z, € Ku(X). The Chern character
of Ig is

1
Ch(Ié) = (17 0, _7H27 0)

d
and the twisted Chern character with respect to —% till degree 2 is
_1 1. d-—38
h 3 (Zy) = (1, - H, ——H?).

Proposition 4.1. The ideal sheaf Z; of a line { = X is o(a, —%)-stable for every 0 < a < %

Proof. The sheaf Zy is slope stable, because it is a torsion-free sheaf of rank 1. As ugy(Zy) =0 >

_1
—%, we have 7, € Cohfé(X). Since H? ch, 2(Z;) > 0, it follows from [6, Lemma 2.7] that Z; is

o, _1-stable for any a » 0.
32
In the next we show that there are no walls for the stabilty of Z, with respecto to o, _1. A
’ 2

wall would be given by a short exact sequence in the heart Cohfé(X ) of the form
0->F—>Iy— F—Q0,
such that the following conditions hold:
(1) pro, 1 (E) = o, _1(Ze) = po, 1 (F);
(i) Ap(E) =0, Ag(F) = 0;
(il) Ag(E) < Aup(Z), Au(E) < Au(Zy).

The truncated twisted characters of F and F' have to satisfy

(1’§H’87H) (@75H7@H )+ (1 —a, 5 H, 3d
for some a,b,c€ Z. As E and F are in Coh_%(X), we have

b>0 and 1-b30,

H?),

ie.b=0orb=1.
As “a,—%(zf) = % and Ay (Z,) = 2(H?)?, dividing the discriminant by d?, the previ-
ous conditions are
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. —8— 2 —8—
() $(d - 0%) = =St = 11 (48— 02(1 — )

(i) (2)2— 9 >0, (L5b)2 4+ (Umaders=d) 5

2

2
(i) ()2 — e < 2 (L52)2 4 Uzalersod)

2
4d d

Assume b = 0. If a # 0, we get

4do? =S>0 and —8<ac<0
a

which is impossible. If a = 0, then ¢ = 0 by the first equation. If E has twisted character
(1, %H, %HQ), then Z; has a subobject with the same slope for every o > 0. This contradicts
the stability of Z, above the wall. In the other case, Z, would have a subobject with infinite
slope, in contradiction with the fact that it is stable for « large.

If b=1and a # 1, we get a contradiction from

_8—d+c
 a-—1

4da? >0 and —8<(a—1)(8—d+¢)<0.
The case b = a = 1 can be excluded as done for b = a = 0.
Since there are no values of a, b, ¢ satisfying all the required conditions, we deduce that Zy is
o, _1-stable for any o > 0. As a consequence, 7y is og ,-stable and thus stable with respect to
b 2 ’75
o(a,—1). n
As explained in [23, Section 3.6], there is another object in Ku(X) naturally associated to a
line ¢ — X. Indeed, consider the triangle

Ox(=1)[1] = Jr = O(-1), (3)

where Ox (1) := Ox(H). By [23, Lemma 3.4], we have Jy € Ku(X). The Chern character of J;
is
2—d d—6 .
W) = (-1,H,~——H*,——H").
C (ﬂ) ( Y Y 2d Y 6d )

We study the stability of this object, which will be used in the proof of Theorem 1.3.
Lemma 4.2. Set § = —%. The complex Jy is 04 g-stable for a > 0.

Proof. Note that Ox(—1)[1] and @y(—1) belong to the heart Coh”(X). Thus the same property
holds for their extension J,.

Assume that J; is not stable. Then there exists a destabilizing sequence in Coh?(X) of the
form

where P and @ are fi, g-semistable for v » 0, with pa g(P) > pa,g(Q). Recall that we can check

Bi_
the stability with rispect to o4 g for o — 00 using the slope Cfﬁ(g)), as

oy 2 () — 50’ tk(0) _ rk(o)
emeat () chf(-)

and taking the opposite of the inverse does not change the inequalities.
Consider the cohomology sequence

0—HHP) = HHT) > HHQ) — H(P) — H(Te) — H(Q) — 0,
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where H1(J;) = Ox(—1) and HO(J;) = Op(—1) by definition. Then tk(H1(P)) = 1 as it is
a subsheaf of a line bundle, and rk(H°(Q)) = 0 as it is the quotient of a torsion sheaf. Since
rk(H°(P)) = 0, we have rk(P) > —1.

If rk(P) > 1, then rk(Q) < —2 as rk(P) + rk(Q) = rk(Jy) = —1. Since @ is a destabilizing
quotient for J;, we have the relation

-

() 1 e G(@Q oy *(Q)

k(7)) 27 tk(Q) T 2

1 1 1
which implies ch; 2(Q) > 1. This contradicts the fact that 0 < ch; 2(Q) < chy 2(Jp) = 5. It
follows that the rank of P can be equal to 0 or —1.
Assume that P has rank —1. Then H~(Q) = 0, because @ is a torsion object in the heart.
Thus we have the sequence

0— H'(P) - Oy(~1) - Q — 0,

where H?(P) is a sheaf supported on the line £. Note that Op(—1) has rank 1 and it is torsion
free as a sheaf on £. It follows that H°(P) is a rank 1 torsion free sheaf on £. As a consequence,
we have chea(H?(P)) = chea(Oy(—1)), which implies

cheo(P) = chea(Jr) and pqp(Q) = +o0 for a » 0.

This is impossible for a destabilizing sequence.

Assume now that P has rank 0. If chy (P) # 0, then p, g(P) would be a finite number, while
1ta,5(Q) = +00 for @ » 0, which is impossible. If chy (P) = rk(P) = 0, then we have P =~ H°(P),
HHQ) = Ox(—1) and the sequence

0— P — Oy(—1) - H'(Q) — 0.

