ON 5- AND 10-DISSECTIONS FOR SOME INFINITE PRODUCTS
DAZHAO TANG

ABSTRACT. Quite recently, Xia and Zhao established the 10-dissections for Hirschhorn’s
two infinite g-series products by two MAPLE packages and modular forms. Utilizing the
Jacobi triple product identity, we not only establish the 10-dissections for two infinite
g-series products, introduced by Baruah and Kaur, but give an elementary proof of the
10-dissections due to Xia and Zhao. Moreover, we obtain the 5-dissections for four quo-
tients of infinite g-series products related to the Rogers—Ramanujan functions. Using these
dissections, the coefficients in these series expansions have periodic sign patterns with some
few exceptions.

1. INTRODUCTION

Recently, arithmetic properties of coefficients in infinite ¢-series products have been ex-
tensively investigated. These research mainly focus on two aspects. Some results are about
vanishing coefficients of the arithmetic progressions in g-series expansions [1,3,9,15,21,25,

|. The other concentrate on periodic sign patterns of coefficients in g-series expansion-
s |2,6,7, 10,14, 18,20,22 23,27 28]. In a private communication with Ernest X. W. Xia,
Hirschhorn [17] studied vanishing coefficients of the arithmetic progressions in a new type
of ¢-series expansions, the forms of which are different from these of the aforementioned
literature. Define

> an)g" = (=4, =¢" ¢")oo(0: ¢ 42 (1.1)
n=0
> b(n)g" = (0%, —¢* ¢")oo(d’ 05 402 (1.2)
n=0

Here and in what follows, we adopt the following customary g¢-series notation:
n—1

(a;q)n = [J(1 —ag’),  neNU{oc},

=0
(a1, a2, .., am; @)oo = (015 0)o0 (A2 @)oo+ + (Ami @)oo,  for g < 1.
Hirschhorn [17] proved that for any n > 0,
a(bn+2) =a(5n+4) =0,
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b(5n+ 1) = b(5n+4) = 0.

The author [24]|, Baruah and Kaur || as well as Dou and Xiao [12]| subsequently con-
sidered some variants of (1.1) and (1.2) and obtained some comparable results. Baruah
and Kaur [1| also established some interlinked identities between a(n) and b(n). Quite
recently, the author and Xia [26] gave another proof of these interlinked identities among
other things. For instance, for any n > 0,

a(®5n+ 1) = b(5n + 3).

Motivated by these works, Xia and Zhao [30] further investigated (1.1) and (1.2). Using
two MAPLE packages due to Frye and Garvan [13] and modular forms, they obtained the
following two 10-dissections.

Theorem 1.1. We have

(=2, =% 0")o(0. 0% 0")% =D " A(q"),

where B
(0% 4)%.(0%% ¢*°)oe (®, 4"% ¢%°) o
Aola) = ()% (05 03 (2, P ) (13)
Avlg) = pel(RTR s , (1.4

(05 0)% (g% % 1) % (4%, "% %)
_ 2(¢"¢")3%(@% %) (q,qg;qm)io

Asla) (4:9)% (q 3 %0 (%)
Asla) = (¢ )% (¢%, ¢%; (q )go() q q %)oo 16)
0 = O o
o) = <) 7 4& e )
Ax(q) = Aag) = Ar(q) = Ao(q) = 0. (1.9)
Theorem 1.2. We have
(=¢% =0 ¢")oo(d®, 47 ¢')2 = XQ:QTBT(QIO),
where -
Fola) = EZ qq) )(q<qq(§ ><q(q2q/1(613;1(21§; 0
B0 = e —
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—2(¢*% )3

Bala) = (¢ 0)%(a* % ¢'0)% (62, 4% %)’ (1.12)
—2(q"% ¢")2(0% @°)oc (@, 75 402
Balo) = (¢;0)%(¢% ¢ ¢*°) o0 ’ (1.13)
_ —2(q*; ¢")2
Bl = (45 0)% (0% 0% ¢"9)2. (6%, 4" %)’ (1.14)
Ba(g) = (% 4%)%.(¢*; q)(qq&)’ (1.15)

(404 (q* ¢*)3.(4, 4% ¢°) oo
Bi(q) = Ba(q) = Bs(q) = By(q) = 0. (1.16)

In [1], Baruah and Kaur considered vanishing coefficients of the arithmetic progressions
in following two g¢-series expansions closely related to (1.1) and (1.2). Define

o0

D )" = (0.4"¢")so(—a0. —4":¢")2, (1.17)
n=0
Zd (@ 4% 4°)oo(—4*, —a";4"). (1.18)

The 10-dissections (1.3)7(1.16) prompt us to look for the 10-dissections for g-series ex-
pansions (1.17) and (1.18). In the present paper, we not only establish the 10-dissections
(see (1.19)—(1.36)) for g-series expansions (1.17) and (1.18), but give an elementary proof
of (1.3)=(1.16). Unlike the main techniques used of [20], the main ingredient for proofs
of (1.3)-(1.16) and (1.19)—(1.36) is only the Jacobi triple product identity. Moreover, we
also establish the 5-dissections for four quotients of infinite g-series products related to the
Rogers—Ramanujan functions, two of which were introduced by the author [25]. Define the

sequences {e(n)}, {f(n)}, {g(n)} and {h(n)} by

- o (q,05¢°)% q 7 ¢°)2
;%e(n)q (@)% Zf (40503
= w (230,  (g.d% )%
;gm)q (4,95 0)% Zh (¢ ¢% ¢°)%
Theorem 1.3. We have
(0:0%0)oo (=0, —¢"; "% = Y 4" C(q"),
where :
(%) (q P°)oo(0*;0%°)o (4%, 4% 4'°) 20
Cola) = (45 9)3%(a% 42, (q, ¢ Q) (% 4% ¢%) s’ (1.19)
~2(g% 4% ( )2(0"% ") oo (g, g q5)
Co0) = Tt Pl PO ) (120



