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Abstract. In this paper, we propose new operator-splitting algorithms for
the total variation regularized infimal convolution (TV-IC) model [6] in order

to remove mixed Poisson-Gaussian (MPG) noise. In the existing splitting algo-
rithm for TV-IC, an inner loop by Newton method had to be adopted for one

nonlinear optimization subproblem, which increased the computation cost per

outer loop. By introducing a new bilinear constraint and applying the alternat-
ing direction method of multipliers (ADMM), all subproblems of the proposed

algorithms named as BCA (short for Bilinear Constraint based ADMM al-
gorithm) and BCAf (short for a variant of BCA with fully splitting form)
can be very efficiently solved. Especially for the proposed BCAf , they can

be calculated without any inner iterations. The convergence of the proposed

algorithms are investigated, where particularly, a Huber type TV regularizer
is adopted to guarantee the convergence of BCAf . Numerically, compared to

existing primal-dual algorithms for the TV-IC model, the proposed algorithms,
with fewer tunable parameters, converge much faster and produce comparable

results meanwhile.
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1. Introduction. As the result of photon counting and thermal noise to the detec-
tors, it is very common that the observed image is corrupted by the mixed Poisson
and Gaussian (MPG) noise. The MPG denoising has been extensively studied in
[21, 36, 28, 2, 1, 15] and references therein. Generally speaking, the idea of MPG
noise removal is based on the maximum a posteriori (MAP) following the Bayes’
law. Chakrabarti and Zickler [7] approximated the MPG noise with a shifted Pois-
son likelihood. A generalized Anscombe transformation was proposed for MPG
noise removal in [35, 30], while its unbiased inversion was given in [27]. In order to
choose a correct MPG noise model, Reyes and Schönlieb [33] proposed a nonsmooth
PDE-constrained optimization strategy. A reweighted L2 method was proposed by
Li et al. [24], which approximated the Poisson component noise with weighted
Gaussian noise. The convexity and Lipschitz differentiability of Poisson-Gaussian
negative log-likelihood was proven by Chouzenoux et al. in [11], where a convergent
primal-dual algorithm was given in the case of approximation of the infinite sum
for data discrepancy. More recent works considered the general joint MAP formu-
lation, showing that Gaussian noise model [34] and Poisson noise model [23] can be
combined together in order to remove the MPG noise. Lanza et al. [22] proposed
a primal-dual based iterative algorithm for total variation (TV) regularized model
(TV-PD), where one subproblem required additional inner loop by Newton method.
In practice, in order to reduce computational cost, the TV-PD algorithm ran with
very few Newton iterations and the corresponding convergence guarantee with such
inexact inner solver was unknown. Calatroni et al. [6] proposed the TV regularized
infimal convolution (TV-IC) model, consisting of infimal convolution combination
of standard data fidelities classically associated to one single-noise distribution, and
the TV regularization term. A Semi-Smooth Newton algorithm (SSN) was designed
[6] to solve the TV-IC model. Combining with an outer BFGS-type algorithm, an
optimality system was also proposed to find the optimal regularization parameters
[6]. Although no inner iteration is required by using the SSN method, one has to
compute some second-order information, which is computationally challenging.

In order to solve the TV-IC model more efficiently, we will introduce a new
bilinear constraint to reformulate the model, which essentially helps to establish
the iterative algorithms without Newton iteration in the inner loop. Then we ap-
ply alternating direction method of multipliers (ADMM) [17, 16, 14, 3, 40] to the
reformulated model, leading to the proposed Bilinear Constraint based ADMM
algorithm (BCA). Due to the nonconvex term in the augmented Lagrangian caused
by the bilinear constraint, it seems quite difficult to study the global convergence.
Instead, by assuming the iterative sequences have a uniform and strictly positive
lower bounds, we prove the local convergence of proposed BCA, in the sense that
corresponding iterative sequences are bounded and any limit point is a stationary
point of the saddle problem of the augmented Lagrangian functional. Due to the
existence of total variation term of the original variable, inner loop is still needed
for the proposed BCA. In order to reduce such extra computational cost, we fur-
ther develop a variant of BCA with fully splitting form (BCAf ). However, it seems
much more difficult to guarantee the convergence for BCAf algorithm for traditional
TV-IC model, which is non-differentiable. Inspired by [6], we are able to prove the
local convergence of this fully splitting algorithm by using the Huber type TV reg-
ularizer. Extensive numerical experiments further verify the faster convergence of
the proposed algorithms while producing comparable recovery results. Especially, it
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demonstrates that the proposed algorithms with fewer tunable parameters converge
much faster than TV-PD [22] for the TV-IC model.

