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Abstract

Existence and uniqueness are proved for Mckean-Vlasov type distribution de-
pendent SDEs with singular drifts satisfying an integrability condition in space
variable and the Lipschitz condition in distribution variable with respect to W0

or W0 + Wθ for some θ ≥ 1, where W0 is the total variation distance and Wθ is
the Lθ-Wasserstein distance. This improves some existing results where the drift is
continuous in the distribution variable with respect to the Wasserstein distance.
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Keywords: Distribution dependent SDEs, total variation distance, Wasserstein distance,
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1 Introduction

Consider the following distribution dependent SDE on Rd:

(1.1) dXt = bt(Xt,LXt
)dt+ σt(Xt,LXt

)dWt, t ∈ [0, T ],

where T > 0 is a fixed time, (Wt)t∈[0,T ] is the m-dimensional Brownian motion on a
complete filtration probability space (Ω, {Ft}t∈[0,T ],P), LXt

is the law of Xt,

b : [0, T ]× Rd × P → Rd, σ : [0, T ]× Rd × P → Rd ⊗ Rm

∗Supported in part by NNSFC (11771326, 11831014, 11801406).
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are measurable, and P is the space of all probability measures on Rd equipped with the
weak topology.

This type SDEs are also called McKean-Vlasov SDEs and mean field SDEs, and have
been intensively investigated due to its wide applications, see for instance [1, 2, 5, 8, 10,
11, 12, 20, 22] and references within.

An adapted continuous process on Rd is called a (strong) solution of (1.1), if

(1.2) E

∫ T

0

{

|bt(Xt,LXt
)|+ ‖σt(Xt,LXt

)‖2
}

dt < ∞,

and P-a.s.

(1.3) Xt = X0 +

∫ t

0

bs(Xs,LXs
)ds+

∫ t

0

σs(Xs,LXs
)dWs, t ∈ [0, T ].

We call (1.1) (strongly) well-posed for an F0-measurable initial value X0, if (1.1) has a
unique solution starting at X0.

When a different probability measure P̃ is concerned, we use Lξ|P̃ to denote the law
of a random variable ξ under the probability P̃, and use EP̃ to stand for the expectation
under P̃. For any µ0 ∈ P, (X̃t, W̃t)t∈[0,T ] is called a weak solution to (1.1) starting

at µ0, if (W̃t)t∈[0,T ] is the m-dimensional Brownian motion under a complete filtration

probability space (Ω̃, {F̃t}t∈[0,T ], P̃), (X̃t)t∈[0,T ] is a continuous F̃t-adapted process on Rd

with LX̃0
|P̃ = µ0, and (1.2)-(1.3) hold for (X̃, W̃ , P̃,EP̃ ) replacing (X,W,P,E). We call

(1.1) weakly well-posed for an initial distribution µ0, if it has a unique weak solution
starting at µ0; i.e. it has a weak solution (X̃t, W̃t)t∈[0,T ] with initial distribution µ0 under

some complete filtration probability space (Ω̃, {F̃t}t∈[0,T ], P̃), and LX̃[0,T ]
|P̃ = LX̄[0,T ]

|P̄

holds for any other weak solution with the same initial distribution (X̄t, W̄t)t∈[0,T ] under
some complete filtration probability space (Ω̄, {F̄t}t∈[0,T ], P̄).

Recently, the (weak and strong) well-posedness is studied in [3, 4, 6, 13, 16, 17, 19] for
(1.1) with σt(x, γ) = σt(x) independent of the distribution variable γ, and with singular
drift bt(x, γ). See also [12, 16] for the case with memory. We briefly recall some conditions
on b which together with a regular and non-degenerate condition on σ implies the well-
posedness of (1.1). To this end, we recall the Lθ-Wasserstein distance Wθ for θ > 0:

Wθ(γ, γ̃) := inf
π∈C (γ,γ̃)

(
∫

Rd×Rd

|x− y|θπ(dx, dy)

)
1

1∨θ

, γ, γ̃ ∈ P,

where C (γ, γ̃) is the set of all couplings of γ and γ̃. By the convention that r0 = 1{r>0}

for r ≥ 0, we may regard W0 as the total variation distance, i.e. set

W0(γ, γ̃) = ‖γ − γ̃‖TV := sup
A∈B(Rd)

|γ(A)− γ̃(A)|.

