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Abstract

By using a split argument due to [1], the transportation cost inequality is established
on the free path space of Markov processes. The general result is applied to stochastic
reaction diffusion equations with random initial values.
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1 Introduction

Let (E, ρ) be a metric space, and let P(E) be the class of all probability measures on E.
The quadratic Warsserstein distance between µ1, µ2 ∈ P(E) is defined by

W2(µ1, µ2) = inf
π∈C (µ1,µ2)

{
∫

E×E

ρ2(x, y)π(dx, dy)

}1/2

,

where C (µ1, µ2) is the space of all couplings of µ1 and µ2. In the study of Monge-Kontorovich
optimal transportation problem, this distance is explained as the minimal cost to transport
distribution µ1 into µ2 at the cost rate (cost function) ρ. Thus, an inequality involving W2
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is called a transportation cost inequality (TCI). Since the optimal transportation is usually
unknown, in applications it is important to estimate W2 by easier to calculate quantities,
for instance the relative entropy H(µ1|µ2) :=

∫

E

(

log dµ1

dµ2

)

dµ1 if µ1 is absolutely continuous

with respect to µ2, and H(µ1|µ2) := ∞ otherwise.
In 1996, Talagrand [18] established the following beautiful TCI for the standard Gaussian

measure µ on R
d with ρ(x, y) = |x− y|:

W2(ν, µ)
2 ≤ 2H(ν|µ), ν ∈ P(Rd),

where the constant 2 is sharp. Since then, this type TCI has been intensively investigated
and applied for various different distributions, and was linked to functional inequalities,
concentration phenomena, optimal transport problem, and large deviations, see [2, 3, 8, 5, 11,
13, 19, 23] and references therein. Moreover, Talagrand type TCI has also been established
on the path spaces of stochastic processes, see e.g. [4, 26, 27] for diffusion processes on
R

d, [14] for multidimensional semi-martingales, [1, 20] for stochastic differential equations
(SDEs) with memory, [5, 6, 22, 23, 24] for (reflecting) diffusion processes on Riemannian
manifolds, [25] for SDEs driven by pure jump processes, and [12, 17] for SDEs with Lévy or
fractional noises.

Recently, by using the Girsanov transformation argument developed from [4], the Ta-
lagrand inequality was established on the path space for solutions of stochastic reaction
diffusion equations with deterministic initial values, see [10], [15]. In this paper, we aim to
extend this result to the case with random initial values. In this case, the distribution of a
solution is a probability measure on the free path space, where the initial value is not fixed.
Since the Girsanov transformation does not change initial distributions, it does not work for
probability measures with different initial distributions. However, two equivalent probability
measures on the free path space may have different initial distributions. To overcome this
difficulty, we will adopt a split argument used in [1] to reduce the problem to the case with
deterministic initial value, to which the Girsanov transformation applies.

The remainder of the paper is organized as follows. In Section 2 we present a general
result on the TCI for Markov processes with random initial values, which is then applied in
Section 3 to stochastic reaction diffusion equations.

2 A general result

Let (E, ρ) be a Polish space, and let (Pt)t≥0 be the semigroup of a continuous Markov process
on E. For any T > 0 and µ ∈ P(E), let P µ denote the distribution of the Markov process up
to time T with initial distribution µ; i.e. letting Pt(x, ·) be the associated Markov transition
kernel, P µ is the unique probability measure on the free path space

ET := C([0, T ];E) equipped with ρT (ξ, η) := sup
t∈[0,T ]

ρ(ξt, ηt),

such that for any 0 = t0 < t1 · · · < tn = T and {Ai}0≤i≤n ⊂ B(E),

P µ(Xti ∈ Ai, 0 ≤ i ≤ n) =

∫

A0

µ(dx0)

∫

A1

Pt1−t0(x0, dx1) · · ·
∫

An

Ptn−tn−1
(xn−1, dxn),
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where Xt, t ≥ 0 denotes the canonical coordinate process on the path space ET . When
µ = δx, the Dirac measure at x ∈ E, we simply denote P µ = P x. Then

MKMK (2.1) P µ =

∫

E

P xµ(dx), µ ∈ P(E).