4 D. TANG

—2(q%¢")2.(0% 0°) oo (@®, 4'% 4*°)
e A EX CEOPIPLOEA
_ —2(¢%¢°)%(¢"% ¢")%
(¢:9)3(a% 4% (0% ¢°) s (0%, 4"%; 4*°)
—2(q" ¢")2(0"% ¢") oo (0", ¢'% ¢*°) o
Cila) = (45 0)% (6% ¢®)oo(a: 4% )%

Y

9

)

Cs(q) = —(% ) (0% )2 (4, 4% @)oo (6, 455 ¢%0) o

(¢ 0)% (g% q*)2. (¢ qlo) (4% % ¢'0)%
Culq) = (0% )5 (0 )2 (0% %) 0o (6, 47 %) o

(4 0)S.(a* ¢*)3, (q 1019 s0 (45, ¢ ¢%) o
Colq) = Aa" 9")5(0" 0)5 (g, 4" 47) o
T (@02 L )2 (0, % 1)

Ca(q) = Cr(q) =

Theorem 1.4. We have
(0% 6% @)oo(—¢*, —a":0")% = > ' D, (¢"),
where

Do(q

- (0% 6°)%.(0°:0°)2(0: 4" 0°) oo (4%, ¢ %)
(

)

4 0)5(q% a*)2,
—(% 4% (0% ) oo (0 ) oo (@, 4% ¢'0)2
D0) = 5 (0 % 0, o NCRLTN
Dalq) = 2(q% 4")2.(0%; )2 (0" ¢"0) oo (q. 4" 4°) 2,

(¢ @) (0% 4%) 00 (% 4%) s (a4, 4193 ¢%°) o
Dalg) = 24(¢% ¢*)3. (0" ¢")%

Y

(@ 0)% (0% a2 (0% ¢°) e (65, 4% ¢%0) 0

—2(q";¢")2.(0% ¢°) oo (q", 4"% ¢*°)
Dsla) = (¢;9)% (q 4% q')% ’

2(q% 42, (0"; ") (", 4% )
Drla)= (43 0% (0% ¢%)oo (a0, 4% )%
Ds(q) = —(¢% )5 (@ )2 (0,04 )0 (@2, 0" %) o
i (¢ 9)%(q% ¢*)2 (q10 0*)oo(4?, 4% q10)2,
Do) = —4(q* q*)2.(¢"; ¢"0)5. (%, q12'q2°)

(0% (6% )% (% 0°)% (3, 475 410)
D1 (q) = Dg(q) = 0.

)

Y

(1.21)
(1.22)
(1.23)
(1.24)
(1.25)

(1.26)

(1.27)

(1.28)
(1.29)
(1.30)
(1.31)
(1.32)
(1.33)
(1.34)

(1.35)
(1.36)

The identities (1.27) and (1.36) were established by Baruah and Kaur [/, Theorem 1.12].
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Theorem 1.5. We have

4
(¢,4"4°)% "
o = 21 B,

()3 =

where
Fola) = (q, 9% Q)EQQQ)
B=a Q)_(zqq)
B0 =1 Q)L(quq)
Fola) = (q,q4;q5)oo_(22,q3;q5)‘éo
Fi) = s

(% %)%
Theorem 1.6. We have

(% ¢ d°)% q quF

(q,q% )3,
where
1
Fota) = (q,q%¢°)%’
Fi(q) = ’
q :
' (¢, 4% )4 (% 3 @)oo
4
F: ,
2(0) = (0, 9% ¢°)3.(¢% 4% a°)2,
2
Fy(q) = :
(D) = P PP
1

(0,05 ) (@ 3 P
Theorem 1.7. We have

(qqq Z

(d5P)% =
where
—3q 1
G + :
ole) = (0,05 )% (% % d°)% (0,44 ¢°)T
— 2
Gr(q) 1

= +
(0,05 @) (0% 6%)S (0,44 4°)% (0% ¢ @)

(1.37)
(1.38)
(1.39)
(1.40)

(1.41)

(1.42)
(1.43)
(1.44)
(1.45)

(1.46)

(1.47)

(1.48)



6 D. TANG

-3

Gl = (4,9% ¢°)% (4%, % @)%, (1.49)
-5
Gl = (¢, 4% @°)3(a%, % a°)% (1.50)
G2a)=0. (1.51)
Theorem 1.8. We have
(0,442 ,
(4, ¢% )% ZqH
where
1 %
Hy(q) = (q0,9%¢°)% (4%, ¢ ¢°) oo +(q7q4;q5)w<q27q3;q5)go (1.52)
Hi(q) = (005 )% (@ %)% (% P)L (1.53)
5
Hala) = (4. 9% %)% (?, ¢ @°)3 (1.54)
-5
Hslg) = (4, 4% 4°)3.(6%, 43 )4, (1.55)
Hila) =0 (1.56)

The identities (1.51) and (1.56) were proved in |25, Egs. (1.7) and (1.8)].
According to Theorem 1.1 and Theorem 1.2, Xia and Zhao [30] obtained that the se-
quences {a(n)} and {b(n)} have periodic sign patterns for any n > 0.

Corollary 1.9. For any n > 0, we have

(>0, if n=0,3,6 (mod 10),

a(n)$ <0, if n=1,5,8 (mod 10), (1.57)
(=0, if n=2,4 (mod5),

(>0, if n=0,2,8 (mod 10),

b(n)< <0, if n=3,57 (mod 10), (1.58)
(=0, i n=14 (mod}5).