As Oy(—1) is locally free on £ and P is a subsheaf of Oy(—1), we must have cha(P) = cha(O(—1));

thus H°(Q) is supported in codimension 3. On the other hand, consider the commutative diagram

>~

0 P 0

| J

Ox (—1)[1] — Tr —— Op(—1) — Ox (—1)[2]

: Ll

Ox (-1)[1] —— Q ——H(Q) —— Ox(-1)[2],

— Q—w

where 1), ¢ # 0. Note that Hom(H%(Q), Ox(—1)[2]) = 0, as H°(Q) is supported on points and by
Serre duality. It follows that v = 0, which is impossible. This proves J; is stable as claimed. [

Proposition 4.3. The complex Jy is o(a, —%)—stable for every 0 < a < %

Proof. Set 8 = —%. By Lemma 4.2, it is enough to check that there are no walls for the stability
of J; with respect to o, 3. As in the case of the ideal sheaf Z,, this is enough to prove the
statement.
Note that
1.__8-d

Chiz(jﬁ) = (-1, §H7 WH%
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and p o
8 —d + 4da 2
T AH(jE)—g

Assume there is a short exact sequence in the heart Coh”(X) of the form

Na,ﬂ(xje) = (H3)2'

0>E—J —F—0,

corresponding to a wall for J,. The twisted characters of E and F' have to satisfy

(_1’§H’87H)_<a’§H’@H )+ (=1 —a,

1-b,_8—-d—c
2 H, 8d

H?),
for some a,b,c€ Z. As E and F are in Cohﬁ(X), we have b=0or b = 1.
Assume b = 0. From the equality of slopes and the bounds on A, we get

&d
¢ =4da® and —§<a0<0.

This is impossible, unless ¢ = 0. But in this case, we have ¢ = 0 and J; would have either a
subobject with infinite slope or a subobject with the same slope. Both possibilities would give a
contradiction with Lemma 4.2. The case b = 1 can be excluded similarly. O

4.2 Proof of Theorem 1.1

Assume again that X is a Fano threefold of Picard rank one and index two and of degree
1 < d <5. We denote by ¥(X) the Hilbert scheme parametrizing lines in X. Let us summarize
what is known on 3(X) (see also [13, Section 5|):

e If d =1, then ¥(X) is a projective and irreducible scheme given by a smooth surface with
an embedded curve, whose reduced scheme is smooth (see [43, Theorem 4]).

o If d > 2, then 3(X) is irreducible, 2-dimensional and generically smooth (see |25, Lemma
2.2.6]).

o If d > 3, then 3(X) is a smooth and irreducible surface. In particular:

— if d = 3, then ¥(X) is a minimal surface of general type;
— if d = 4, then ¥(X) is an abelian surface;
— if d = 5, then %(X) =~ P?;

(see [25, Proposition 2.2.10]).

Making use of the results in the previous section, we describe 3(X) as a moduli space of
objects in Ku(X).

Proposition 4.4. The ideal sheaf Iy of a line { = X is o-stable for every o € K.

Proof. Note that it is enough to check the stability with respect to o(a, —%) for a certain 0 <
a < %, as GL; (R)-action preserves the stability. This is provided by Proposition 4.1. O

Remark 4.5. Similarly, Proposition 4.3 imply that 7, is o-stable for every o € K.

Proposition 4.6. Assume d # 1. If F' € Ku(X) is o-stable for o € K with [F] = [Z/] €
N (Ku(X)), then F =~ Zy[2k] for some line ' = X and k € Z.
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Proof. Set ch(F) := (ag,a1H,asH? azH?3). As [F] = [Z;] €e N(Ku(X)) and x(Zy,Zs) = —1, the
following conditions hold:

X(Ox,F) =0, X(OX(1>7F) =0, X(vaF) = _17X(F71-€) =

Recall that

1 1 1
td(X) = (17H7 (g + Q)H27 gHS)

(cf. case 3 of |27, Lemma 1.2]). By Hirzebruch-Riemann-Roch Theorem, we get

ag + d+3a1 + das + dag =0
67(11 +daz =0

%(11 + dag + das = —1
—%al + dag — dag = —1.

If d # 2, then ap = 1,a1 = 0,a9 = d,ag = 0. If d = 2, the condition x(F,F) = —1 implies
ch(F) = ch(Zy).

Now by assumption and Proposition 3.6, F' is o(«, 3)-stable for every («, 8) € V. In particu-
lar, F[2k + 1] € A(«, B) for some integer k. Up to shifting, we may assume G := F[1] € A(w, )
is o(a, B)-stable with slope

0 —p
la,5(G) = :
TR e
In particular, we have /J,(O)é’ﬁ(G) = 400 if
2 —dB? +do® = 0. (4)

We distinguish the cases d > 3 and d = 2. If d > 3 we can find pairs (&, 3) € V such that

olds (in this case /3 satisfies —%42 < B < —4/2). en is 0. z-semistable, since as
hold h 15} fi d;;f 15} g Then G 0 af bl G h

the largest slope in the heart. A similar computation as in Proposition 4.1 shows that 8 = —1 is
not on a wall for the Ua g-stability of G. Moreover, the semicircle C in the (o, 3)-plane of center

(0, f%) and ray 2 d glves a numerical wall for G, which could be realized for instance by the

object Ox(—1)[2] € Coh% (X).
Assume that C is not an actual wall for G. All the other numerical Wallb would be nested

semicircles in C. Thus we may choose (@, §) = (dQ;dQ, —%), so that G is o a,5-semistable and G

remains semistable for 5 approaching —% (see Figure 1).

Now we argue as in |41, Lemma 2.15|. By definition of Cohg (X), we have a triangle

_1
T2

Al > G — B

such that A (resp. B) is in Coh™z (X) with o, _1-semistable factors having slope p1, _1 < 0 (resp.
I) ’2
> (). Since G is O'g _;-semistable, we have that B is either supported on points or 0. Moreover,
T2
All] is 02 _ 1 -semistable and, since A € Cohfé(X) we have that A is o, 1—semistable. Hence
’ 2

ch(A) = (1,0, -1 H? m), where m > 0 is the length of the support of B. The walls computation

in Proposition 4.1 shows that A is o, _1-semistable for every ov > 0. Hence by [27], |6, Conjecture
T2

4.1] holds for « = 0,8 = —%, so that
d—38

d _1
4(7)2 — 65 chy * (4) > 0.
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Figure 1: The point (&, 3) lies above the first wall for G.

Performing the computation, we get that chg(A) = m < 1 for d # 1. We deduce that m = 0, so
B = 0. We conclude that G = A[1], equivalently F' = A is a1 -semistable for every a > 0. By
[6, Lemma 2.7], it follows that F' is a slope semistable torsion free sheaf. As ch(F') = ch(Zy) and
Pic(X) =~ Z, we must have F =~ Z, for some line ¢’ € X.

Assume instead that C defines an actual wall for G and that G becomes unstable for § — —%.

