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1 Introduction

In this paper, our aim is to use probabilistic methods to solve the mixed boundary value
problem for semilinear second order elliptic partial differential equations (called PDEs for
short) of the following form:

19u () — B.n(z)u(z) = ®(x) on dD (1.1)

{ Lu(x) = —F(z,u(z), Vu(z)), on D
20y )

The elliptic operator L is given by :

L = %v-(AvHB-V—v-(B-HQ (1.2)
d
S iy o (o) )+ 3Bl — din(B)+ QL)
i,7=1 J =1

on a d-dimensional smooth bounded Euclidean domain D.
A(z) = (aij)i<ij<a: R* — R?® R?is a smooth, symmetric matrix-valued function which is
uniformly elliptic. That is, there is a constant A > 1 such that
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Here B = (By, ..., Bq) and B = (B, ..., By) : R* - R® are Borel measurable functions, which
could be singular, and @ is a real-valued Borel measurable function defined on R? such that,
for some p > %l,

Ip(|B* +|BI* +Ql) € L*(D).

L is rigorously determined by the following quadratic form:

Ou Qv
Q(u,v) := (=Lu,v)r2(py = —Z/ 8787d —Z/ 83: x)dx
i ki )

Z/ axz dx_/Q

Details about the operator L can be found in [9], [16] and [20].

The function F(-,-,-) in (L)) is a nonlinear function defined on R? x R x R? and ®(z) is a
bounded measurable function defined on the boundary dD and v = An, where n denotes the
inward normal vector field defined on the boundary 9D.

To solve the problem (L.I]), it turns out that we need to establish the existence and unique-
ness of solutions of backward stochastic differential equations (BSDEs) with singular coeffi-
cients and infinite horizon, which is of independent interest.

Probabilistic approaches to boundary value problem of second order differential operators
have been adopted by many authors and the earliest work went back as early as 1944 in [12].



There has been a lot of study on the Dirichlet boundary problem (see [1, [8], [3],[6], [11] and
[22]). However, there are not many articles on the probabilistic approaches to the Neumann
boundary problem.

When A = I, B=0 and B = 0, the following Neumann boundary problem

{ Au(z) + qu(z) =0, on D
%g—( ) = ¢(x) on 0D

was solved in [I] and [11], which also gives the solution the following representation:
o) = Bl [ e,
0

where (By)¢>0 is the reflecting Brownian motion on the domain D associated with the infinites-
imal generator

1
G =30,

and LY, t > 0 is the boundary local time satisfying L = fg Iyp(Bs)dL?

s

But when B # 0, the term V(E +) is just a formal way of writing because the divergence does
not exist as B is only a measurable vector field. It should be interpreted in the distributional
sense. For this reason, the term V- (B) can not be handled by Girsanov transform or Feyman-
Kac transform.

The study of the boundary value problems for the general operator L in the PDE literature
(see e.g. [9], [20]) was always carried out under the extra condition:

~div(B) + Q(z) <0
in the sense of distribution in order to use the maximum principle.

When F' = 0, i.e. the linear case, problem (L) was studied in [4]( see also [3] for the
Dirichlet boundary problem). The term V - (B-) is tackled using the time-reversal of Girsanov
transform of the symmetric reflecting diffusion (Q, P%, X2, > 0) associated with the operator

Lo = %v - (AV).
The semigroup S; associated with the operator L has the following representation (see [5]):
S = EOD e[ (4B (DM + ([ (47 By (xDaad) oof
5 [B-ma By s+ [ Qo)

where M? is the martingale part of the diffusion X° and ~? is the reverse operator.



The main purpose of this paper is to study the nonlinear equation (ILI])(i.e. F' # 0), which
can not be handled by the methods used for the linear case. Our approach is first to solve a
backward stochastic differential equation (BSDE) with singular coefficients and infinite horizon
to produce a candidate for the solution of the boundary value problem and then to show that
the candidate is indeed a solution. The results we obtained for BSDEs with infinite horizon
are of independent interest.

We would like to mention that the first results on BSDEs and probabilistic interpretation
of solutions of semilinear parabolic PDEs via BSDEs were obtained by Peng and pardoux in
[19], [17] and [18]. There the operator L is smooth and the solution is a viscosity solution. We
stress that the solutions we considered for PDEs in this paper are Soblev (also called weak)
solutions, not viscosity solutions.

In [22], the corresponding Dirichlet problem for the semilinear elliptic PDEs:

{ Lu(x) = —F(z,u(x), Vu(z)), on D (1.4)

u(z) = ¢(x) on 0D

was solved. The strategy in [3], [22] is to transform the general operator L by a kind of h-
transform to an operator of the form: Ly = %V(AV) +b-V +q which does not have the ”bad”

term such as V(B -). This idea is used in current paper too.

The BSDESs we studied are inspired by the ones in [I0] where the author gave a probabilistic
interpretation of the solution to the following Neumann problem:

(32 —v)u(z) =0, on D
% = ¢, on 0D

The content of the paper as follows. In Section 2, we study the following BSDEs with
infinite horizon:

dY (t) = —F(X(t),Y (), Z(t))dt + elo XA G( X (s))dL, + (Z(t), dM (1)),
lim efo X Wduy, — o i L2(Q), (1.5)

t—00
where (X (t));>0 is the reflecting diffusion associated with an infinitesimal generator of the
form: A = $V(AV) +b-V, M(t) is the martingale part of X (¢), L; is the boundary local
time of X and d(-) is an appropriate measurable function. The existence and uniqueness of an
L2-solution (Y, Z) is obtained.
In Section 3, we solve the linear PDEs of the form:

{ V(AVu)(z) + b Vu(z) + qu(z) = F(z), on D (1.6)

%g—:(az) = ¢(x) on 0D .

under the condition: -
o / eJs aX@Ndugr 1 o
0
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for some xy € D. Useful estimates for local time and Girsanov density are proved which will
also be used in subsequent sections.
In Section 4, we obtain the solution of the semilinear PDE:

{ sV(AVu)(z) + b Vu(z) + qu(z) = G(z,u(z), Vu(z)), on D

198 (2 = (a) on 0D . 7

To this end, we first use the solution (Y(t), Z;(t)) of the BSDE (L.3]) to produce a candidate
ug(z) = E.[Y;(0)] and then find a solution u of an equation like (LG) with a given F(z) :=
G(z,up(x),vo(x)). Finally we identify u with ug. In Section 5, we consider the general problem:

Lu(x) = —F(z,u(x)), on D
{ %%(96) — B -n(z)u(z) = ®(x) on ID (1.8)

We apply the transformation introduced in [3] to transform the problem (L8] to a problem
like (L7). An inverse transformation will yield the solution of the problem (L)) under the
condition that the L? norm of B is sufficiently small.

To remove some of the restrictions imposed on B in Section 5, in Section 6, we study the
L'-solutions of the BSDEs (L.5) under appropriate conditions. Our approach is inspired by
the one in [2]. The study of L2-solutions and L!-solutions of the BSDEs (IL5]) are carried out
in Section 2 and Section 6 separately because the methods used for these two cases are quite
different.

2 BSDEs with Singular Coefficients and Infinity Horizon

Consider the operator

d d
1 0 0 0
h= 3 8 o (03 ) + Mg

on the domian D equipped with the Neumann boundary condition:

% = (An,V:) =0, on 09D.
By [13], there exists a unique reflecting diffusion process denoted by (2, F, X,.(t), Py, 0, x € D)
associated with the generator Lj.
Here 6 : Q — Q is the shift operator defined as follows:

Xo(5)(0p) = Xp(t+5), s,t>0.

Let E, denote the expectation under the measure P,.

Set b= {51, ...,Bd}, where b; = %zj %(;lj + b;.

Then the process X, (t) has the following decomposition:

Xz(t) = Xz(0) + My (t) —I—/O b(X,(s))ds + /0 An(X;(s))dLs, Py —a.s.. (2.1)

5



Here M,(t) is a F; square integrable continuous martingale additive functional. And L; is a
positive increasing continuous additive functional satisfying L; = fot Iix,(s)eopydLs.
We write X, (t) as X(¢t) for short in the following discussion.

In this section, we will study the backward stochastic differential equations with singular
coefficients and infinite horizon associated with the martingale part M,(t) and the local time
L;. A unique L? solution of such BSDEs is obtained.