In view of (1.19)—(1.56), we obtain the following analogous results.
Corollary 1.10. For any n > 0, we have

>0, if n=0,1,89 (mod 10),
c¢(n)< <0, if n=3,4,5,6 (mod 10), (1.59)
=0, if n=2,7 (mod 10),



ON 5- AND 10-DISSECTIONS FOR SOME INFINITE PRODUCTS

>0, if n=0,3,4,7 (mod 10),
d(n){ <0, if n=258,9 (mod10),
=0, if n=1,6 (mod 10),
except for d(4) = 0.
Corollary 1.11. For any n > 0, we have
{> 0, if n=0,2,4 (mod5),
e(n) .
<0, i n=1,3 (mod?5),
f(n) >0,
except for e(9) = 0.
Corollary 1.12. For any n > 0, we have
(>0, if n=0,1 (mod 5),
gn)< <0, if n=3,4 (mod?5),
(=0, i n=2 (mod}5),
(>0, if n=0,2 (mod5),
h(n)< <0, if n=1,3 (mod 5),
(=0, if n=4 (mod}5).

(1.60)

(1.61)

(1.62)

(1.63)

(1.64)

The remainder of this paper is organized as follows. In Sect. 2, we collect some necessary
notation and some identities related to the Rogers-Ramanujan functions. In Sect. 3, we
first prove Theorem 1.3 and Theorem 1.4, then sketch the elementary proofs of Theorem 1.1
and Theorem 1.2. The proofs of Theorems 1.5-1.8 and Corollaries 1.10-1.12 are presented

in Sect. 4. In the last section, we conclude with two remarks.

2. PRELIMINARY RESULTS

We first collect some necessary notation and identities which are needed to prove the

main results of this paper.
Let k£ > 0,1 > 0 be integers and let

n=0

be a formal power series. Define an operator Hy; by
Hit (W(q)) = ) w(kn + g™,
For two given formal power series

Wilq) = Z wi(n)q"” and Wa(q) = Z way(n)q",
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if wy(n) > we(n) (resp. wi(n) > wq(n)) holds for all n, then we denote Wi(q) = Wa(q)
(resp. Wi(gq) = Wa(q)).
Ramanujan’s general theta function is defined by |11, p. 8]

f(a, b): Z an(?ﬁ»l)/2bn(n71)/27

n=—oo

where |ab| < 1. The function f(a,b) enjoys the well-known Jacobi triple product identity |5,
p. 35, Entry 19]:

f(a,b) = (—a,—b, ab; ab) . (2.1)
The two important special cases of (2.1) are [, p. 36, Entry 22 (i) and (ii)]
(q )%
q q" = , 2.2
v(q) n;m 2 (. (2.2)
(4% ¢°)%
w q qn (n+1)/2 _ ) 2.3
@ Z (4 @) (23)
It follows easily from (2.3) that
(4 9)oc (" ¢")ox
—q) = : 24
v (4% ¢°)oc (24)

The identities (2.1)—(2.3) will be frequently used without explicit mention in the sequel.
The celebrated Rogers—Ramanujan identities |10, Eqgs. (17.4.2) and (17.4.3)| state that

Z ! (2.5)

— (¢,0%6%)oo

X n(n+1) 1
2 : q
—~ (@D (%6 0°)

(2.6)

Here G(q) and H(q) are known as the Rogers—Ramanujan functions. The Rogers—Ramanujan
continued fraction can be interpreted as |16, Eq. (8.1.2)]

H(g) _ (2,44
Glg) (¢ ¢% 0 )
Finally, we require the following identities related to (2.5)—(2.7).

R(q) = (2.7)

Corollary 2.1. We have

1 _(q25;q25)§o( Lo, g 2 830
(¢;9) (:0)% \R(P)*  R(®)?P  R(@)?  R(¢°)

—3¢°R(¢°) +2¢°R(¢°)* — ¢"R(¢°)* + q8R(q5)4) , (2.8)
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R(q)° _ 1-2qR(¢°) +4¢°R(¢°)* — 3¢°R(¢°)° + R(¢°)* (2.9)
R(¢°)  1+3qR(¢°) + 4¢°R(¢°)* + 2¢*R(¢°)* + R(¢°)*’ '
G(@)"H(q) - ¢*G(0)H(9)"" = 1+ 11 (G(¢)H(q))" (2.10)
Proof. The identity (2.8) appears in [10, Eq. (8.4.4)], (2.9) comes from [16, Eq. (9.2.13)]
and (2.10) is from [16, Eq. (17.4.5)]. O

3. PROOFS OF THEOREMS 1.1-1.4
We are ready to prove Theorem 1.3 and Theorem 1.4.

Proof of Theorem 1.3. We first prove (1.19), (1.22), (1.24) and (1.25).
We start with

(¢, 4" @)oo (—a: —a°; 4'°)2,

=(¢,94", 4% ¢ ¢") s (—a, —¢"; ¢"0)2

= (¢", 4% ¢") o (% €% ) (—q, —¢°; )%,

(q47 )oo(q27 q18; q20)00 io: 5m2+4m+5n2+4n
(qm;qlo)2 1 '

If m and n have the same parity, take (m,n) = (r+s,7 —s). If m and n have the opposite
parity, let (m,n) = (r + s —1,r — s), where r and s are integers. Therefore, we obtain