This paper is organized as follows. Section 2 reviews briefly the TV-IC model
and ADMM algorithm. Section 3 introduces the proposed BCA and BCAf algo-
rithms as well as the related convergence analysis. Section 4 presents the numerical
experiments to show the performances of proposed algorithms in terms of conver-
gence and recovery quality as well as the robustness with respect to the parameters
and the number of inner iterations of BCA. Finally, conclusions and future work
are given in section 5.

2. Review of TV-IC model and ADMM. In this section, we will briefly review
the TV-IC model and the ADMM algorithm.

2.1. Review of TV-IC model. Let u, f ∈ Rn be the ground truth and observed
images corrupted by MPG noise respectively, satisfying

f = v + n,

where v ∼ Poisson(u), n ∼ N (0, σ2). The general joint MAP estimation [22, 6] is
given

(u?, v?) = arg max
(u,v)

∏
i

P (vi, ui|fi)

= arg max
(u,v)

∏
i

P (fi|vi)P (vi|ui)P (ui).
(1)

Incorporating the density function of Poisson and Gaussian distributions, and fur-
ther taking the negative logarithm in (1), one has

(u?, v?) = arg min
(u,v)
− ln(

∏
i

P (fi|vi)P (vi|ui)P (ui))

= arg min
(u,v)

{
λ1

2

∑
i

(fi − vi)2 +
∑
i

|∇ui|+ λ2

∑
i

(ui − vi lnui + ln vi!)

}
,

with ∇ denoting the discrete gradient (finite difference) operator and | · | denotes
the L2 norm of a vector, where a Gibbs prior distribution of P (ui) = exp(−|∇ui|)
is considered.

Using the standard Stirling approximation of the logarithm of the factorial func-
tion, the following TV-IC model was established [22, 6]

(2) min
u,v

H(u, v),

where H(u, v) is:

H(u, v) =
λ1

2

∑
i

(fi − vi)2 + λ2

∑
i

(ui − vi ln
ui
vi
− vi) +

∑
i

|∇ui|+ χV(v),

χV is the characteristic function of the positivity constraint set V = {v : vi ≥ ε >
0 ∀i}

χV(v) =

{
0 v ∈ V,
+∞ otherwise,

which is derived by the property of v (v ∼ Poisson(u)). The notation
∑
i

|∇ui|

denotes the standard discrete TV regularization. Here we remark that we require
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that v is lower bounded by a positive scalar ε, which is introduced for the purpose
of studying convergence guarantee of proposed algorithms.

2.2. Review of ADMM. The ADMM [17, 16, 14, 3, 40, 37, 29] is one of the pop-
ular first-order operator-splitting algorithm in image processing, which can handle
complex constraints and non-smooth and non-convex objective functional. Com-
pared with the gradient descent algorithm, it is more stable since it gets rid of
directly calculating the derivative of the objective functional and therefore allows
for big stepsize. Hence, we apply the ADMM to solve the TV-IC model. In this
part, we will give a brief introduction of the ADMM. Consider the optimization
problem below

min
x,z

f(x) + g(z)

s.t. Ax +Bz = m
(3)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and m ∈ Rp. The
augmented Lagrangian is given below

Lρ(x, z,y) = f(x) + g(z) + yT (Ax +Bz−m) +
ρ

2
‖Ax +Bz−m‖22 ,

with the parameter ρ > 0 and the multiplier y ∈ Rp. In order to solve the saddle
point problem

max
y

min
x,z

Lρ(x, z,y),

The ADMM consists of the following iterations to determine (k + 1)th solutions as

xk+1 := arg min
x
Lρ
(
x, zk,yk

)
zk+1 := arg min

z
Lρ
(
xk+1, z,yk

)
yk+1 := yk + ρ

(
Axk+1 +Bzk+1 −m

)
.

given the previous iteration solutions (xk, zk,yk).

