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Abstract. In this article, we study the 3-dissection properties of ranks for overpar-
titions modulo 6. In this case, −1 appears as a unit root, so that double poles occur
in the generating function. We prove two identities of generalized Lambert series
by taking limits in Chan’s identities, which are useful in generating various formulas
with similar poles. We also relate these ranks to the third order mock theta functions
ω(q) and ρ(q).

Notation

Throughout this article we use the common q-series notation associated with infinite
products:

(a)∞ := (a; q)∞ :=
∞∏
n=0

(1− aqn), [a]∞ := (a, q/a)∞,

(a1, a2, . . . , ak)∞ := (a1)∞ · · · (ak)∞, [a1, a2, . . . , ak]∞ := [a1]∞ · · · [ak]∞,

j(z; q) := (z; q)∞(q/z; q)∞(q; q)∞, Ja,m := j(qa; qm), Jm := (qm; qm)∞.

For the sake of convergence, we always assume that |q| < 1. Also, we adopt a notation
due to D. B. Sears [17]:

F (b1, b2, . . . , bm) + idem(b1; b2, . . . , bm) :=
m∑
i=1

F (bi, b2, . . . , bi−1, b1, bi+1, . . . , bm).

1. Introduction

An overpartition of a positive integer n is a partition of n, where the first occurrence
of each different part may be overlined. The number of overpartitions of n is denoted
by p(n). In particular, we set p(0) = 1. Lovejoy [13] employed the classical definition
of Dyson’s rank, hereafter denoted the rank, as the largest part minus the number of
parts in an overpartition. Let N(m,n) denote the number of overpartitions of n with
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the rank m. Lovejoy proved that the generating function of N(m,n) is given by

R(z; q) : =
∞∑
n=0

∞∑
m=−∞

N(m,n)zmqn =
(−q)∞
(q)∞

(
1 + 2

∞∑
n=1

(1− z)(1− z−1)(−1)nqn
2+n

(1− zqn)(1− z−1qn)

)
.

(1.1)

Bringmann and Lovejoy [3] showed that R(z; q) is the holomorphic part of a harmonic
weak Maass form of weight 3/2.

Let N(s, `, n) denote the number of overpartitions of n with rank congruent to s
modulo `. Lovejoy and Osburn [14] pointed out that the rank differences N(s, `, `n +
d)−N(t, `, `n+ d) provide a measure of the extent to which the rank fails to produce
a Ramanujan congruence of the type

p(`n+ d) ≡ 0 (mod `).

They also expressed the generating functions of rank differences for ` = 3, 5, in terms
of infinite products and generalized Lambert series. The modulus l = 7 has been
determined by Jennings-Shaffer [11]. For even moduli, only special linear combinations
of ranks were obtained previously. In [12], Ji, Zhang and Zhao studied 3-dissection
properties of the form

∞∑
n=0

(N(0, 6, n) +N(1, 6, n)−N(2, 6, n)−N(3, 6, n))qn. (1.2)

The difficulty of providing all rank differences N(s, 6, n) − N(t, 6, n) (0 6 s < t 6 3)
lies in the fact that −1 is a unit root of even moduli, so that R(−1; q) arises naturally
in (1.1). Bringmann and Lovejoy [3] pointed out that R(−1; q) is more complicated
since double poles occur. Similar situation happens in related problems associated with
various types of ranks (such as crank, M2-rank, etc.) for different types of partitions
(see [1, 6, 7, 15, 16]).

In this article, we give 3-dissection properties for each residue in (1.2). Let

rs(d) =
∞∑
n=0

N(s, 6, 3n+ d)qn. (1.3)

The main results are summarized in Theorems 1.1-1.3.

Theorem 1.1. For d = 0, we have

r0(0) =
J12
6

6J8
1,6J

4
2J3,6

+
2J3

6J3,6
3J2

1,6J2
−
J4
1,6J

2
2J

3
3,6

3J6
6

+
2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n)2
,

r1(0) =
J12
6

6J8
1,6J

4
2J3,6

+
J4
1,6J

2
2J

3
3,6

3J6
6

− 2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n)2
,
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r2(0) =
J12
6

6J8
1,6J

4
2J3,6

− J3
6J3,6

3J2
1,6J2

−
J4
1,6J

2
2J

3
3,6

3J6
6

+
2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n)2
,

r3(0) =
J12
6

6J8
1,6J

4
2J3,6

+
J4
1,6J

2
2J

3
3,6

3J6
6

− 2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n)2
.

Theorem 1.2. For d = 1, we have

r0(1) =
J12
6

3J7
1,6J

4
2J

2
3,6

+
4J3

6

3J1,6J2
+
J5
1,6J

2
2J

2
3,6

3J6
6

,

r1(1) =
J12
6

3J7
1,6J

4
2J

2
3,6

−
J5
1,6J

2
2J

2
3,6

3J6
6

,

r2(1) =
J12
6

3J7
1,6J

4
2J

2
3,6

− 2J3
6

3J1,6J2
+
J5
1,6J

2
2J

2
3,6

3J6
6

,

r3(1) =
J12
6

3J7
1,6J

4
2J

2
3,6

−
J5
1,6J

2
2J

2
3,6

3J6
6

.