(¢:4% ") (—q, —¢"; ¢"0)2,
_ ((]47 qG, ql())oo(qQ7 q18; q20)oo
B (' 102,

7‘52 r+s 7‘782 r—s
><< Z q5(+)+4(+)+5( )2 44(r—s)

r,8=—00

TTS— 2 rTTS— T’—82 r—Ss
I s e e i ))

r,8=—00

18 20, 20
- yq 54 )oo

_(q ,qﬁ;q(lz) éqz q18'q20)m<¢(q10)(_q2,
(=

1q'")3
+200(”)(—¢*, 4", ¢ ) o).,

from which we obtain

& 5 10. 10
n q q ’q oo
c(2n)q _ # <)q<5.q5)2 ) (>, 0% @) oo(0: 0" 0"") oo (=0 0" 4" 0
n=0 !
10\6
7" q
Uil lgrs (% 0% @)oo (6, 0% ¢%) o (3.1)

(%) (6% g2,
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and
N n_ 20(¢) (¢ 4"
20(2?14— 1¢" = ( (q)s( P)? ) (@°,6%0")oo(: 4" 4" ) oo (=" =% ¢) e
n=0 ’
2(¢2; ¢2)2,
= —<(q5,q5)2) (@°, 6% 0")oo(0: 0% ¢'%) oo (0", =% ¢'%) o (3.2)

Notice that

1 - m m2 m
(q2,q3;q5)oo:m Z (=1)mg®mrmr

m=—0Q

1 = 10m24+m 2 - 10m2+9m
N (q5;q5)oo< 2. 1 PR ' (3:3)

m=—0Q m=—0Q

Combining (3.1) and (3.3), we find that

io: (q O'qlo)G 2 18 . 20. 20
c(2n)q" = s (€ )
~ (4% 6°)3(4°%; ¢*°)%

x ( i q10m2+m_q2 i q10m2+9m>

m=—00 m=—00

q
(4% 4°)2 (%% ¢%)2,

(qlo;qlo)go ( i (_1)m 10m24+-8m+10n2+n
m,n=—o0

—q2 i (_1>mq10m2+8m+10n2+9n>

m,n=—00

(qlo. q10)6

= Eon@ e T 54
where

S, = Z (_1)mq10m2+8m+10n2+n7 (35>

52:q2 Z (_1>mq10m2+8m+10n2+9n. (3.6)

In S;, suppose that 8m +n = 0 (mod 5), then —2m +n = 0 (mod 5). Equivalently,
m+2n =0 (mod 5). Assume —2m+n = 5r and m+2n = —5s, it follows that m = —2r—s
and n = r — 2s. Therefore, we obtain

HSO(Sl) _ Z (_1)sq10(72r73)2+8(72r73)+10(7‘725)2+(r72s)

r,8=—00
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oo

_ s, 50r24+15r4+50s2410s
= ) (-1)%g

r,8=—00

= (—¢%, —¢%,¢""; ¢'")

oo(q407 q ) q qloo)oo' (37)

In the same vein,

Hs(S2) = =¢°(=4", =4, 4" ¢'™) (4", 4, 4" ¢'*) - (3:8)
According to (3.4), (3.7) and (3.8), we arrive at

Colq) = (QQSQQ)SO ( 8 12 20, 20)
0 q - (q,q)5 (q4;q4)3 q 7q 7q ’q [e¢]
% ((_q7’ _q137q20;q20)oo T Q(_q?’, _q17,q20; q20)oo)
(4% ¢S,
= ¢.q¢", ¢ ¢
(4 9)2. (g% q*)3, (@ es
’)’TL2 m m2 m
X( Z q10 +3 +q Z q10 +7 )
(4% ¢S,
= .4, ¢ ¢
(@ 9)2. (g% q*)3, (@ es
% ( Z q(5( m)2+43(2m))/ 2 4 Z q 5(2m—1)2+3(2m— 1))/>
(qQ. q2)6 (5m2+3m)/2
= .4, ¢ ¢* q
(45 )2 (a* ") (« mz_:oo
(q y 4 )oo 8 12 20. 20 4 5. 5
(45 90)3%(q* q*)3, ( Jool )
_ (@%0°)5(0% 0o (0™ 4™) o (0%, %1 )5
(0503 (a* a*)3. (0, 6% @°) oo (@2, 4% ¢%°) o
as desired.
Since
Hs5(S1) = —¢*(—¢*°, —4". ¢" q ;"% (q4°,q60 q 2 ¢" s,
Hs(52) = ¢*(—¢%, =4, ¢"% ¢'"") o (6", 4%, ' ¢') .

Thus we obtain
—2(¢% ¢*)8,
C4(q): N5 (4. A\3
(7 9)3%(q* q*)3,
_ —2(¢* ¢*)% ("% 4")%
(45 0)5: (0% ¢*)% (0% ¢°) oo (4%, ¢'5; %0 o

(—¢*, =", % *) (0, 0%, 5 )

as desired.
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Similarly,
Hs3(S1) = — 13(—q5,—q95 ql(]O. 100>Oo(q20 7. ¢ q ’q100)
Hs3(52) = ¢*(—¢", =", ¢"% ¢") o (¢®°, ¢, ' ¢') .
We obtain
_(‘12"12) 20. 20
Cs(q) = 7' q"%, ;%)
@ (75 9)3.(a%; q) (@ )
x (=% =" % ) oo + (=0, 0", ¢*; ¢*) )
_(‘12"12) 20. 20
= 7' q", ;%)
(43 9)3 (g% ¢*)3, (@ )
< Z ql()m +m+q Z q10m +9m>
—(q%¢»)S, S (sm2em)
= 7' q'° ¢ ¢ q
G e 2 d
_(q2;q2)6 2 3. 5. 5
= (@, 4", ¢ ) (—0*. =0 ¢°; ") o
(75 0)3.(a% ¢*)3,