References [3, 4] give the well-posedness of (1.1) with a deterministic initial value
X0 ∈ Rd, where the drift bt(x, γ) is assumed to be linear growth in x uniformly in t, γ,
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and
|bt(x, γ)− bt(x, γ̃)| ≤ φ(W1(γ, γ̃))

holds for some function φ ∈ C((0,∞); (0,∞)) with
∫ ·

0
1

φ(s)
ds = ∞. Note that for distri-

bution dependent SDEs the well-posedness for deterministic initial values does not imply
that for random ones.

[17, Theorem 3] presents the well-posedness of (1.1) with exponentially integrable X0

and a drift b of type

(1.4) bt(x, γ) :=

∫

Rd

b̃t(x, y)γ(dy),

where b̃t(x, y) has linear growth in x uniformly in t and y. Since b̃t(x, y) is bounded in y,
bt(x, ·) is Lipschtiz continuous in the total variation distance W0. [19] considers the same
type drift and proves the well-posedness of (1.1) under the conditions that E|X0|

β < ∞
for some β > 0 and

|b̃t(x, y)| ≤ ht(x− y)

for some h ∈ Lq([0, T ]; L̃p(Rd)) for some p, q > 1 with d
p
+ 2

q
< 1, where L̃p is a localized

Lp space.
In [6] the well-posedness of (1.1) is proved for X0 satisfying E|X0|

2 < ∞, and for b

given by

(1.5) bt(x, γ) = b̃t(x, γ(ϕ)),

where γ(ϕ) :=
∫

Rd ϕdγ for some α-Hölder continuous function ϕ, and |b̃t(x, r)|+|∂rb̃t(x, r)|
is bounded. Consequently, bt(x, γ) is bounded and Lipschitz continuous in γ with respect
to Wα.

In [13] the well-posedness is derived under the conditions that E|X0|
θ < ∞ for some θ ≥

1, bt(x, γ) is Lipschitz continuous in γ with respect to Wθ, and for any µ ∈ C([0, T ];Pθ),

b
µ
t (x) := bt(x, µt), (t, x) ∈ [0, T ]× Rd

satisfies |bµ|2 ∈ Lq
p(T ) for some (p, q) ∈ K , where

Lq
p(T ) :=

{

f ∈ B([0, T ]× Rd) :

∫ T

0

(

∫

Rd

|ft(x)|
pdx

)
q
p

dt < ∞

}

,

K :=
{

(p, q) ∈ (1,∞)× (1,∞) :
d

p
+

2

q
< 2

}

.

Moreover, in [15] the well-posedness of (1.1) has been proved for

(1.6) bt(x, µ) = b̃(ρµ(x)), σt(x, µ) = σ̃(ρµ(x))

with initial distribution having density function (with respect to the Lebesgue mseaure)
in the class H2+α for some α > 0, where ρµ is the density function of µ with respect to the
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Lebesgue measure, b̃ ∈ C2([0,∞);Rd) and σ̃ ∈ C3([0,∞);Rd ⊗Rd). As for the weak well-
posedness, [14] assumes that b is bounded and W0-Lipschitz continuous in distribution
variable, and σ is Lipschitz continuous in space variable.

In this paper, we prove the (weak and strong) well-posedness of (1.1) for general type
b with bt(x, γ) Lipschitz continuous in γ under the metric W0 or W0 + Wθ for some
θ ≥ 1. This condition is weaker than those in [3, 4, 6, 13] in the sense that the drift is
not necessarily continuous in the Wasserstein distance, but is incomparable with those
in [17, 19] where b is of the integral type as in (1.4). Moreover, our result works for any
initial value and initial distribution.

Recall that a continuous function f on Rd is called weakly differentiable, if there exists
(hence unique) ξ ∈ L1

loc(R
d) such that

∫

Rd

(f∆g)(x)dx = −

∫

Rd

〈ξ,∇g〉(x)dx, g ∈ C∞
0 (Rd).

In this case, we write ξ = ∇f and call it the weak gradient of f . For p, q ≥ 1, let

L
q
p,loc(T ) =

{

f ∈ B([0, T ]× Rd) :

∫ T

0

(

∫

K

|ft(x)|
pdx

)
q
p

dt < ∞, K ⊂ Rd is compact

}

.

We will use the following conditions.

