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Abstract

Let M be the space of finite measures on a locally compact Polish space, and let
4 be the Gamma distribution on M with intensity measure v € M. Let V¢ be the
extrinsic derivative with tangent bundle TM = U,emL?(n), and let o/ : TM — TM
be measurable such that @, is a positive definite linear operator on L?(n) for every
n € M. Moreover, for a measurable function V on M, let d9" = e"'d¥. We investigate
the Poincaré, weak Poincaré and super Poincaré inequalities for the Dirichlet form

by v (F.G) = /M (AT E (), VG()) 120 A9 (),

which characterize various properties of the associated Markov semigroup. The main
results are extended to the space of finite signed measures.

AMS subject Classification: 60G57, 60G45, 60H99.
Keywords: Extrinsic derivative, weighted Gamma distribution, Poincaré inequality, weak
Poincaré inequality, super Poincaré inequality.

1 Introduction

Let M be the class of finite measures on a locally compact Polish space E, which is again
a Polish space under the weak topology. Recall that a sequence of finite measures n,, — n
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weakly if n,,(f) — n(f) for f € C,(E), where and in what follows, for a measure 1 we denote

(1.1) n(f) = / fdn. feL'n).

Since M is locally compact, the Borel o-algebra Z4(M) induced by the weak topology co-
incides with that induced by the vague topology. Let v € M with v(F) > 0. The Gamma
distribution ¢ with intensity measure v is the unique probability measure on M such that
for any finitely many disjoint measurable subsets {Ay,---, A, } of E, {n(A;) }1<i<, are inde-
pendent Gamma random variables with shape parameters {v(4;)}1<;<, and scale parameter
1; that is,

(1.2) /M F(AD. (A (dn) = /

[0,00)™

f(I1>' o axn)H’VV(Ai)(dIi)a IS %b(E)a
i=1

where %,(E) is the class of bounded measurable functions on F, for a constant r > 0

Sr—le—s

——ds, I'(r ::/ " e %dx,
w10,

and vy := dy is the Dirac measure at point 0. It is well known that ¢ is concentrated on the
class of finite discrete measures

Myis 1= {isléml 5, >0,x; € E,f:si < OO}
i=1

1=1

(1.3) Yr(ds) = 1pp,00)(5)

Consider the weighted Gamma distribution ¢V (dn) := e"™¥(dn), where V is a mea-
surable function on M. We will investigate functional inequalities for the Dirichlet form
induced by ¢V (dn) and a positive definite linear map ./ on the tangent space of the extrin-
sic derivative. See [7] and references therein for Dirichlet forms induced by both extrinsic
and intrinsic derivatives, where the intensity measure v is the Lebesgue measure on R? such
that the Gamma distribution ¢ is concentrated on the space of infinite Radon measures on
R?. In this paper, we only consider finite intensity measure v.

Definition 1.1 ([I1]). A measurable real function F' on M is called extrinsically differentiable
at n € M, if
VU E(n)(z) == diF(n + 50;) exists for all x € F,
S 5=0
such that
IV E M) = [V F () () |2y < oo

If F is extrinsically differentiable at all n € M, we denote F' € 2(V**") and call it extrinsically
differentiable on M.



Regarding L?(n) as the extrinsic tangent space at n € M, we define the directional
derivatives by

VZMF(W) = (VmF(U)a ¢>L2(77) = U(¢VmF(77))v (b S L2(77)

When ¢ is bounded, this coincides with the directional derivative under multiplicative ac-
tions:

d d
Vs;ctF(n) _ EF’(es‘z’n) - = &F((l + SQS)/U)

where hn for h € %,(F) is a finite signed measure given by

(hn)(A) = n(1ah) = / hdy, Ac B(E).

07 ¢ € %b(E)a

S=

To introduce the Dirichlet form induced by the extrinsic derivative and the weighted
Gamma distribution ¢V, we consider the class .# Cg°, which consists of cylindrical functions
functions of type

Fn) = fn(Ar), - n(An)), n=1,feCFR"), {Aihix € F(E),

where #(FE) is the set of all measurable partitions of E. Obviously, such a function F is
extrinsically differentiable with

n

(14) VmF(W) = Z(ng)(n(fh)v e 777(An)) ’ 1Ai'

i=1

We consider the square field
Ly(F,G) = (V" F (), V"G0)) L2y = /E [,V E ()] - [VEG(n)] da,
and the pre-Dirichlet form

£ (F.G) = / T (F.G) 9", F.G e ZC,

M

where o/ and V satisfy the following assumption.
(H) For any n € M, let o7, be a bounded linear operator on L?(n) such that
HO1 (15) <%h> h>L2(77) > O> h e L2(77)>

for any A € A(F) and € E, o,1,(x) is measurable in (n,z) € M x E and is
extrinsically differentiable in 1 with

HO2 (16) (SEU.)B {H%H%%n) + ||Vext[%1A]”L2(n)} <00, TE (0,00),
n(E)<r

where || - || z2(; is the norm (or the operator norm for linear operators) in L?(n).
Moreover, V € 2(V*) such that

HO3| (1.7) sup IV + V"V ()22 } < 00, 7€ (0,00).
n ST
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Condition (LLF]) is essential for the nonnegativity of &, v, where conditions (L6) and (L7
ensure the boundedness of &7,V and their extrinsic derivatives on the level sets {n(F) < r}
for r > 0. These conditions are standard for establishing functional inequalities by using
perturbation argument, see [14] 24] for the study of the finite-dimensional models.

We write &/ = 1 if 7, is the identity map on L*(n) for every n € M. According to
Theorem B below, the assumption (H) implies that (£, v, ZC5°) is closable in L*(4V)
and the closure (& v, Z(&yv)) is a symmetric Dirichlet form. If moreover

(1.8) /M (1 + %) 4V (dn) < oo,

then 1 € Z(&yv) with &yv(1,1) = 0. Let (Ly v, Z(ZLwyv)) be the associated generator.
We aim to investigate functional inequalities for the Dirichlet form &,y and the spectral
gap of the generator .2 .

We first consider the Poincaré inequality

(1.9) GV (F?) < %é;{y(F, F)+9V(F) Fe (&),

where A > 0 is a constant. The spectral gap of .Z, v, denoted by gap(-Z..v), is the largest
constant A > 0 such that (L9) holds. If (9] is invalid, i.e. there is no any constant A > 0
satisfying the inequality, we write gap(.Z., v) = 0 and say that .Z,, does not have spectral
gap. It is well known that (I.9]) is equivalent to the exponential convergence of the associated
Markov semigroup Pf{’V:

1PV F — gV(F)HLz(gV) < e_)\tHFHLZ(gV), t>0FcL*9").
When gap(-Z.yv) = 0, the following weak Poincaré inequality was introduced in [13]:
(1.10) GV(F?) < a(r)Eyv(F, F)+r|F|%, Fe€2(&sv), 9V (F)=0,r>0,

where o : (0,00) —= (0,00) corresponds to a non-exponential convergence rate of PV as
t — o0, see [I3] Theorems 2.1 and 2.3]. In particular, (II0) implies

|1P7Y — GV || Lo @vysr2@vy < inf {r>0:a(r)logr™ <2t} L 0ast 1 cc.
We also consider the super Poincaré inequality
(1.11) GV(F?) <r&,v(F,F)+B8(ngY(IF|)?, r>0,Fe€ 2y,

where 5 : (0,00) — (0,00) is a decreasing function. The existence of super Poincaré in-
equality is equivalent to the uniform integrability of P[Q{’V for t > 0, and, when P[Q{’V has
an asymptotic density with respect to ¢V, it is also equivalent to the compactness of Pf{’V
in L2(4"), see [24, Theorem 3.2.1] for details. According to [24, Definition 3.1.2], " is
said to have an asymptotic density, if |7 — P, r2gvy — 0 for a sequence of bounded
linear operators {P,},>1 having densities with respect to ¢". We say that &, 1 does not
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satisfy the super Poincaré inequality, if there is no 5 : (0,00) — (0,00) satisfying (TITJ).
In particular, (III) holds with B(r) = e ' for some constant ¢ > 0 if and only if the
log-Sobolev inequality

(1.12) GV (F*log F?) < C&yyv(FF), FeD(Eyy), 9" (F?) =1

holds for some constant C' > 0. It is well known (see [2, [6]) that ([LI2]) is equivalent to the
hypercontractivity of Ptd’vz

||Ptﬂ’VHL2(gV)_>L4(gV) =1 for large t > 0,
as well as the exponential convergence in entropy:
GV ((P7VF)log PV F) < e ®/CqV(FlogF), t>0,F>0,9"(F)=1.