_ (%660 0°)2%(0, 64 ) (6, 471 ¢7)
(¢:0). (0% ¢*)% (0" 1) (4%, ¢%; ¢10) 2,

This proves (1.24).
Following the similar technique, we get

H5,4<Sl> = q9<_q157 _q857 q ) qloo) (q207 q807 q 3 qloo)

Hs4(59) = —¢* (=%, —4%, 4" ¢"") oo (¢°°, ¢®, "7 ¢'*) .-
Therefore,
(¢% ¢*)5
Cs(q) = 7' q"% ;¢
@) (45 90)3. (g% q%)3, (@ es
X ((=¢", =", ¢* oo + a(—=¢*, =", 67 ™))
2 2
7% q
=<q,q<>5 ) (0" 4" ¢ ¢*)so(—a, =", *; °) s

o0

(g% q*)3,
()P P2 (P P 0P ) (q2°q2°)
q*; q*)3,

(495 (0% ¢1%)so (45, 41 ¢*0)

This proves (1.25).
The proofs of (1.20), (1.21), (1.23) and (1.26) are a little trickier.
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According to (2.4) and (3.2), we find that

- 2(6120'(120)2 - 5m244m+5n>
ZC 2n + 1 (q5 q ) (qlo (]10) <q q q ) Z (_1)mq e
n=0 ’ m,n=—00

20662 5 5 5
- (q5;q5)2(q10;q10)go (q , 434 )oo

rTT$s 7‘82 rTT$s 7‘—82 r—S
X(Z(_1)+q5(+)+4(+)+5( )2 +(r—s)

r,8=—00

r,8=—00

+ Z r+s 1 5(r+s 1)2+4(r+s—1)+5(r—s)2+(r— s))

B 2(q20.q20)3
(0% 07) 0 (0" ¢0)3, (4%

% < Z (—1)"q 10m2+3m —q Z )™ 10m2+7m>_ (3.9)

m=—0oQ m=—0oQ

Combining (3.3) and (3.9),

> 2(q20. q20)3
c(2n+1)q
nz% (@ )2 (@05 )

> ( i ( 1)m 10m2+3m —q Z m 10m +7m)

m=—00 m=—0Q
o o
10n2+n 2 10n249n
X E q —q E q
n=—oo n=—oo

2(q20. q20)3
(@5 0°)% (010 ¢10)3,

(T =Ty, — T35+ Ty),

where
T, = i (_1)mq10m2+3m+10n2+n, (3.10)
Ty = ¢2 i (_1)mq10m2+3m+10n2+9n’ (3.11)
Ty =g i (_1)mq10m2+7m+10n2+n’ (3.12)
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o0

Ty=q" ) (—1)mglom rmitomton, (3.13)
e
Since
Hso(Th) = (=¢%, ¢, ¢' ,qmo) (4,0, 0" ") e,
Hso(T2) = —q"(— q,—q 70" ") (0,67, " 0" oo
Hso(T3) = q 0( % =074 " )e(@, 4, 4 ¢ oo,
HS,O(T4) — (_ _qg57 ql()(]; qloo)oo(q57 q95’ q 7ql()())

Therefore, we obtain

2(¢*; ¢*)%,

Ci(q) = (q‘?’,q”,ffo;q20 oo
19 = oz g \ )
x ((=¢°, —¢", ¢®% ¢®) oo + * (=4, =0, ¢*; ¢*) )
— (4,4, ¢*)
(=", =" ¢ )0 + *(—q, =", ¢ q2°)oo)>
2 4 4\3
= (q C]; ( ) ) (( q27_q3aq5;q5)oo
><(q g, ¢ O)oo—q2(q,q19,q2°;q2°)oo)>
2(q*
qq) ) ( =0, 0% )0
Z m 10m2+m q Z m 10m +9m>
__AUdh ) (—¢*, =%, ¢ ¢°)0 ( i (—1)m(m‘1)/2q(5m2+m)/2>
(9% ( )% =
2q
- @ ; @ ) 2 (= =, ;) (@, 0, = =)
~2(q%4Y)% (q )2 (44" 4°)2 (0" ¢")
(g )oo( 1 4%)00 (6% ¢%) 50 (¢4, 4" ¢%°) 0’
as desired.

In the same vein, we obtain

Hs1(Th) = " (=%, —4%, 4" ¢") oo (¢, 47, 4" ¢') o,

Hs1(Tz) = —¢"°(—=¢", —¢%, " ¢") oo (¢, q95,q i q
Hs1(T3) = q(—¢*, —4%, ¢"; ") (¢*°, ¢°, ¢*°°; ")

100)

o0y
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Hs1(Ty) = —¢°(=4", 4%, "% ¢" ) (6", ¢°°, 4" ') .
Then we get
_2(q4;q4>go ( 9 11 20, 20)
(G 2 (% )3, N\ T e
x ((=¢", =4, 6% ¢®) + a(—¢*, 4", % ¢*°) )
—*(q,4", 0% ¢*)
% ((—q7, 0,2 + a(—¢, —q17,q20;q20)00)>
_ _2(614;(]4)20 (_ _ 4 5, 5)
T gl \ T e
x ((¢°, ", ¢ 4)oe — (0, 4", ¢ q2°)oo)>
—2(q* "3
= (Q' q)g (qg, 22)3 (_QJ _q47 q5; q5)oo(q27 _q37 _q5; _qs)oo
2(¢%4")2.(0°;4°) oo (@®, 4% %) o
(g3 0)3.(¢*, 4% ¢'0)%