(Aσ) σt(x, γ) = σt(x) is uniformly continuous in x ∈ Rd uniformly in t ∈ [0, T ]; the weak
gradient ∇σt exists for a.e. t ∈ [0, T ] such that |∇σ|2 ∈ Lq

p(T ) for some (p, q) ∈ K ;
and there exists a constant K1 ≥ 1 such that

K−1
1 I ≤ (σtσ

∗
t )(x) ≤ K1I, (t, x) ∈ [0, T ]× Rd,(1.7)

where I is the d× d identity matrix.

(Ab) b = b̄+ b̂, where b̄ and b̂ satisfy

|b̂t(x, γ)− b̂t(y, γ̃)|+ |b̄t(x, γ)− b̄t(x, γ̃)|

≤ K2(‖γ − γ̃‖TV +Wθ(γ, γ̃) + |x− y|), t ∈ [0, T ], x, y ∈ Rd, γ, γ̃ ∈ Pθ

(1.8)

for some constants θ,K2 ≥ 1, and there exists (p, q) ∈ K such that

(1.9) sup
t∈[0,T ]

|b̂t(0, δ0)|+ sup
µ∈C([0,T ];Pθ)

‖|b̄µ|2‖Lq
p(T ) < ∞,

where b̄
µ
t (x) := b̄t(x, µt) for (t, x) ∈ [0, T ]×Rd, and δ0 stands for the Dirac measure

at the point 0 ∈ Rd.
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(A′
b) For any µ ∈ B([0, T ];P), |bµ|2 ∈ L

q
p,loc(T ) for some (p, q) ∈ K . Moreover, there

exists a function Γ : [0,∞) → [0,∞) satisfying
∫∞

1
1

Γ(x)
= ∞ such that

〈bt(x, δ0), x〉 ≤ Γ(|x|2), t ∈ [0, T ], x ∈ Rd.(1.10)

In addition, there exists a constant K3 ≥ 1 such that

|bt(x, γ)− bt(x, γ̃)| ≤ K3‖γ − γ̃‖TV , t ∈ [0, T ], x ∈ Rd, γ, γ̃ ∈ P.(1.11)

When (1.1) is weakly well-posed for initial distribution γ, we denote P ∗
t γ the distribution

of the weak solution at time t.

Theorem 1.1. Assume (Aσ).

(1) If (A′
b) holds, then (1.1) is strongly and weakly well-posed for any initial values and

any initial distribution. Moreover,

(1.12) ‖P ∗
t µ0 − P ∗

t ν0‖
2
TV ≤ 2e

K1K
2
3 t

2 ‖µ0 − ν0‖
2
TV , t ∈ [0, T ], µ0, ν0 ∈ P.

(2) Let E|X0|
θ < ∞ and µ0(| · |

θ) < ∞. If (Ab) holds, then (1.1) is strongly well-posed

for initial value X0 and weakly well-posed for initial distribution µ0. Moreover, there

exists a constant c > 0 such that for any µ0, ν0 ∈ Pθ,

‖P ∗
t µ0 − P ∗

t ν0‖TV +Wθ(P
∗
t µ0, P

∗
t ν0)

≤ c
{

‖µ0 − ν0‖TV +Wθ(µ0, ν0)
}

, t ∈ [0, T ].
(1.13)

To illustrate this result comparing with earlier ones, we present an example of b which
satisfies our conditions but is not of type (1.4)-(1.6) and is discontinuous in both the space
variable and the distribution variable under the weak topology. If one wants to control
a stochastic system in terms of an ideal reference distribution µ0, it is natural to take
a drift depending on a probability distance between µ0 and the law of the system. As
two typical probability distances, the total variation and Wasserstein distances have been
widely applied in applications. So, we take for instance

bt(x, µ) = b̄(t, x, µ) + h(t, x,Wθ(µ, µ0), ‖µ− µ0‖TV )

for some θ ≥ 1, where b̄ satisfies (1.8) and (1.9) for b̂ = 0 which refers to the singularity in
the space variable x, and h : [0, T ]×Rd× [0,∞)2 → Rd is measurable such that h(t, x, r, s)
is bounded in t ∈ [0, T ] and Lipschitz continuous in (x, r, s) ∈ Rd × [0,∞)2 uniformly in
t ∈ [0, T ]. Obviously, b(t, x, µ) satisfies condition (Ab) but is not of type (1.4)-(1.6) and
can be discontinuous in x and µ under the weak topology.