See [21], 22, 23] or [24] for more results on the super Poincaré inequalities, for instance,
estimates on the semigroup Pfi’v and higher order eigenvalues of the generator £, y using

the function § in (LII)).

The remainder of the paper is organised as follows. In section 2, we state the main results
of the paper, and illustrate these results by a typical example with specific interactions. In
Section 3, we establish the integration by parts formula which implies the closability of
(Ewv, #C3°). Then the main results are proved in Section 4, and extended in Section 5 to
the space M of finite signed measures.

2 Main results and an example

We first consider & o in L*(¢) whose restriction on M := {u € M : pu(E) = 1} gives rise
to the Dirichlet form of the Fleming—Viot process. Corresponding to results of [16, 17] for
the Fleming—Viot process, we have the following result. See also [12], 26] for functional
inequalities of different type measure-valued processes.

Theorem 2.1. Let V =0 and &/ = 1.

(1) gap(Z1p) = 1, i.e. A =1 is the largest constant such that (L9) holds for V =0 and
o =1.

(2) Ifsuppv contains infinitely many points, then & o does not satisfy the super Poincaré
inequality.

(3) There exists a constant ¢y > 0 such that when suppv is a finite set, the log-Sobolev
inequality

(2.1) G (F?log F?) <

holds, where § := min{v({z}) : = € suppv}.

Co
1A6

So(F F), FeP(&y0),9(F%) =1
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To extend this result to &, we will adopt a split argument by making perturbations
to &1, on bounded sets and estimating the principal eigenvalue of %, y outside. To this

end, we take
n) =2vn(E), neM
and let By = {n € M : p(n) < N} for N > 0. Since (4] implies

1
2.2 Vet o(n) = _ peM\ {0},
(2.2) p(n) NG n e M\ {0}
we have
(2.3) Fa(o.p) = n(IV=p(m)?) = 12 q,

P
—~
~—

According to ([B]) below, we set

2 ext . ext o 4
(24) Zyvpn) = m[(v—n)(%l) + (Ve 10)]() + VELV ()] p(n)zn(%l),
where

W10 = [ T a1 ).
Let

§(r) = sup Zyvp(n), a(r)= inf inf (¢, 0)r2)

p(n)=r p(m)=r ||¢||L2(n)—1

(2.5)

a(r) = sup  sup (Gd, )2y, 7> 0.
P(’?)=T Hd)”LZ(,,]):l

Under (H), |V(n)| + ||, t2¢;) is bounded on B, := {p < r} for r € (0,00). So, these
functions are bounded on [k, K] for any constants K > k > 0. Moreover, define

o0 r &(s t 1 r &(s
(2.6) of 1= sup/ ek s )dsdr/ SRS “dr, k> 0.
t>k g a(r)

Obviously, oy, is non-increasing in k& and might be infinite. We will see in Theorem 2.2](1)
that under certain conditions o < oo implies the validity of Poincaré inequality.

We have the following extension of Theorem 2. to &, yv. When suppv is finite the
model reduces to finite-dimensional diffusions, for which one may derive super Poincaré
inequalities by making perturbations to (2.I). As the present study mainly focusses on the
infinite-dimensional model, we exclude this case in the following result.

Theorem 2.2. Assume (H) and ([L8). Suppose that a(r)~" is locally bounded in r € [0, c0)
and

(2.7) W(s) = /Os[a(r)]_1/2 dr T oo as s 1 0.

Then the following assertions hold.
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(1) Iflimy_o 0% < 00 (equivalently, o < oo for all k > 0), then

1
20 (= (¢(k) + 3204 + 1)) + 320y

gap(ZLuv) > SUP{ Dk > 0} >0,

where )

O(N) := (1 v %) exp [supV — inf V} supa(r)™, N >0.

p<N p<N r<N

(2) Ifsuppv contains infinitely many points, then & does not satisfy the super Poincaré
inequality.

(3) The weak Poincaré inequality (LIQ) holds for

a(r) == inf {2@(1\1) . 9V (p> N) <

> 0.
- 1+r}’ "

The following result shows that the condition in Theorem [2.2(1) is sharp when <, and
V(n) depend only on p(n).

Corollary 2.3. Assume (H) and (L8). Let V(n) = v(p(n)) and o, = a(p(n))1 for large
p(n) and some a,v € C*([0,00)) with a(r) > 0 for r > 0. Then

1
E(r) :== sup Zyvpn) =a(r) (— +'(r) — C) + fa(r), for large r > 0,
p(m)=r r 2 2

and gap(ZLyv) > 0 if and only if limy_,o 0y < 00.

As in the proof of [I4] Corollary 1.3] using [I4] Theorem 1.1], it is easy to see that
Theorem 2.2/(2) implies the following result.

Corollary 2.4. Assume (H) and (L8). If inf,>oa(r) > 0 and limsup,_, ig«; < 0, then
gap(Zyv) > 0.

The above two corollaries are concerned with the validity of Poincaré inequality. On the
other hand, according to Theorem 2.2)(3), the weak Poincaré inequality always holds under
(H), (LY) and (2.7). We will see in the proof that the rate function « is derived by comparing
& v with &1 o on bounded sets By, N > 0. However, when these two Dirichlet forms are far
away, this « is less sharp. As a principle, to derive a sharper weak Poincaré inequality, one
should compare &,y with a closer Dirichlet form which satisfies the Poincaré inequality. In
this spirit, we present below an alternative result on the weak Poincaré inequality. To state
the result, we introduce the class 7 as follows.
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Class 7 : We denote h € 7, if 0 < h € C'([0,00)) with A'(r) > 0 for r > 0, such that

2 )
(2.8) En(r) :=&(r) — =h(r) inf n(el), r>0
T p(n)=r
satisfies
o0 r &) t r Ep(s)
(2.9) o1 = Sup/ oli bl dsdr/ Le_ & Bdr < 0.
’ t>1 Jy 1 oa(r)

It is easy to see that 7 # () under the conditions of Theorem and infa > 0. For any
h €, let Vi, =V — h(p) + c(h), where ¢(h) € R is such that ¢"» is a probability measure
on M. By Theorem [Z2(1) with k£ = 1, for any h € 5, the Poincaré inequality

(2.10) GV(F?) < C(h)Eyy, +9" " (F), F € D(Eyvy,)
holds for
(2.11) C(h) =20, (v (¥(1) + 3201, + 1)) + 3201, h € .

Theorem 2.5. Assume (H), (L) and @1). If 7 # 0, then (ILIQ) holds for

a(r) = inf {C(h)eh<N> L he s, N>0withd' (p> N) <

> 0,
1+r}’ "

where C'(h) is given by 29) and 2.11).

To conclude this section, we present below a simple example to illustrate the main re-
sults. For simplicity, we only consider .27, = 1. But by a simple comparison argument, the
assertions apply also to .o, with (&,¢, ¢)2¢;) > c||¢||%2(n) for some constant ¢ > 0 and all

neM, ¢ € L*(n).