Let W2 and W2,T be the Wasserstein distances induced by ρ on P(E) and ρT on P(ET )
respectively. We aim to establish the TCI for P µ by using those for {P x : x ∈ E} and µ.

T1 Theorem 2.1. Assume that for some constants c1, c2 ∈ (0,∞) one has

TM2TM2 (2.2) W2,T (Q,P x)2 ≤ c1H(Q|P x), x ∈ E,Q ∈ P(ET ),

TM3TM3 (2.3) W2,T (P
x, P y)2 ≤ c2ρ(x, y)

2, x, y ∈ E.

If µ ∈ P(E) satisfies

TM1TM1 (2.4) W2(ν, µ)
2 ≤ c0H(ν|µ), ν ∈ P(E)

for some constant c0 ∈ (0,∞), then

TM0TM0 (2.5) W2,T (Q,P µ)2 ≤ CH(Q|P µ), Q ∈ P(ET )

holds for C =
(√

c1 +
√
c0c2

)2
. On the other hand, (2.5) implies (2.4) for c0 = C.

Proof. (1) We first deduce (2.5) from (2.4). Let Q = FP µ ∈ P(ET ) and u0 : ET → E with
u0(ξ) = ξ0. Then

QQQQ (2.6) {Q ◦ u−1
0 }(dx) = p(x)µ(dx) =: ν(dx)

holds for

p(x) :=

∫

ET

F (ξ)P x(dξ), x ∈ E.

By the triangle inequality,

TRATRA (2.7) W2,T (Q,P µ) ≤ W2,T (Q,P ν) +W2,T (P
ν , P µ).

Below we estimate these two terms respectively.
To estimate W2,T (Q,P ν), we note that (2.1) implies

∫

ET

f(ξ0)F (ξ)P µ(dξ) =

∫

E

f(x)µ(dx)

∫

ET

F (ξ)P x(dξ)

=

∫

E

f(x)p(x)µ(dx) =

∫

ET

(fp)(ξ0)P
µ(dξ), f ∈ Bb(E).
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Therefore, letting E
µ be the expectation with respect to P µ, we have

QQ2QQ2 (2.8) p ◦ u0 = E
µ(F |u0).

Now, let

Fx(ξ) = 1{p(x)>0}
F (ξ)

p(x)
, x ∈ E, ξ ∈ ET .

By (2.2), if p(x) > 0 then

W2,T (FxP
x, P x)2 ≤ c1P

x(Fx logFx).

So, for any G,H ∈ C , where

C :=
{

(G,H) : G,H ∈ Cb(ET ), G(ξ) ≤ H(η) + ρT (ξ, η)
2 for ξ, η ∈ ET

}

,

we have
∫

ET

FxGdP x −
∫

ET

HdP x ≤ c1

∫

ET

(Fx logFx)dP
x, p(x) > 0.

Integrating with respect to ν(dx) := p(x)µ(dx) and using (2.1), we obtain

Q(G)− P ν(H) =

∫

ET

GdQ−
∫

ET

HdP ν

=

∫

E

{
∫

ET

FxGdP x −
∫

ET

HdP x

}

p(x)µ(dx)

≤ c1

∫

E

{
∫

ET

(Fx logFx)dP
x

}

p(x)µ(dx)

= c1

∫

ET

{

F logF − F logEµ(F |u0)
}

dP µ

= c1H(Q|P µ)− c1E
µ[F logEµ(F |u0)] ≤ c1H(Q|P µ),

where the last step is due to the fact that

E
µ[F logEµ(F |u0)] = E

µ[Eµ(F |u0) logE
µ(F |u0)]

≥ E
µ[Eµ(F |u0)] logE

µ[Eµ(F |u0)] = E
µ[F ] logEµ[F ] = 0.

Therefore, by the Kontorovich dual formula, we arrive at

EE1EE1 (2.9) W2,T (Q,P ν)2 = sup
(G,H)∈C

{

Q(G)− P ν(H)
}

≤ c1H(Q|P µ).