In the next section we make some preparations, which will be used in Section 3 for
the proof of Theorem 1.1.
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2 Preparations

We first present the following version of Yamada-Watanabe principle modified from [13,
Lemma 3.4].

Lemma 2.1. Assume that (1.1) has a weak solution (X̄t)t∈[0,T ] under probability P̄, and

let µt = LX̄t
|P̄, t ∈ [0, T ]. If the SDE

(2.1) dXt = bt(Xt, µt)dt + σt(Xt, µt)dWt

has strong uniqueness for some initial value X0 with LX0 = µ0, then (1.1) has a strong

solution starting at X0. If moreover (1.1) has strong uniqueness for any initial value X0

with LX0 = µ0, then it is weakly well-posed for the initial distribution µ0.

Proof. (a) Strong existence. Since µt = LX̄t
|P̄, X̄t under P̄ is also a weak solution of (2.1)

with initial distribution µ0. By the Yamada-Watanabe principle, the strong uniqueness of
(2.1) with initial value X0 implies the strong (resp. weak) well-posedness of (2.1) starting
at X0 (resp. µ0). In particular, the weak uniqueness implies LXt

= µt, t ∈ [0, T ], so that
Xt solves (1.1).

(b) Weak uniqueness. Let X̃t under probability P̃ be another weak solution of (1.1)
with initial distribution µ0. For any initial value X0 with LX0 = µ0, the strong uniqueness
of (2.1) starting at X0 implies

X[0,T ] = F (X0,W[0,T ])

for some measurable function F : Rd × C([0, T ];Rd) → C([0, T ];Rd). This and the weak
uniqueness of (2.1) proved in (a) yield

(2.2) LX̄[0,T ]
|P̄ = LX[0,T ]

|P.

Let X̂[0,T ] = F (X̃0, W̃[0,T ]). We have X̂0 = X̃0 and

LX̂[0,T ]
|P̃ = LX[0,T ]

|P.

This and (2.2) imply LX̂t
|P̃ = µt, so that X̂t under P̃ is a weak solution of (1.1) with

X̂0 = X̃0. By the strong uniqueness of (1.1), we derive X̂[0,T ] = X̃[0,T ]. Combining this
with (2.2) we obtain

LX̃[0,T ]
|P̃ = LX̂[0,T ]

|P̃ = LX[0,T ]
|P = LX̄[0,T ]

|P̄,

i.e. (1.1) has weak uniqueness starting at µ0.

We will use the following result for the maximal operator:

Mh(x) := sup
r>0

1

|B(x, r)|

∫

B(x,r)

h(y)dy, h ∈ L1
loc(R

d), x ∈ Rd,(2.3)

where B(x, r) := {y : |x− y| < r}, see [7, Appendix A].
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Lemma 2.2. There exists a constant C > 0 such that for any continuous and weak

differentiable function f ,

(2.4) |f(x)− f(y)| ≤ C|x− y|(M |∇f |(x) + M |∇f |(y)), a.e. x, y ∈ Rd.

Moreover, for any p > 1, there exists a constant Cp > 0 such that

(2.5) ‖M f‖Lp ≤ Cp‖f‖Lp, f ∈ Lp(Rd).

To compare the distribution dependent SDE (1.1) with a classical one, for any µ ∈
B([0, T ];P), let bµt (x) := bt(x, µt) and consider the classical SDE

(2.6) dXµ
t = b

µ
t (X

µ
t )dt+ σt(X

µ
t )dWt, t ∈ [0, T ].

According to [25], assumption (Aσ) together with (Ab) or (A′
b) implies the strong well-

posedness, where under (A′
b) the non-explosion is implied by (1.10). For any γ ∈ P, Let

Φγ
t (µ) = LX

µ
t
for (Xµ

t )t∈[0,T ] solving (2.6) with LX
µ
0
= γ. We have the following result.

Lemma 2.3. Assume (Aσ) and let γ ∈ P.

(1) If (A′
b) holds, then for any µ, ν ∈ B([0, T ];P),

(2.7) ‖Φγ
t (µ)− Φγ

t (ν)‖
2
TV ≤

K1K
2
3

4

∫ t

0

‖µs − νs‖
2
TV ds, t ∈ [0, T ].