Example 2.6. Consider the following potential Vo with interactions given by 1; € By(E X
E),i=1,2,3:

2(n xm)(1) | (nxn)(2)

W) =g EmpE T )

+ (1 x 1)(¢3) — plog(1 + n(E)),

where p € R is a constant. Let 0; = sup;, 1 < i < 3. Assume that one of the following
conditions hold:

(1) min {93,92 —1,60,- 1{92:1}} < 0;
(2) 91 :92—1:9320 O/ﬂdp>V(E>

Then 7 = 4(e'?) < mfooo(l + §) PV E)mlehstP-(1-0)st0s5% (g o0 50 that GV for

V .=V —log Z is a probability measure on M, and the following assertions hold:
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(a) Condition (1) implies gap(Z1,v) > 0;
(b) Under condition (2), let
0 = max {12 X Ljuya>0p 8 X Ljup-1>0}s 6 X Lo}, 5}

Then there exists a constant ¢ > 0 such that the weak Poincaré inequality (LIQ) holds
for

a(r) = CT_Q(P%f’(E)), r > 0.

Proof. Obviously, the assumptions in Theorem hold for V' and &, = 1. By definition it
is easy to see that

n(E)n(i(x,-) + i (-, 7)) — (n x n)(¢1)

VeV (n)(z) = (E)7 +n(s(, ) +¥3(- 2))
N n(EINW2(x, ) +o(- @) — (X n)(¥) L P
n(E)? 1+n(E)
Then
pn(E)

ViV (n) :== n(V'V (1) < 0y/0(E) + 02n(E) + 05n(E)* +

_ biplm) | Gap(n)® | bsp(m)* . pp(n)®
- 4 8 4+ p(n)*

1+n(E)

(a) If (1) holds, then 03 < 0, or 3 < 1, or 3 =0, — 1 =0 and ¢; < 0. In any case, we

have )

p(n)
4

2
limsup % v p(n) = limsup — (I/(E) — + V?EtV(n)) <0,

p(n)—o0 p(n)—0o0 p(n>
so that Corollary 2.4l implies gap(.Z} ) > 0.
(b) Under condition (2), we prove the weak Poincaré inequality for the desired «(r).
Since one may always take a(r) < 1 in (LI0) due to ¢V (F?) < |F||%, it suffices to prove
for small r > 0, say r € (0, 1].
It is easy to see that

(2.12) GV (p>N) < cogN"PP N >0

holds for some constant ¢y > 0. For ¢ € (0, 1], we take h.(s) = ey/s. Since a = 1, it is easy
to check that
o1p < el

for some constant ¢; > 0 independent of € € (0, 1]. Moreover, there is a constant ¢y inde-
pendent of € € (0, 1] such that

sup Vi, — inf Vi, < e[ |[UsllooN* + [t = 1| N? + [[th1]| oV + N + log(1 + N)].
p<N p<N

9
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Combining this with (ZI1]), we may find constants cs, ¢4 > 0 independent of ¢ € (0, 1] such
that

C(he) < ca([¥llooe™ + 1902 = Ulooe™ + [[th1]loce ™ +€7%) < cuc™.
Taking this into account and applying Theorem for

N=N,:= <@)W

r

such that ZI2) implies 4" (p > N) <
weak Poincaré inequality holds for

5 as required for r € (0, 1], we conclude that the

af(r) == inf C(h.)e"= ™) < inf c,e™exp [5(2007"_1)2(1’*1“(’3))], r e (0,1].
€(0,1] c€(0,1]

Therefore, by taking e = 1 A 7°2<P*1"<E>>, we prove ([LI0) for the desired a(r).

3 The Dirichlet form

For any F' € .ZCg°, let

Ly F(n) = / AT ()] () (v — ) ()
(3.1) E

L2

" /E Ve [ty (Vo () ()] () n(de) + (VY (), [V F ()

It is easy to see from (L4) that when F(n) = f(n(A4y),---,n(A4,)) for some n > 1,f €
C$°(R™) and a measurable partition {A4;}1<i<, of E, we have

n

Ly F(n) = ( S = ) (La) + n(V 14, OI0) + Vih, V)| o

1=1

#3140 ) (A, ()

ij=1
Theorem 3.1. Assume (H). Then

(3.2) Eyv(F,G) = — / (GLyvF)A9Y, F,G e FCr.
M

Consequently, (&yv, FC°) is closable in L*(M, 4"V whose closure (Eyv, D(Eyy)) is a
symmetric Dirichlet form with generator (ZLy v, ?(Ly v)) being the Friedrichs extension of
(L v, FC). If moreover (LE)) holds, then 1 € P (&) and v (1,1) = 0.

10
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To prove this result, we introduce the divergence operator corresponding to V¢, To this
end, we formulate the Gamma distribution ¢ by using the Poisson measure 7, with intensity
D(dz,ds) := s 'e *v(dz)ds on E := E x (0,00). Recall that 7, is the unique probability
measure on the configuration space

[(E) = {7 = Zé(xi,si) . v(K) < oo for compact K C E, (x;, ;) € E}
i=1

such that for any disjoint relatively compact subsets {Ai}lgign of E, {yv — ’}/(Ai>}1gign
are independent random Poisson random variables with parameters {0(A;)}1<i<n. Since

A

S(y) == > sifor v = > 80, € T'(E) satisfies

S(y)mp(dy) = [ sv(dx,ds) =v(F) < oo,
/F(E) (7)o () /( )= u(E) <

E

the measure 7, is concentrated on the S-finite configuration space

r;(E) = {7 =D ey €T(E):5(1) = 3 si < oo}.

A

Lemma 3.2. The map ® :Ty(E) > v =32, 80q +> > o0y Si0s; € M is measurable with
(3.3) G =100,

Moreover,

[ g [ o)
- /Mg(dn)/ TF(n+ s6,, 2)v(dz)ds, F e L'(Mx E,4(dn)n(dz)).

e
E

(3.4)

Proof. Formula ([B.3]) was proved in [8, Theorem 6.2] for £ = R? and v(dz) = 6dx (which is
an infinite measure) with # > 0, by identifying the Laplace transforms of ¢ and 7, o L.
Below we explain that the same argument works to the present setting.

Firstly, the Laplace transform of ¢ is

(3.5) / e_"(h)g(dn) = e v(los(1+h)  p B (E),
M

where #7(FE) is the class of nonnegative measurable functions on E. This was given by [I8|
(7)] when v is atomless. In general, we decompose v into v = vy + Z;’il ¢i0y,, where vy is an
atomless finite measure on E, x; € E with z; # x; for i # j, and ¢; > 0 with Y .2, ¢; < o0.
Let Ey = E'\ {z; : i > 1}. By the definition of Gamma distribution,

77(h ’ 1Eo)a U(h ’ 1{-'Ei})? 1>1

11



are independent under ¢, the distribution of n(h-1g,) under ¢ coincides with that under %
(the Gamma distribution with intensity measure 14), and the distribution of n({x;}) under
¢ coincides with the one-dimensional Gamma distribution ., with shape parameter c;. So,
applying ([B.0) for v replacing v due to [I8] (7)], and using the Laplace transform for Gamma
distributions on R, we derive

/e_"(h)g(dn) — (/ e—n(h~1EO)g(dn)) H/ e—h(m)n({xi})g(dn)
M M i1 M

[e.e]

— eolloa(+#) T emeslosi+he) _ g=vlo(1+h)
i=1

Therefore, (3.H) holds.
On the other hand, the Laplace transform for 7, (see for instance [I]) is

/ e_“’(ﬁ)ﬂ,;(dv) =exp|[— (1 — e_ﬁ)], he % (E).
pr(E)
By letting A(z, s) = sh(z) for (z,s) € E, we arrive at

[ emmon i = [ )

Tpp(E)
=exp[— (1 —e )] =e sl e (D).
Combining this with (83) we prove (B.3]).

Finally, (8.4) follows from (B.3) and the Mecke formula [10, Satz 3.1] for Poisson measures.
U

To establish the integration by parts formula for V;“F , we introduce the divergence

operator div®** as follows.