On the other hand, by (2.3), for any (G,H) ∈ C we have

EE’EE’ (2.10)

∫

ET

GdP x −
∫

ET

HdP y ≤ c2ρ(x, y)
2, x, y ∈ E.
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Let π ∈ C (ν, µ) be the optimal coupling such that

W2(ν, µ)
2 =

∫

E×E

ρ(x, y)2π(dx, dy).

Integrating (2.10) with respect to π(dx, dy), and applying (2.1), we obtain

∫

ET

GdP ν −
∫

ET

HdP µ =

∫

E×E

{
∫

ET

GdP x −
∫

ET

HdP y

}

π(dx, dy) ≤ c2W2(ν, µ)
2.

Combining this with the Kontorovich dual formula, and applying (2.4), we arrive at

TM5TM5 (2.11) W2,T (P
ν , P µ)2 ≤ c2W2(ν, µ)

2 ≤ c0c2µ(p log p).

Since (2.1), (2.8) and Jensen’s inequality imply

µ(p log p) =

∫

ET

{

(p ◦ u0) log p ◦ u0

}

dP µ

= E
µ[Eµ(F |u0) logE

µ(F |u0)] ≤ E
µ[Eµ(F logF |u0)] = H(Q|P µ),

it follows from (2.11) that

W2,T (P
ν , P µ)2 ≤ c0c2H(Q|P µ).

Combining this with (2.7) and (2.9), we prove (2.5)
(2) To deduce (2.4) from (2.5), for ν = pµ we take Q = (p ◦ u0)P

µ. Let Π ∈ C (Q,P µ)
be the optimal coupling such that

W2,T (Q,P µ)2 =

∫

ET×ET

ρ2T dΠ.

We have π := Π ◦ (u0, u0)
−1 ∈ C (ν, µ), so that

W2(ν, µ)
2 ≤

∫

E×E

ρ2dπ =

∫

ET×ET

ρ2(ξ0, η0)Π(dξ, dη)

≤
∫

ET×ET

ρ2T (ξ, η)Π(dξ, dη) = W2,T (Q,P µ)2.

Combining this with (2.5) and noting that (2.1) implies

H(Q|P µ) =

∫

ET

{

(p ◦ u0) log p ◦ u0

}

dP µ =

∫

E

(p log p)dµ = H(ν|µ),

we derive (2.4) for c0 = C.
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3 TCI for stochastic reaction diffusion equations with

random initial values

Let C0([0, 1]) = {u ∈ C([0, 1]) : u(0) = u(1) = 0}. Consider the following SPDE on C0([0, 1]):






dut(x) =
1

2
u′′
t (x)dt+ b(ut(x))dt+ σ(ut(x))W (dt, dx), x ∈ (0, 1),

ut ∈ C0([0, 1]), t ≥ 0,
3.13.1 (3.1)

where W (dt, dx) is a space-time white noise on a complete probability space (Ω,F ,P) with
natural filtration Ft generated by the Brownian sheet {W (t, x) : (t, x) ∈ [0,∞)×[0, 1]}, u0 is
a C0([0, 1])-valued random variable independent of W , and b, σ : R → R are locally bounded
measurable functions. We say that an adapted, continuous process {ut}t≥0 on C0([0, 1]) is a
solution to (3.1), if P-a.s.

∫ 1

0

ut(x)φ(x)dx =

∫ 1

0

u0(x)φ(x)dx+
1

2

∫ t

0

ds

∫ 1

0

us(x)φ
′′(x)dx

+

∫ t

0

ds

∫ 1

0

b(us(x))φ(x)dx+

∫ t

0

∫ 1

0

σ(us(x))φ(x)W (ds, dx), t ≥ 0, φ ∈ C2
0 ([0, 1]),

3.23.2 (3.2)

where C2
0 ([0, 1]) := {φ ∈ C2([0, 1]) : φ(0) = φ(1) = 0}. According to [21], ut is a solution to

(3.1) if and only if P-a.s.

ut(x) =Ptu0(x) +

∫ t

0

Pt−s{b(us)}(x)ds+
∫ t

0

∫ 1

0

pt−s(x, y)σ(us(y))W (ds, dy), t ≥ 0,3.33.3 (3.3)

where Pt and pt(x, y) are the Dirichlet heat semigroup and heat kernel generated by 1
2
∆ on

[0, 1].
We will apply Theorem 2.1 to

E := C0([0, 1]), ET := C([0, T ];E) = C([0, T ];C0([0, 1])),

and P µ being the distribution of the solution (ut)t∈[0,T ] with initial distribution µ ∈ P(E).
To this end, we need the following assumption.