Set (&, 3) = (%, —Cgif). Then G is strictly Jgﬁ—semis‘cable and there is a sequence

0>P>G—>Q—0

in Cohg7 B(X ) where P, Q@ are ug B—semistable with the same slope +00. A computation shows
that cheo(P) = (1, —H, 1H?), ch<s(Q) = (-2, H, 52 H?) and d # 5

Note that P = Ox(—1)[2]. Indeed, we have Hom(Ox (—1)[2], P[i]) = 0 for every i # 0, 1, by
Serre duality and the fact that they are in Cohg B(X ). Denote by H!(P) the degree-i cohomology

of P in CohB(X). Then H°(P) is either 0 or supported on points. Then
Hom(Ox (—1)[2], P[1]) = Hom(Ox (—1)[1], P) = Hom(Ox(-1),H *(P)) = 0,

since Ox(—1) is stable with the same character of H~1(P) till degree 2. As x(Ox(—1), P) # 0,
we deduce that Hom(Ox (—2)[2], P) # 0. The stability of Ox(—2)[2] implies the claim.

As a consequence, x(P,Q) # 0 and Hom(P,Q[i]) = 0 for ¢ # 1, since P and @ are in the
same heart and by Serre duality. So we can define G’ as the extension

05>Q—>G -P-0

in Cohg7 B(X)' Now G’ is o0 g-semistable for § — —%. But then the computation done in the

previous case for 8 = —% shows that G’ >~ Zy[1]. However, this would imply G’ € Ku(X), so that
Hom(G’, P) = 0 giving a contradiction. This proves the statement for d > 2.

If d = 2, note that (4) holds for (a,8) = (0,—1). Since there are no walls intersecting the

vertical line § = —1, we deduce that G is 03 ﬁ—semistable for 8 = —1 and « > 0. As explained
before, GG sits in a sequence
All] - G- B
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where B is either 0 or supported on points and A is 0, _i-semistable in Coh™}(X). Applying
[6, Conjecture 4.1] for a = 0, we deduce G = A[1]. The argument applied in the previous case
proves the statement for d = 2. O

Proof of Theorem 1.1. Assume d # 1. By Proposition 4.4 and Proposition 4.6 there is a bi-
jection between X(X) and M, (Ku(X),[Z]). Moreover, the universal ideal sheaf on X x 3(X)
is a universal family of stable objects on X x M, (Ku(X),[Z¢]). Thus the bijection induces an
isomorphism, arguing as in [8, Section 5.2|. The case d = 1 follows from Proposition 4.4 by a
similar argument as above. O

Remark 4.7. By [23, Section 3.6] the complex J; is the (derived) dual of Z,(1) shifted by 1. In
fact Z, and J; are exchanged by the autoequivalence

®(—) := RHom(—,0x(—1))[1] : Ku(X) — Ku(X).
As a consequence, we deduce that ¥(X) = M, (Ku(X),[Zy]) = Me..(Ku(X),[T¢]) for d # 1.

Remark 4.8. Note that there exist a non-trivial map Z, — Jp if £ and ¢ intersect in a point
and a non-zero morphism J; — Zp[1] for disjoint ¢ and ¢'. As consequence, if Z; and J; are
o-stable of phases ¢7 and ¢ 7, respectively, for a stability condition o, then

og —1 <oz <dg. (5)

Remark 4.9. Assume X is a cubic threefold (d = 3) and let & be the stability condition on
Ku(X) constructed in [8]. By [8, Theorem 4.1] the ideal sheaves of lines are -stable. Moreover,
since Hom(J;, J¢[i]) = Hom(Zy, Zy[7]), by [8, Proposition 4.2|, it follows that Jy is -stable. An
interesting question would be to understand whether & belongs to .

5 Cubic threefolds

Assume that X is a cubic threefold. In this section we show that the Serre functor of Ku(X)
preserves the orbit . As a consequence, we deduce Theorem 1.2 and we give an alternative
proof of the categorical Torelli Theorem proved in [§].

5.1 Serre functor and stability

Let X be a cubic threefold. Recall that Ku(X) is a Calabi-Yau category of dimension 5/3, which
means that Siu(X) ~ [5] by [21, Lemmas 4.1 and 4.2]. Moreover, if we denote by ® : D?(X) —

DP(X) the autoequivalence ®(—) = (—)®Ox (H), by [21, Lemma 4.1] the Serre functor of Ku(X)
satisfies the relation

Skarx) = Loy 0 @) o (Loy o ®)[-3]. (6)

Here Lo, : DP(X) — DP(X) is the left mutation functor with respect to Ox. Let us firstly
study the action of the autoequivalence Lo, o ® of Ku(X) on a stability condition o(a, —%) We
need the following lemmas.

Lemma 5.1. The heart <I>(C0h7%(X)) of DY(X) is a tilt of Cohfé(X

).
Proof. Let F € Coh(X) be a slope semistable sheaf with py(F) > —3. Then ®(F) is a slope

semistable sheaf with g (®(F)) > 1 > —%. Thus ®(F) € Coh™2(X). If F € Coh(X) is slope
semistable with y1r7(F) < —3, then we can have either —3 < g (®(F)) < 1, or pup(®(F)) < —3.
In the first case, ®(F)[1] € Coh™2(X)[1], in the second we have ®(F)[1] € Coh™2(X). We

deduce @(Coh_%(X)) c <Coh_%(X)7 Coh_%(X)[1]>7 as we wanted. O
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Lemma 5.2. Assume that E € Cohg

that for o := % —¢& >0 we have

_1(X) for every 0 < a < 3. Then there exists e > 0 such
’ 2

®(E) € (Coh?, 1 (X), Cohg,y_ (X)[1], Ox[2])-

Proof. Set k := dimHom(Ox(—H)[2], E) and consider the exact triangle

N[

_1
T2

Ox(—H)®[2] > E - B, (7)

with E satisfying Hom(Ox (—H)[2], E1) = 0. Denote by Coh_%(X)u L >0 (resp. Coh_%(X)M 1 <0)
-5 a3

the subcategory of Coh™2 (X) generated by 1, _1-semistable objects with slope p, 1 > 0 (resp.
L) ’ 2

< 0). Let us summarize the argument of the proof. Firstly we note that up to choosing a «
close to 3, we may assume that Ox(—H)®*[2] is the a1 -semistable factor of E with big-

ger slope. In particular, F; belongs to Cohgﬁ%(X). Thus there exist A € Cohfé(X)Hay_%go,

1
Be Coh™2(X), >0 and an extension
=3

All] - E1 —» B
in Cohg 1 (X). We will show that, choosing a suitable o/ = £ — ¢ > 0 with £ > 0, we have
’ 2
(B) € (Coh™3(X),,, >0, Coh™2 (X)[1]) (8)
al,—3
and

®(A)[1] € (Coh™2(X)[1], Coh™2(X),,
Together with (7), this implies the statement as

(Coh™2(X),,,, _, >0, Coh™2(X)[1]) = (Coh, _; (X),Cohf, _; (X)[1])

1 1
yT g T g

and

(Coh™3 (X)[1], Coh™2(X)y,,, _, <o[2]) = (Coh, _, (X), Cohy, _, (X)[1]).