3. Proposed algorithms. In this section, we will consider how to design more
efficient operator-splitting algorithms based on ADMM to solve the TV-IC model
(2). If decoupling the problem by introducing an auxiliary variable to replace the
original variable u following [22], it will have a subproblem without closed-form so-
lution, due to the existence of the term vi ln vi. In order to solve v−subproblem, an
inner loop by Newton method is needed, which is time-consuming and lack of con-
vergence guarantee with few inner iterations. To further speed up the convergence,
a new bilinear constraint (ui = viwi) will be introduced such that the resulting
BCA algorithm consists of standard TV-L2 denoising for variable u, and simple
closed form solutions for v and w. Its convergence is further derived under the as-
sumption that the iterative sequence of w is uniformly bounded below by a positive
number. In order to get a fully splitting scheme, i.e., all subproblems have closed
form solutions, a typical constraint pi = ∇ui is introduced additionally such that
the BCAf is obtained within the framework of ADMM. Following the technique
developed for BCA, we can prove its theoretical convergence, using the Huber type
TV regularizer in the TV-IC model instead of the traditional TV.
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3.1. BCA. By introducing the bilinear constraint ui = viwi, we rewrite (2) as the
following equivalent constrained optimization problem:

min
(u,v,w)

{
λ1

2

∑
i

(fi − vi)2 + λ2

∑
i

(ui − vi lnwi − vi) +
∑
i

|∇ui|+ χV(v)

}
,

s.t. ui = viwi, ∀1 ≤ i ≤ n.
(4)

Readily one sees that the term vi ln vi disappears, hence we can design a fast al-
gorithm with v and w subproblems all having closed form solutions. As reviewed
in subsection 2.2, one has to establish the augmented Lagrangian of the above
constrained optimization problem with the penalization parameter α > 0 and the
multiplier Λ ∈ Rn, is given below

Lα(u, v, w,Λ) =
λ1

2

∑
i

(fi − vi)2 +
∑
i

|∇ui|+ χV(v)

+ λ2

∑
i

(ui − vi lnwi − vi)

+ 〈Λ, v ◦ w − u〉+
α

2
‖v ◦ w − u‖2,

(5)

where 〈·〉 and ‖·‖ denote the inner product and norm in L2 space respectively, and
◦ denotes the element-wise multiplication. Note that all the vector multiplications
and divisions in this paper are element-wise.

Given the previous iterative solution (uk, vk, wk), the ADMM updates the se-
quence (uk+1, vk+1, wk+1) by solving three subproblems w.r.t. u, v, w, and multi-
plier update, which is given below:

uk+1 = arg min
u
Lα(u, vk, wk,Λk),(6a)

vk+1 = arg min
v
Lα(uk+1, v, wk,Λk),(6b)

wk+1 = arg min
w
Lα(uk+1, vk+1, w,Λk),(6c)

Λk+1 = Λk + α(vk+1 ◦ wk+1 − uk+1).(6d)

We will show how to solve these subproblems in the rest of this part.
First, we consider the u-subproblem as

uk+1 = arg min
u
{λ2

∑
i

ui + 〈Λk, vk ◦ wk − u〉

+
α

2

∥∥vk ◦ wk − u∥∥2
+
∑
i

|∇ui|}

= arg min
u

{
α

2

∥∥∥∥vk ◦ wk +
Λk

α
− λ21

α
− u
∥∥∥∥2

+
∑
i

|∇ui|

}
,

(7)

where 1 ∈ Rn is a vector whose elements are all equal to one. This is a standard TV-
L2 [34] optimization problem, and one can adopt the gradient projection algorithm
for the pre-dual form of total variation minimization [8].

As the update rule of w-subproblem can simplify the calculation of v-subproblem,
we consider w-subproblem first.

wk+1 = arg min
w

∑
i

[
−λ2v

k+1
i lnwi +

α

2
(vk+1
i wi +

Λki
α
− uk+1

i )2

]
.
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Obviously it is a convex optimization problem. One can readily get the scalar
optimization problem of this convex optimization problem

wk+1
i = arg min

wi

{
−λ2v

k+1
i lnwi +

α

2
(vk+1
i wi +

Λki
α
− uk+1

i )2

}
.

The optimality condition of the above problem is

α(vk+1
i )2w2

i +
(
Λki v

k+1
i − αvk+1

i uk+1
i

)
wi − λ2v

k+1
i = 0.

We can obtain a closed-form solution (also the global minimizer) of this problem

(8) wk+1
i =

1

2vk+1
i

(uk+1
i − Λki

α
) +

√
(uk+1
i − Λki

α
)2 +

4λ2v
k+1
i

α

 .
Finally, we consider the v-subproblem as

vk+1 = arg min
vi≥ε

∑
i

[
λ1

2
(fi − vi)2 − λ2(vi lnwki + vi)

+
α

2
(viw

k
i +

Λki
α
− uk+1

i )2].