Let ¢ : Ml x E — R be measurable. If for any z € E, ¢(-,x) € (V") such that

(@ % v)(16]) + / n(16(n, )| + [V, ) ()])# (dn) < oo,

M

where 7(-) stands for the integral with respect to 1 as in (L1I), then we write ¢ € Z(dive™)
and denote

DIV (3.6) div™(¢)(n) = (n —v)(e(n, ")) —n(V="é(n,)()).

When ¢(n,z) = ¢(x) does not depend on 7, the following integration by parts formula
follows from [9, Theorem 14]. We include below a complete proof for the n-dependent ¢.

Lemma 3.3. Let ¢ € 2(div"™). Then
(3.7) / (Vo' F) 49 = / (Pdive™(¢)| 49, F € FC.
M M
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Proof. By (4] and the Dominated Convergence Theorem, we obtain

[ vr)as - - (1 P Z IO o3, 2y ) am)
/ < (dn) lglirg e *[F(n+ (s+¢€)d,) — F(n+ s6,)]o(n+ s0,, z) v(dz)ds

— /Mg dn) /Ee—s OsF(n + 865, )] d(n + 86,5, ) v(dz)ds
- /M < (dn) /E (85 [e*F(n+ s6,)¢(n + $6,, )] — F(n+ s0,)0s [e"*¢(n + sd,, x)}) v(dz)ds.
Noting that ' € .ZCg° implies F'(n + sd,) = 0 for large s, we have
/ "0, [ P + 56,)0(1 + 8., 3)] ds = —F(n)(n, ).
Hence, by using (B.4) again,
[ @5t Ryag + [ Fapom )9
~ [ 9t [ P 5o 0000 + 552.2) = o0+ sty )] w(da)ds
/ < (dn) / (N + 864, ) — VG (-, 2)(n + séx)(:):)}e_sF(n + s, )v(dzr)ds
= [ Fopgan) [ otn.) = Vot 0) @lntao)

E

Therefore, (B1) holds. ]

Proof of Theorem[31. We first prove (B.2]), which implies the closability of (&y.v,.ZC5)
and that the closure is a symmetric Dirichlet form in L?(4"), see [4]. By the definition of
&yv and Lemma [3.3] for any F, G € .#(Cg° we have

Egv(F,G) = /M I, (FG)d9Y = /M (Ve¥ o, veripe G) (n) 9 (dn)
- /M G(n)dive= (V™ cf, [V F ()] () @ (dn).

Therefore, by (3.6]), (3:2) holds for
Loy F (1) = =~V Wdive (V0. [V F ()] ()
= [ (9= @A F )0 + T (AT F )] (0)) () (k)

T /E A [V () () (v — 1) (de).
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Next, assume that (L8) holds. It remains to find a sequence {F,},>1 C Z(&y.v) such
that
lim [9Y(|F, = 11*) 4+ v (Fu, Fu)] = 0.

n—oo

To this end, we consider p, := \/n~' + p?, n > 1. By [23)), we have p,, € 2(V*) with

[

R/

Let h € C§°([0, 00)) such that h(r) = 1 for r <1 and h(r) = 0 for » > 2. We have
Fo = h(n""log[l + p,]) € FC5°, n>1.
It is easy to see that ¢V (|F, — 1]*) = 0 as n — oo and due to (L),

e,Qf h/ 2
limsup &y v (Fy, F,,) < limsup [l 1Ml 4V (dn) = 0.

n—00 n—00 M n2(1 + p)2

4 Proofs of the main results

In this section, we prove Theorems 2.1 2.2] and Corollary 2.3

4.1 Proof of Theorem [2.1] and a local Poincaré inequality

Proof of Theorem 2. The invalidity of the super Poincaré inequality will be included in the
proof of Theorem 2.2)(3) for a more general case. So, we only prove (1) and (3).

(a) We first prove gap(Z10) = 1, i.e. A = 1 is the optimal constant for the Poincaré
inequality

(4.1) G(F?) < %gl,o(F, F)+9(F), FeFCE

to hold. Let F(n) = f(n(A1),---,n(A,)) for some f € C(R") and disjoint Ay, -+, A,.
This Poincaré inequality reduces to

W = i (<t (Yot e,
1=1

where according to (L2,

n SV(Ai)—l —s

(42)  p(de) = [T msldm), ra(ds) = Tugay(ds) = T oe) (5) 5~

Z__ _— _ds,1<i<n.
paley I'(v(A:))

14
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By the additive property of the Poincaré inequality, it suffices to prove that for every 1 <
1 < n, A =11is the largest constant satisfying

) =l < 5 [ rF e, f e 6 (0.0,

This follows from the fact that the generator of the Dirichlet form

(f.g) = / T F ) Pdr), f.g € W0, 00), m)
LI = () + ((A) = 1) (), T € [0,00),

which has spectral gap 1 with the first eigenfunction u;(r) = r — v(A;).
(b) Let suppv = {x1, -+ ,x,}, we have § = min{v({z;}) : 1 <7 < n} > 0. It suffices to
find a universal constant ¢y > 0 such that (2.1) holds for

F(n) = f{zi}), - n{za})), [ e CFR).
Letting p" and p; be as in ([A2]) for A; = {z;}, (Z1) for this F' becomes

C

" (f*log f?) < — Z/ si(0.f) (51, sp)u"(ds, -+, dsp) + p"(f2) log " (f2).
Ad =5 J[0,00)"

1

By the additive property of the log-Sobolev inequality, this follows from the following Lemma

41l 0O
Lemma 4.1. Foranya,b > 0, let p,(ds) := l[o,w)(s)% ds and pap(ds) == l[o,b}(s)%.

Then there exists a constant c¢o > 0 such that for any a,b > 0,

b
43) P10 ) < 0 [P0 maslds), € CU0D ) = 1.

Proof. (a) Let a > 2. We will use the Bakry—Emery criterion on Riemannian manifolds
with convex boundary which in particular includes [0,b6] for b > 0. More precisely, let

Zaf(s)=sf"(s)+ (a—s)f'(s) and T'1(f, g)(s) = sf'(s)g'(s). By [25, Theorem 1.1(4)] with
oc=0and t — oo, if

Do(f, ) = 3400 ) = T Zf. ) 2 KT/, )
holds for some constant K > 0 and all f € C?([0,0]), then

b
fap(f?log f2) < %/ sf'(8) pap(ds), f e CH[0,b]), pap(f?) = 1.
0

15
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So, the desired inequality (4.3]) with ¢y = 4 follows since

Do/, F)(s) = 82" + S50 (5)2 + 2 (3) £(5)
(44) a+s—2
Z Trl(fa f)(S), S 2 07

so that Ty (f, f) > 3T1(f, f) when a > 2.
(b) Let a € (0 1] By @) we have Iy(f, f)(s) = “2T1(f, f)(s) for s > 2. So, by the

)
Bakry—Emery criterion,

8
(45) oy, (12, f? log f?) < gl b (Lo D1 (F, 1)) A+ tag (L) f2) 108 ptapy (12,0 f7)

holds for any b; > 2 and all f € C([0,b]).
On the other hand, for any b, > 0 and f € C'([0,bs]) with pap,(f) = 0, there exists
ro € [0, by] such that f(rg) = 0. So, for any r € [0, bs] we have

_(AmﬁwﬁmMmaf(Abf%Tmm§_

faby (D1 (f, f))) r € [0, by].

[SIE

r)| = s)ds

g( 1)[)_1“)2

Therefore, for 15, (f%) = 1 with 4, (f) = 0 we have

I'(a bl a b2
fa s (f210g f2) < prap, (f7)log [(1)7
- ['(a)by e

= 1—

,uabQ(Fl(.f f))
abz(rl(f f))

This implies
Haps (F2108 f2) = ptap, (f7) 108 frap, ()

4.6 a)bi—aeb2
O O ) ), £ € CUOB. () =0

In general, for a non-zero function f € C([0,by)), let f = f — jiap,(f). We have (see [2])

:ua,bz(.f2 1Og .f2) - ,ua,bz(.f2) 1Og ,ua,bz(.f2)
< ,ua,bz(f2 log f2) - Ma7b2(f2) lOg ,ua,bz(f2) + 2,ua,b2(f2)'
Combining this with (£6]) and using the Poincaré inequality (ZIH) below, we arrive at
Ha,bs (.f2 lOg f2) — Ha,bo (.f2) 1Og Ha,bs (.f2)

4.8 a l—aeb2
o < (MO 1), > 0,5 € 0.