1
T2

1
T3
We point out that E belongs to the heart after changing « by hypothesis.

In order to do the computation, it is convenient to use the setup introduced in [28, Section
1], recalled in Remark 3.5. Then we will prove the statement using the weak stability condition
! 1

0q s With reparamentrized central charge, and the condition o = 5 —e¢is equivalent to ¢ = % — 16

Firstly, we claim that, up to changing ¢, we can assume that Ox (—H)®*[2] is the (a; 1) 2-
’ 2
semistable factor of F¥ with bigger slope. Indeed, note that

-

[NIE

(w (Ox(=H)[2]) = +o0;

AN

1

T2

thus the slope (u; _l)fé(OX(—H) [2]) converges to +oo for ¢ — 1. Now assume that E has
T2

! 1)7%—semistable factor A; with (u )7%(/11) > (u

/
q;—3 q9,—
choose € > 0 such that the slope (1) _ 1)~
4

2

!/
a (o .

NI NIES

Figure 2).
Secondly, we show (8), i.e. that

®(B) e (Coh™2(X),,,



Figure 2: In this picture we compare the slope of Ox(—H)[2] and A;. The slope with respect to
P is determined by the dotted-dashed lines, while that with respect to @ by full lines. We use
red lines for the slope of A; and black lines for that of Ox(—H). Note that A; has bigger slope
at P than Ox(—H)[2], while for @ approaching (—3, 1) the slope of A; with respect to @ is less
than that of Ox(—H)|[2].

By Lemma 5.1 we know that ®(B) has semistable factors in Coh_%(X) and Coh_%(X)[l].
Up to passing to a stable factor, we may assume that B is o/ ,-stable. Then ®(B) is

’ 2
o’ _i-stable. We can use [29, Lemma 3| (see also [15, Lemma 3.1]) to control the slope of the
4 12
oy ,-semistable factors of ®(B). Indeed, let op be a stability condition corresponding to

175732
11

a point R on the segment connecting P = (f%,% —¢)and Q = (5,7 —¢). The point ®(B)
has coordinate s(®(B)) = s(B) + 1 and belongs to the parabola ¢ — 3s? = ¢(B) — 3s(B)>
Denote by ®(B)* and ®(B)~ the points where the parabola q — %52 = 0 and the line connecting
®(B) and @ intersect. By [29, Lemma 3| the slope of a og-semistable factor F' of ®(B) satisfies
ur(®(B)) < ur(F) < u(®(B)*) (sce Figure 3). Since pup(@(B)") > up(B) > —1, we
deduce that the op-semistable factors of ®(B) are either in Coh_%(X) with slope up > —3 or
in Coh™2 (X)[1], as we claimed.

Finally, we study ®(A)[1]. By Lemma 5.1 the semistable factors of ®(A)[1] are in Coh™2 (X)[1]

and Coh_%(X )[2]. Up to considering a stable factor, we may assume that A is o, _ ,-stable.

4 72
Note that by definition A[1] determines a point between the parabola g — %32 = 0 and the line
Ip passing through P and parallel to the line g = f%s.

Assume that A[1] is in the region between the line Ipp_p) connecting P with the point
(—1,3) corresponding to Ox(—H)[2] and the parabola ¢ — s> = 0. Denote by ®(A[1])* and
®(A[1])” the intersection points of the line connecting ®(A)[1] and Q. Then by |29, Lemma 3|
a op-semistable factor F' of ®(A)[1] satisfies pup(P(A[1])7) < pp(F) < up(P(A[1])1). Since
for such A[1], the point ®(A[1])" is on the left of the line Ip, it follows that up(F) < —1 (see

Figure 4).  This implies that ®(A)[1] has 0, _ ,-semistable factors in Coh_%(X)[l] and in
4 ’ 2
Coh™3(X), .

[2], giving (9) in this case.

1
2
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Figure 3: The slope with respect to P of the semistable factors of ®(B) is between that of ®(B)~
and ®(B)™.

lpo(—m)

Figure 4: Case of A[1] above the line connecting P and Ox(—H)[2].

Assume instead A[1] is in the region between the lines po(—m) and [p. Keeping the previous
notation, it might happen that ®(A[1])" appears on the right of Ip. In this case, choosing a
suitable e > 0, we can require that ®(A[1])" is on the left of [p (see Figure 5). Then we reduce
to the previous situation and we conclude that

®(A)[1] € (Coh™2(X)[1],Coh™2(X),, .

N
|
®
|
N

Choosing ¢ as above, we deduce the stament for o = % — €. O
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Figure 5: Case of A[1] below the line connecting P and Ox (—H)[2]. Moving P towards (—1, 1),

the point ®(A[1])* moves to the left on the parabola ¢ — 152 = 0, as represented by the green
lines in the picture.

1
2

Lemma 5.3. For 0 < a < %, the heart Lo, (®(A(a, —3))) is a tilt of A(a,—3).

Proof. Note that Lo, (®(—)) = ®(Lo, (—m)(—)) as ® is an equivalence. Take £ € A(a, —3) and

set G := Lo (—m)(E). Since Ox(—H)[2], Ox(—=3H)[2] are in Cohg _1(X), by Serre duality we
T2

have Hom(Ox (—H)[2], E[i]) = 0 for every ¢ ¢ {0, 1,2,3}. In particular, G is defined by

Ox(—H)®*[2] @ Ox (—H)®" [2][-1] ® Ox (~H)®*[2][-2] @ Ox (-H)®*[2][-3] — E — G.