Let g(w,t,y,2) : @ x RT x R x R? — R be a progressively measurable function. Consider
the following conditions:

(A1) (y1 — y2)(9(t, 91, 2) — g(t, Y2, 2)) < —ar(t)lyr — val?,

(A.2) ‘g(tvyvzl) - g(trysz)’ < a’2’21 - 22’7

(A.3) lg(t,y,2)| < [g(¢,0,0)[ + as(t)(1 + [y]).

Here a;(t) and as(t) are two progressively measurable processes and as is a constant.

Set a(t) = —ay(t) + da3, for some constant § > 5, where A is the constant appeared in (L3).

Lemma 2.1 Assume the conditions (A.1)-(A.3) and
B[ 2 eg(e,0,0)Pdr] < oc.
0

Then there exists a unique solution (Y;(t), Z,(t)) to the following backward stochastic differ-
ential equation:

T T
Yx(t):Yx(T)Jr/t g(s,Yx(s),Zx(s))ds—/t < Zo(s),dMy(s) >, t<T;

Jim elo vy (1) =0, in  L2(Q). (2.2)
Moreover,
Ex[sgp e2Jo awdu|y ($)]?] < oo and Ex[/ooo e2lo alwdu| 7 (s)|2ds] < . (2.3)
PROOF.
Existence:

The proof of this lemma is similar to that of Theorem 3.2 in [22], but the terminal condi-
tions here are different. By Theorem 3.1 in [22], the following BSDE has a unique solution
(Y2 (1), 2z (1)):

Y'(t) = / g(s, Y (s), Z2(s))ds —/ < Z3(s),dMy(s) >, t<m; (2.4)
t t
and moreover,

Yr(t) =0, ZMt)=0, t>n.



Fixt > 0and n > m > t. It follows that

¢ o atwdupyn gy —yme)? 4 / I e 4(X (5))(Z2(5) — ZI(s)), (Z0(s) — Z(s)))ds

t

- /t " a(s)e2 I et yn () ym(s)ds
+2 /t tels A (Y (s) = Vi (9))(g(s, Y7 (), Z3 (9)) = g(s, Y, (5), 23 (5)))ds
+2 / " 205 Ay () Z Y (s))g(s,0,0)ds
~2 /m RIS (v () < VM (s) < Z2(s) — 20 (). M (1) >

Choose two positive numbers d; and d9 such that §; > % and d7 + 09 < 6. Then from

2 / " 20 a0t (v () Y (s)) (g5, YI(5), Z0(s)) — a5, YI(s), Z7(s)))ds

= _2/ ay(s)e Jo ey n(s) — ym(s)|ds
t
126,02 / ¢203 alwdu|yn gy ymig) 24
t
1 n s
b || A (Z26) — 276D, (Z26) ~ 22
1 Jt
and
2/ e2Jo adu(yn(s)y — v (s))g(s,0,0)ds
< 25503 / 25w yn () ym(g) s 4 1 / ¢ 15 awidu)g (5 0,0)ds,
it follows that
Eyfe2 s atdu)yn () — ym@)P] 4 2(1 - ), | / 205 atwdu| 715y _ 7m0 (5)[2ds)

1 " 2 [¥ a(u)du 2
< gl EEIg(s,0.0)Pds)

This implies that

Ex[/ e2Jo alwdu| 7zn(s) — Zm(s)|2ds] — 0, as m,n — co.
0

Hence there exists Zx such that

Zy = lim eloo®duzr in [2([0,00) x Q).

n—oo



At the same time, we also obtain the following estimates:

sup 62 f(f a(u)du‘Yxn(t) B Yxm (t)’2
t

1 " 2 [? a(u)du 2
i [ g(s,0.0)ds

n
+2sup| / ¢2J5 alw)du (yn(g) _ym()) < Z0(s) — ZM(s), dMa(t) > |.
t t
Taking expectation on both sides of the above inequality, by BDG inequality, we obtain

E,[sup e2Jo sy (1) — (1))
t

1 " 2 % a(u)du 2
S I IS
LOE / M Wty () YT ()220 (s) — Z(s)2ds} F]
t
< graBal [ (5, 0,0)Pds] + 5 Eufsup e Ky ) - v (1)
252(12 m 2 t

OB / 215 o) 70 (o) _ 7m () 2ds]
0

Thus

E,[sup €2 o edu)yn gy — ym(1)[2)
t

S / o @ g(5,0,0)*ds] + 20 B, / o e\ 73 (s) — 277 (s)[ds]
203 m 0
— 0, as m,n — oo.

So, there exists {Y;(t)} such that
: 7 ST a(u)duyn gy )2
lim E,[sup|Y;(t) — elo Y'(t)]°] = 0.
n—oo ¢
For any ¢ > 0, there exist a positive number N such that for any n > N,

Eyfsup |V (t) — eh Iy (1)) < =
t

For t > N, noticing Y,V (t) = 0, it follows that

2B, [V, (1) — elo Ay N (1)2] 4 2, [e2 o oy N (12
< 2B, [sup [V (1) — elo Ay N (1)2] 4 2, [ o a9y N (1) 2]
t

E,|Yx(t)%]

IN

A

€.



Thus we have %111(1]Ex[]§7x(t)\2] = 0.
%
By chain rule, it is easy to see from (2.4]) that

t

Y, (t) = e o d@Why 1) and  Zy(t) = e~ JooWdug (4
satisfy the equation (2.2)) and
: 2 ! a(u)du 21 _ 13 % 27 _
Jim B[220y, (4]2] = tim B, {|7 ()] = 0.

From the above proof, we also see that (Z3]) holds.

Uniqueness:

Suppose that (Y}, Z1) and (Y2, Z2) are two solutions of the equation ([2.2).
Set Y,(t) = Y,}(t) — Y2(t) and Z,(t) = ZL(t) — Z2(t) . Then

d(elo sy, (1)) = —elo s (gt V(1) ZL(E)) — g(t, Y2(2), Z2(1)))dt
+ a(t)edo @Ay (1)t
+ eloatwduiz ) an,(¢)). (2.5)

By Ito’s formula, we get, for any ¢ < T,

t — T t 7 7
e2Jo a7 ()2 + / o I AX (5)) 2o (5), Za(s))ds
t

= 2o AWy ()2 1 2 / T 2 () (g(s, Y (5), Z2(5)) — g5, Y2(s), Z2(5)))ds
- / " () g (P
—2 / ()2 T ()12, (), 4D (5)) (2.6)
By condition (A.1) and (A.2), we have

T 2[5 a(uw)duy, 1 1 _ 2 2
Q/t e”Jo Ya(s)(9(s, Yy (5), Z5(s)) — g(s, Yy (s), Z;(s)))ds

T
- Q/t 205 AT, (5) (g(s, YA (3), Z1(s)) — (s, Y2(5), Z(s)))ds

T s —
" 2/t ¢ o 1Y, (5)(g(s, Y7 (5), Z2 () — (5, Y7 (5), Z2(s)))ds

< 2 [ BT, () Pas 4y [T, (|2, 5 s
tT t T
< —2/t a1(8)62f05 “(“)d“|Ym(8)|2d8—|—cla2/t e2lo awdu |y (s)]2ds
Fag— Te2fosa<u>du|2 (s)[2ds. (2.7)
Ny *



Choosing ¢’ = 20ay, we obtain
t _ 1 T t _ _
AT O +(1 gy [ B A (6) Za(5) Zalo)) s
t

< PRy r)P -2 / " a(s)e 09T, (5)( 7, 5), M 5) (2:8)
Taking expectation on both sides of the above inequality, we get that, for any ¢ < T,

By [e2J0 st |7, (1)) < E,fe? o o) 7, (1) ).
For both Y! and Y? satisfy the terminal condition in (Z2]), so that

lim E,[e2fo e@duy (7)) = o,
T—o0

which leads to F,[e? I a(wduy ()]2] = 0.
We conclude that Y} (t) = Y;2(¢t) and ZL(t) = Z2(t). O

We now want to apply Lemma [2.1] to a particular situation.
Let F(x,y,2) : R x R x R — R be a Borel measurable function. Consider the following
conditions:

(D.1) (y1 — y2)(F(z,91,2) — F(2,y2,2)) < —di(2)|y1 — 2],
(D2) |F($7yvz1) - F($,y,Z2)| < d2|Z1 - Z2|7

(D.3) |F(z,y,2)| < |[F(2,0,2)] + K(2)(1 + [y]).