(4.7)
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In conclusion, when b < 4, the desired inequality [@3) for a € (0, 1] follows from ().
Finally, for b > 4 we deduce from (&) and [&F)) that for any f € C*([0,b]) with pa5(f?) = 1,

5@ 1 —sds
Ha, b(f2 10g f2> Jfb—ldﬂa,2(f2 lOg f2) + Ma,b(1[2,b}f2 10g f2>
0 s~ e75ds

[(a)2'~%? ['(a)
< (ﬁ + 1>,Ua,b(1[0,2}rl(f> f))+ Ma,b(1[0,2]f2) log m
o

3 ['(a)
- I + 1 %) log —————

< %/0 sf'(5)? pap(ds) + %,Ua,b(f2)a

where ¢; > 0 is a universal constant independent of a € (0, ;] and b > 4. Combining this
with (A7) and the Poincaré inequality (£I3]) below, we prove the inequality (£3]) for some
universal constant ¢g > 0 and all a € (0, 3] and b > 4.

(¢) Let @ € (3,2). In this case, we have a’ := % € (0, 3], so that by (b) there exists a

constant ¢y > 0 such that

1
GGG (49) ,ua’,b(f2 1ng ) < _/ f ( ) :U’a’,b(ds)v a < <§7 2)7f S Cl([oa b])alua’,b(f2> =1
Let fig oo(dsy, dsg, dss, dsy) = H?:l Har oo(dsi), where pigr oo 1= limy o0 ftorp is the Gamma
distribution with parameter a’. By the property of Gamma distributions we have
/ f(s14 S2 4 S3 4 Sa)flar co(ds1, dsa, dsg, dsy) = f(8)ttac(ds), [ € By([0,00)).
[0,00)™ [0,00)
Using ([@9) with b — oo and the additivity property of the log-Sobolev inequality, we obtain
,aa’,OO(F2 log F2) - Iaa’,OO(FQ) log ﬂa’,OO(F2>
p 4
¢
S EO / Z si@F(sl, s ,84)2,&@/71)((3181, s ,d$4), F - Cg([O, 00)4)
0 =1
By an approximation argument we may apply this inequality to
F(s1,-+,84):= f(DA(s1+ -+ 84))
for f € C([0,0]), so that (A3) is derived. O
To prove Theorem [2.2], we consider the local Poincaré inequality for &7 on the set By,
by decomposing 7 into the radial part n(FE) and the simplicial part 77 := # It is well
known that under ¢ these two parts are independent with
(410)  G(E) <r.i€ A)=Dir(A)u((0.r), r>0,A € BO),

17



where v,(p)(ds) = 1[0,00)(5)% ds, and Dir is the Dirichlet measure with intensity

measure v, see for instance [I7] for details. According to [16] (see also [I7], Proposition 3.3]),
we have the Poincaré inequality

PDI| (4.11 Dir(F?) < Dir(T'°(F, F)) + Dir(F)?, F e .ZC,
0

where for F\(n) = f(n(Ay),---,n(A,)) and n € My,

n

(412)  TP(FF)(n) = 221 [0im(Ai) = n(A)n(A7)] - [0 )03 ) (n(Ar), -+, n(An))-
Lemma 4.2. For any N >’jo,
(4.13) G (1, F?) < (45\(7;) v 1)%(1BNF1(F, F)), Fe 702 91, F) = 0.
Proof. Since By = {n(E) < N?/4}, @I0) implies
m) (14 [ e A= [ FenDiae @), Fe i)

We observe that (2.1]) implies

TT1] (4.15) Yo (ljoaf?) S/O sf'(s) v (ds), r>0,fe€CH[0,7]), e (1onf) = 0.

Indeed, applying the Poincaré inequality

G(F?) < &14(F, F) +9(F)’

to F'(n) := f(n(E) A r), and noting that for f(s) := f(s A r) we have
g(FZ> = 71/(E)(f2> = VV(E)(l[O,r]fZ) + WV(E)((T7 OO))f(T)v L= 17 27

SBR[ srras= [ siotas

0 0

it follows that
Yoy (Lo f2) = (%) = ) ((r, 00)) f(r)?

< / S1(5)2d + (i) (. 00))2F (1) — Yo (1, 00)) f(1)? < / sf'(s)ds.

0 0

By the additivity property of the Poincaré inequality, (AI1]), ([AI4) and (4I3]), we obtain
that for any F' € .ZCg° with ¢ (1, F') =0,

[ LD (B (), F(s))(3) + | o F(s)| | Dir(an)i e (d)

G(1g, F?) < / T

M; x[0,N2/4]

18
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L o _ 0 2
_ /B ) [,,( BT (F(E)), F(n(B)))(3) +77(E)’WF(77(E)77)‘ }g(dn),

So, it remains to prove

O TP E)) FE))) + 1(B) 5 Pl By
< (i VOTE P, o(E) < T

For F' e ZC5e with F(n) = f(n(A1), -+, f(An)) = fF(n(E)n(Ar), -+ n(E)n(An)), by EI2)

we have

PD(F(n(E)-), F(n(E))) (@)

= (1v 4ﬁ;)n(lﬂzlﬂ’)(n)

This implies (LI0), and hence finishes the proof. O

4.2 Proofs of Theorem and Corollary

Proof of Theorem[2.2. We will make a standard split argument by using the local Poincaré
inequality (£I3) and the principal eigenvalue of .Z,, v outside By. To estimate the principal
eigenvalue, we recall Hardy’s criterion for the first mixed eigenvalue. Consider the following
differential operator on [0, 00):

ZLf(r)=a(r)f'(r) +~(r)f(r), r=0.
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For any k£ > 0 and n > 1, let Ay, be the first mixed eigenvalue of .Z on [k, k + n] with
Dirichlet boundary condition at £ and Neumann boundary condition at k 4+ n. Define

ntk I 20(5) 46 | _ I:'Y(S)ds
Okn = SUp e’k al= ™ dr —e a(®) " dr.
te(k,n+k) Jt p oa(r)

By Hardy’s criterion, see for instance [24, Theorem 1.4.2], we have

1 1
*A1 (417) > >\k,k+n > , N> 1, k> 0.
Ok,n 4ak,n

Below we prove assertions (1)-(3) respectively.
(1) By (£I3) and a standard perturbation argument, we have

*A5] (4.18) GV (1t F?) < GV (11peny F)? + (N)9Y (1T (F, F)), F € .FC5.
If o < oo for some k > 0, it suffices to prove the Poincaré inequality
*A6] (4.19) GV(F*) < C9V (I y(F, F)), FeZFC:9"(F)=0

for
C = 20(u" (k) + 8N +1) + ) + 8,

where according to ({I7),

1
(4.20) Api= lim A > o—

n—o0 O'k

Let F € ZC? such that supp F' C By, for some constant Ny > k. For any N > k, let

Fy = F[(¢(p) —(N))" A1,

Then Fiy = 0 for p < N and Fy = F for ¢¥(p) > ¢¥(N) + 1. For n > Ny, let u, > 0 be
the first mixed eigenfunction of .Z on [k, k + n] with Dirichlet boundary condition at k and
Neumann boundary condition at k + n, such that

un(k) =u,(k+n)=0, u,(r)>0forre(kk+n), Lu,=—Nnu, <O.
Combining this with the definition of . we obtain
Loy v(unop) > (Luy)op, pe€lkk+n]

So,

2
NendV (F2) = — / N (w0 pdg?

2
{k<p<n+k} Un © P

(1.21)