The induced long exact sequence of cohomology in Cohg _1(X) is given by
72

0~ HYG) » Ox(~H)®[2] - E - H(G) — Ox(~H)®"[2] -0

and H(G) = Ox (—H)®*2[2], H2(G) = Ox (—H)®s[2],

Up to deforming o — 3 we may assume that Ox (—H)®[2] is the HN factor of E with max-

imal slope. Also E satisfies the hypothesis of Lemma 5.2, as E € A(a, —3) = A(c/, —3) for every
0<d < % by Lemma 3.8. So we can find « such that ®(E) € <Cohg 1 (X)), Cohg 1 (X)[2], 0x[2]).
k) 2 ) 2

As a consequence, we have H~1(G) = 0; also writing
0— Ox(—H)®ko[2] —FE—-Q —0,
0—Q —H(G) - Ox(~H)®"[2] -0, (10)

(X) of ®(F) in degree —2 is O%ko and ®(Q) has non
trivial cohomology with respect to Cohg _1(X) only in the degrees 0, —1.
)

it follows that the cohomology in Cohg B

D=

Applying ® to (10) we get

D(Q) — ¢(H'(G)) — O¢"[2].
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The long exact sequence of cohomology in Cohg _1(X) is of the form
’ 2

0—H2(@(H(G) — OF" — HH(2(Q) —» HH@H(G)) — 0

and H°(®(Q)) = H(®(H"(G))). Note that H°(G) satisfies the hypothesis of Lemma 5.2, as @
and Ox (—H)[2] are. As a consequence, H~2(®(H(G))) = OP™.

On the other hand, by the previous computation of the cohomology of G, we can write
G — ®(G) - ®(H*(G))[-2] = OF*

and
(H(G)) — G — d(H'(G))[-1] = OF[1].

Then we have
Hom(Ox[2], ®(H%(G))) = Hom(Ox[2], G') = Hom(Ox[2], ®(G)) = 0.

This contradicts the fact that H=2(®(H'(G))) = O™
As a consequence, we deduce that ®(H%(G)) e <Cohg_l(X),Cohg 1 (X)[1]). Then ¢
T2 T2

satisfies the same property and thus also ®(G) does. In particular, we have proved that ®(G)
has non trivial cohomology in Cohg _1(X) only in the degrees 0,—1. Since ®(G) € Ku(X), its
T2

cohomology is also in Ku(X) by [4, Lemma 4.3]. We deduce that ®(G) € (A(a, —1), A(e, —3)[1])
as we wanted. O

We are now ready to prove that Lo, o ® preserves the orbit K.

Proposition 5.4. There exists g € G:LQ+ (R) such that

1) = a(a, _1) - g.

(LOX O@)'O'(O[,—Q 2

Proof. By definition the stability condition (Lo, o ®) - o(c, —3) has heart Lo, ®(A(a, —3))

and stability function Z’ := Z o (Lo, o ®);'. On the other hand, the objects Lo, ®(Z;) and
Lo, ®(J;) are defined respectively by the triangles

0P - Ty (H) - Loy ®(Zy) and Ox ® Ox[1] - Jo(H) — Lo, (7).
A standard computation shows that (Lo, o ®);1([Z¢]) = —[J¢] and (Lo, o @) ([T]) = [Z¢] —

[J¢]. Then it is possible to check that the basis {Z(a, —3)(—[T2]), Z(cv, —3)([Z¢] — [Te])} and

{Z(a, —3)([Ze]), Z(c, —3)([Te])} have the same orientation. Thus there exists g € G~L;r (R) such
that O'(Oé,—%) -g = o, where o/ = (A',Z’). Up to shifting, we may assume A’ is a tilt of
Al(a, —%) Since by Lemma 5.3, the heart Lo, ®(A) is a tilt of A(«, —%), by [6, Lemma 8.11]
we conclude ¢/ = (Lo, o ®) - o(a, —3), as we claimed. O

As a direct consequence, we obtain the following property of the Serre functor.
Corollary 5.5. The Serre functor of Ku(X) preserves the orbit K.

Proof. By (6) it is enough to prove the statement for Lo, o ®. But this is a consequence of

Proposition 5.4 and the fact that the action of G:L; (R) commutes with the action of Aut(Ku(X)).
O
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Remark 5.6. We point out that the proof of Proposition 5.4, and in particular of the previous
lemmas, works for every Fano threefold of Picard rank 1 and index 2. Indeed, we have never used
the fact that X is a cubic threefold. Moreover, by |21, Proposition 3.8] and wx = Ox(—2H),
the Serre functor of Ku(X) still satisfies the relation

SEL,l(X) = (LOX © (I)> © (]LOX © (I))[_3]'
In this paper, we only need the result for d = 3, but we state the more general proposition for
the reader convenience.

Proposition 5.7. Let X be a Fano threefold of Picard rank 1 and index 2. Then there exists

g€ dL; (R) such that
1 1
(LOX e} q)) . O'(Of, —5) = O'(Of, —5)

In particular, the Serre functor of Ku(X) preserves the orbit K.

5.2 Skucx)-invariant stability conditions

Let X be a cubic threefold. Let us introduce the following notion.
Definition 5.8. A stability condition o on Ku(X) is Sk,(x)-invariant if Skyx) -0 = o - g for
je GL, (R).

In the next lemmas, we prove some properties of the heart of a Sk, x)-invariant stability
condition.

Lemma 5.9. For every Sk, x)-invariant stability condition o, if F' is a o-semistable object of
phase ¢(F), then the phase of Sky(x)(F) satisfies ¢(F') < ¢(Skux)(F)) < ¢(F) + 2

Proof. By definition, there exists g = (g, M) € G~L; (R) such that Sky(x)-o = 0-g. Thus for every
o-semistable object I, the image Sk (x)(F') is o-semistable with phase ¢(Sky(x)(F)) = g(¢(F)).
Assume ¢(Sku(x)(F)) = ¢(F) + 2. Then we have

S(Sku(x) (F)) = 9(g(¢(F))) = g(&(F) +2) = g(¢(F)) +2 = ¢(F) + 4,

as g is an increasing function. Similarly, we get ¢(Sp Ku(X ( )) = ¢(F) + 6, in contradiction
with the fact that ¢(Sg, x)(F)) = ¢(F) +5. Also F and Sku(x)(F) cannot have the same

phase with respect to o, since otherwise we would have ¢(S(F)) = ¢(F) + 5 = ¢(F), which is
impossible. O

Lemma 5.10. For every Sky(x)-invariant stability condition o = (A, Z), the heart A has ho-
mological dimension 2.