Theorem 1.3. For d = 2, we have

r0(2) =
2J12

6

3J6
1,6J

4
2J

3
3,6

− 4J3
6

3J2J3,6
+

2J6
1,6J

2
2J3,6

3J6
6

− 4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n+1)2
+

4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
,

r1(2) =
2J12

6

3J6
1,6J

4
2J

3
3,6

+
2J3

6

J2J3,6
−

2J6
1,6J

2
2J3,6

3J6
6

+
4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n+1)2
− 4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
,

r2(2) =
2J12

6

3J6
1,6J

4
2J

3
3,6

+
2J3

6

3J2J3,6
+

2J6
1,6J

2
2J3,6

3J6
6

− 4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n+1)2
+

2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
,

r3(2) =
2J12

6

3J6
1,6J

4
2J

3
3,6

− 4J3
6

J2J3,6
−

2J6
1,6J

2
2J3,6

3J6
6

+
4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

(1 + q3n+1)2
.

Theorems 1.1-1.3 carry information of rank sizes for different residues. For example,
by Theorem 1.1, it is easy to derive that N(1, 6, 3n) = N(3, 6, 3n) and N(0, 6, 3n) >
N(2, 6, 3n). Other comparisons take more efforts. For fixed d, numerical calculus sug-
gests that all residues share a common main term. The growth rates of the second
terms (some have the coefficient 0) overcome all the others left. This results in a total
ordering relation.

Conjecture 1.4. For n > 11, we have

N(0, 6, 3n) > N(1, 6, 3n) = N(3, 6, 3n) > N(2, 6, 3n),

N(0, 6, 3n+ 1) > N(1, 6, 3n+ 1) = N(3, 6, 3n+ 1) > N(2, 6, 3n+ 1),

N(1, 6, 3n+ 2) > N(2, 6, 3n+ 2) > N(0, 6, 3n+ 2) > N(3, 6, 3n+ 2).
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This should be verifiable by computing efficient asymptotic formulas of all terms,
using standard analytic methods. However, this is far from the theme of this article
and would take up a dozen pages. Therefore, we leave it as a conjecture 1.

Generalized Lambert series identities are widely used in the research of rank dif-
ferences. In [5], Chan proved three generalized Lambert series expansions for infinite
products. By taking limits in special variables, one can increase the order of poles in
Chan’s identities. In this article, we use this method to establish two identities aim-
ing at decoupling parameters from the denominators. They are helpful in generating
various identities with similar poles. We believe these formulas can also be used in
handling functions similar to the overpartition rank.

In [9], Hickerson and Mortenson showed that a mock theta function can be expressed
in terms of Appel-Lerch sums. Inspired by their work, we establish relations between
the third order mock theta functions ω(q) and ρ(q) and the ranks of overpartitions
modulo 6, where ω(q) and ρ(q) are defined by Watson [18]:

ω(q) =
∞∑
n=0

q2n(n+1)

(q; q2)2n+1

and ρ(q) =
∞∑
n=0

q2n(n+1)(q; q2)n+1

(q3; q6)n+1

.

Theorem 1.5. We have

r0(2) + r3(2) =
4

9
ρ(q)− 16

9
ω(q) +M(q),

r1(2)− r3(2) = 2ω(q),

r2(2) + r3(2) = −2

9
ρ(q)− 10

9
ω(q) +M(q),

where M(q) is a weakly holomorphic modular form given by

M(q) =
4J12

6

3J6
1,6J

4
2J

3
3,6

.

This paper is organized as follows. In §2, we establish 3-dissection properties of ranks
for overpartitions modulo 6. In §3 and §4, we introduce generalized Lambert series
identities concerning double poles and single poles respectively. In §5, we introduce an
algorithm which helps to transform S-series raised in the new identities into sums of
infinite products. Finally, we prove the relations between the ranks of overpartitions
and mock theta functions in §6.

2. Ranks of Overpartitions modulo 6

In this section, we study 3-dissection properties of ranks of overpartitions modulo 6.
Noting that N(s, `, n) = N(`− s, `, n). Replacing z by ξ6 = e

πi
3 in (1.1), we have

R(ξ6; q) =
∞∑
n=0

(N(0, 6, n) +N(1, 6, n)−N(2, 6, n)−N(3, 6, n))qn (2.1)

1At the time of submission, the conjecture has been proved by Ciolan [4].
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=
(−q)∞
(q)∞

{
1 + 2

∞∑
n=1

(2− ξ6 − ξ−16 )(−1)nqn
2+n

1− ξ6qn − ξ−16 qn + q2n

}

=
2(−q)∞

(q)∞

∞∑
n=−∞

(−1)nqn
2+n

1 + q3n
.

Similarly, by replacing z by ξ26 , ξ36 and 1 in (1.1) successively, we obtain

R(ξ26 ; q) =
∞∑
n=0

(N(0, 6, n)−N(1, 6, n)−N(2, 6, n) +N(3, 6, n))qn (2.2)

=
6(−q)∞

(q)∞

∞∑
n=−∞
n6=0

(−1)nqn
2+n

1− q3n
+

(−q)∞
(q)∞

,

R(ξ36 ; q) =
∞∑
n=0

(N(0, 6, n)− 2N(1, 6, n) + 2N(2, 6, n)−N(3, 6, n))qn (2.3)

=
4(−q)∞

(q)∞

∞∑
n=−∞

(−1)nqn
2+n

(1 + qn)2
,

R(1; q) =
∞∑
n=0

(N(0, 6, n) + 2N(1, 6, n) + 2N(2, 6, n) +N(3, 6, n))qn (2.4)

=
(−q)∞
(q)∞

.