Set d(z) = —dy(z) 4 dd3 for some constant § > 5.

The follows result follows from Lemma 2.1l

Lemma 2.2 Assume the conditions (D.1)-(D.3) and
X / 203 AX @) (X (4), 0, 0)2de] < o.
0
Then there exists a unique solution (Y, (t), Z,(t)) to the following equation:

T T
Ym(t):Yw(T)—i—/ F(X(s),Ym(s),Zm(s))ds—/ < Zu(s),dMy(s) >, t<T:;

lim efo dXWduy, 1y =0, in  L2(Q). (2.9)

t—o00

Consider the following condition instead of (D.3).
(D.3) |F(X(t),y,2)| < K(t), for any y € R and z € R,

Let ® be a bounded measurable function defined on 0D, and function ¢ € LP(D), for p > %l.
The following theorem is the main result in this section.
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Theorem 2.1 Assume the conditions (D.1), (D.2) and (D.3)’,
o / T X g ) < o
0
for some xog € D and for x € D,
E,| /O T RS X @) 2 [FAX ) | R ()2} dt] < oo (2.10)

Then there exists a unique solution (Y, Z,) to the following BSDE:

Ya(t) = Yx(T)+/tTF(X(S)an(S%Zx(S))dS—/t elo (XA G (X (5))dL,
—/tT<Zx(s),de(s)>, for t<T, (2.11)
and
lim elo AX@duy, — o i L2(Q). (2.12)
PROOF.
Uniqueness:

Suppose that (Y.}, Z1) and (Y2, Z2) are two solutions of the equation (ZII)) satisfying (Z.12)).
Set Y, (t) = Y;(t) —Y2(t) and Z,(t) = Z1(t) — Z2(t) . Then

d(elo X @Nduy (1)) = _elo X @) d“<F<X<t>,Y1<>Zi(t))—F<X<t>,Y£<t>,zz<t>>>dt
+ (X (t))elo AX (DAY, (1)dt
+ el dX@)duz 4y qn (1), (2.13)

By Ito’s formula, we get, for any t < T,

t _ T t _ —
e Jo AXdu |y ()2 1 / 2o AXNA (X (5)) Z,(5), Zo(s))ds

— 2 fOT d(X (u))du |ch (T) |2

x T E T

+ 2 / ' 2 Jo dX@)duy (&) (F(X(s), Y, (s), ZE(s)) — F(X(s),Y2(s), Z2(s)))ds
tT |
~ 9 / (X (5))e2 Jo X @)duy g ()12
- 2 / ' d(X (s))e? Jo dX@)duyr ($y( 7 (s), dM,(s)) (2.14)
By (D.1) and (D.2), we have

2 / & I3 XN, (3)(F(X(5), Y, (s), Z2(s)) — F(X (), Y2(s), Z2(s)))ds

11



— Q/tT 62f0 d(X(“))d“Ym(s)(F(X(S),Yxl(s),Z;(s)) _ F(X(S),sz(S),Z%(s)))ds

e / " e XN, (0P (X (s), Y2(5), Z(5)) — F(X(s), Y2(s), Z2(s)))ds

IN
|
[\
no
S

T 0
/ di (X (s))e? Jo dX@Ddu |y () 12ds + dy / 2 Jo dX(@)duy ()| Z,.(s)|ds
t t

IN
|
[\
[N}
S

T T
/ dy (X (5))e2 04X @) (245 4 od / 2 J5 dX @) ()2
t t

1 (T, _
rdyy [ RO Z, 5) s, @15

Choosing ¢ = 2ddz, we obtain from (215

¢ _ T t _ _
’6_ Jo d(X(u))qux(t)’2 + (1 _ %)/ €_2f0 d(X(u))du<A(X(S))Zx(S),Zx(3)>d3
t

T _ T s _ —
< 2o dXdy ()2 - 2 / d(X (s))e 2 Jo AXNWY, (5)(Z,(s), dM,(s))  (2.16)
t

Taking expectation on both sides of the above inequality and letting T tend to infinity, we
obtain that ,
B, [62 Jo d(X(u))dU|Yx(t)|2] —0

We conclude that Y,}(t) = Y;2(¢) and hence from (ZI8), Z1(t) = Z2(¢).

Existence:
First of all, the assumption (2.I0) implies (see [?])

sup Ex[/ eJo IX@)dugr, 1 <« .

1°: There exists (px(t), gz (t)) such tl;)at
dp,(t) = e XIS (X (1))dLy+ < (1), dMy(t) >, (2.17)
and elo dX(W)duy, (1) — 0 as t — oo in L2(Q).
In fact, let
pa(t) = —Ey /t Tl AX W) (X (5))dLs| F]
= [ e, [ R (x(5)ar, )
' ' (2.18)
By the martingale representation theorem in [22], there exists a process ¢, (t), such that
~ B[ IO (LR =~ Bl [ R IO ()L
+ /Ot < qr(s),dMy(s) > . (2.19)

12



Then (p., q,) satisfies the equation (2I7).
Moreover,

palt) = B[ R IO (x (6)dL 7

_ ey | / el AX)dugy( X (5))dLy|F]

t

_ el g / o AKX (5 4 1))dL ey | F]
0

— _ef(ffi(X(u))duEx[/ eJo AX(WA)duy (X (5 4 4))d Ly 4| F]
0

= ehix@g /0 eIy AX @Ndugy( X (1))dLy] (2.20)
The last equality follows from the fact that Lyys = Ly + Lg 0 6;. Therefore,
sup s (1)) < e8I sup [0(o)] - sup B [ [ el aX g,
T z€eD x€D 0
Set M = sup |®(x)| - sup Ex[/ elo AX()dugr, 1,
z€D z€D 0
+ ~
In view of (2.10)), we have tli)m eJo (DX w)du _ ) iy L3 (Q).
Hence,
eJo d(X (W)du px(t) < Mels@Xw)du g g5 ¢ oo, in  L*(Q). (2.21)
: Set g(t,y,2) = F(X(t),pz(t) + 9,4z + 2). Then
(y1 —y2)(9(t,y1,2) — g(t,y2,2))
= (y1 — y2)(F(X(t), pe(t) + y1,¢e + 2) — F(X(t),p2(t) + y2, @z + 2))
< —di(X(0))|yr — yal*. (2.22)
and
lg(t,y,21) — g(t,y,22)] = |[F(X(),p:(t) + ¥, +21) — F(X(?),p2(t) + Y, ¢ + 21)]
< dg‘zl — 22’. (2.23)
Moreover,
B[ A0y (1),0,0)d
0
sza/gﬁwwﬁﬂﬂmmmmmWﬂ
0
< Ex[/ e2 fot d(X(u))du‘K(t)th]
0
< . (2.24)
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g satisfies all the conditions of the Lemma 2.2. Hence, there exist processes (k,,l,) such that
dky(t) = —g(t, ke (t), 1 (2))dt+ < 1 (t), dM,(t) >
and
efo AXDdug 4y 0,

as t — oo.
Putting Y, (t) = p.(t) + k. (t) and Z,(t) = q.(t) + 1, (t), we find that (Y, (), Z,(t)) satisfies the
following equation

AY,(t) = elo (XU g X (1)L, — F(t,Yy(t), Zo(t))dt+ < Zu(t), dM, > .
and

lim eJo dX (W)duy, —

t—o00

Corollary 2.1 Suppose all the assumptions in Theorem 2.1 hold. If, in addition,
sup Ex[/ elo AX(W)dw) 1 (1) 2dt] < oo
x 0

then it follows that

sup |Yz(0)] < oo.

zeD
PROOF.
As shown in the proof of Theorem 2.1, Y, (¢) has the decomposition: Y, (t) = p,(t) + kx(t).
Setting t = 0 in (2.20)), it follows that