Proof. Let A, B € A. The vanishing Hom®(A, B) = 0 for i < 0 follows from the property of heart
of A. Note that by Lemma 5.9, the o-semistable factors of Sk,(x)(A4) have phase in the interval
(0,3). On the other hand, the o-semistable factors of B[i] have phase in the interval (7,7 + 1].
By Serre duality, we deduce that

Hom(A, B[i]) = Hom(B[i], Sky(x)(A4)) =0 for i >3,

since the semistable factors of B[i] have phase greater than the phase of the semistable factors
of Sky(x)(A). This proves our claim. O
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Lemma 5.11. For every Sky(x)-invariant stability condition o = (A, Z), there are no nonzero
objects A € A with Hom'(A, A) = 0 or Hom'(4, A) = C.

Proof. This is the analogous of [8, Lemma 4.4]. By [8, Proposition 2.7(ii)] we know that
x(A,A) < —1. Then if A€ A, by Lemma 5.10, we must have hom!(A4, A) > 2. O]

The previous lemmas allow to prove a weak version for cubic threefolds of the Mukai Lemma
proved in [3, Lemma 2.5] for K3 surfaces. Set hom!(A, A) := dim Hom! (A4, A).

Lemma 5.12 (Weak Mukai Lemma). Let o be a Sky(x)-invariant stability condition. Let A —
E — B be a triangle in Ku(X) such that Hom(A, B) = 0 and the o-semistable factors of A have
phases greater or equal than the phases of the o-semistable factors of B. Then

hom!(4, A) + hom!(B, B) < hom!(E, E).

Proof. By Serre duality, we have Hom(B, A[2]) = Hom(A[2], Sku(x)(B)). Assume for simplicity
that A and B are o-semistable. Since o is Sky(x)-invariant and by Lemma 5.9, the object
Sku(x)(B) is o-semistable with phase ¢(Sk,(x)(B)) < #(B) + 2. Thus ¢(A[2]) = ¢(B) +2 >
?(Sku(x)(B)), which implies the vanishing Hom(A[2], Sku(x)(B)) = 0. If A and B are not o-
semistable, applying the same argument to their semistable factors, we get the required vanishing.
Then the argument of [3, Lemma 2.5] applies to this setting, implying the result. O

The weak Mukai Lemma implies the stability of objects with hom!(E, E) = 2.

Lemma 5.13. Let o be a Sy(x)-invariant stability condition. Then every E € Ku(X) with
hom!(E, E) = 2 is o-stable.

Proof. Assume E is unstable with respect to o. Then there is a triangle A - E — B in Ku(X),
where B € P(¢) and A € P(> ¢). Since Hom(A, B) = 0, by the weak Mukai Lemma 5.12, we
have
hom'(A, A) + hom!(B, B) < hom!(E, E) = 2.

Note that B cannot have hom!(B, B) = 0 or 1 by Lemma 5.11. Moreover, if hom!(4, A) = 0,
then all its o-semistable factors would satisfy the same property by Lemma 5.12; in contradiction
with Lemma 5.11. It follows that E is o-semistable.

Now assume that E is strictly o-semistable of phase ¢. Up to shifting, we may assume that
FE is in the heart of . Assume firstly that E has at least two non-isomorphic stable factors.
Then we have a sequence

0-A—-FE—->B—-0
in P(¢) with Hom(A, B) = 0. By the weak Mukai Lemma 5.12, we have
hom!(A, A) + hom!(B, B) < hom!(E, E) = 2.

Since A and B with this property cannot exist in the heart of o by Lemma 5.11, we deduce that
FE is o-stable.

Consider now the case that E has a unique stable factor A up to isomorphism. Note that
hom!(A, A) = 2 by Lemma 5.10. Since hom?(A, A) = hom(A[2], Sku(x)(A)) = 0 by Lemma 5.9,
it follows that y(A, A) = —1. Then —1 < x(E, E) = n?x(A, A) = —n? for a positive integer n,
which is impossible unless n = 1. This ends the proof of the claim and implies the statement. [

Remark 5.14. By Lemma 5.13 the objects Z; and J; are o-stable for every Sk, x)-invariant
stability condition o. Thus by (5) we deduce that the image of the central charge Z of o is not
contained in a line and Z € Z(ap, —1) - GL (R).

Remark 5.15. As suggested by the referee, we point out that all the arguments in this section
work by replacing Ku(X) with any fractional Calabi-Yau category D of dimension < 2 (see [24]
for the definition) with negative definite numerical K-theory.
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5.3 Applications

By Corollary 5.5 every o € K is Sk, (x)-invariant. Thus the results of the previous section hold for
o and allow to prove Theorem 1.2 and to give another proof of the categorical Torelli Theorem,
firstly showed in [8|.

Proof of Theorem 1.2. Assume that M,(Ku(X), ) is a non-empty moduli space of o-stable ob-
jects in Ku(X') with numerical class k, with o = (A, Z) € K. Consider E € M,(Ku(X), ). Up to
shift, we may assume E € A. By Lemma 5.10, we have the vanishing Hom®(E, E) = 0 for every
1 # 0,1,2. By Serre duality, we have

Hom?(E, E) = Hom(E[2], Sky(x)(E)) =0,

since by Corollary 5.5 and Lemma 5.9 the object Sk, (x)(£) is o-stable with phase < ¢(£) +
2. Since E is stable, we have that hom!(E, E) = 1 — x(E, E) is constant. This proves that
M, (Ku(X), k) is smooth, as we wanted. O

For the categorical Torelli Theorem, we need this stronger version of Theorem 1.1.

Lemma 5.16. Let o be a Sky(x)-invariant stability condition on Ku(X). Then My (Ku(X),[Z]) =
¥(X).

Proof. Let E be a o-stable object with [E] = [Zy]. Then x(F, E) = —1. The same argument in
the proof of Theorem 1.2 implies that hom!(E, E) = 2. Thus by Lemma 5.13 E is o(a, §)-stable.
By Proposition 4.6 we deduce that E =~ 7, for some line £ < X up to shifting. Together with
Lemma 5.13 this implies a bijection between the Fano surface of lines 3(X) and M, (Ku(X), [Z/]).
By [8, Section 5.2| this bijection defines an isomorphism of algebraic varieties. O]

Theorem 5.17 ([8], Theorem 1.1). Two cubic threefolds X and X' are isomorphic if and only
if there is an exact equivalence between Ku(X) and Ku(X").