(H) σ is bounded, b and σ are Lipschitz continuous.

According to [21], when b and σ are Lipschitz continuous, (3.1) admits a unique solution for
any (random) initial value u0 on E. The boundedness of σ was used in [15] to establish the
TCI for solutions of (3.1) with deterministic initial values.

T2 Theorem 3.1. Assume (H) and let µ ∈ P(E). Then

TMMTMM (3.4) W2(Q,P µ) ≤ CH(Q|P µ), Q ∈ P(ET )

holds for some constant C > 0 if and only if

TMM2TMM2 (3.5) W2(ν, µ) ≤ cH(ν|µ), ν ∈ P(E)

holds for some constant c > 0.
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Proof. In the present case, we have

ρ(f, g) = sup
x∈[0,1]

|f(x)− g(x)|, f, g ∈ E := C0([0, 1]),

ρT (ξ, η) = sup
(t,x)∈[0,T ]×[0,1]

|ξt(x)− ηt(x)|, ξ, η ∈ ET := C([0, T ]];E).

According to [15], (2.2) holds for some constant c1 > 0. So, by Theorem 2.1, it suffices to
verify (2.3). Letting u

f
t be the unique solution of (3.1) with u0 = f ∈ E := C0([0, 1]), we

only need to prove

5.15.1 (3.6) E

[

sup
(t,x)∈[0,T ]×[0,1]

|uf
t (x)− u

g
t (x)|2

]

≤ c2 sup
x∈[0,1]

|f(x)− g(x)|2, f, g ∈ C0([0, 1])

for some constant c2 > 0. Indeed, since the law of (uf
t , u

g
t )t∈[0,T ] is a coupling of P f and P g,

we have

W2,T (P
f , P g)2 ≤ E[ρT (u

f , ug)2] = E

[

sup
(t,x)∈[0,T ]×[0,1]

|uf
t (x)− u

g
t (x)|2

]

.

Below we prove the estimate (3.6).
By (3.3) we have

E

[

sup
(t,x)∈[0,T ]×[0,1]

|uf
t (x)− u

g
t (x)|2

]

≤ 3ρ(f, g)2 + 3(I1 + I2),add 0302.1add 0302.1 (3.7)

where

I1 := E

[

sup
(t,x)∈[0,T ]×[0,1]

∣

∣

∣

∣

∫ t

0

∫ 1

0

pt−s(x, y)
[

b(uf
s (y))− b(ug

s(y))
]

dsdy

∣

∣

∣

∣

2
]

,

I2 := E

[

sup
(t,x)∈[0,T ]×[0,1]

∣

∣

∣

∣

∫ t

0

∫ 1

0

pt−s(x, y)
[

σ(uf
s (y))− σ(ug

s(y))
]

W (ds, dy)

∣

∣

∣

∣

2
]

.

Noting that the Dirichlet heat kernel satisfies

sup
x∈[0,1]

∫ t

0

ds

∫ 1

0

pt−s(x, y)
2dy ≤

√
2t√
π
, t > 0,

and due to (H) we have

LLLL (3.8) |b(x)− b(y)| ∨ |σ(x)− σ(y)| ≤ K|x− y|, x, y ∈ [0, 1]

7



for some constant K > 0, by Hölder’s inequality we obtain

I1 ≤ K2
E

{

sup
(t,x)∈[0,T ]×[0,1]

[(
∫ t

0

∫ 1

0

pt−s(x, y)
2 dsdy

)

×
(
∫ t

0

∫ 1

0

|uf
s (y)− ug

s(y)|2 dsdy
)]

}

≤
√

2T

π
K2

∫ T

0

E

[

sup
(r,y)∈[0,s]×[0,1]

|uf
r (y)− ug

r(y)|2
]

ds.