O < Exoll [ BT max )L
< u¢wxsgpfap[; e IX g
< o (2.25)
By Ito’s formula, we obtain
de? Jo AX @) ()2 = e fo dX g (1)t ki (1), 1 (£))dt
o 2e?fo AXDdug (H)a(X ())dt + 262 o AX@Ddug () < 1 (4), dM(t) >

o2l AX(W)dw (AKX (£))1, (1), 1o (8))dt

Choosing two positive numbers ¢; and ds such that é; > % and 01 +0o < d, similar calculations
as in the proof of Theorem 2.1 yield that, for any ¢t < T',

t T s
Em[€2f0 d(X(u))du|k‘x(t)|2] + %(1 _ ﬁ)Ex[/ e2f0 d(X(u))du|lm(S)|2dS]
1 t

T
g<&WﬁMWW%GM+§%&Ve%%WWM@MWM-
209 t
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Setting t = 0, we have
ka(O) = Eullks (0)2) < B[ o dX g (7)2)

T
L g / &2 I5 X0 0, 0)2ds].
0

* 202d3

Let T — oo to obtain that

1
sup . (0)] < %supm/ 25 AX@)du (6 0,0)2ds] ) < oo,
T 252d2 T 0

where the fact that e2/o dX()dup (T) — 0 as T — oo, has been used. Hence, we have
sup |Yz(0)| < sup [pz(0)[ + sup |k (0)] < oo

3 Linear PDEs

Set )
L2:§V-(AV)+b-V—|—q

where b = (by,...,bg) is a R%valued Borel measurable function, and ¢ is a Borel measurable
function on R? such that:

d
Ip(Ib]® +4l) € L*(D), p> 7

In this section, we solve the following linear boundary value problem:

{ %g - (AVu)(x) + b - Vu(z) + q(x)u(z) = F(x), on D (3.1)
%%(m) =¢ on 0D , ’

where F' and ¢ are bounded measurable functions on D.

It is well known that operator Lo defined on a bounded domain D with Neumann bound-

ary condition g—f;(x) = 0 is associated with the quadratic form:

Efg): = — /D Lof(x)g(z)da

1

=3 /D@Wf, Vg)dz — /D b-Vf(x)g(x)ds — /D q(z) f (x)g(x)dz

Definition 3.1 A bounded continuous function u(x) defined on D is a weak solution of the
problem B.1) if u € WH2(D), and for any g € C*=(D),

E(u,g) = - o(x)g(z)o(dx) —/DF(a:)g(a:)da;,

where o denotes the d — 1 dimensional Lebesgue measure on 0D.
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Consider the operator
1
Ly = §V - (AVu) (3.2)

on domain D with boundary condition g—: =0 on 0D.

Lo is associated with a reflecting diffusion process (X°, P?). By [13], X° has the following
decomposition:

dX? = o(X0)dW; + %VA(Xf)dt + y(X))dLY,
t

LY = / IixocopydLy, (3.3)
0

where the matrix o(z) is the positive definite symmetric square root of the matrix A(z) and
{Wi}is0 is a d-dimensional standard Brownian motion.
It is well known that operator Lg is associated with the regular Dirichlet form:

Eu,v) = 1/ Ou v dz
D

> |, % s B
and the domain of £° is W12(D) := {u € L*(D) : g—;‘i € L?(D)}.

The following lemma can be proved similarly as the Corollary 3.8 in [11] using the heat kernel
estimates in [21].

Lemma 3.1 There exists a constant K > 0, such that

sup EX[LY] < KVt and  inf EO[LY] > 0.
SCED zeD

Moreover, we have sup,p EV[(LY)"] < K,t%, for some constant K,, > 0.

Set MP = [ o(X9)dW, and
7, = oo <ATIB(XQ),dMO>—§ [ bATIb (XD)ds+ [; a(X0)ds (3.4)
where b* is the transpose of the row vector b.

The proof of the following two lemmas are inspired by that of the Lemma 2.1 and Theorem
2.2 in [11].

Lemma 3.2 Fort > 0, there are two strictly positive functions M (t) and Ms(t) such that,
for any x € D, M(t) < Eg[fg’ ZdLY) < My(t). Furthermore, Ma(t) — 0 as t — 0.

16



PROOF.
1°: Put

MI(t) = efJ<A*1b<X°>7dM2>—% Jo bATH" (XD)ds. (3.5)

eq(t) = efo a(X3)d

M, (t —supEO/ lg(X?)|ds).
rzeD

Then we have

t t
sup Eg[/ Z, L’ = sup Eg[/ M (s)eq(s)dLY]
0

x€D z€D
1 1
< sup EO[Orgaxt!M( s)[?]Z - sup EY[e)q()(LY)?)2
x€D s zeD
~ 1 1 1
< sup EQ[|M ()’ - sup Eleq)q (t)]7 - sup EP[(LY)Y)5 (3.6)
zeD zeD zeD
) (1) (I11)

By Khash’Minskii’s lemma and Theorem 2.1 in [15], () and (II) are bounded if t belongs to
a bounded interval. Because of EO[(LY)"] < K,t2, we see that My(t) :== K(I)(II)y/t is the
required upper bound.

2°: Since
to t
B < B8 [ 8 (9)e-y(s)aL8) - BRL [ M(s)eq(s)aLS), (3.7)
we obtain
077072
EO/ M(s)eq(s)dLl] > - £ [L] o (3.8)
EQ[fy M~"(s)e—q(s)dLY]
Here
MYt = o= Jo <ATIB(X0),dMO>+ 5 [ bATIbY(X0)ds
_ f0<A D(Xs),dMO>—1 [FbA=1b*(X0)d fo bA~1b*(X0)ds
— N( ),efo bATIb*(X])ds (3.9)

By the proof of the first part, replacing M, g by N; and bA~1b* — g respectively, it is seen that
there exists K (¢) > 0 such that sup_ 5 Eg[fot M~1(s)e_q(s)dLY] < K(%).

As inf 55 EJ[LY] > 0, we complete the proof of the lemma by setting M (t) = ot

2B Eol L]

D0

Set G(x) := EQ[[,° ZsdLY).

Lemma 3.3 If there is a point o € D, such that G(xg) < oo, then there are two positive
constants K and 8 such that sup, 5 ES[Z] < Ke "',

17



PRrROOF.

By Girsanov Theorem and Feymann-Kac formula, Ly = %V - (AV) + b - V + ¢ is associated
with the semigroup {7} }~0, where T} f(x) = E%[Z,f(X?)] for f € L?(D).

By the upper and lower bound estimates of the heat kernel po(t,z,y) associated with T} in
[21], the following inequality holds,

! /D fla)ds < B2 f(XD)] < c /D f(x)d, (3.10)

where ¢ is a positive constant. Since
00 1 00
Gla) = Y BZ,By| | Z.L°(d9)) = Ma() 3 E2IZ)
n=0 0 n=0
and G(zg) < oo, there is a positive integer number N such that

1 _
ooz 2 B 2] = B (2B [Zn 1)) = ¢! / B Zy—1]m(de).
D

This implies
1
/DEUEC)[ZN_l]m(dm) < %"

Thus

sup E[Z] = sup B Z1 B [Zy-1]] < / EYZn ]m(d) <
ze€D zeD D

. (3.11)

For any ¢ > 0, there exists a positive number n such that + € [n — 1,n). Then by @I, it
follows that

1 1
Eg[Zt]SWEg[Zt—N(n—n] < ( sup Eg(v][Zt]> —

2€D,0<t<N 2"
< 2 sup E? [Zt]e_hTﬂt.D (3.12)
2€D,0<t<N

Theorem 3.1 If there exists xg € D such that G(x¢) < oo, then there exists a unique bounded
continuous weak solution of the problem (B.1)):

PRrROOF.

FExistence :

Due to Theorem 3.2 in [4], there exists a unique, bounded, continuous weak solution ug of the
following problem:

{Mmmza<mD (3.13)

%%—ﬁf(m) =¢ ondD.

18



Thus by the linearity of the problem (3.I]), we only need to show that the following problem
has a bounded continuous weak solution:

{LQU1($) F(z), on D

%—nyl(a;) =0 on 0D

(3.14)

The semigroup associated with operator Lo is {T},t > 0}. By Lemma [3.3] we have

sup [T, F (z)| = sup [EQ[Z:F(X})]] < Ke™'|| F||oo.
zeD zeD

Then ~
up(x) = / T,F(z)dt
0

is well defined and has the following bound:
K
sup [u1 (z)] < —=[|Fll-
xeD 5

The function uq(z) is also continuous on D.