Proof. Assume there is an exact equivalence ® : Ku(X) — Ku(X’). By [8, Lemma 2.8], up to
composing with a power of the Serre functor of Ku(X), we may assume [®.(Zy)] = [Zp] for ¢,
¢ lines in X and X', respectively. Set o := o(a, ) € Stab(Ku(X)); by Theorem 1.1 and our

assumption we have
Y(X) = My (Ku(X),[Z]) = Me.o(Ku(X"),[Ze]).

Note that ® - o is a Sky(x+)-invariant stability condition. Indeed, we have Skyx7) - (®-0) =
® - (Sku(x) - o) since the Serre functors commute with equivalences (see [17, Lemma 1.30]). Then
we have @ - (Sky(x)-0) = ®-(0-g) = (®-0)-g by Corollary 5.5 and the fact that the actions of

¢ and G:L2+ (R) commute. Then by Lemma 5.16 we deduce that Mg..(Ku(X'),[Zy]) = E(X').
Since the canonical bundle of the Fano surface of a cubic threefold is identified with the Pliicker
polarization, by [12, Proposition 4| we conclude that X =~ X’. O

6 Quartic double solids

Let X be the double cover of P? ramified in a quartic surface. By [24, Corollary 4.6], the Serre
functor of Ku(X) is

SKu(X) = L[Q]v

where ¢ is the autoequivalence of Ku(X) induced by the involution of the double covering. We
firstly study the action of ¢ on K and on its boundary.
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Lemma 6.1. The involution v acts as the identity on the closure K of K in Stab(Ku(X)).

Proof. Note that ¢ - o(a, ) = o(e, ). Indeed, ¢ preserves Coh(X) and the Chern character.
Since the action of G:L; (R) commutes with autoequivalences, the previous observation implies

that ¢ acts as the identity on IC. Since the action of ¢ on the stability manifold is continuous, we
deduce the statement. O

Lemma 6.1 allows to prove the following properties, in analogy to what was done in Section
5.2.

Lemma 6.2. For every o = (A, Z) in K, the heart A has homological dimension 2.

Proof. Let A, B be in A. The vanishing of Hom®(A, B) = 0 for i < 0 follows from the property of
heart of A. By Lemma 6.1, ¢ preserves the phases of stable factors and the o-semistable factors
of t(A) are the image via ¢ of the semistable factors of A. Thus for every i > 2 we have

Hom'(A, B) = Hom(B, t(A)[2 — i]) = 0.
This proves that .4 has homological dimension 2. O

Lemma 6.3. For every o = (A, Z) in K, there are no nonzero objects A € A with hom' (A, A) =
0orl.

Proof. Using the computation of the pairing on the numerical K-theory of Ku(X) in [22], we get
x(A, A) < —1. Then if A € A, by Lemma 6.2, we must have hom®(4, A) > 2. O

In order to prove Theorem 1.3, we finally need a version of the Mukai Lemma in this setting.

Lemma 6.4 (Weak Mukai Lemma). Let A — E — B be a triangle in Ku(X) with Hom(A, B) =
Hom(A,«(B)) =0. Then

hom! (A4, A) + hom!(B, B) < hom!(E, E).

Proof. By Serre duality Hom(B, A[2]) = Hom(A,(B)) = 0. Then the same argument of |3,
Lemma 2.5] applies, implying the result. O

Proof of Theorem 1.3. Assume that D is a connected component of Stab(Ku(X)) strictly con-
taining . Then D contains the boundary of K in Stab(Ku(X)), which consists of stability
conditions whose central charge is not injective, by Remark 3.11. Denote by o = (P, Z) one of
them. By the support property, we may assume that there is o1 := g - o(ap, —%) such that if £
is o1-stable of phase ¢, then E € P(¢ —e, ¢ + ¢). By assumption, the image of Z is contained in
a line; this implies E € P(f) for a certain ¢ —e < 0 < ¢ + . As a consequence, Z; and [Jy are
o-semistable, by Proposition 4.1 and Proposition 4.3.

We claim that Z, and J; are o-stable. As a consequence, we would have that (5) holds for
o, contradicting the fact that Z has image in a line. This implies that such degenerate ¢ cannot
exist on the boundary of I, proving that I = D.

It remains to prove the claim. Assume E = Z, or [J; is strictly o-semistable of phase ¢. If
all stable factors of E are isomorphic, we get a contradiction with x(F, E) = —1. Assume that
E has at least two non-isomorphic stable factors. Then by a standard argument (see [3, Proof
of Lemma 2.6| or [18, (2.4)]) we can write a sequence in P(¢) of the form

0-A—-FE—>B-—0,

where A, B are o-semistable, all the stable factors of B are isomorphic and Hom(A, B) = 0. If
Hom(A,«(B)) = 0, then Lemmas 6.3 and 6.4 imply the stability of E by the same argument as
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in Lemma 5.13. Assume that Hom(A, «(B)) # 0. By Lemma 6.1 the object ¢(C) is o-stable of

the same phase of C. Then we have Hom(A, ((C)) # 0. Moreover, ¢(C) is a quotient of A and

C # 1(C). We can write a sequence D — A — F', where D and F are o-semistable, all the stable

factors of F' are isomorphic to ¢(C), and C, ¢(C) are not stable factors of D. Then we have the
following commutative diagram

D—A——

b

E

B

D——
0

where G is o-semistable and whose stable factors are isomorphic to C or «(C). It follows that
Hom(D,G) = Hom(D, «(G)) = 0 by Lemma 6.1. By Mukai Lemma 6.4, we deduce that

Q™

—

&

id
H ;}

)

hom!(D, D) + hom! (G, G) < hom'(E, E) = 2.

Since this is impossible by Lemma 6.3, we must have Hom(A, +(B)) = 0. This ends the proof of
the statement. O

References

[1] M. Altavilla, M. Petkovi¢, F. Rota, Moduli spaces on the Kuznetsov component of Fano
threefolds of index 2, (2019) arXiv:1908.10986.

[2] D. Arcara, A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces, with an
appendix by Max Lieblich, J. Eur. Math. Soc. 15 (2013), 1-38.

[3] A. Bayer, T. Bridgeland, Derived automorphism groups of K3 surfaces of Picard rank 1,
Duke Math. J. 166 (2017), 75-124.

[4] A. Bayer, M. Lahoz, E. Macri, P. Stellari, Stability conditions on Kuznetsov components,
Appendix joint also with X. Zhao, (2017) arXiv:1703.10839v2.