(2) If (Ab) holds and γ ∈ Pθ, then for any µ ∈ C([0, T ];Pθ), we have Φγ
· (µ) ∈

C([0, T ];Pθ). Moreover, for any m ≥ 1∨ θ
2
, there exists a constant C > 0 such that

for any µ, ν ∈ C([0, T ];Pθ) and γ1, γ2 ∈ Pθ,

{Wθ(Φ
γ1
t (µ),Φγ2

t (ν))}2m

≤ CWθ(γ1, γ2)
2m + C

∫ t

0

{

‖µs − νs‖TV +Wθ(µs, νs)
}2m

ds, t ∈ [0, T ].
(2.8)

Proof. (1) Let (A′
b) hold and take µ, ν ∈ B([0, T ];P). To compare Φγ

t (µ) with Φγ
t (ν), we

rewrite (2.6) as

(2.9) dXµ
t = bt(X

µ
t , νt)dt+ σt(X

µ
t )dW̃t,

where

W̃t = Wt +

∫ t

0

ξsds, ξs := {σ∗
s(σsσ

∗
s )

−1}(Xµ
s )[bs(X

µ
s , µs)− bs(X

µ
s , νs)], s, t ∈ [0, T ].

Noting that (1.7) together with (1.11) implies

(2.10) E[e
1
2

∫ T
0 |ξs|2ds] < ∞,
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by the Girsanov theorem we see that RT := e−
∫ T

0
〈ξs,dWs〉−

1
2

∫ T

0
|ξs|2ds is a probability density

with respect to P, and (W̃t)t∈[0,T ] is a d-dimensional Brownian motion under the probability
Q := RTP.

By the weak uniqueness of (2.6) and LX
µ
0
|Q = LX

µ
0
= γ, we conclude from (2.9) with

Q-Brownian motion W̃t that

Φγ
t (ν) = LX

µ
t
|Q, t ∈ [0, T ].

Combining this with (Aσ) and applying Pinker’s inequality [18], we obtain

2‖Φγ
t (ν)− Φγ

t (µ)‖
2
TV ≤ 2 sup

‖f‖∞≤1

(E|f(Xµ
t )(Rt − 1)|)2 = 2(E|Rt − 1|)2

≤ E[Rt logRt] =
1

2
EQ

∫ t

0

|ξs|
2ds

≤
K1

2
EQ

∫ t

0

|bs(X
µ
s , µs)− bs(X

µ
s , νs)|

2ds.

(2.11)

By (A′
b), this implies (2.7).

(2) Let (Ab) hold and take m ≥ 1 ∨ θ
2
. Take F0-measurable random variables Xµ

0 and
Xν

0 such that LX
µ
0
= γ1,LXν

0
= γ2 and

E|Xµ
0 −Xν

0 |
θ = {Wθ(γ1, γ2)}

θ.

Let X
µ
t solve (2.6) and Xν

t solve the same SDE for ν replacing µ. We need to find a
constant C > 0 such that for any t ∈ [0, T ],

{Wθ(Φ
γ1
t (µ),Φγ2

t (ν))}2m

≤ C(E|Xµ
0 −Xν

0 |
θ)

2m
θ + C

∫ t

0

(Wθ(µs, νs) + ‖µs − νs‖TV )
2mds, t ∈ [0, T ].

(2.12)

To this end, we make a Zvokin type transform as in [13] and [24].
For any λ > 0, consider the following PDE for u : [0, T ]× Rd → Rd:

(2.13)
∂ut

∂t
+

1

2
Tr(σtσ

∗
t∇

2ut) +∇b
µ
t
ut + b̄

µ
t = λut, uT = 0.

According to [24, Remark 2.1, Proposition 2.3 (2)], under assumptions (Aσ) and (Ab),
when λ is large enough (2.13) has a unique solution uλ,µ satisfying

‖uλ,µ‖∞ + ‖∇uλ,µ‖∞ ≤
1

5
,(2.14)

and

(2.15) ‖∇2uλ,µ‖L2q
2p(T ) < ∞.

8



Let Θλ,µ
t (x) = x+ u

λ,µ
t (x). It is easy to see that (2.13) and the Itô formula imply

(2.16) dΘλ,µ
t (Xµ

t ) = (λuλ,µ
t + b̂

µ
t )(X

µ
t )dt + ({∇Θλ,µ

t }σt)(X
µ
t ) dWt.