Cs(q) =

This establishes (1.21).
Similarly, we obtain

Hs»(Th) = —¢"(—¢", —¢%, 6" ") (¢, 4%, ¢'; ¢') o,
Hs2(To) = (=4, —4%, 4" ') (d®, 4%, 6" ') e,
Hs5(Ts) = ¢"(=4¢"°, =¢%, 4" ¢') (4", 4%, ¢ ¢') e
Hso(Ty) = —q" (=4, =%, " ¢"*)oe (4", 4%, ' ¢'*) o0
and
4. 4\3
Cs(q) = (q;;g(c’]; ;‘;‘320 ((q7,q13,q20;q2°)oo

x (=", =4, ¢ ™) + a(—¢*, =", ¢*%: ¢*) )
+4(¢’, 4", ¢ )
% ((—q7, 01,62 ) + q(—¢, —¢'7, ¢, q20)oo)>
—2(q% q")%,
(0% (@ )
x (47,4, ¢ ¢*)oo + a(d’, ¢, ¢ q20)oo))
—2(q*; ¢*)3,

4 5 5
= _qa _q ) q ? q [e'e)
AT )

3 (<_Q7 _q47 q57 q5>oo

15
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> ( i ( 1)m 10m? +3m+q Z m 10m2+7m>

m=—00 m=—00

—2(q"1¢")% > m(m 243m
(77 (0. —q". 0" ) | D (—1)mimtn2glomEsm)/2

(0% (0% )3
—2(q";¢")%
= (q,q)g (qz.;)g (=4, 4", 0" ¢") (0, ¢*, —0°; —0")
—2(¢* 4% (¢"% ¢") o (¢*, 4"%; ¢*) o
(4 0)2.(¢% ¢*)so(a, 4% ¢°) %

This establishes (1.23).
Since

m=—0o0

= "(—=¢®, 4", " ") (0", 6%, 0" ¢') s,

(Th)

( ): _qg(_q257_q757q 7q100) (q157q857q 5 q
Hs 4(Ty) = —q4(—q25,—q75,q % ¢") o0 (q35,q65,q %",
Hs 4(Ty) = ¢* (=%, —4", 4" ¢") o (6%, %, ¢"%; ¢**°)

100)

oo

4. 4\3
(@) q;iggo&g?;);)oo( =)
x (0707, 0" 0™ + a(a®,q", ¢ "))
4. 4\3
- (q;iggojgz;);)io o A e L AL
T e S Y e
(¢ 0)%(6% ¢*)% (0% ¢°)% (4, 65 4*°)
Finally,
Hs1(S1) = ¢ (=¢®, —¢%, ', ¢') o (1, ¢, ¢%; ¢1°0) .. = 0,
H5,1<SQ> — q21< q5’_q957q100’q100) (1 qIOO’q ,ql(]O) O
}153(71> — __q13(__q57__q957q 7q100) (q257q7 q ’q100>
Hs5(T2) = ¢*(—¢", =4, ¢' ,qmo)oo(q 07,0 ¢" ),
H5,3(T3)=—q13(—q,—q 00" se (67, q75q %4") 00,
Hs5(Th) = ¢*(—4", =%, ¢""% ") (¢®. 47, % ') 0,

from which we obtain (1.27). This completes the proof.

The proof of Theorem 1.4 is similar to that of Theorem 1.3.
Now we turn to sketch the elementary proofs of Theorem 1.1 and Theorem 1.2.
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Proof of Theorem 1.1. Similarly, we start with
y.
4. 5 9. 10\3
(=0, =0 0°)oc(0, 0710 ) e
= (—¢,—¢", % " ¢"") (a0, ¢°; "*)%,
= (—¢", =% ") ¢"% ) (—q, — % ¢'0)%

(=" =% 4" (% 0" 7)o i (=)o m
a (¢'%; q10)2 !

m,n=—0o

4 6 10 2 18 20
—¢* =% ") (¢% % ¢%)
_ (qlo.)qlg)g ) (e(d") (= —a"%, % ¢*)

—2q0(¢) (=%, —4", % ) ),

from which we obtain

o 5 10. 10
n 2@)@"4")0
af2n)g” = HNE I s ) )l a5 )
n=0 )
(qlo;qlo)go 2 3. 5 2 18, 20
= (q5;q5>4 <q20;q20)2 (_q »y =454 )oo(q yd 54 )oo
_ (q107q10>6 < io: (_1)mq10m2+8m+10n2+n
20. 420
(@)@ %N L=
o0
+q2 Z (_1)mq10m2+8m+10n2+9n>
(q10 q10>6
(@5 )% (0 )3, (514 52)
and
- _21/} 10 00
>_al2n+1)¢" a (q5).(q5)2 ) (2, % ool %o (s % )
n=0 !
-9 q20;q20 c2>o
= ((qs.qg, 2) (=%, =4’ ") oo(0, 0" ¢") s (—4*, —¢°; ") oo

m=—0oQ m=—0oQ

i q10n +n+q Z q10n +9n)

n=—oo n=—oo

( i m 10m +3m —q Z m 10m +7m>

17
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—2(¢*; %)%
- (@ )2 (¢ ¢10)3 (N +T =T = T0),
where S; (i =1,2) and 7 (j = 1,2, 3,4) are defined as (3.5), (3.6) and (3.10)-(3.13). The
proofs of (1.3)—(1.9) are quite analogous to (1.19)—(1.27), thus we omit the details. O

The proof of Theorem 1.2 is similar to that of Theorem 1.1.