[5] A.Bayer, M. Lahoz, E. Macri, H. Nuer, A. Perry, P. Stellari, Stability conditions in families,
(2019) arXiv:1902.08184.

[6] A. Bayer, E. Macri, P. Stellari, The space of stability conditions on abelian threefolds, and
on some Calabi-Yau threefolds, Invent. Math. 206 (2016), 869-933.

[7] A.Bayer, E. Macri, and Y. Toda, Bridgeland stability conditions on threefolds I: Bogomolov-
Gieseker type inequalities, J. Algebraic Geom. 23 (2014), 117-163.

[8] M. Bernardara, E. Macri, S. Mehrotra, P. Stellari, A categorical invariant for cubic three-
folds, Adv. Math. 229 (2012), 770-803.

[9] M. Bernardara, E. Macri, B. Schmidt, X. Zhao, Bridgeland stability conditions on Fano
threefolds, Epijournal Geom. Algébrique 1, 2 (2017).

[10] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. 166 (2007),
317-345.

[11] T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J. 141 (2008), 241-291.

29



[12]
[13]
[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]
28]

[29]

[30]

[31]

F. Charles, A remark on the Torelli theorem for cubic fourfolds, (2012) arXiv:1209.45009.
C. Ciliberto, M. Zaidenberg, Lines, conics, and all that, (2019) arXiv:1910.11423.

G. Dimitrov, L. Katzarkov, Bridgeland stability conditions on wild Kronecker quivers, Adv.
Math. 352 (2019), 27-55.

Y. Fan, C. Li, W. Liu, Y. Qiu, Contractibility of the space of stability conditions on the
projective plane via global dimension function, (2020) arXiv:2001.11984.

D. Happel, 1. Reiten, S. Smalg, Tilting in abelian categories and quasitilted algebras, Mem.
Amer. Math. Soc. 120 (1996), viii+ 88pp.

D. Huybrechts, Fourier-Mukai transforms in algebraic geometry, The Clarendon Press Ox-
ford University Press, Oxford Mathematical Monographs (2006), viii4307.

D. Huybrechts, E. Macri, P. Stellari, Stability conditions for generic K3 categories, Com-
positio Math. 144 (2008), 134-162.

M. Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective
scheme, J. Math. Kyoto Univ. 42 (2002), (2) 317-329.

V. Iskovskikh, Yu. Prokhorov, Fano varieties, Algebraic geometry, V, Encyclopaedia Math.
Sci. 47 Springer, Berlin (1999), 1-247.

A. Kuznetsov, Derived categories of cubic and V14 threefolds, Proc. V.A.Steklov Inst. Math.
246 (2004), 183-207.

A. Kuznetsov, Derived categories of Fano threefolds, Proc. Steklov Inst. Math. 264 (2009),
110-122.

A. Kuznetsov, Instanton bundles on Fano threefolds, Cent. Eur. J. Math. 10 (2012), 1198-
1231.

A. Kuznetsov, Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math.
753 (2019), 239-267.

A. Kuznetsov, Yu. Prokhorov, C. Shramov, Hilbert schemes of lines and conics and auto-
morphism groups of Fano threefolds, Japan. J. Math. 13 (2018), 109-185.

C. Li, Stability conditions on Fano threefolds of Picard number one, J. Fur. Math. Soc. 21
(2019), 709-726.

C. Li, On stability conditions for the quintic threefold, Invent. Math. 218 (2019), 301-340.

C. Li, X. Zhao, Birational models of moduli spaces of coherent sheaves on the projective
plane, Geom. and Top. 23 (2019), 347-426.

C. Li, X. Zhao, Smoothness and Poisson structures of Bridgeland moduli spaces on Poisson
surfaces, Math. Z. 291 (2019), 437-447.

C. Li, L. Pertusi, X. Zhao, Twisted cubics on cubic fourfolds and stability conditions, (2018)
arXiv:1802.01134.

Y. Liu, Stability conditions on product varieties, (2019) arXiv:1907.09326. to appear in
Crelle. DOI: https://doi.org/10.1515 /crelle-2020-0010.

30



[32] A. Maciocia, D. Piyaratne, Fourier-Mukai transforms and Bridgeland stability conditions
on abelian threefolds, Algebraic Geom. 2 (2015), 270-297.

[33] A. Maciocia, D. Piyaratne, Fourier-Mukai transforms and Bridgeland stability conditions
on abelian threefolds II, Internat. J. Math. 27 (2016), 1650007.

[34] E. Macri, Stability conditions on curves, Math. Res. Letters 14 (2007), 657-672.

[35] E. Macri, A generalized Bogomolov-Gieseker inequality for the three-dimensional projective
space, Algebra Number Theory 8 (2014), 173-190.

[36] E. Macri, B. Schmidt, Lectures on Bridgeland Stability, Proceedings of the "CIMPA-
CIMAT-ICTP School on Moduli of Curves" (Guanajuato, Mexico, 2016), Springer 2017.

[37] S. Mukai, Symplectic structure of the moduli space of sheaves on an abelian or K3 surface,
Invent. Math. 77 (1984), (1) 101-116.

[38] S. Okada, Stability manifold of P, J. Algebraic Geom. 15 (2006), 487-505.

[39] A. Perry, L. Pertusi, X. Zhao, Stability conditions and moduli spaces for Kuznetsov com-
ponents of Gushel-Mukai varieties, (2019) arXiv:1912.06935.

[40] A. Perry, The integral Hodge Conjecture for two-dimensional Calabi-Yau categories, (2020)
arXiv:2004.03163.

[41] M. Petkovié, F. Rota, A note on the Kuznetsov component of the Veronese double cone, to
appear.

[42] D. Piyaratne, Generalized Bogomolov-Gieseker type inequalities on Fano 3-folds, (2016)
arXiv:1607.07172.

[43] A.S. Tihomirov, The Fano surface of the Veronese double cone, Mathematics of the USSR~
Izvestiya 19 (1982), no. 2, 377.

Dipartimento di Matematica “F. Enriques”, Universita degli Studi di Milano, Via Cesare Sal-
dini 50, 20133 Milano, Italy.

E-mail address: laura.pertusi@unimi.it

URL: http://www.mat.unimi.it/users/pertusi

Center for Applied Mathematics, Tianjin University, Weijin Road 92, Tianjin 300072, P. R.
China.

E-mail address: syangmath@tju.edu.cn

URL: http://cam.tju.edu.cn/en/faculty/index.php?id=44

31