II (3.9)

To estimate the term I2, we recall the following inequality due to [15]: for any T, ε >

0, there exists a constant CT,ε > 0 such that for any adapted random field γ(t, x) with
E[sup(s,x)∈[0,t]×[0,1] |γ(s, x)|2] < ∞, t ≥ 0, we have

E

[

sup
(s,x)∈[0,t]×[0,1]

∣

∣

∣

∣

∫ s

0

∫ 1

0

ps−r(x, y)γ(r, y)W (dr, dy)

∣

∣

∣

∣

2
]

≤ εE
[

sup
(s,x)∈[0,t]×[0,1]

|γ(s, x)|2
]

+ CT,ε

∫ t

0

E

[

sup
(r,x)∈[0,s]×[0,1]

|γ(r, x)|2
]

dr, t ∈ [0, T ].

4.4-14.4-1 (3.10)

Applying this to γ(s, x) = σ(uf
s (x))−σ(ug

s(x)) and using (3.8), we obtain that for any ǫ > 0,

I2 ≤ǫE

[

sup
(t,x)∈[0,T ]×[0,1]

|σ(uf
t (x))− σ(ug

t (x))|2
]

+ CT,εE

∫ T

0

sup
y∈[0,1]

∣

∣σ(uf
s (y))− σ(ug

s(y))
∣

∣

2
ds

≤ǫK2
E

[

sup
(t,x)∈[0,T ]×[0,1]

|uf
t (x)− u

g
t (x)|2

]

+ CT,εK
2

∫ T

0

E

[

sup
(r,y)∈[0,s]×[0,1]

∣

∣uf
r (y)− ug

r(y)
∣

∣

2

]

ds, t ∈ [0, T ].

term IIterm II (3.11)

So, setting

Y (t) := E

[

sup
(s,x)∈[0,t]×[0,1]

|uf
s (x)− ug

s(x)|2
]

,

which is finite for all t ∈ [0,∞) due to assumption (H), by combining (3.7)-(3.11) together
we obtain

Y (t) ≤ 3ρ(f, g)2 + 3

√

2T

π
K2

∫ t

0

Y (s) ds+ 3ǫK2Y (t) + 3CT,ǫK
2

∫ t

0

Y (s) ds, t ∈ [0, T ].

Choosing ε = 1
6K2 , we find a constant c(T ) > 0 such that

Y (t) ≤ 6ρ(f, g)2 + c(T )

∫ t

0

Y (s) ds, t ∈ [0, T ].
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By Gronwall’s inequality and Y (t) < ∞ for t ≥ 0, this implies (3.6) for c2 = 6ec(T )T .

To illustrate Theorem 3.1, we present examples of µ satisfying (3.5), such that (3.4)
holds true. By [5, Theorem 3.1], the heat measure on the loop space C0([0, 1]) satisfies (3.5).
Next, by Gross [9], the log-Sobolev inequality holds for the Brownian bridge measure µ0 on
C0([0, 1]):

µ0(F
2 logF 2) ≤ 2Tµ0(‖DF‖2H)2, F ∈ D(D), µ0(F

2) = 1,

where (D,D(D)) is the Malliavin gradient operator and ‖h‖H := (
∫ T

0
|h′

t|2dt)
1

2 is the Cameron-
Martin norm. So, by a standard perturbation argument, the log-Sobolev inequality

µ(F 2 logF 2) ≤ 2T eosc(V )µ(‖DF‖2H)2, F ∈ D(D), µ(F 2) = 1,

holds for any probability measure dµ = eV dµ0 with V ∈ Bb(C0([0, 1])), where osc(V ) :=
supV − inf V . According to [16, Theorem 1.10], this implies

W̃2(ν, µ)
2 ≤ 2T eosc(V )H(ν, µ), ν ∈ P(C0([0, 1])),

where W̃2 is the Wasserstein distance induced by the Cameron-Martin distance on E. Since
the Cameron-Martin distance is larger than the uniform distance ρ, (3.5) holds for this class
of measures µ.
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