In fact, fixing any z € D and ¢ > 0, we can firstly choose a constant ty > 0, such that
SUp,cp | foto TsF(z)ds| < §. And because Ti,u1 () is continuous, there exists a constant ¢ > 0,
such that for any y with |y — x| <6, [T u1(z) — Tyui(y)| < §.

We find that

Tous(a) = B2 (X)) = BRIz [ ExplZF(X9))ds
0
t
— [ Bz (X2, ))ds
0
= / T, F(x)ds
t
t
= u(x) —/ T F(x)ds. (3.15)
0
For any y satisfying |y — z| < 0, it follows that
to to
(o) = )| < [Tyur(a) - Tyn()| +| [ L@ +| [ TF@ds < (3.10)
0 0

This implies that the function u; is continuous on domain D.
Denote the resolvents associated with operator Ly by {Gg, 3 > 0}. Note that

Ggul(l‘) = / e_ﬁtnul(l‘)dt
0

00 00 t
= / e‘ﬁtul(:n)dt—/ e_ﬁt/ T F(x)dsdt
0 0 0
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— %ulx —/ / e PUTLF (x)dsdt
= gule) = [ nR@[ i

= %ul(az) — %GBF(:U). (3.17)
We have
Blui(z) — BGaui () = BGaF ().
Therefore,

BILH;O/[)B(ul(x)—ﬂGgul(x)) dex = hm / BGgF(x dx:/DF(x)ul(a;)da:<oo.

This implies that u; € D(E) (see [16]) and w; is a weak solution of equation (B.14]). By the
linearity, u = u; + ug is a bounded continuous weak solution of equation (B.1]).

Uniqueness :

Let v1 and v9 be two bounded continuous weak solutions of the equation ([BI]). Then vy — vo
is the solution of equation (BI3) with ¢ = 0. Then by the uniqueness of the equation (B.I3))
proved in [4], we know that vy = vy. O

4 Semilinear PDEs

Recall that

d d
1 0 0 0
L1 = ;1 8$Z (CLZ](ZE)a—%) + ;b2($) 8$Z

and Lo = Lq + ¢q are two operators both defined on the domain D and equipped with the
Neumann boundary condition % =0 on JdD.

(Q,8:, X(t), Py,x € D) is the reflecting diffusion process associated with the operator L; with
the decomposition introduced in (2.1).

In this section, we solve the following semilinear boundary value problem:

{ Lou(z) = —G(z,u(x), Vu(z)), on D

%g—:(az) = ¢(x) on 0D

(4.1)

Let £(+,-) be the quadratic form associated with the operator Lo:

S(U,v):%/ <AVu,Vv>dm—/ <b,Vu>vda;—/quvdm.
D D D
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Definition 4.1 A bounded continuous function u(z) defined on D is called a weak solution of
the equation (A1) if u € WLH2(D), and for any g € C*°(D),

E(u,g) = o(z)g(x)o(dx) +/DG(m,u(a:),Vu(a:))g(x)dx.

oD

Recall that L; is the boundary local time of X (¢) defined in (2.I)) and L is the boundary local
time of X in (3.3).
As a consequence of the Girsanov theorem, we have:

Lemma 4.1 Suppose that the function f satisfies E,| fo elo I d“st] < o0. Then it holds
that

/ fo f(X(u) dudL / MefO dudLO]

where My was defined in (3H).

The following lemma is deduced from Theorem 3.2 in [4].

Lemma 4.2 Suppose that the function § € LP(D) and p > %. If there exists some point

xg € D, such that
Byl / efo AXW)dugr ] < o0, (4.2)
0

then it holds that

sup Ex[/ elo A(X()dugr,] < oo
@ 0

Let G(z,7,2) : R* x R x R* — R be a bounded Borel measurable function. Introduce the
following conditions:

(H.1) (y1 — 92)(G(2,y1,2) = G(2,92,2)) < —Ia(@)|yr — yol?,
(H‘z) ’G(‘Thyazl) G(‘T y722)‘ < hQ‘ZI - 22‘
Set h(t) = —hy(X(t)) + 6h3 + q(X(t)) and h(t) = —hy(X(t)) + 6h3 for some constant § > -

Theorem 4.1 Suppose that the conditions (H.1) and (H.2) are satisfied. Assume
Eml[/ooo e? IS(Q(X(“)HB(“))dudt] <oo, for some x1 €D, (4.3)
and there exists some point xg € D, such that
By /0 Tl aX@dugr) < o (4.4)

Then the semilinear Neumann boundary value problem (A1) has a unique continuous weak
solution.
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PROOF.

et G(X(1),y,2) = edo K@ Gy o= o aXW)dty o= [5a(X )t
Then
(1 — 12) (G(X (1), 41, 2) — G(X(1),y2,2)) < —ha(@)|y1 — val’ (4.5)
and
|G(X(t),y,21) — G(X(t),y, 22)| < ha|z1 — 2] (4.6)
Note that

G(X (1), y,2) < elo XU G
By Theorem 2.1 there exists a unique process (Yx, Zw) satisfying

AV, (t) = —G(X(1), Va (1), Zo(t))dt + elo XD G (X (1)) dL(E) + (Z,(t), AM, (£))

elo i‘(“)d“}}x(t) —0 as t— oo.

Furthermore, Corollary 21l implies that sup Y (0) < co.

From Ito’s formula, it follows that
d(e” Jo AX W)ty (1))
= —q(X(1))e o 1KY, ()it — e~ Jo AN G(X (1), Yy (1), Zo (1))t
FO(X ()ALt < e Jo aX @t 7y ang (#) > .
Setting Yy (t) := e~ I IX )ALy (1) and Z,(t) == e~ I aXW)dt 7 (1), we obtain
AY.(t) = ~(a(X(0)Yalt) + CX (1), Yalt), Zo(t)))dt + S(X (D)Lt < Zo(0), dML (1) >
Moreover,
elo hwidty () = eJo hwdte= 3 aXW)dty () = efo B(X(“))dtf/x(t) —0 as t—oo. (4.7)
So by Ito’s formula, we have that, for any ¢t < T,
olo h(u)duyx(t)

= el Mduy (T) 4 / U el MO (G, (5), Ya (), Zo (1)) + 0(Xa(5))Ya(5)) ds

T, T s
B / ef;h(u)du¢(X(s))dL8_/ h(s)elo MwWduy (g)ds

t

- tT eJo MWdui 7 (1) dM, (t)). (4.8)
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(0) and vo(x) = Z,(0).
Y. (0), we know that ug is a bounded function on domain D. By the Markov
and the uniqueness of (Y, Z,) , it is easy to see that

Put up(z) =Y,
Since Y, (0) =
property of X

Ye(t) = uo(X(1),  Zu(t) = vo(X(1)).

So that sup |V, (¢)| < |luolleo < 0.
zeD,t>0
Now consider the following problem:

{ Lou(z) = —G(z,ug(x),vo(z)), on D

%g—:(:n) = ¢(x) on 0D

(4.9)

By Theorem 3.1, problem (4.9) has a unique continuous weak solution u(z). Next we will show
that u = ug.

Since u belongs to the domain of the Dirichlet form associated with the process X (t), it follows
from the Fukushima’s decomposition that:

du(X (1))
= —[GX@),u0(X (1)), vo(X (1)) + ¢(X () u(X ())]dt + ¢(X(t))dL(t) + (Vu(X (1)), dM(t))
= —[GX@), Ya(t), Z2(t) + q(X(£))u(X (#))] + (X (8))dL(t) + (Vu(X (1)), dM (1))

From the condition (£3)) and the boundedness of u(x), it follows that
lim B[ /o M@duy2(x (£)] < |jul?, lim Ey[e2fohra(wdu — o,
t—00 t—o00

By Ito’s formula, it follows that, for any ¢t < T,

efot h(u)du (X(t

L hwduy x / elo POWG(X (5), Va(s), Zals)) + (X (5))u(X (s))]ds
- / el M 5 (5))dL () — / (s)els MO (X (5))ds
- /t elo MWde (70, (X (1)), dM, (1)) (4.10)

Set
vp(t) = w(X (1) = Ya(t) and Ry(t) = Vu(X(t) — Z(1).