In particular, (2.14) and E[|Xµ
0 |

θ] < ∞ imply that E[|Θλ,µ
0 (Xµ

0 )|
θ] < ∞ and (2.16) is

an SDE for ξt := Θλ,µ
t (Xµ

t ) with coefficients of at most linear growth, so that Lξ· ∈
C([0, T ];Pθ) and so does LX

µ
·
due to (2.14).

It remains to prove (2.8). To this end, we observe that (2.13) and the Itô formula
yield

dΘλ,µ
t (Xν

t ) = λu
λ,µ
t (Xν

t )dt+ ({∇Θλ,µ
t }σt)(X

ν
t ) dWt

+ [{∇u
λ,µ
t }(bνt − b

µ
t ) + bνt − b̄

µ
t ](X

ν
t )dt

= [λuλ,µ
t + {∇Θλ,µ

t }(bνt − b
µ
t ) + b̂

µ
t ](X

ν
t )dt+ ({∇Θλ,µ

t }σt)(X
ν
t ) dWt.

Combining this with (2.16) and applying the Itô formula, we see that ηt := Θλ,µ
t (Xµ

t ) −
Θλ,µ

t (Xν
t ) satisfies

d|ηt|
2 =2

〈

ηt, λu
λ,µ
t (Xµ

t )− λu
λ,µ
t (Xν

t ) + b̂
µ
t (X

µ
t )− b̂

µ
t (X

ν
t )
〉

dt

+ 2
〈

ηt, [({∇Θλ,µ
t }σt)(X

µ
t )− ({∇Θλ,µ

t }σt)(X
ν
t )]dWt

〉

+
∥

∥

∥
({∇Θλ,µ

t }σt)(X
µ
t )− ({∇Θλ,µ

t }σt)(X
ν
t )
∥

∥

∥

2

HS
dt

− 2
〈

ηt, [{∇Θλ,µ
t }(bνt − b

µ
t )](X

ν
t )
〉

dt.

So, for any m ≥ 1, it holds

d|ηt|
2m =2m|ηt|

2(m−1)
〈

ηt, λu
λ,µ
t (Xµ

t )− λu
λ,µ
t (Xν

t ) + b̂
µ
t (X

µ
t )− b̂

µ
t (X

ν
t )
〉

dt

+ 2m|ηt|
2(m−1)

〈

ηt, [({∇Θλ,µ
t }σt)(X

µ
t )− ({∇Θλ,µ

t }σt)(X
ν
t )]dWt

〉

+m|ηt|
2(m−1)

∥

∥

∥
({∇Θλ,µ

t }σt)(X
µ
t )− ({∇Θλ,µ

t }σt)(X
ν
t )
∥

∥

∥

2

HS
dt

+ 2m(m− 1)|ηt|
2(m−2)

∣

∣

∣
[({∇Θλ,µ

t }σt)(X
µ
t )− ({∇Θλ,µ

t }σt)(X
ν
t )]

∗ηt

∣

∣

∣

2

dt

− 2m|ηt|
2(m−1)

〈

ηt, [{∇Θλ,µ
t }(bνt − b

µ
t )](X

ν
t )
〉

dt.

(2.17)

By (2.14) and (1.8), we may find a constant c0 > 0 such that

(2.18) |ηt|
2(m−1)|ηt| · |λu

λ,µ
t (Xµ

t )− λu
λ,µ
t (Xν

t ) + b̂
µ
t (X

µ
t )− b̂

µ
t (X

ν
t )| ≤ c0|ηt|

2m,

and

|ηt|
2(m−1)|ηt| · |[{∇Θλ,µ

t }(bνt − b
µ
t )](X

ν
t )|

≤ K2‖∇Θλ,µ‖∞|ηt|
2(m−1)|ηt|(Wθ(µt, νt) + ‖µt − νt‖TV )

≤ c0
(

|ηt|
2m +Wθ(µt, νt)

2m + ‖µt − νt‖
2m
TV

)

,

(2.19)
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According to [13, (4.19)-(4.20)], we arrive at

(2.20) d|ηt|
2m ≤ c1|ηt|

2mdAt + c1(Wθ(µt, νt)
2m + ‖µt − νt‖

2m
TV )dt + dMt

for some constant c1 > 0, a local martingale Mt, and

At :=

∫ t

0

{

1 +
(

M
(

‖∇2Θλ,µ
s ‖+ ‖∇σs‖

)

(Xµ
s ) + M

(

‖∇2Θλ,µ
s ‖+ ‖∇σs‖

)

(Xν
s )
)2
}

ds.