Now, we have a linear system of full rank which consists ranks for overpartitions of all
residues modulo 6. Therefore, we are able to solve N(i, 6, n) in terms of R(z; q).

∞∑
n=0

N(0, 6, n)qn =
1

6

(
R(1; q) + 2R(ξ6; q) + 2R(ξ26 ; q) +R(ξ36 ; q)

)
,

∞∑
n=0

N(1, 6, n)qn =
1

6

(
R(1; q) + R(ξ6; q)− R(ξ26 ; q)−R(ξ36 ; q)

)
,

∞∑
n=0

N(2, 6, n)qn =
1

6

(
R(1; q)− R(ξ6; q)− R(ξ26 ; q) +R(ξ36 ; q)

)
,

∞∑
n=0

N(3, 6, n)qn =
1

6

(
R(1; q)− 2R(ξ6; q) + 2R(ξ26 ; q)−R(ξ36 ; q)

)
.

Then, we can determine 3-dissection properties of N(i, 6, n) by those of R(z; q). For
z = 1, it was proved by Hirschhorn and Sellers [10].
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Lemma 2.1. We have

R(1; q) =
(−q)∞
(q)∞

=
J12
18

J8
3,18J

4
6J9,18

+ q
2J12

18

J7
3,18J

4
6J

2
9,18

+ q2
4J12

18

J6
3,18J

4
6J

3
9,18

.

In §3 and §4, we prove the following lemmas concerning R(ξ36 ; q) and R(ξ6; q), R(ξ26 ; q)
successively.

Lemma 2.2. We have

R(ξ36 ; q) =

(
−

2J4
3,18J

2
6J

3
9,18

J6
18

+
12

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

(1 + q9n)2

)
+ q

2J5
3,18J

2
6J

2
9,18

J6
18

+ q2

(
4J6

3,18J
2
6J9,18

J6
18

− 24

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

(1 + q9n+3)2
+

16

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

1 + q9n+3

)
.

Lemma 2.3. We have

R(ξ6; q) =
J3
18J9,18
J2
3,18J6

+ q
2J3

18

J3,18J6
+ q2

(
4J3

18

J6J9,18
− 2

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

1 + q9n+3

)
,

R(ξ26 ; q) =
J3
18J9,18
J2
3,18J6

+ q
2J3

18

J3,18J6
+ q2

(
4J3

18

J6J9,18
− 6

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

1− q9n+3

)
.

It is worth noting that

R(ξ26 ; q) = R(ξ3; q) =
∞∑
n=0

(N(0, 3, n)−N(1, 3, n))qn,

so the identity for R(ξ26 ; q) is exactly [14, Theorem 1] 2, where Lovejoy and Osburn
determined rank differences of overpartitions modulo 3.

3. Generalized Lambert Series Identities: Double Poles

In this section, we consider R(ξ36 ; q) first. In view of (2.3), a straightforward idea is
to split the series into three sums according to the summation index, such as
∞∑

n=−∞

(−1)nqn
2+n

(1 + qn)2
=

∞∑
n=−∞

(−1)nq9n
2+3n

(1 + q3n)2
−

∞∑
n=−∞

(−1)nq9n
2+9n+2

(1 + q3n+1)2
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

(1 + q3n+2)2
.

Then Lambert series identities would help. In [5], Chan proved the following lemma.

Lemma 3.1. For non-negative integers r < s, we have

(a0q, q/a0, q, q)∞[a1, a2, . . . , ar]∞
[b0, b1, . . . , bs]∞

2Lemma 2.3 ommited −1 from [14, Theorem 1], since we assume the convention p(0) = 1.



RANK DIFFERENCES FOR OVERPARTITIONS MODULO 6 7

=
[a0/b0, a1/b0, . . . , ar/b0]∞
[b1/b0, b2/b0, . . . , bs/b0]∞

∞∑
n=−∞

(−1)(s−r)n+1q(s−r)n(n+1)/2b0a
−1
0

(1− b0qn)(1− b0qn/a0)

×
(
a0a1 · · · arbs−r−10 q

b1 · · · bs

)n

+ idem(b0; b1, b2, . . . , bs).

For r = s, this is true provided that |q| < |a0···ar
b0···bs | < 1.

For the sake of matching orders, Chan’s identities will generate seven Lambert series,
some of which are redundant. Therefore, we choose a roundabout method. We first
make some adjustments,

∞∑
n=−∞

(−1)nqn
2+n

(1 + qn)2
=

∞∑
n=−∞

(−1)nqn
2+n(1− qn + q2n)2

(1 + q3n)2
(3.1)

= 2
∞∑

n=−∞

(−1)nqn
2+n

(1 + q3n)2
− 4

∞∑
n=−∞

(−1)nqn
2+2n

(1 + q3n)2
+ 3

∞∑
n=−∞

(−1)nqn
2+3n

(1 + q3n)2
.