Subtracting the equations (£.8)) from (£.I0]), we obtain the following equation: for any ¢t < T,
efot h(u)du’l)(X(t))
= elo Mty (X(T)) + / (q(X () = h(uw))elo M@y X (5))ds
t

_/ efos h(u)du < R:E(t)7 ) dMiE (t) >
t
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_ oo h(w)du _ T [ h(u)du
= oo by (X (1)) /h<s>eo o(X(5))ds

t

T
_ / eI M < R ) AM, (1) >
t
Set g(t) = elo h(w)duy(t). Taking conditional expectation on both sides of ([@IT), we find that

ot) = / R(s)g(s)ds| ]

~ T T~ ~
— Bg(T)(1 - /t B(s)ds) + /t / F()R(s1)g(s1)dsds| Fi]

T _ T
= Blom)1 - [ s+ 5[ Aoy

t

T (T T
1)3/t / / h(s)h(s1)h(s2)g(s2)dsadsids|Fy).

Keeping iterating, we obtain

n Ty 5\
o) = Ex[gm(ZM)

n+1/ // / R($)h(51).-2(50)g(5n)dSn...ds1ds| F]

Since F,[| g(T)|eftT W(s)ds] < o0, letting n — oo, by dominated convergence theorem, it follows
that

9(t) = Exlg(T)e™ 1 10" )
Then
o(t) = Ey[o(T)elt PORODEFY < ((lug oo + [[ulloo) Baeh (X8| 7). (4.11)
Hence, it follows that
0 < el AENE ()] < (Jlug]lc + [1ul]oo) Jim B, el aCX s 7). (4.12)
Since the condition (4.4]) implies

lim Ex[efoT a(X(#)ds) —

T—o00

we deduce that E, [efot 9(X())ds|y(t)|] = 0 and hence v(t) = 0, P, — a.s
Therefore, for any ¢ > 0, we have u(X(t)) = Y,(¢t) and Vu(X(t)) = Z,(t) by the uniqueness
of the Doob-Meyer decomposition of semimartingales. In particular, u(z) = E [u(X;(0))] =
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E,[Y:(0)] = uo(). This shows that u(x) is a weak solution of the equation (4.I]). .
If @ is another solution of the problem (41I]). Then the processes Y, (t) := a(X(t)) and Z,(t) :=

Vau(X(t)) satisfy the following equation
dYy(t) = —G(X (1), Ya(t), Zy(t))dt — ¢(X (t))dLi+ < Zy(t), dMy(t) > . (4.13)

Set Yy (t) = elo 40X @)y (1) and Z,(t) = elo (X )du 7 (1),
By chain rule, it follows that

AV, () = —G(X (1), Yo (t), Zo(t))dt + efo A CAG(X (1)L (t) + (Z, (1), dM (1))

Moreover, because 4 is bounded, we have

lim efo h(w) qu ( ) — lim efO h(u)du ~ (X(t)) —0.

t—o0 t—o0

Therefore, from the uniqueness of the solution of the BSDE in Theorem 2.1, we have

Ym(t) = Yx(t) Zm(t) = Zm(t)'

In particular,

5 Semilinear Elliptic PDEs with Singular Coefficients

Recall the operator

L:%V (AV)+ B-V-V-(B)+0Q

on the domain D equipped with the mixed boundary condition on dD:

10u -
30y (B,n)u(z) = 0.

The quadratic form associated with L is given by:

ou 0
Q(u,v) == (—Lu,v) = — Z/ 8—Za—;d - Z/ axl x)dz

Z/ 8:EZ d:E_/Q “

where (-.-) stands for the inner product in L?(D).
The domain of the quadratic form is

ou
&TZ'

D(Q) = W"(D) :={u:uec L*(D), =— € L*(D),i = 1,...,d}.
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Let {S;, t > 0} denote the semigroup generated by L.

In this section, our aim is to solve the following equation:

Lf(z) = —F(x, f(2)), on D (5.1)
19 ()~ < Bon > (2)f(2) = D(x) on D |

Definition 5.1 A bounded continuous function f(z) defined on D is called a weak solution of
the equation (B.1)) if f € W2, and for any g € C*°(D),

Q(u, g) = /8 @@)g@)oldo) + /D F(z, u(z))g(x)dz.

Here the function F : R x R — R is a bounded measurable function and satisfies the following
condition:

(E.1) (y1 — y2)(F(z,51) — F(z,92)) < —r1(2)[yr — yof*.
Recall the following regular Dirichlet form

E%u,0) = 532, [p aij(@) g Fde, (5.2)
D(£%) = W'?(D) |

associated with the operator Ly = %V(AV) equipped with the Neumann boundary condition
% =0on JdD.
The associated reflecting diffusion process is denoted by {Q,F, X7, 09,49, PV}, Here 69 and
7Y are the shift and reverse operators defined by

XJ(0}(W) = XPiy(w),s,t>0

X[ W) = XP(w)s <t
The process (X?);>0 has the decomposition in (3:3). The martingale part of X is M. =
fo o (X0 dW;.
The followmg probabilistic representation of semigroup S; was proved in [5]

Sif() = Eilf(X7) exp( /O (A7'B)"(X0)dMY + ( /O (A71B)"(X0)dM?) 0
_1 ' a1 _ Pve 0 s t 0 s
> /O<B B)ATH(B = B)*(X,)ds + /0 Q(X?)ds)] (5.3)

E? denotes the expectation under P?.
Set

Z = exp(/ot(A_lB)*(Xg)dMso + (/()t(A_lé)*(Xg)dMg) 0

1

_ ' a1 Py v O s ¢ 0\ s
2/0(3 B)A™ (B — B)"(X,)d +/0 QXS)ds). (5.4)
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By [3] and [21], there exists a bounded, continuous functions v € WP(D) satisfying that

([ By an) onf
0

t t
=~ [ TuxDan 4 o) o) - [ (AT By (e)an, (55)
0 0
Moreover, v satisfies the following equations: for g € C'(D),
/ < AVv,Vg > (z)dx = / < B,Vg > (z)dz. (5.6)
D D

Thus the representation of Sy becomes:

Sif(x) = e @EYf(XP)e’ ) exp( / t(A*(B — B — AVv))*dM?

0
—% (B B— AV AN (B - B — AV)(X)ds
0
+ [[(@Q+ 5(V0AT) ~ (B~ B,90)(X)ds)
0 ~
= V@G, [fe'](x). (5.7)

Here, setting b:= B — B — (AVv) and ¢ := Q + H(Vu)A(Vv)* — (B — B, Vv), we see that S,
is the semigroup generated by the following operator:

Ly = %v ((AV) + (B — B — (AV0)) - V + (Q + %(V@)A(Vu)* —(B— B, V)
= %V-(AV)+b-V—|—q
equipped with the boundary condition a% = 0.
In this section, we will stick to this particular choice of b and gq.

Recall that
NI(t) = elo AT10(XQAMI=] [ bA 16" (X0)ds

and set Z; = M(t)efot 9(X3)ds )
Then from (5.5), it follows that Z(t) = Ze?X0)—v(X5),

Recall the operator L; = %V - (AV) + b - V with Neumann boundary condition, which is
associated with the reflecting diffusion (X (¢), P;). It is known from [I4] that

dP,|7, = MydP?| 7,

X(1) ::p+/0 a(X(s))dWs—i—/O (%VA+b)(X(s))ds+/0 V(X(s)dLs, Py —a.s.
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where {W;} is a d-dimensional Brownian motion and L; is the local time satisfying that L, =
3 Top(X (s))dLs.