Thanks to [24, Theorem 3.1], the Krylov estimate

E

[
∫ t

s

|fr|(X
µ
r )dr

∣

∣

∣
Fs

]

+ E

[
∫ t

s

|fr|(X
ν
r )dr

∣

∣

∣
Fs

]

≤ C

(
∫ t

s

(

∫

Rd

|fr(x)|
pdx

)
q
p

dr

)

1
q

, 0 ≤ s < t ≤ T.

(2.21)

holds. As shown in [23, Lemma 3.5], (2.21), (2.5), (2.15) and (Aσ) imply

sup
t∈[0,T ]

EeδAt = EeδAT < ∞, δ > 0.

By (2.14) and the stochastic Gronwall lemma (see [23, Lemma 3.8]), (2.20) with 2m > θ

implies

{Wθ(Φ
γ1
t (µ),Φγ2

t (ν))}2m ≤ c2(E|ηt|
θ)

2m
θ

≤ c3(E|X
µ
0 −Xν

0 |
θ)

2m
θ + c3

(

Ee
c1θ

2m−θ
AT

)
2m−θ

θ

∫ t

0

(Wθ(µs, νs)
2m + ‖µs − νs‖

2m
TV )ds

holds for all t ∈ [0, T ] and some constants c2, c3 > 0. Therefore, (2.12) holds for some
constant C > 0 and the proof is thus finished.

3 Proof of Theorem 1.1

Assume (Aσ). According to [25, Theorem 1.3], for any µ· ∈ B([0, T ];P), each of (Ab)
and (A′

b) implies the strong existence and uniqueness up to life time of the SDE (2.1).
Moreover, it is standard that in both cases a solution of (2.1) is non-explosive. So, by
Lemma 2.1, the strong well-posedness of (1.1) implies the weak well-posedness. Therefore,
in the following we need only cosnider the strong solution.

To prove the strong well-posedness of (1.1), it suffices to find a constant t0 ∈ (0, T ]
independent of X0 such that in each of these two cases the SDE (1.1) has strong well-
posedness up to time t0. Indeed, once this is confirmed, by considering the SDE from
time t0 we prove the same property up to time (2t0) ∧ T . Repeating the procedure finite
many times we derive the strong well-posedness.
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Below we prove assertions (1) and (2) for strong solutions respectively.
(a) Let (A′

b) hold. Take t0 = min{T, 1
K1K

2
3
} and consider the space Et0 := {µ ∈

B([0, t0];P) : µ0 = γ} equipped with the complete metric

ρ(ν, µ) := sup
t∈[0,t0]

‖νt − µt‖TV .

Then (2.7) implies that Φγ is a strictly contractive map on Et0 , so that it has a unique
fixed point, i.e. the equation

(3.1) Φγ
t (µ) = µt, t ∈ [0, t0]

has a unique solution µ ∈ Et0 . By (3.1) and the definition of Φγ we see that the unique
solution of (2.1) is a strong solution of (1.1). On the other hand, µt := LXt

for any strong
solution to (1.1) is a solution to (3.1), hence the uniqueness of (3.1) implies that of (1.1).

To prove (1.12), let µt = P ∗
t µ0 and νt = P ∗

t ν0. We have P ∗
t µ0 = Φµ0

t (µ) and P ∗
t ν0 =

Φν0
t (ν). So, (2.7) with γ = µ0 implies

(3.2) ‖P ∗
t µ0 − Φµ0

t (ν)‖2TV ≤
K1K

2
3

4

∫ t

0

‖P ∗
s µ0 − P ∗

s ν0‖
2
TV ds, t ∈ [0, T ].

On the other hand, by the Markov property for the solution to (2.6) with ν replacing µ,
we have

Φγ
t (ν) =

∫

Rd

Φδx
t (ν)γ(dx), γ ∈ P.