Then, consider the following 3-dissections of each Lambert series:
∞∑

n=−∞

(−1)nqn
2+n

(1 + q3n)2
=

∞∑
n=−∞

(−1)nq9n
2+3n

(1 + q9n)2
−

∞∑
n=−∞

(−1)nq9n
2+9n+2

(1 + q9n+3)2
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

(1 + q9n+6)2
,

∞∑
n=−∞

(−1)nqn
2+2n

(1 + q3n)2
=

∞∑
n=−∞

(−1)nq9n
2+6n

(1 + q9n)2
−

∞∑
n=−∞

(−1)nq9n
2+12n+3

(1 + q9n+3)2
+

∞∑
n=−∞

(−1)nq9n
2+18n+8

(1 + q9n+6)2
,

∞∑
n=−∞

(−1)nqn
2+3n

(1 + q3n)2
=

∞∑
n=−∞

(−1)nq9n
2+9n

(1 + q9n)2
−

∞∑
n=−∞

(−1)nq9n
2+15n+4

(1 + q9n+3)2
+

∞∑
n=−∞

(−1)nq9n
2+21n+10

(1 + q9n+6)2
.

The following lemma transforms each 3-dissection into one single Lambert series.

Lemma 3.2. We have
∞∑

n=−∞

(−1)nqn
2+n

(1 + q3n)2
=
J6
3,18J

3
6J

2
9,18

2J9
18

(
2

3
−
J2
9,18J

3
18

4J2
3,18J6

+
J6
3,18J

3
6J

2
9,18

12J9
18

)

−
(

1− 2qJ3,18
J9,18

) ∞∑
n=−∞

(−1)nq9n
2+9n+2

(1 + q9n+3)2
,

∞∑
n=−∞

(−1)nqn
2+2n

(1 + q3n)2
=
J6
3,18J

3
6J

2
9,18

2J9
18

(
1

3
+
J2
9,18J

3
18

4J2
3,18J6

−
J6
3,18J

3
6J

2
9,18

12J9
18

)

−
(

1− 2qJ3,18
J9,18

) ∞∑
n=−∞

(−1)nq9n
2+18n+5

(1 + q9n+3)2
,

∞∑
n=−∞

(−1)nqn
2+3n

(1 + q3n)2
=
qJ5

3,18J
2
6J

3
9,18

2J6
18

+

(
1− 2qJ3,18

J9,18

) ∞∑
n=−∞

(−1)nq9n
2+9n

(1 + q9n)2
.
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Then in view of (2.3), Lemma 2.2 follows by substituting Lemma 3.2 into (3.1) and
using Lemma 2.1. To prove Lemma 3.2, we first take a0 = 1, b0 = −1, b1 = −q3,
b2 = −q6 in Lemma 3.1, and get

J5
3,18J

2
6J

3
9,18

2J6
18

=
2J3,18
J9,18

∞∑
n=−∞

(−1)nq9n
2+9n

(1 + q9n)2
−

∞∑
n=−∞

(−1)nq9n
2+15n+3

(1 + q9n+3)2
+

∞∑
n=−∞

(−1)nq9n
2+21n+9

(1 + q9n+6)2
.

This proves the third formula. Though, for the other two formulas, it is hard to give
a proper relationship directly by Lemma 3.1. Poles are twisted with the orders of q in
numerators. Therefore, we introduce the following theorem.

First, for a sequence a = (a1, . . . , ar), we define series S(a1, . . . , ar) as

S(a1, . . . , ar) := S(a1, . . . , ar; q) =
r∑

u=1

∞∑
n=0

(
1

1− auqn
− 1

1− a−1u qn+1

)
. (3.2)

We also write S(a) = S(a1, . . . , ar) for brevity.

Theorem 3.3. Let a = (a1, . . . , ar) and b = (b1, . . . , bs). Then for non-negative
integers r < s, we have

(q)2∞[a1, . . . , ar]∞
[b1, . . . , bs]∞

(1− S(a) + S(b))

=
[a1/b1, . . . , ar/b1]∞
[b2/b1, . . . , bs/b1]∞

∞∑
n=−∞

(−1)(s−r)nq(s−r)n(n+1)/2

(1− b1qn)2

(
a1 · · · arbs−r−11

b2 · · · bs

)n

+ idem(b1; b2, . . . , bs).

For r = s, this is true provided that |q2| < |a1···ar
b1···bs | < |q|.

Proof. by setting a0 = 1 and b0 = q in Lemma 3.1 and taking limits We need to
compute the limits at b0 = q. First, take a0 = 1 in Lemma 3.1,

(q)4∞[a1, . . . , ar]∞
[b0, b1, . . . , bs]∞

=
[b−10 , a1/b0, . . . , ar/b0]∞

[b1/b0, . . . , bs/b0]∞

×
∞∑

n=−∞

(−1)(s−r)n+1q(s−r)n(n+1)/2b0
(1− b0qn)2

(
a1 · · · arbs−r−10 q

b1 · · · bs

)n

+ idem(b0; b1, . . . , bs).

Denote the term on the left-hand side by L and those on the right-hand side by
R0, . . . , Rs respectively. For R1, we take b0 → q directly and deduce that

lim
b0→q

R1 =
[a1/b1, . . . , ar/b1]∞
[b2/b1, . . . , bs/b1]∞

∞∑
n=−∞

(−1)(s−r)nq(s−r)n(n+1)/2

(1− b1qn)2

(
a1 · · · arbs−r−11

b2 · · · bs

)n

.