Iy v
< — / [ — ZLoyv(uyo p)}d% :
{k

<p<ntk} Un©p
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To apply the integration by parts formula, we approximate w, as follows. Since wu, (k) =
ul,(k +n) =0, we may construct a sequence {tnm}m>1 C C([0,00)) such that

Up (1) = Up(r) for r € [k +m ™ k+n —m™,

U (1) =0 for r <k, wu,,(r)=0for r>k+n,

Supsup(ht ()] + [t 1 (1)]) < 0.

m>1 r>k

Since Fy =0 for p < N, (£21)) implies that for any & < N,

F2
Ak,ngV(F]%,) = — lim 5 (—LUpm) 0 pd%v
mM—00 u
*CD2 (422) {k<p<n+k} Z_’;n op
. ext ext %
= Jim | (V= ),V o)) 09

On the other hand, since <, is positive definite due to (H), for any v € C?*([0,00)) with
u(r) > 0 for r > N, we have

(57 ), 7 o))

= (A, V" Fy(n), V" Fx(n)

L2(n)
>L2 ()

— (A [V Fy = o0 w0 )] (1), T () = 2T o p) o)

wop L2(n)

< (A Ey (), V" Ex(0)) 1o

Combining this with (£22]) and the definition of Fl, we obtain
MV (FR) < [ (9 Py, T Fg) 09
M
<26, v(F.F)+2 | F2Ty (6(0) ()9

{(N)<p(p)<y(N)+1}

Multiplying by )\ ,, and letting n — oo leads to

2
P (4.23) / F249Y < 28, (F, F) + —/ F2T,(4(p), ¥ (p))dZ” .
M Ak A J () <o) < (N)+1)
By the definition of ¢) and @, and noting that 'y (p, p) = 1, we have

(V" p(n), V" p(1)) 12(n)
a(p(n))

GMM | (4.24) Lo (¥(p), v(p)(n) =
So, ([A23)) implies

) \4 = 2 1%

(4.25) /MFNd% < " (%{V(F F) + Ak/ IS

N)<y(p)<yp(N)+1}

<Ti(p,p)(n) = 1.
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Letting |s| =sup{k € Z: k < s} be the integer part of a real number s, we have

1+8x.
/ F2dgV > Z / JRNIAS
{(k)+i—1<yp(p)<tp(k)+i]

Then there exists N € [k, ¢~ (¢ (k) +8A;")] such that

A
/ F2aegV < / F2d9V,
{(B(N)<tb(p)<tp(N)+1} 8 Ju

so that (A20) yields
2 1
(4.26) / F2A9YV < =&y v(F, F)+ = / F?a9Y.
M Ak 4 Jw

Combining this with (EI8) and noting that ¢V (F) = 0, we may find N € [k, ¢~ (¢ (k) +
8\ 1)] such that

/ FagY < / F?agY + / FidegV
M Y(p)<P(N)+1 M

< ST W(N) +1)Ewv(F F) + 9" (Lipzpmeny F)? + /MF]%IdgV
< B G + )8 (B F) +2 [ Fag”
M
-1 4 1 210V
< (270 + ) + 1) BB F) + 5 [ Pag”,
Since ®(N) is increasing in N € [k, (¢ (k) + 8A;')], this implies [IJ) with

C =20 (W(N)+1)) + % <20yt (w(k:) +8N 1) + Ak> + 8\,

Then the proof is finished by (E20).
(2) Assume that suppv is an infinite set. To disprove the super Poincaré inequality, it
suffices to construct a sequence {F,} C Z2(&. ) such that 4V (F?) > 0 and

o Gy (P, F) . GYV(F)?
Indeed, if (LII)) holds for some 3 : (0, 00) — (0, 00), then
Eyv(FF,) GV (|F,|)?
1 < p oV on) Z Ul 5 .
<r ) + B(r) 77 () n>1,r>0

Combining this with ([£27) and letting n — oo, we obtain 1 < rC for all » > 0 which is
impossible.
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n(E)
surable subsets of E such that 1v(E) > p, := v(A,) | 0 as n 1 co, which exist since supp v

is an infinite set.

Obviously, {F,}n>1 C 2(Ev). Since ||| 120 + €@ + V™ is bounded on the set
{n(E) < 1}, we may find constants K;,C; > 0,7 = 1,2,3 such that (£I0) implies for all
n > 1 that

We now show that ([@27) holds for F,(n) := (1 — n(E))* 242 where {A,},>1 are mea-

1 1— 2 V(E)-1,—s 1 tpn-i-l 1— v(E)—pn—1
0 0

I'(v(E)) L'(pn)L(v(E) — pn)
_ S)SV(E)—le—S /1 tPn (1 — t)V(E)—pn—l
I'(v(E)) o L) (W(E) —pn)

% (dy) / (1= 0(E)) — n(A)[2dn
<1} E

dt Z Clpna

1 2
GV(|FL)? < K@ (|F,) = Kz( / a dt) < O,
0

éaﬂ,V(Fm Fn) < K3g(||vextF"”%2(77)) - Kg/

{n(E)

< 92K, / [(1 = (E))2n(Aw) + n(An)n(E)]%(dn)
{n(E)<1}

n(A,)
< 4K / 4 (dn) < Csp,.
* o<y n(E) (dn) < Cs

Since p, } 0 as n 1 oo, we prove ([EL27).
(3) The local Poincaré inequality (I3 implies that for any F' € .#C5° with 4V (F) = 0,

gV(F2) = gV(IBNFQ) —|— {4‘/(172 . ]'B?V)

1
<20(N)Ey v (F, F) + mgv(le\,F)Q +9V(p> N)|IFIIZ,
GV (p>N)?
1-9V(p>N)

< 20(N) 6. v (F, F) + ( +9V(p> N))|IFIZ, N >0,

So, for any r > 0, taking N > 0 such that M +%V(p>N)<r, ie ¥V (p>N) <

1-9V (p>N
T
. we prove (LI0).

O

Proof of Corollary[2.3. Let ry € (0,00) such that .o, = a(p(n))1 and V(n) = v(p(n)) for
large p(n) > ro. By (22) we have

(v = m) () = alon)) (v(E) — n(E) = ap() (v(E) — 220,
H(T A1) = o (o~ ) = P2l (o)),

n(E) 2
VeV () = ([ VY (1) = <av’><p<n>>2%> — 2 () o)),
4 ~Ada(p(n))n(E)  a(p(n)) .
1) = e = Ty P =



Then (Z4]) implies
(4.28) L, vp(n) = &(p(n))

for the given function . So, when o, < oo for some k > 0, Theorem 22(1) implies
gap(ZLyv) > 0.
On the other hand, let o, = oo for all £ > 0. We have

(4.29) Ap == lim Ay, =0, k>0,

n—oo

where A, is given in the proof of Theorem 2.2l Let wuy,, be the corresponding first mixed
eigenfunction of .Z on [k, k + n| with uy,(r) > 0 in (k, k& + n], and let
ev(s)—ssu(E)—l

Oulds) = =y

ds,

such that % is symmetric in L*([k, k + n], ©,) under the mixed boundary conditions. Then

1
>\k,n

k+n k+n
[ matrenan = 5= [ el (nPe, ),

Letting Fj (1) = ugn((n(E) V k) A (k+n)), for large enough £ > 0 such that =7, = a(p(n))1
and V(n) = v(p(n)) for n(E) > k, the above formula implies

1
GY(FL,) =9 (Fin)® > GV (FL - Lincpshiny) = G v (Fuks Fak), 2 1.
k,n

Obviously, due to ([A29)) this implies gap(-Zyv) = 0.

4.3 Proof of Theorem

Let h € 2, i.e. h € C'([0,00)) with h(r), h'(r) > 0 for r > 0 such that (2.8) and (2.9) hold.
By (2I0) and noting that V,, =V — h(p) + ¢(h) where c(h) is a constant such that ¥+ is a
probability measure, for any F' € .#C§° we have

GV(F -1g,)?