Combining this with P ∗
t ν0 = Φν0

t (ν), we obtain

|{Φµ0
t (ν)}(A)− {P ∗

t ν0}(A)| =

∣

∣

∣

∣

∫

Rd

{Φδx
t (ν)}(A)(µ0 − ν0)(dx)

∣

∣

∣

∣

≤ ‖µ0 − ν0‖TV , A ∈ B(Rd).

Hence,

(3.3) ‖Φµ0
t (ν)− P ∗

t ν0‖TV ≤ ‖µ0 − ν0‖TV , t ∈ [0, T ].

This together with (3.2) yields

‖P ∗
t µ0 − P ∗

t ν0‖
2
TV ≤ 2‖P ∗

t µ0 − Φµ0
t (ν)‖2TV + 2‖Φµ0

t (ν)− P ∗
t ν0‖

2
TV

≤ 2‖µ0 − ν0‖
2
TV +

K1K
2
3

2

∫ t

0

‖P ∗
s µ0 − P ∗

s ν0‖
2
TV ds, t ∈ [0, T ].

By Gronwall’s lemma, this implies (1.12).
(b) Let (Ab) hold and let γ = LX0 ∈ Pθ. For any µ, ν ∈ C([0, T ],Pθ), (1.8) implies

(2.11). By (2.11), (1.8) and (2.8) with γ1 = γ2 = γ, we find a constant C > 0 such that

{‖Φγ
t (µ)− Φγ

t (ν)‖TV +Wθ(Φ
γ
t (µ),Φ

γ
t (ν))}

2m

≤ C

∫ t

0

{

‖µs − νs‖TV +Wθ(µs, νs)
}2m

ds, t ∈ [0, T ], γ ∈ Pθ.
(3.4)
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Let t0 = 1
2C

. We consider the space Ẽt0 := {µ ∈ C([0, t0];Pθ) : µ0 = γ} equipped with
the complete metric

ρ̃(ν, µ) := sup
t∈[0,t0]

{‖νt − µt‖TV +Wθ(νt, µt)}.

Then Φγ is strictly contractive in Ẽt0 , so that the same argument in (a) proves the strong
well-posedness of (1.1) with LX0 = γ up to time t0.

Let µt and νt be in (a). By (3.4) with γ = µ0 we obtain

{

‖P ∗
t µ0 − Φµ0

t (ν)‖TV +Wθ(P
∗
t µ0,Φ

µ0
t (ν))

}2m

≤ C

∫ t

0

{

‖P ∗
s µ0 − P ∗

s ν0‖TV +Wθ(P
∗
s µ0, P

∗
s ν0)

}2m
ds, t ∈ [0, T ].

(3.5)

Next, taking γ1 = ν0, γ2 = µ0 and µ = ν in (2.8), we derive

{

Wθ(P
∗
t ν0,Φ

µ0
t (ν))

}2m
≤ C

{

Wθ(µ0, ν0)
}2m

.

Combining this with (3.3) and (3.5), we find a constant C ′ > 0 such that

{

‖P ∗
t µ0 − P ∗

t ν0‖TV +Wθ(P
∗
t µ0, P

∗
t ν0)

}2m

≤ C ′
{

‖µ0 − ν0‖TV +Wθ(µ0, ν0)
}2m

+ C ′

∫ t

0

{

‖P ∗
s µ0 − P ∗

s ν0‖TV +Wθ(P
∗
s µ0, P

∗
s ν0)

}2m
ds, t ∈ [0, T ].

By Gronwall’s lemma, this implies (1.13) for some constant c > 0.
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[2] V. Barbu, M. Röckner, From non-linear Fokker-Planck equations to solutions of

distribution dependent SDE, arXiv:1808.10706.

[3] M. Bauer, T. M-Brandis, Existence and regularity of solutions to multi-dimensional

mean-field stochastic differential equations with irregular drift, arXiv:1912.05932.

[4] M. Bauer, T. M-Brandis, F. Proske, Strong solutions of mean-field stochastic differ-

ential equations with irregular drift, Electron. J. Probab. 23(2018), 35 pp.

[5] K. Carrapatoso, Exponential convergence to equilibrium for the homogeneous Landau

equation with hard potentials, Bull. Sci. Math. 139(2015), 777-805.

12



[6] P. E. Chaudru de Raynal, Strong well-posedness of McKean-Vlasov stochastic dif-
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