RANK DIFFERENCES FOR OVERPARTITIONS MODULO 6 9

Thus it remains to show that

lim
b0→q

(L−R0) =
(q)2∞[a1, . . . , ar]∞

[b1, . . . , bs]∞
(1− S(a) + S(b)) . (3.3)

We separate terms containing poles from L and R0 successively. First we rewrite L
and R0 as

L =
(q)4∞[a1, . . . , ar]∞

(b0, b
−1
0 q2)∞[b1, . . . , bs]∞

· b0
b0 − q

,

and

R0 =
(1− b−10 q)(b0, b

−1
0 q2)∞[a1q/b0, . . . , arq/b0]∞

[b1q/b0, . . . , bsq/b0]∞

×
∞∑

n=−∞

(−1)(s−r)(n+1)q(s−r)n(n+1)/2b0
(1− b0qn)2

(
a1 · · · arbs−r0

b1 · · · bs

)n+1(
q

b0

)n

.

In R0, terms with n 6= −1 vanish when setting b0 → q. Thus, in (3.3), we have

lim
b0→q

(L−R0)

= lim
b0→q

1

b0 − q

(
(q)4∞[a1, . . . , ar]∞

(b0, b
−1
0 q2)∞[b1, . . . , bs]∞

· b0 −
(b0, b

−1
0 q2)∞[a1q/b0, . . . , arq/b0]∞

[b1q/b0, . . . , bsq/b0]∞
· q
)

= lim
b0→q

d

db0

(
(q)4∞[a1, . . . , ar]∞

(b0, b
−1
0 q2)∞[b1, . . . , bs]∞

b0 −
(b0, b

−1
0 q2)∞[a1q/b0, . . . , arq/b0]∞

[b1q/b0, . . . , bsq/b0]∞
q

)
=: lim

b0→q

d

db0
(L∗ −R∗0),

where the penultimate equation follows by L’Hôpital’s rule.
For L∗, it is easy to obtain

lim
b0→q

dL∗

db0
=

(q)2∞[a1, . . . , ar]∞
[b1, . . . , bs]∞

.

For R∗0, we have

lim
b0→q

R∗0 =
q(q)2∞[a1, . . . , ar]∞

[b1, . . . , bs]∞
.

It follows by taking the logarithmic derivative that

lim
b0→q

d logR∗0
db0

=
S(a)− S(b)

q
,

where S is defined in (3.2). Therefore,

lim
b0→q

dR∗0
db0

= lim
b0→q

(
R∗0

d logR∗0
db0

)
=

(q)2∞[a1, . . . , ar]∞
[b1, . . . , bs]∞

(S(a)− S(b)) .

Thus we complete the proof. �
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Now, we replace q by q9 and set r = 1, s = 3, b1 = −1, b2 = −q3, b3 = −q6 in
Theorem 3.3. Then by taking a1 = q3 and a1 = q6 successively, we obtain

J3
6J

6
3,18J

2
9,18

2J9
18

(
1

2
− S(q3; q9)

)
=

∞∑
n=−∞

(−1)nq9n
2+3n

(1 + q9n)2
(3.4)

− 2J3,18
J9,18

∞∑
n=−∞

(−1)nq9n
2+9n+3

(1 + q9n+3)2
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

(1 + q9n+6)2
,

J3
6J

6
3,18J

2
9,18

2J9
18

(
1

2
− S(q6; q9)

)
=

∞∑
n=−∞

(−1)nq9n
2+6n

(1 + q9n)2
(3.5)

−
∞∑

n=−∞

(−1)nq9n
2+12n+3

(1 + q9n+3)2
+

2J3,18
J9,18

∞∑
n=−∞

(−1)nq9n
2+18n+9

(1 + q9n+6)2
.

Note that
∞∑

n=−∞

(−1)nq9n
2+18n+8

(1 + q9n+6)2
= −

∞∑
n=−∞

(−1)nq9n
2+18n+5

(1 + q9n+3)2
.

(3.4) and (3.5) prove the first two 3-dissections in Lemma 3.2 respectively provided
that

S(q3; q9) = −S(q6; q9) =
J2
9,18J

3
18

4J2
3,18J6

−
J6
3,18J

3
6J

2
9,18

12J9
18

− 1

6
. (3.6)

We will prove this in §5.

4. Generalized Lambert Series Identities: Single Poles

In this section, we consider R(ξ6; q) and R(ξ6; q
2), which both contain generalized

Lambert series with single poles. Consider their 3-dissections:
∞∑

n=−∞

(−1)nqn
2+n

1 + q3n
=

∞∑
n=−∞

(−1)nq9n
2+3n

1 + q9n
−

∞∑
n=−∞

(−1)nq9n
2+9n+2

1 + q9n+3
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

1 + q9n+6
,

∞∑
n=−∞
n6=0

(−1)nqn
2+n

1− q3n
=

∞∑
n=−∞
n 6=0

(−1)nq9n
2+3n

1− q9n
−

∞∑
n=−∞

(−1)nq9n
2+9n+2

1− q9n+3
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

1− q9n+6
.

Similarly to Lemma 3.2, the following lemma transforms these 3-dissections into one
single series.