Remark 3.1. It is worth mentioning that our proofs of (1.9) and (1.16) are different from
Hirschhorn’s proofs |1 7], because the summation forms of (3.5), (3.6) and (3.10)—(3.13) are
different from the summation forms in Hirschhorn’s proofs. In the same vein, the proofs of
(1.27) and (1.36) are different from those of Baruah and Kaur |1].

4. PROOFS OF THEOREMS 1.5-1.8 AND COROLLARIES 1.10-1.12
Proof of Theorem 1.5. In view of (2.5) and (2.6), we rewrite (2.8) as

et e e R
R ot T
By (4.1), we obtain
Fla)Hlg) = (q,q2,q3fq4;q5)oo - (?; Z;)c):o
- G i i

5 =30 G+ 2 e~ G )
=ty (o~ s Gy o G
(i e Gi e, o
Based on (2.7), we rewrite (2.9) as
P _ i) T e G gg)) s
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Multiplying (4.2) and (4.3) yields
2
H(q)° 54 G(¢°)° G(q°) 2 o3H()  JH(¢)
— G H —9 + 4% —3 + ,
Ggy ~ GO @ g 2 T TG T Gy
from which we obtain
(@.q%¢°)% _ H()’
(6% )3,  G(q)?
G(g°)? G(¢%) H(q%) H(qg")?
:G52H53 -9 +42_33 +4
) (H<q5>2 H) TG T Gy
= G(¢) ' H(¢") — 2¢G(¢°)*H(¢°)* + 4¢°G(¢°)* H ()’

= 3¢°G(@")H (") + ¢"H(¢")". (4.4)
The identities (1.37)—(1.41) follow from (4.4). O
Proof of Theorem 1.6. From (4.3), we find that
G@)? |, G@) sH() | H(d)?
Clay _ 6@ H@? O H >+4q M) T
H(q)»  H(q) (5)2_2qG( ¢) 2 — 3¢5 H(q5)+q4H( )
AP H) Gle®)  ~ G(°)?
Multiplying (4.2) and (4.5) gives
@ _ mopy [ COF 0 C@) | o, ol H@?
H(g)* Glaria) <H(q5)2 ) T G T G(q5)2> ’

from which we obtain
(¢*¢%¢")% _ G(a)®
(0,05 ¢°)%  H(g)?
2
— G H() (ff(‘;)) F3gd +ag 42 g 4 ) )
= G(¢°)° +3¢G(¢°) H(¢") + 44°G(¢°) H (")
+2¢°G(@°)*H(¢")’ + ¢'G (") H(d")". (4.6)
In light of (4.6), we obtain (1.42)—(1.46). The proof is completed. O
Proof of Theorem 1.7. Replacing ¢ by ¢° in (2.10), we see that
G(¢") "' H(q") — 11" (G(¢") H(¢"))" — ¢'°G(¢") H(¢")"" = 1. (4.7)
With the help of (4.4) and (4.7), we obtain
(@*,¢% ) _ G@)? _ 1
(0,043  H(@)* H(q)*/G(q)
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_ G(¢*)" H(¢*) — 11¢° (G(¢°)H(¢"))" — ¢"°G(¢°) H (¢")"!
G(¢°)*H(q°) — 2qG(¢°)* H(q°)* + 4¢*G(¢°)? H (¢°)* — 343G (q°)
=G(¢")" +2¢G(¢")°H(¢®) — 5¢°G(¢°) H(¢")* — 5¢"G(¢°)*H(¢")*

H(g%)* + ¢*H(¢°)®

—3¢°G(¢°)*H(¢")° — ¢"G(¢")H(q")°. (4.8)

The identities (1.47)—(1.51) follow immediately.
Proof of Theorem 1.8. Combining (4.6) and (4.7) yields
(@053 _ H(@)? _ 1
(@)% Gl Gq)*/H(q)?
) —

_ G(¢")" H(q") — 11¢° (G(¢*)H(¢"))" — ¢"°G () H (¢")"!
G(q°)° +3qG(¢°) H(¢®) +4¢*°G(¢°)* H(¢°)? + 243G (¢°)* H (¢°)® + ¢*G(q°) H (¢°)*
= G(¢")°H(¢°) — 3¢G(¢°) H(¢°)* + 5¢°G(¢°) ' H(¢")* — 5¢°G(¢°)* H (¢")*

O

+2¢°G(¢")H(¢*)° — ¢"H(¢")", (4.9)

from which we obtain (1.52)—(1.56).

O

Proof of Corollary 1.10. We only prove the case n = 0 (mod 10) in (1.59) here, the other

can be proved similarly.
In light of (2.3), we find that

(0% 45)%.(0% 7)o (6®°; ) oo (4%, ¢ ") %
Cola) = (@ CI) (7% 4*)3.(0, 0% @°)oo(d? 4*%; 4*°) o
(@* )% (@%0°)(d®, %05 1
(¢ Q) (¢ 9)2% (¢, 9% ¢°)so

(an<n+1 ) -0,

-

(qqq

as required.

The inequalities in (1.61) and (1.62) follow immediately from (1.37)—(1.46).

Proof of Corollary 1.12. The equality and inequalities in (1.64) follow from (1.52)—(1.56),

thus we only need to prove (1.63).