This optimization problem can be computed independently with respect to each
component of v, therefore, we can consider the scalar optimization problem

vk+1
i = arg min

vi≥ε

{
λ1

2
(fi − vi)2 − λ2(vi lnwki + vi) +

α

2
(viw

k
i +

Λki
α
− uk+1

i )2

}
.

One easily obtains the optimal solution of the above problem below

vk+1 = max
(
ε1, ṽk+1

)
,

with the notation max(·, ·) taking the element-wise maximum of two vectors, where
ṽk+1 is defined as follows

(9) ṽk+1 =
1

λ11 + α(wk)2
◦
(
λ1f + λ2 lnwk + λ2 − wk ◦ Λk + αwk ◦ uk+1

)
,

which corresponds to the unconstrained optimal solution. Note that a

b
denotes the

element-wise division of two vectors a and b.
In order to further simplify the calculation of v−subproblem, one can obtain the

following lemma.

Lemma 3.1. Letting Λk+1, wk+1 be generated by (6c)-(6d), then we have

(10) Λk+1 ◦ wk+1 = λ21.

Proof. Considering the update rule of w-subproblem in (6c) and multiplier update
in (6d), we have

0 = α(vk+1)2 ◦ (wk+1)2 + (Λk ◦ vk+1 − αvk+1 ◦ uk+1) ◦ wk+1 − λ2v
k+1

= vk+1 ◦ wk+1 ◦ (Λk + αvk+1 ◦ wk+1 − αuk+1)− λ2v
k+1

= vk+1 ◦ wk+1 ◦ Λk+1 − λ2v
k+1.

Further due to vk+1
i ≥ ε > 0 ∀ i, we can prove this lemma.
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Remark 1. By Lemma 3.1, The equation (9) can be simplified below

ṽk+1 =
1

λ11 + α(wk)2
◦
(
λ1f + λ2 lnwk + λ2 − wk ◦ Λk + αwk ◦ uk+1

)
,

=
1

λ11 + α(wk)2
◦
(
λ1f + λ2 lnwk + αwk ◦ uk+1

)
.

Therefore,

vk+1 = max
(
ε1, ṽk+1

)
,

= max

(
ε1,

1

λ11 + α(wk)2
◦
(
λ1f + λ2 lnwk + αwk ◦ uk+1

))
.

(11)

Algorithm 1 summarizes the overall BCA algorithm.

Algorithm 1 BCA

Input: Noisy data f and parameters λ1, λ2, α
Initialization: u0 = f, v0 = f, w0 = 1,Λ0 = 0, k = 0.

1: while Stopping criteria is not satisfied do
2: Find uk+1 by (7)
3: Find vk+1 by (11)
4: Find wk+1 by (8)
5: Update the multipliers by

Λk+1 = Λk + α(vk+1 ◦ wk+1 − uk+1).

6: k ← k + 1.
7: end while

3.2. Convergence analysis of BCA. Readily one knows that the reformulated
optimization problem (4) cannot be interpreted as a (two-block) problem (as re-
viewed in subsection 2.2), whose objective function is of sum of two functions with-
out coupled variables. Due to the bilinear constraint and coupled term vi lnwi in
the objective function, it does not also belong to the problems considered either
for convex optimization problem [25, 10, 12] with objective functions of sum of no
less than three functions or nonconvex optimization problem [18, 9] with bilinear
constraint. The current algorithm introduces similar bilinear constraint as for the
blind ptychography problem in [9]. However, the proof technique for [9] cannot
directly apply to the current BCA, since the linear relation between the iterative
multipliers and the auxiliary variable does not hold for BCA, and more specifi-
cally, their relation is bilinear (See Lemma 3.1). Moreover, the coercivity of the
objective function is not trivial. Therefore, one has to develop a new technique for
convergence guarantee.

To guarantee the sufficient decrease and boundedness of the iterative sequence,
we make the following assumption. Although limited by current analysis technique
we cannot remove it, it can be verified numerically (See Fig. 13 in the numerical
part of this paper).

Assumption 1. The iterative sequence {wk} generated by BCA algorithm has a
uniformly positive lower bound, i.e., wki ≥ c > 0,∀i, where c is a positive constant
which is independent to k.
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Lemma 3.2. Let T (x) = 1
2‖Ax − b‖

2 + M(x), with convex function M . Letting
x∗ be a stationary point of T (x) (also a global minimizer), i.e. 0 ∈ ∂T (x∗), where
∂T (x) denotes the subdifferential of T (x) in the convex analysis sense, then we have

T (x)− T (x∗) ≥ ‖A(x− x∗)‖2.