Lemma 4.1. We have
∞∑

n=−∞

(−1)nqn
2+n

1 + q3n
=

(
2q
J3,18
J9,18

− 1

) ∞∑
n=−∞

(−1)nq9n
2+9n+2

1 + q9n+3
+
J6
3,18J

3
6J

2
9,18

2J9
18

,
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∞∑
n=−∞
n 6=0

(−1)nqn
2+n

1− q3n
=

(
2q
J3,18
J9,18

− 1

) ∞∑
n=−∞

(−1)nq9n
2+9n+2

1− q9n+3
+
J6
3,18J

3
6J

2
9,18

6J9
18

− 1

6
.

Then Lemma 2.3 follows by substituting Lemma 4.1 into (2.1), (2.2) and using
Lemma 2.1. The first identity in Lemma 4.1 was proved by Ji, Zhang and Zhao [12]
by using the following Chan’s identity [5].

Lemma 4.2. For non-negative integers r ≤ s, we have

[a1, . . . , ar]∞(q)2∞
[b0, b1, . . . , bs]∞

=
[a1/b0, . . . , ar/b0]∞
[b1/b0, . . . , bs/b0]∞

×
∞∑

n=−∞

(−1)(s−r+1)nq(s−r+1)n(n+1)/2

1− b0qn

(
a1 · · · arbs−r0

b1 · · · bs

)n

+ idem(b0; b1, . . . , bs).

For r = s+ 1, this is true provided that |q| < |a1···ar
b0···bs | < 1.

Set r = 1 and s = 2 in Lemma 4.2. Then by replacing q by q9 and taking a1 = q3,
b0 = −1, b1 = −q3, and b2 = −q6, we have

J6
3,18J

3
6J

2
9,18

2J9
18

=
∞∑

n=−∞

(−1)nq9n
2+3n

1 + q9n
− 2J3,18

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n+3

1 + q9n+3
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

1 + q9n+6
.

This proves the first identity in Lemma 4.1. For the second one, one need to take
efforts in the term n = 0. By taking b0 → q, we obtain the following theorem.

Theorem 4.3. Let a = (a1, . . . , ar) and b = (b1, . . . , bs). Then for non-negative
integers r 6 s, we have

[a1, . . . , ar]∞
[b1, . . . , bs]∞

(1− S(a) + S(b))

+
[a1, . . . , ar]∞
[b1, . . . , bs]∞

∞∑
n=−∞
n 6=0

(−1)(s−r+1)nq(s−r+1)n(n+1)/2−n

1− qn

(
a1 · · · ar
b1 · · · bs

)n

=
[a1/b1, . . . , ar/b1]∞

[b1, b2/b1, . . . , bs/b1]∞

∞∑
n=−∞

(−1)(s−r+1)nq(s−r+1)n(n+1)/2−n

1− b1qn

(
a1 · · · arbs−r1

b2 · · · bs

)n

+ idem(b1; b2, . . . , bs).

For r = s+ 1, this is true provided that |q2| < |a1···ar
b1···bs | < |q|.

Proof. The proof is similar to that of Theorem 3.3. Denote the term on the left-hand
side of Lemma 4.2 by L′, and those on the right-hand side by R′0, . . . , R

′
s respectively.

Likewise by taking b0 → q directly in terms other than R′0, we get the right-hand side.
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The difference arises in R′0. The terms with n 6= −1 are no longer vanishing while
taking b0 → q, which results in an extra Lambert series. In this case we have

lim
b0→q

R′0 = lim
b0→q

1

b0 − q
[a1/b0, . . . , ar/b0]∞
[b1/b0, . . . , bs/b0]∞

· (−b0)r−sb1 · · · bs
a1 · · · ar

· q

+
[a1/q, . . . , ar/q]∞
[b1/q, . . . , bs/q]∞

∞∑
n=−∞
n 6=−1

(−1)(s−r+1)nq(s−r+1)n(n+1)/2+(s−r)n

1− qn+1

(
a1 · · · ar
b1 · · · bs

)n

.

Thus, denoting the first term by R′′0, it suffices to show

lim
b0→q

(L′ −R′′0) =
[a1, . . . , ar]∞
[b1, . . . , bs]∞

(1− S(a) + S(b)) . (4.1)

This can be proved following procedures similar to proving (3.3). �

Now we set r = 1 and s = 2 in Theorem 4.3. By replacing q by q9 and taking
a1 = −q12, b1 = q3 and b2 = q6, we obtain

S(−q3; q9) =
∞∑

n=−∞
n6=0

(−1)nq9n
2+3n

1− q9n
− 2J3,18

J9,18

∞∑
n=−∞

(−1)nq9n
2+9n+3

1− q9n+3
+

∞∑
n=−∞

(−1)nq9n
2+15n+6

1− q9n+6
.

This proves the second identity in Lemma 4.1 supplied that

S(−q3; q9) =
J6
3,18J

3
6J

2
9,18

6J9
18

− 1

6
. (4.2)

We will prove this in §5.

5. An Algorithm for S-series

The generalized Lambert series S defined in (3.2) appears as an encumbrance in our
expansions for infinite products. In this section, we show that S(±qm; qn) with m,n
integers can be expanded as sums of infinite products. The following lemma shows
that, for special a, the function S(a) degenerates to concise forms.