The cases n = 3,4,2 (mod 5) in (1.63) are immediate consequences of (1.49)—(1.51),

respectively. Therefore we need to consider the following two cases:
1) n=1 (mod 5). According to (2.5) and (2.6),

1 1 -
4. 5Y (42 43- 5 Zq

(0,04 )0 (%% ) = (G0

o0 _OO q
2

(¢ @)n—

n n(n+

— "
Z(,

n=0

n

2

n2(1_qn n

> 0.

ifng

— (G n
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It follows immediately that

—q 2
Gi(q) = +
@) (2,0 @) (@ 0% 8°)% (0,04 0°)% (62, ¢ ) o

1 2 q
= 2 3..5\6 4. 5 B 4. .5
(%) \ (.05 ) (4,04 ¢)

o 1 i 1 q
T (005 P)e \ (005 (4,06
1 1
- TR R
(4,45 ¢%)0 (¢ 4% 6%
This implies that g(5n + 1) > 0 holds for all n > 0.
2) n =0 (mod 5). Firstly, notice that

= 0.

—3q 1
Gold) = (2:9% ¢°)5%(%, 4% ¢°)3 +(q,q4;q5)Zo
1 3q
(0,05 %)% (A 30k (4,045 4°)% (6% 635 0%)3
3q
(0.4% 6% 45 ) (qq 1¢°) (q27q3;q5)§o)‘

If
1 3q

—
(¢, 0% d)3, — (¢ a%d°)3%

then we further have

1 1 3q
Golq) = -
0@ <q,q2,q3,q4;q5>zo<<q,q4;q5>zo <q2,q3;q5>2o>
1 3q
(@ dhP) (@)L

(4.10)

Now we denote
1 1
an)q" = ————, B(n - -
nzzo ) (4,9% ¢°)% Z (¢% ¢* )%

Partition-theoretically, a(n) (resp. 5(n)) can be interpreted as the number of partition
triples of n with all parts congruent to +1 (resp. £2) modulo 5. To obtain g(5n) > 0,
we first need to prove 35(n — 1) < a(n). Furthermore,

36(n—1) < a(n) if n>5. (4.11)
Define two sets §,, and &, by
2 3

S, = {m = (', 7% 7*)| all parts in partitions 7', 7%, 7® =41 (mod 5),



22 D. TANG

s(r') + s(7?) + s(7°) = n},
E, = {m = (', 7 )| all parts in partitions 7', 7%, 7* =42 (mod 5),

s(m) + s(7?) + s(m*) = n},

where s(7%) denotes the sum of all parts in partition 7.

According to [19], there exists an injection 7: RRa(n) — RRi(n), where RRq(n)
(resp. RR2(n)) denotes the set of partitions of n with all parts congruent to 1 (resp.
+2) modulo 5. For a given m = (7!, 72, 73) € &,, we define an injection 7: &, — S, by
A =7(m) = (r(r!), 7(7?),7(7)). If 7 € &,_1, then X\ € S,,_;. Finally we add a part of
size one to A and denote this new partition triples by \. Of course, we have X e S,. For
the partition triple A, there are three choices to append this new part. Thus we obtain
36(n — 1) < a(n). Furthermore, by (2.4) in [19], 7 is an injection but not a surjection
if n > 4. By the definition of 7, we obtain (4.11) immediately.

On the other hand, it is easy to compute that

g(0) =1, g¢(5)=4, g¢(10)=22, g¢(15) =60, g¢(20) = 160. (4.12)

According to (4.10)—(4.12), we obtain that g(5n) > 0 holds for all n > 0.
This completes the proof. O

5. FINAL REMARKS

We conclude this paper with two remarks.

1) The identities (4.8) and (4.9) imply that if one of Theorem 1.5 or Theorem 1.7 (resp.
Theorem 1.6 or Theorem 1.8) is proved, the other can be proved immediately. In Sect. 4,
we first prove Theorem 1.5 and Theorem 1.6. Now we choose to prove Theorem 1.7 and
Theorem 1.8 first. At this time, we need to use the following 5-dissections for Euler’s
product |10, Eq. (8.1.1)]:

) _ (25,25 @_ _ QH(qf’)
(90 = (€739 )m<H(q5) q—q G(q5)>- (5.1)
By (5.1), we find that
! 0P P ) — (G D
G(q)H(q) - <Q7q 4,454 )oo— (q5;q5)oo
_ (@¢®) [ G(@) _q_ng(q5)
(6% %) \ H(q®) G(q)

o) 1 G

I
Q
Q
=
=
S
Z

N
«Q
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By means of (4.5), (4.7) and (5.2), we obtain
5

Glo)* _ Gla) L
H(q)®  H(q)* G(q)H(q)
= G0 (Gl H ") ~ 116 (G @) = ¢°Gla) H ("))
G(q°)? G(@®) 2, sH()  ,H()
| m T TG T Gy
G(¢°)?® | G@) |, ., ..H() L H()
2y He) T T e T ey
G  LH()
“\Hp) G((f))

= (G(q5)7 + 2qG<q5)6H<q5) N 5q3G<q5)4H<q5)3 B 5q4G(q5)3H(q5)4
= 3¢°G(¢°)*H(q")” — qﬁG(q5)H(q5)6>2-

The identities (1.47)—(1.51) follow immediately.
In the same vein, it follows from (4.3), (4.7) and (5.2) that

gé;])) —H(qs)Z(G(qs)”H(f) YG(M)H(@)Y - 11¢° (G(qS)H(q5))6>
o
N e, L H) | HG)
H@? ) T TG T G
L (Cle) L H()
H(q®) G(q°)

= (G(q5)6H(q5) —3¢G(¢°)°H(¢°)? + 5¢*G(¢°) H(¢°)® — 5¢°G(¢°)* H (¢°)*
+2¢°G(¢")H(q")° — q6H(q5)7>2,

from which we obtain (1.52)—(1.56).
2) On the other hand, Chern [3] investigated the asymptotic behavior of the coefficients of
a general family of infinite g-series products. All equalities and inequalities in (1.57)—

(1.64) can be proved for sufficiently large n by Chern’s asymptotic formula.
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