Proof. Let H(x) = 1
2‖Ax− b‖

2. Since x∗ is a stationary point of T , one has

−∇H(x∗) ∈ ∂M(x∗).

Readily one has

M(x)−M(x∗) ≥ 〈−∇H(x∗), x− x∗〉 ∀ x.

Then we have

T (x)− T (x∗) ≥ H(x)−H(x∗)− 〈∇H(x∗), x− x∗〉 =
1

2
‖A(x− x∗)‖2,

that immediately concludes this lemma.

In the following, within the framework in [37, 9, 19, 26, 29, 18] developed for the
analysis of ADMM for nonconvex nonsmooth optimization problem, we will first
prove that the iterative sequence satisfies the sufficient descent condition. Then,
the relative error condition for the iterative sequence will be derived. Finally one
can derive the subsequence convergence of the proposed BCA.

Lemma 3.3. Letting (uk, vk, wk,Λk) be the sequence generated by BCA in Algo-

rithm 1, and α >
√

2λ2

c2ε , then under Assumption 1 we have

Lα(uk, vk, wk,Λk)− Lα(uk+1, vk+1, wk+1,Λk+1) ≥ α

2
‖uk+1 − uk‖2

+
λ1

2
‖vk+1 − vk‖2 +

α

2
‖wk ◦ (vk+1 − vk)‖2 + C1‖vk+1 ◦ (wk+1 − wk)‖2,

(12)

where C1 is a positive constant which is independent to k.

Proof. For u-subproblem, by Lemma 3.2, one readily has

Lα(uk, vk, wk,Λk)− Lα(uk+1, vk, wk,Λk) ≥ α

2
‖uk+1 − uk‖2.(13)

Similarly using Lemma 3.2, for v-subproblem, one can obtain

Lα(uk+1, vk, wk,Λk)− Lα(uk+1, vk+1, wk,Λk)

≥λ1

2
‖vk+1 − vk‖2 +

α

2
‖wk ◦ (vk+1 − vk)‖2.

(14)

For w-subproblem, one gets

Lα(uk+1, vk+1, wk,Λk)− Lα(uk+1, vk+1, wk+1,Λk)

≥ α

2
‖vk+1 ◦ (wk+1 − wk)‖2.

(15)
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By (6d), Lemma 3.1 and Assumption 1 one has

Lα(uk+1, vk+1, wk+1,Λk)− Lα(uk+1, vk+1, wk+1,Λk+1)

= − 1

α

∥∥Λk+1 − Λk
∥∥2

= − 1

α

∥∥∥∥∥ λ21

wk+1
−
λ21

wk

∥∥∥∥∥
2

= −λ
2
2

α

∥∥∥∥∥v
k+1 ◦ (wk+1 − wk)

vk+1 ◦ wk+1 ◦ wk

∥∥∥∥∥
2

≥ − λ2
2

αc4ε2
∥∥vk+1 ◦ (wk+1 − wk)

∥∥2
.

(16)

Since α >
√

2λ2

c2ε , further by (13)-(16), one can conclude to this lemma.

Lemma 3.4. Denote G : Ω→ R by

G(u, v, w) =
λ1

2
‖f − v‖2 + λ2

〈
(1−

1

w
) ◦ u− v ◦ lnw,1

〉
+
α

2
‖v ◦ w − u‖2 ,

with α > max
(
λ2, λ2

(
1
c − 1

)2)
, where Ω := {(u, v, w) | vi ≥ ε > 0, wi ≥ c >

0 ∀ i;u, v, w ∈ Rn}. If ‖(u, v, w)‖Ω := max{‖u‖∞, ‖v‖∞, ‖w‖∞} → +∞, then we
have G(u, v, w)→ +∞.