Lemma 5.1. The function S has the following properties:

(1) S(−1) = −1
2
, S(−q) = 1

2
;

(2) S(aq) = S(a) + 1, S(q/a) = −S(a);
(3) Let a = (a1, . . . , ar). If (q/a1, . . . , q/ar) is a permutation of a, we have S(a) =

0;
(4) S(qs; q−t) = S(qs+t; qt).

Proof. Properties (1)-(3) are quite trivial. For (4), We have

S(qs; q−t) =
∞∑
n=0

(
1

1− qsq−tn
− 1

1− q−sq−tn−t

)
=
∞∑
n=0

qs−tn − q−s−tn−t

(1− qs−tn)(1− q−s−tn−t)
.
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We multiply both the denominator and numerator of each term by qs+tn+tq−s+tn, and
deduce that

S(qs; q−t) =
∞∑
n=0

(
1

1− qs+tn+t
− 1

1− q−s+tn

)
= S(qs+t; qt).

�

In view of (2) and (4), it suffices to consider S(±qm; qn) with m,n positive integers.
The following lemma is due to Andrews, Lewis and Liu [2]. Chan [5] provided another
proof using his generalized Lambert series identitites.

Lemma 5.2. For |q| < 1, we have

[ab, bc, ca]∞(q)2∞
[a, b, c, abc]∞

= 1 +
∞∑
n=0

aqn

1− aqn
−
∞∑
n=1

qn/a

1− qn/a
+
∞∑
n=0

bqn

1− bqn
−
∞∑
n=1

qn/b

1− qn/b

+
∞∑
n=0

cqn

1− cqn
−
∞∑
n=1

qn/c

1− qn/c
−
∞∑
n=0

abcqn

1− abcqn
+
∞∑
n=1

qn/abc

1− qn/abc
.

(5.1)

We denote the infinite product on the left-hand side of Lemma 5.2 by P(a, b, c),
which is

P(a, b, c) = P(a, b, c; q) =
[ab, bc, ca]∞(q)2∞

[a, b, c, abc]∞
.

For the sake of brevity, we denote P(a, a, a) by P(a). Then, Lemma 5.2 shows that

P(a, b, c) = 1 + S(a, b, c)− S(abc). (5.2)

We are now equipped to propose an algorithm for S(±qm; qn) with arbitrary positive
integers m and n. First in (5.2), by replacing q by qn and setting a = ±qm, b = ±qm
and c = −qn−2m, we have

P(±qm,±qm,−qn−2m; qn) = 1 + S(±qm,±qm,−qn−2m; qn)− S(−qn; qn) (5.3)

=
1

2
+ 2S(±qm; qn)− S(−q2m; qn).

Therefore, in order to obtain expansions for S(±qm; qn) in terms of P-functions, we
need to calculate S(−q2m; qn). Our strategy is to implement a recursive procedure
using (5.2). Suppose that n = 3s · n′ with (3, n′) = 1. We denote by k the order of 3
in the cyclic group Zn′ . Thus, we have

3k ≡ 1 (mod n′)

and accordingly

3s+k ≡ 3s (mod n). (5.4)
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Then, by replacing all a, b, c with −q3j−1·2m where j = 1, . . . , s + k successively, we
obtain a chain of identities as following:

j = 1 : P(−q2m; qn) = 1 + 3S(−q2m; qn)− S(−q3·2m; qn);

...
...

...

j = s : P(−q3s−1·2m; qn) = 1 + 3S(−q3s−1·2m; qn)− S(−q3s·2m; qn);

j = s+ 1 : P(−q3s·2m; qn) = 1 + 3S(−q3s·2m; qn)− S(−q3s+1·2m; qn);

...
...

...

j = s+ k : P(−q3s+k−1·2m; qn) = 1 + 3S(−q3s+k−1·2m; qn)− S(−q3s+k·2m; qn).

In view of (5.4) and Lemma 5.1(2), we are now able to solve S(−q2m; qn). Concretely,
the weighted summation of the first s identities with weights 3s−j shows

s∑
j=1

3s−jP(−q3j−1·2m; qn) =
3s − 1

2
+ 3sS(−q2m; qn)− S(−q3s·2m; qn).

The weighted summation of the last k identities with weights 3s+k−j shows

s+k∑
j=s+1

3s+k−jP(−q3j−1·2m; qn) =
3k − 1

2
+ 3kS(−q3s·2m; qn)− S(−q3s+k·2m; qn).

Considering (5.4), we have

S(−q3s+k·2m; qn) = S(−q3s·2m; qn) +
3s(3k − 1) · 2m

n
.

Then we are able to calculate S(−q2m; qn), and consequently S(±qm; qn) by (5.3). We
summarize the algorithm as the following theorem.

Theorem 5.3. Suppose that m and n are positive integers with n = 3s ·n′ and (3, n′) =
1. Denote by k the order of 3 in the cyclic group Zn′. Then, we have

S(±qm; qn) =
2m− n

2n
+

s+k∑
j=1

3k−j

2(3k − 1)
P(−q3j−1·2m; qn)

−
s∑

j=1

3−j

2(3k − 1)
P(−q3j−1·2m; qn) +

1

2
P(±qm,±qm,−qn−2m; qn).

The length of the chain may be reduced for special m and n. We consider the first
l identities in the chain. Their summation with weights 3l−j gives

l∑
j=1

3l−jP(−q3j−1·2m; qn) =
3l − 1

2
+ 3lS(−q2m; qn)− S(−q3l·2m; qn). (5.5)
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Lemma 5.1 provides values of S at special points, which would help to shorten the
chain of identities. Suppose that

n = 3s1 · 2t1 · n′ with (3, n′) = 1 and (2, n′) = 1,

m = 3s2 · 2t2 ·m′ with (3,m′) = 1 and (2,m′) = 1.