GV(F* 1gy) — ———=2 =  inf  GY(F—¢* 1

( BN) %V(BN) cGR,|i\Ilg||F||oo (| C| BN)

< ehi)=elh) inf  GVr(|F —¢|?- 1p,) < V)= inf  GVe(|F — %)
c€R,[e|<||Flloo c€R,[e|<||Flloo

— N)—c(h) [%Vh(F2) _ g%(pﬂ < C(h)eh(N)_c(h)th(F%(F, F))
< C(h)e" MGV (T (F, F)) = C(h)e"V &y v (F, F).

This implies

gV(F ) 1BN)2

h
gV(FQ.lBN) SC(h)e (N)g%’v(F,F)—i‘ %V(BN)

, F'e .@((g)ﬁy’v).
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Then for any F € 2(&,,v) with 9V (F) = 0, we have 9V (F - 1, )> =9V (F - 1{,>n})* and

GV (F?) <GV(F? - 1By) + 9" (F? - 1ipony)
GV (F - 1g,)°

< h(N)
< C(h)e""™M &y v(F, F) + %V (Bx)

GV (p>N)
< C(h)e"™M &,y (F, F <— @V >N>F2
< C(h)e"Véyv(F F) + 77 B +9 (p> N))FI%
9" (p>N)
< C(h)e"Mg FF)+ == " 2|F|2.
= ( )e J%V( ) )+ gV(BN) || ||oo
So, for any r > 0 and N > 0 such that Ef;‘;((pgjiv)) <7, equivalently ¥V (p > N) < 7> we have

GV(F?) < C(0)" N &,y (F.F) + 1|l F € D(Eun) 9" (F)=0,h € 2.

Therefore, the weak Poincaré inequality (LI0) holds for

a(r) = inf{C’(h)eh(N) che 9V (p>N) < }, r > 0.

1+

5 Extensions to the space of finite signed measures
Consider the space of finite signed measures
My :={n—n": n,n €M}
equipped with the topology induced by the map
ne (n,n7) € M x M,

where nt and 1~ are the positive and negative parts of 7 in the Hahn decomposition re-
spectively, and M x M is equipped with the weak topology. So, under this topology Mg is a
Polish space. Note that this topology maybe different from the weak topology, i.e. n, — 7
if 7,(f) := [ fdm, — n(f) holds for any f € C,(E), since the latter on M might be not
metrizable, see [19].

To extend the Dirichlet form (&, v, 2(&.v)) from L*(4Y) to L*(4)) for a probability
measure ¢4 with a potential V on Mg, we introduce below the measure ¢4, the extrinsic
derivative and the operator o/ respectively.

In [18], an analogue to the Lebesgue measure was introduced on Mg by using the convo-
lution of two weighted Gamma distributions. In the same spirit, we extend the measure ¥
to ¥, on My as follows:

(5.1) y f(%s(dn) = fom =n7)9(dn )Y (dn7), f € Bp(My).

MxM
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Let 7(n) = {z € E : n({z}) # 0}. To ensure that 7(n*) and 7(n~) are disjoint such that
n =mn"—n" is the Hahn decomposition of 7, we will assume that v is atomless. In this case,
T(nH)yNnr(n~) =0 for ¥ x G-ae. (n*,n7).

Next, we define the extrinsic derivative operator (V¢ 2(V¢*)) as in Definition 1.1 for
Mg replacing M:
(5.2) Ve p() () = Tim L0 = F@) g

0#s—0 S

Let .Z#sC5° be the class of cylindrical functions of type
(5.3) F(n) = fn" (A, o0t (An),n~(Ar), - o0 (An)), n>1, f € G (R™),

where {A; }1<i<n is a measurable partition of £, and n = n™ —n~ is the Hahn decomposition.
Let

(5.4) A, ={xe E: n({z}) <0}, ne M.

It is easy to see that such a function F'is extrinsically differentiable with
2n

(55) vel‘tF(n> = Z(l -2 1{2>n})(82f)(n+(A1>7 T 7n+(An)7 77_(141)7 e 7n_(An))1Af7'”7
i=1

where

g AiN A, ?fzign,
K A;NA,, ifi>n.

Since for any n € Mg, A, 4.5, = A, holds for small ¢ > 0 and all x € E, V**'F(n)(x) is again
extrinsically differentiable in 7 with

2n

VT E ) @) () = D [(1= 2 L) (1= 2+ L)
(5.6) ij=1

X (D03 N0 (AL, = 1 (An) (A1), = 1 (An) L (2) g (9)]

Finally, For any n € M, let ., be a positive definite bounded linear operator on L*(|n)|),
where |n| :=nT 4+ 1~ is the total variation of 7. Consider the pre-Dirichlet form

51 ERG) = [ (AT TG ) g A9 F.G € FC

S

To ensure the closability of this bilinear form, we assume

(H’) v is atomless, V € 2(V!) such that ¢ is a probability measure. Moreover, for any
A€ #B(E) and x € B, )l anac(v) and lana, (7) are extrinsically differentiable in
7 with

| (091 tang] + 1954 )

S

101 (1 L | + | Lacua, DIV (1)) | 4 () < o
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Obviously, this assumption is satisfied if o7, = F'(n)1 for some positive bounded extrinsically
differentiable function F' such that ¢ is a probability measure with

| Q=)+ (9 ) ) < oo,

S

5.1 Integration by parts formula
Theorem 5.1. Assume (H”). Then

(5.8) &5/ (F,G) = - / (GL% F) A9, F.G e F.C

S

holds for
2508 = [ (V@] T Fl(a) + v ([T F )] (0)) ) I o)
- [ v r (o),

Consequently, (&3, FC5°) is closable in L*(4)") and its closure (&5 1, 2(E5 1)) is a sym-
metric Dirichlet form with 1 € (&%) and &%, ,(1,1) = 0.

To prove this result, we introduce the divergence operator associated with V¢,

Definition 5.1. A measurable function ¢ on Mg x E is said in the domain 2(dive"), if for
any x € E we have ¢(-,z) € 2(V*) and

59 [ ([ 9ot + ot o)) ) dhian) < o
In this case, the divergence operator is given by

(5.10) dive(6) () = / o, 2)(dz) — /E Ve (n, 2)(x) Inl(dz), 7 € M.

We have the following integration by parts formula for the directional derivative

Ve F(n) = / [6(n, 2)V<F (n) ()] Inl(dz), ¢ € Z(dive™), F € 2(V),

E
Lemma 5.2. Let ¢ € 2(dive™). Then
/ (V' F) A%, = [Fdive™(¢)] Y, F € Z,C5°.

Ms
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Proof. By a simple approximation argument, we may and do assume that ¢ is bounded so
that (% x v)(|¢]) < oco. For F € Z,C§°, (62) implies

(5.11) V(@) (@) = V(- — 7)) (@) = V< F(n* - () (@), F e 2(9).
Next, for any 7/ € M, let
G () = —n,2), d_y(n,x):=dn—1n',2), (nr)ecMxE,
By B0) and (GII) we obtain
AV (6 ) () — v (g, )(n)
= [ [t = na) = Vol = ) ) @) () = (600,

- /E (6" =07, 2) + V(" — - 2)(n7)(2)]n” (dz) — v(e(n, )

= [E¢(n+ —n,x) (" —n7)(dr) — [E [V G ) (= n7)(@)] (" +n7)(dx)
= divy"(¢)(n), n=n"—n" with 7(n") N7(n7) = 0.
Combining this with Lemma B3], (5.1]) and (5I1I), we obtain

/ (V¥'F) A% = | G(dn")9(dn) / [o0r* =07, )V —7)(@)] (0" +n7)(dw)

MxM E

= [oor) [ lotn = )V EC = )] (o)
- [ [l = )9 = ) @) (@)
= [Pl = ) v 6o, ) = div 6 ) 7)) ) )
= [ Fenai o) ).