Lemma 5.1 Assume that there exists xg € D, such that
o
B, / |2 2o Q-Ar)Xdug L] < o0, (5.8)
0

Then there exists a positive number € > 0, if HBHLP < g, the following inequality holds:

sup Ex[/ e2Jo(=ri+a)( X()dugt) < 0. (5.9)
zeD 0
PROOF.
Eyle 2 [(~r1+q JX@du)  — B0 (1)e 2f5(—r1+q)(X°)dU]
— [Z(t)efo( 2r1+a) (X (u))du]
< E0LZ(t)e —2 [ (r1 (X (u) duefg(QJr%<AW-2(B—B),W>)(X3)du]
< ClEO[ ( )62 fOt(Q—2r1)(X2)du]% _Eg[efg<AVU—2(B—B),VU>(X3)du]%

By Lemma 3.3 and condition (5.8]), there exists two constant ¢y, 3 > 0 such that

sup B [Z2(t)e? fot(Q_”)(XS)d“] < cpe P,
zeD

Moreover, for p > d, by the Theorem 2.1 in [I5], there exist two positive constants cs and ¢y

such that X
O [efOt<AVv—2(B—B),Vv>(X3)du] < cgecit
xT — 9
where ¢4 = c|| < AVv —2(B — B),Vv > || 02 R
Since |Vv|r» < C|B|p(py (see [21]), there exists € > 0, such that |B|p»py < e implies ¢4 < 3.

Thus (5.9) holds. O

Theorem 5.1 Assume (B.8) and for some point xog € D
S A
EY [ / ZdLY] < oo (5.10)
0

Then there exists € > 0 such that if |B||» < e, the problem (1) has a unique, bounded,
continuous weak solution u(x).

PROOF.

Existence: Set F(z,y) = e*@ F(z,e "@y) and ¢(z) = e"@ ().
From the boundedness of v , F is also bounded.

And F satisfies

(1 — v2)(F(z,y1) — Flz,2)) < —r1(2)|y1 — y2|~
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Moreover, there is a constant ¢ > 0, such that
oo > B9 | /0 h Z,dLY) = E? | /0 h Z4e" X =v(X0) g .01
> cEY | /0 h Z,dL% = cEY | /0 el «XDdugr0)  (5.11)
By Lemma [4.1], we know that, at zg € D,
E,, [/OOO elo dXu)dugr 1 < oo, (5.12)
Furthermore, by Lemma l.2] it follows that
sup Ex[/ooo elo aXW)dugr ] < oo. (5.13)
By Lemma [5.1], the following condition is satisfied :
E,| / R (W) g] < oo, (5.14)
0

So F satisfies all of the conditions in Theorem E-1] replacing G by F. Thus the following
problem

Louiyy = ¢ on dD (5.15)

{ Lou(z) = —F(x,u(z)), on D
2 0y

has a unique bounded continuous weak solution u(z).
Set f(z) = e @ y(x). Then we claim the function f(z) is the weak solution of the equation

G.I).
Because function v is continuous and bounded, f(z) is also continuous. From the fact that
function u is the weak solution of the problem (5.I5l), we obtain, for any function ¢ € C*°(D),

1
E(u,e”P) = 3 /D < AVu, V(e ") > — < b,Vu > e "¢ — e "quipdx

= / e‘”qﬁ/;da—k/F(a;,u(x))e_”wda:. (5.16)
oD

D

As in the proof of Theorem 5.1 in [22], we can show that the left side of the equation (5.16I)
equals to

Q) =5 [ [<AVEVY > = < B.Vu> = < B.Ve > f - Qfilds

At the same time, by the definition of the function ¢ and F, the right side of the equation

(EI6) equals to
/ Bipdor + / Fa, f(z))bdz.
oD D
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Thus it follows that, for any ¢ € C*°(D),

o) = |

oD

@¢d0’+/ F(z, f(x))ydx.

D

which proves that function f is a weak solution of the problem (G.1I).

Uniqueness:

If f is another solution of the problem (5.1]), then % := eV f can be shown to be the solution
of the equation (5.I5). Then by the uniqueness of the problem (5.I5]) proved in the Theorem
A1l we find @ = u. Therefore, f = f.0

6 L! solutions of the BSDE and Semilinear PDEs

Recall the operator

d d
1 0 0 0

on the domian D equipped with the Neumann boundary condition % =0, on 9D.

And (Q,F, X(t), Py,x € D) is the reflecting diffusion process associated with the generator
L.

Then the process X (t) has the following decomposition:

X(t) = X(0) + M(¢) +/0 b(X (s))ds +/0 An(X(s))dLs, P, —a.s..

Here b = {by,...,bg} with b; = %ZJ %‘;’JJ + b;. M(t) is the F; square integrable continuous

martingale additive functional.

In this section, we will consider the L' solutions of the BSDEs in Section 2 and use this
result to solve the nonlinear elliptic partial differential equation with the mixed boundary con-
dition.

Let f:Q x R™ x R — R be progressively measurable. Consider the following conditions:
(1.1) (y—v")(f(t,y)— f(t,y")) < d(t)|y—y'|?, where d(t) is a progressively measurable process;
(L2)E[f5° elo 4% £(s,0)|ds] < oo;

(I.3) P, —a.s., for any t > 0, y — f(t,y) is continuous;

(1.4) Vr >0, T >0, ¢.(t) := sup |f(t,y) — f(t,0)] € L*([0,T] x Q,dt x dP,).

ly|<r

The following lemma is deduced from Corollary 2.3 in [2].

Lemma 6.1 Suppose a pair of progressively measurable processes (Y, Z) with values in R x R?
such that t — Z; belongs to L*([0,T]) and t — f(t,Y;) belongs to L'([0,T)), Py — a.s..

If

T T
Y, = g+/ f(r,mdr—/ < Z,.dM, >, (6.1)
t t
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then the following inequality holds, for 0 <t <u <T,
il Wil + [ Vs s - [ ¥z )
t t

where § = %I{y?ﬁo}.
The following lemma can be proved by modifying the proof of Proposition 6.4 in [2].
Lemma 6.2 Assume that conditions (I.1)-(1.4) with d(t) = 0. Then there exists a unique

solution (Y, Z) of the BSDE
T T
Yt:/ f(r,mdr—/ (Zp,dM,), for t<T. (6.2)
t t

B
2

Moreover, for each 8 € (0,1), E[sup;<r |Y:|°] + E[(fOT |Z,|2dr)2] < oo.

Suppose 5 € (0,1).
SP denotes the set of real-valued, adapted and continuous process {Y:}+>0 such that
Y]] := E[sup Y]] < .
>0

It is known that || - ||® deduces a complete metric on SP.
MP denotes the set of R%-valued predictable processes {Z;} such that

B
2

12105 = 1 " 122d0) %) < oo

MP is also a complete metric space with the distance deduced by || - || 55

Lemma 6.3 Under the same assumption as the Lemma [6.2], there exists a unique solution
(Y, Z) of the BSDE

T T
Yt:YT+/ f(r,Yr)dr—/ (Zp,dM,), any t<T;
t t
limY; =0, P —a.s. (6.3)
t—o00

PROOF. Existence:
By the Lemma 6.2 above, there exists (Y™, Z") such that, for 0 <t < n,

Y7 = / Fr Y dr — / (20, dM,),
t t

and V)" = Z]' =0, for t > n.
Fixt >0 and t <n <n+1, then

‘ n+i ) nti , nti
Y;n—l—z Y = /t (f(r, YT"_H) — f(r,Y))dr — /t ((Z:,‘-H — Z"),dM,) -I-/ f(r,0)dr
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Set F™(r,y) = f(ry +Y") = f(r.Y2) + Fr0) sny. v = Y™ — Y and 2 = 20+ — 7.
Then (y}, z{*) is the solution of the following BSDE:

n+1 n+1
= [ Feanir - [ ) (6.4
t t
So that by the condition (I.1) with d(t) = 0, it follows from Lemma [6.1] that

n-+1 n+i
el < / (G P (ry ) dr — / (1 2rdM,)

n-l—i[ n0 n+i
< / L2 (g Y7 = ¥+ / (s, 0)]ds
t r n
n-+1i
_/ <y77}7 rdM>
t
n-+1 n-+i
< / (5, 0)]ds — / (. 21 dM,). (6.5)
n t

Taking conditional expectation on both side of the inequality, we got

n+1
Wl < E / 1 (5,0)|ds| 7] = MY,

where M}" is a martingale. Then by Doob’s inequality and condition (I1.2), it follows that, for
B (0,1),
1 n+1
Elup 47 *) < Elsup(M7)") < 5 BL[ If(s.0lds)”
— 0, as n— oc. (6.6)

Therefore, {Y"} is a Cauchy sequence under the norm || - |%. So that there is a process Y
such that E[sup, |Y; — Y;*|%] — 0.
This also implies that Y; — 0, as t — oo, P, — a.s..