We consider two special cases.
Case I: n′ | m′ and t1 6 t2 + 1.
We take l by setting

l =

{
0, when s2 > s1,

s1 − s2, when s2 < s1.
(5.6)

In this case, l is the least nonnegative integer such that

3l · 2m ≡ 0 (mod n).

By Lemma 5.1, we have

S(−q3l·2m; qn) =
3l · 2m
n

+ S(−1; qn) =
3l · 2m
n

− 1

2
. (5.7)

Considering (5.5), we are able to obtain S(−q2m; qn), and consequently S(qm; qn).
Case II: n′ | m′ and t1 = t2 + 2.
We take l as in (5.6). Now l is the least nonnegative integer such that

3l · 2m ≡ n/2 (mod n).

The discussion is similar to that of Case I. A tiny difference lies in (5.7), where we now
have

S(−q3l·2m; qn) =
3l · 2m− n/2

n
+ S(q

n
2 ; qn) =

3l · 2m
n

− 1

2
.

We summarize these two cases as the following corollary.

Corollary 5.4. Let m and n be positive integers. Suppose that there exists a least
nonnegative integer l such that 3l · 4m ≡ 0 (mod n). Then, we have

S(±qm; qn) =
2m− n

2n
+

l∑
j=1

3−j

2
P(−q3j−1·2m; qn) +

1

2
P(±qm,±qm,−qn−2m; qn).

For example, when n = 3, we have l = 1 in Corollary 5.4. We give the explicit
expansion for S(±q; q3) in terms of infinite products. This completes the proof of (3.6)
and (4.2).

Corollary 5.5. We have

S(q; q3) =
J2
3,6J

3
6

4J2
1,6J2

−
J6
1,6J

3
2J

2
3,6

12J9
6

− 1

6
,
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S(−q; q3) =
J6
1,6J

3
2J

2
3,6

6J9
6

− 1

6
.

6. Mock Theta Functions

Recall that the Appell-Lerch sum is defined as

m(x, q, z) :=
1

j(z; q)

∞∑
r=−∞

(−1)rq(
r
2)zr

1− qr−1xz
,

where x, z ∈ C∗ with neither z nor xz an integral power of q. In [9], it is pointed out
that the third order mock theta functions ω(q) and ρ(q) can be expressed in term of
m(x, q, z) as follows,

ω(q) = −2q−1m(q, q6, q2) +
J3
6

J2J3,6
,

ρ(q) = q−1m(q, q6,−q). (6.1)

A generalized Lambert series with simple poles is essentially an Appell-Lerch sums,
so they play a the key role in relating rank differences with mock theta functions. This
section is devoted to proving the relations between the rank differences of overpartitions
and mock theta functions, as stated in Theorem 1.5.

First we recall the universal mock theta function g2(x, q) defined by Gordon and
McIntosh [8]

g2(x, q) :=
1

J1,2

∞∑
n=−∞

(−1)nqn(n+1)

1− xqn
.

Hickerson and Mortenson [9] showed that g2(x, q) and m(x, q, z) have the following
relation,

g2(x, q) = −x−1m(x−2q, q2, x). (6.2)

We are now in a position to give a proof of Theorem 1.5.

Proof of Theorem 1.5. From Theorem 1.3, we have

r0(2) + r3(2) =
4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
+

4J12
6

3J6
1,6J

4
2J

3
3,6

− 16J3
6

3J2J3,6
. (6.3)

Replacing q by q3 in (6.2) and setting x = −q, we have

g2(−q, q3) = q−1m(q, q6,−q),
and by (6.1), we deduce that

ρ(q) = g2(−q, q3).
Together with the identity in [18, p.63]

ω(q) + 2ρ(q) =
3J3

6

J2J3,6
,
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we find that (6.3) can be transformed as follows:

r0(2) + r3(2) = 4ρ(q)− 16

9
(ω(q) + 2ρ(q)) +

4J12
6

3J6
1,6J

4
2J

3
3,6

=
4

9
ρ(q)− 16

9
ω(q) +

4J12
6

3J6
1,6J

4
2J

3
3,6

.

Similarly, we have

r1(2)− r3(2) = − 4

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
+

2J3
6

J2J3,6

= 2ω(q),

and

r2(2) + r3(2) =
2

J3,6

∞∑
n=−∞

(−1)nq3n
2+3n

1 + q3n+1
− 10J3

6

3J2J3,6
+

4J12
6

3J6
1,6J

4
2J

3
3,6

= 2ρ(q)− 10

9
(ω(q) + 2ρ(q)) +

4J12
6

3J6
1,6J

4
2J

3
3,6

= −2

9
ρ(q)− 10

9
ω(q) +

4J12
6

3J6
1,6J

4
2J

3
3,6

.

Thus we complete the proof of Theorem 1.5. �
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