Proof of Theorem[51l. Let F' € ZsC§° be given in (5.3), and let
o(n,z) = " [V F (i) ()

2n

= eV(n) Z(l -2 1{z>n})(02f)(77(A17 e an(An))%lAf (ZL’), (77>I) € MS x E.

i=1

Then (H’) and (B3) imply ¢ € Z(dive™). By the definition of €%, and Lemma 5.2, for
any G € Z#;C5° we have

E50(F.6) = | (AT VG 0) B ()
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= [ (0 TG0 o ulin) = [ Gl 0) )

M
This together with (5.I0) implies (B.8) for
Loy F() = =" Wdivi™(¢) = —e”VWdivg™ (V" [V F ()](-))

= [ ([9=V @] v Fa))a) + Vo (0 ()} )) 0) (k)
- [ enlv=E)@n(da).

Next, to prove that 1 € Z(&75 ) with & ,,(1,1) = 0, we take {f,}n>1 C C5°(R) such
that f,(s) =1for |s| <n,0< f, <1land ||f||ec < 1. Let F,(n) := fu(n(E£)),n > 1. Then
F, € ZCg°. By (H’) we have 4V (|F,, — 1|>) — 0 as n — oo, and

limsup &% v (Fy, F,) = lim sup/ |2, 11| L2 (1) 4V (dn) = 0.
{In(E)|>n}

n—oo n—oo

Therefore, 1 € 2(&7, ) and &5 ,,(1,1) = 0. O

5.2 Functional inequalities for &7,
For any N > 0, let BS, = {n € My : ' (E) V= (E) < N}.
Theorem 5.3. Let &/ =1 and V = 0.

(1) gap(Z5 ) =1, i.e. the following Poincaré inequality

(5.12) G(F?) < E(FF) + 9(F)?, F € 9(&)
holds, and the constant 1 in front of &% ((F, I') is optimal.

(2) If suppv is infinite, then &}, does not satisfy the super Poincaré inequality. On the
other hand, there exists a constant co > 0 such that when supp v is a finite set, the
log-Sobolev inequality

(5.13) G(F2log F?) < = E5y(F, F), F € 9(610),9(F) = 1

holds, where § := min{v({z}): = € suppv}.
(3) For any N >0 and F € FC§° with %(1]3%17) =0,

2

N
. 2 _
LSP*| (5.14) G155 F?) < (2\/2,/( ))%5(13%

VEE L)
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Proof. By taking F'(n) depending only on 7™, it is easy to see that a Poincaré inequality for
&7 implies the same inequality for &1. So, the optimality of (5.IZ]), and the invalidity of
the super Poincaré inequality when supp v is infinite, follow from Theorem 2.1l It remains
to prove the inequalities (B.12), (5.13) and (5.I4]). According to the additivity property of
the Poincaré and log-Sobolev inequalities, these inequalities follow from the corresponding
ones of &1 . For simplicity, below we only prove the first inequality.

Let . € ZsC5°. By Theorem 21 (5.1, (57) for & = 1 and V = 0, and using (E.I1)),
we obtain

(7 = [ gtar) | P —nrear)
< [ TG ) 0 e g + [ ( /| F(n*—n‘)g(df))sz(dn‘)

< [ 9 E O+ ([P —n—>%<dn+>%<dn—>)2

5] [ o sotam o

By the Jensen inequality, we have

& (dn™).

L¥(n™)

2

v [ ror = tann)| )

< /M IVt — (1) 2agy @ ).
)

L2(n~

Therefore,

GF) SGFY + [ VP @hldn) = P + 83(F.F).

S

5.3 Functional inequalities for &7,

According to the proof of Theorem and the local Poincaré inequality (B.I4)), it seems
that we should take

ps(n) =2/ (B) V= (E), n € M,
to replace the function p on M. But by (55) we have

2

Vemt ~s(77> (QU) — m (1{17(E)20} 1A% (flf) - 1{77(E)<0}1A,7 (x)>7

which is however not extrinsically differentiable in 71, so that £ v ps is not well defined as
required. To avoid this problem, below we will use both ps and

(5.15) ps(n) :=2+/In|(E), n e M,

which satisfies ||V ps(n)|| 12(p) = 1 according to the following lemma.
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Lemma 5.4. Let p be defined in (5I3) and let s(n,-) :=1—2-14, for A, in (54). Then

2s(n, - ox
Ve ps(n) = (n ), Vs(n,x)(y) =0, n€ Mg, z,y € E.

ps(n)

Consequently, if <7,s(n,-) is extrinsically differentiable in n € Mg with

LOT| (5.16) sup [n|(|#s(n, )| + [V [s(n,)]()]) < 00, 7€ (0,00),

In|(E)<r

then

LRR] (5.17) x;«,vpsm):pjn) [nl (19 V () s, ) + V" [ys(n. )] () = n(s(n. ) .

This lemma can be proved by simple calculations using (5.2) and the definition of .Z,, v
in Theorem [5.1], so we omit the details.
By Lemma 5.4 we have

T1(ps, ps) = [l ([V="ps|*) = 1, V[V ps(n)(2)](2) = —

These coincide with the corresponding properties of p on M.

Similarly to (2.3 and (2.6)), let
{(r) = inf DZ;,VpS(n)v ag(r) =

= 1
ps(m=r ¢l 2 () =1

inf (A0, D) r2(p)),

ps(n)=r
as(r) = sup  sup (Ao, d) 2y, 1 >0,
*FY (518) Ps(’?)=T ”d)“Lz(\”?D:l ! !
o s(s) g bl ey,
Ok,s = Sup/ ol aeceyd dr/ ¢ rawd dr, k>0.
t>k Jt k Qs(r)
Assume that
t
o0x] (5.19) Ot = / (Gs(r)] "% dr 1 00 as £ 1 0o,
0

As in the proof of Theorem 2.2l we may use oy 5 to estimate 4 (Fg) for
Fy = [(¥(ps) = (N))* A1] - F, N>0,F¢€ FC .

More precisely, as in (£20) and (£28) we conclude that for any k& > 0 there exists N €
[k, (k) 4+ 320%s)] such that

2 1
/ FdgY < )\—@@;{y(F, F)+Z / F?agY
(5.20) : ' U
< 80ks Ey v (F, F)+Z / F?a9) .
M
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On the other hand, we estimate 4 (F? - 1{,.<n}) by using the local Poincaré inequality
(EI4). Since the bounded set in (B.I4) is B, := {ps < N} rather than B, := {ps < N},
we change the definition of ®(N) into

N? 1
Oy (N) = (2 V )exp [ sup V — inf V] sup sup ———F+—, N >0.
2v(E) pe<N SN | BN 0l =1 (Fn®s D) iz

(Iml

Noting that 1;,,<y < 1y5,<n}, we may apply Theorem to bound ¥ (F? - 1¢,,<n}). For
instance, corresponding to (LI8) we have

GY(F?  1gpeeny) S 9 (F? - Lgeny) <9 (e F)? + ©5(N)ES (FLF).

Combining this with (5.20]) we may extend assertions of Theorem to the present setting
as follows, where when supp v is infinite the super Poincaré can be disproved as in the proof

of Theorem 2.2(2) by taking F, (7]) (1— (E))+"+(A" for 0 < v(A,) L 0. Moreover, one
may also extend Corollaries 4l and Theorem ﬁ e omit the details to save space.

Theorem 5.5. In addition to (H’), assume that <7,s(n,-) is extrinsically differentiable in
n such that (5I6) holds. Moreover, assume that a, and as in (BIR) are such that ag*(r) is
locally bounded in r > 0 and (B.19) holds.

(1) If limy_yoo 0% s < 00, then

1
205 (1 (Y (k) + 3204 + 1)) + 3204

gap( Ly y) > sup{ k> O} > 0.

(2) Ifsuppv contains infinitely many points, then &y does not satisfy the super Poincaré
imequality.

(3) The weak Poincaré inequality (LIQ) holds for (&5 ,,9.) replacing (&, 94") and

a(r) == inf{2q> (N): 9Y(p>N) < } r> 0.

1+r
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