Moreover, by the equation (6.4)), Ito’s formula and the condition (I.1), it follows that
n+1
P+ [ A
t

n+i n+i
. / (' () dr — 2 / (o, rdM,)
t t

IA

n+1 n+i
2 / b 170+ / (', 2ndM,)|

TL
sup 7+ </ £, 0)]dr)? +2\/ (2,
n

IN

and thus that

n-+i n+i n+
( / |272dr) % < exfsup 571 + ( / F(r,0)[dr)? + | / <y ndM, > |5].
t T n t

[Nl)ey
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Taking expectation on both sides of the inequality and applying the BDG inequality, we obtain
n4+1 5
B[ lrPan)?)
¢

n+i
r(Blsup o711+ B[ 170,001 ) + o

n+1 5
[y 2|2 [Pdr) 7

IN

]

" 8
4

IN

+i n+41
a(Blsup )+ ([ 1£00)lar)) + coBlsuplyp ) [ apPan)

n

c n+1 n+i
< (D 1+ B0 )+ 5 P,

Therefore, we know that there is a constant C' > 0, such that

n

o0 +1
B[ Tl PasE] < CBlwln ([ 1.0l

n+1
< CElw i) + CE[ [ |f(s,0)as)
— 0 as n— oo

So that {Z]'} is a Cauchy sequence in M?. Let Z denote the limit of {Z"}.
At last, by the condition (I.3), we find that

T T
/ FEYMdE / FEY)dE Py — as.. (6.7)
0 0

Therefore, (Y,Z) is the solution satisfies the BSDE (6.3)).

Uniqueness:

Consider (Y, Z) and (Y’,Z’) are two solutions to (6.3). Then by the same method as in the
proof of Lemma 2.1, we can show that,

Vi>0, |Y;-Y/|=0, P—as. O
(I.5) The process d(t) is a progressively measurable process satisfying

d(-) € L'[[0,T] x Q,dt® P}, for any T > 0.
Theorem 6.1 Assume the conditions (1.1)-(1.4). Then there exists a unique process (Y, Z)
such that,

T T
Y}:YT—#/ f(r,Yr)dr—/ < Zp,dM, >, for any t<T,
t t

lim efo dwduy, — 0, P —a.s. (6.8)

t—o0
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PRrROOF.

Existence:

Set f(t,y) :Aefot d(“)d“f(t, e Jo d(u)duy) _ d(t)y. Then

(D) (y =y (f(ty) — f(ty)) <0;

(2)£(t,0) = eho 4@ (1,0). So E[f3°|f(s,0)|ds] = E[[;° elo 18| £(¢,0)|ds] < oo

(3 )sup]f(t,y)— (t, 0)| < b, (t)+]d(t)|r, where the process ¥,.(t)+|d(t)|r € L' ([0, T]xQ, dt®P),
ly|<r
for %’ > 0.

Therefore, f satisfies all the conditions of the Lemma So there exists a pair of processes
(Y, Z) satistying the equation:

T T
=Yoot [ fodoir - [z,
t t
and obviously tli)m Y, = 0.
By the chain rule and the definition of the function f , it follows that
de=Jo dwduy, — (4 o= Jo dwduyy gt 4 (o= Jodwdug, gar).

Set Y; = e = Jo Wiy, and Z, = e = Jo d(w) duz,  Then the process (Y, Z) is the solution to the

equation (6.8)).

Uniqueness:
The uniqueness of the solution to (6.8) follows from the uniqueness of the solution to equation

@3). O

Let G(z,y) : R x R — R be a bounded Borel measurable function. Consider the following
conditions:

(H.l)/ (y1 — y2)(G(z, 91, 2) — G(x,y2,2)) < —h1(x)|y1 — ya|?, where hy € LP(D) for p > %
(H.2) y — G(=x,y) is continuous.

Theorem 6.2 Assume the Conditions (H.1)" and (H.2)" and that there is some point xo € D,
such that

Bl [ el aX0a, | < (6.9)

Then the semilinear Neumann boundary value problem

{ Lou(z) = —G(z,u(x)), on D (6.10)

5 (@) = ¢(x) on D

has a unique continuous weak solution.
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PROOF.

Step 1

Set G(X(t),y) = elo aX )G (z, e~ Jo a(X (w)dt y). Then there exists a unique solution (Y, Z,)
to the following BSDE:

forany T >0and 0 <t < T,

Vo(t) = Y1)+ /tT G(X (), Vo (s))ds — /tT I3 AKN g (5)) a1

T ~
- / (Za(s), dM, (5))
and

lim e~ I (X (W)duy, — P, —a.s.

t—o00

The uniqueness follows from the uniqueness proved in Theorem 6.1. Only the existence of
solution (Y,, Z,) needs to be proved:
(a) Similarly as the proof of Theorem 2.1, we can show that there exists (px(t), ¢=(t)) such that

dp,(t) = eho 1K G X ()AL + < u(t), dMyp(t) >
e ho mX@)duy, 1) 50, as t— 00, Py—a.s. (6.11)

(b) Set g(z,y) = G(z,y + px(t)). Then it follows that

(y —y)(g(x,y) — g(z,y) < —h(2)ly —y'[*
The condition (6.9) and Lemma 3.3 imply, for = € D,

Em[/ oI5 (~hr (X gy o
0
Furthermore, as the function G is bounded, we see that condition (.2) is satisfied:
Bl [ e B3 (5), )
= B[ BMEORG(), pu(5)is
= B[ R G (), ¢ N, 5]
0

Gl [ el 0x g
0

< . (6.12)

IN

Obviously condition (I.3) is satisfied, i.e., y — g(z,y) is continuous.
Moreover, the condition (I.4) is also satisfied. In fact, for any r > 0,

Ur(t) = sup |G(X (1), y) — G(X(2),0)] < 2/|Glocelo 10
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and for any T > 0, by the fact that ¢ € LP(D) with p > ¢ and Theorem 2.1 in [I5],

Ex[fOT elo aXu)du gy < oo,
Therefore, the function g(x,y) satisfies all of the conditions of Theorem . There exists a
pair of processes (y(t), z:(t)) such that for any 7> 0 and 0 <t < T,

T T
() = o (T) + / 9(X(5), ya(5))ds — / (2a(s), M, (5)) (6.13)
and
tliglo e Jo mX(u)duy (1) =0 P, —a.s. (6.14)

Put Y, (t) = po(t) + yo(t) and Z,(t) = qu(t) + z,(t). Tt follows that (Y (t), Z,(t)) satisfies the
following equation

AV, (t) = elo X @)dv g X (1)L, — G(t, Vo (t))dt+ < Zu(t), dM, >,

tli)m e b mXw)duy, — 0 P, —a.s..

Step 2.
Put Y, (t) := e~ I a(X @)ty () and Z,(t) == e~ I a(X@)dt 7 (t), we have

4V, (1) = —F(X(8), Ya(t)) + 6(X(0)dLi+ < Zo(t), M, (2) >,
where F(z,y) = q(z)y + G(z,y). Moreover,

ef()t(_h1+Q)(X(u))qux(t) _ efot(—h1+q)(X(u))(u)dte— N q(X(u))thm(t)

= e b Xty (1) 50 as t— .

Put ugp(z) = Y,(0) and vo(z) = Z,(0).
Now as in the proof of Theorem, 4.1, we can solve the following equation

{ Lou(z) = =G(z,uo(x)), on D (6.15)

%g—:(x) = ¢(x) on 0D
and prove that the solution u coincides with ugp(x). This completes the proof of the theorem. [J

Suppose that F : R x R — R is a bounded measurable function and r; € LP (D). Con-
sider the following conditions :

(E.1) (11 — 12)(G(@,y1,2) — G(@,12,2)) < —r1(2)|y1 — gl
(E.3) y — F(x,y) is continuous;

Now, after establishing Theorem 6.2, following the same proof as that of Theorem 5.1, we
finally have the following main result.
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Theorem 6.3 Suppose that the function F satisfies the condition (E.1) and (E.2), and there
exists xog € D such that

E) [ /0 Z,dLY] < oc. (6.16)
Then the following problem
Lu(z) = —F/(\:E,u(m)), on D (6.17)
%g—:($)— < B,n> (x)u(x) = ®(x) on D '

has a unique, bounded, continuous weak solution.
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