Proof. For all (u, v, w) ∈ Ω, one readily has

G(u, v, w) ≥ λ1

2
‖f − v‖2 + λ2

〈
(1−

1

w
) ◦ u− v ◦ w,1

〉
+
α

2
‖v ◦ w − u‖2

=
λ1

2
‖f − v‖2 + λ2

〈
(1−

1

w
) ◦ (u− v ◦ w)− v,1

〉
+
α

2
‖v ◦ w − u‖2

≥ λ1

2
‖f − v‖2 − λ2

〈
|1−

1

w
| ◦ |u− v ◦ w|+ v,1

〉
+
α

2
‖v ◦ w − u‖2

=
λ1

2
‖f − v‖2 − λ2〈v,1〉+

λ2

2

∥∥∥∥|1− 1

w
| ◦ |u− v ◦ w| − 1

∥∥∥∥2

− λ2

2

∥∥∥∥|1− 1

w
| ◦ |u− v ◦ w|

∥∥∥∥2

− λ2

2
‖1‖2 +

α

2
‖v ◦ w − u‖2

Assumption 1

≥ λ1

2
‖f − v‖2 − λ2〈v,1〉+

λ2

2

∥∥∥∥|1− 1

w
| ◦ |u− v ◦ w| − 1

∥∥∥∥2

− λ2

2
M2‖u− v ◦ w‖2 − λ2n

2
+
α

2
‖v ◦ w − u‖2

=
λ1

2
‖f − v‖2 − λ2〈v,1〉+

λ2

2

∥∥∥∥|1− 1

w
| ◦ |u− v ◦ w| − 1

∥∥∥∥2

+

[
α

2
− λ2

2
M2

]
‖v ◦ w − u‖2 − λ2n

2
,

(17)

where the first inequality is derived by − lnwi ≥ −wi if wi > 0, M = max
(
1,
(
1
c
− 1

))
.

In the following part, we consider the following two cases for ‖(u, v, w)‖Ω → +∞.

Case 1: ‖v‖∞ → +∞ or ‖v ◦ w − u‖∞ → +∞. Since α > max
(
λ2, λ2

(
1
c − 1

)2)
,

one can readily get that G(u, v, w)→ +∞.
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Case 2: There exists two constants C2, C3 > 0, such that ‖v‖∞ ≤ C2 < +∞,
‖u‖∞ → +∞, ‖w‖∞ → +∞, and ‖v ◦ w − u‖∞ ≤ C3 < +∞. Then we have

G(u, v, w) =
∑
i

[
λ1

2
(fi − vi)2 + λ2(1− 1

wi
)ui − vi lnwi +

α

2
(viwi − ui)2].(18)

There must exist some i where ui → +∞, wi → +∞, and |viwi − ui| ≤ C3. Thus,
we have

εwi − ui ≤ |viwi − ui| ≤ C3.

Then we get the lower bound estimate of ui as

ui ≥ εwi + C3.(19)

Therefore,

λ1

2
(fi − vi)2 + λ2(1− 1

wi
)ui − vi lnwi +

α

2
(viwi − ui)2

≥ λ2(1− 1

wi
)ui − vi lnwi

≥ λ2(1− 1

wi
)(εwi + C3)− C2 lnwi

= λ2εwi − λ2ε+ λ2C3 −
λ2C3

wi
− C2 lnwi.

(20)

Since lim
w→+∞

λ2εw−λ2ε+λ2C3−λ2C3
w −C2 lnw

w = λ2ε > 0, we can readily get (λ2εw −

λ2ε+ λ2C3 − λ2C3

w − C2 lnw)→ +∞ as w → +∞. Thus, we can derive that

λ1

2
(fi − vi)2 + λ2(1− 1

wi
)ui − vi lnwi +

α

2
(viwi − ui)2 → +∞.

If the variables uj , vj , wj do not satisfy the above two cases, they cannot tend
to the infinity. Hence, in summary, we can conclude that G(u, v, w) → +∞ as
‖(u, v, w)‖Ω → +∞.

Theorem 3.5. Letting α > max(
√

2λ2

c2ε , λ2, λ2( 1
c − 1)2), under Assumption 1, we

have

(1) The sequence (uk, vk, wk,Λk) generated by proposed BCA is bounded and has
at least one limit point.

(2) The successive errors uk+1 − uk → 0, vk+1 − vk → 0, wk+1 − wk → 0, and
Λk+1 − Λk → 0 as k → +∞.

(3) Each limit point (u∗, v∗, w∗,Λ∗) is a stationary point of Lα(u, v, w,Λ), and
(u∗, v∗) is a stationary point of H(u, v).

Proof. (1) If α >
√

2λ2

c2ε , by Lemma 3.3, we get

Lα(uk, vk, wk,Λk)− Lα(uk+1, vk+1, wk+1,Λk+1)

≥ α

2
‖uk+1 − uk‖2 +

λ1

2
‖vk+1 − vk‖2 +

α

2
‖wk ◦ (vk+1 − vk)‖2

+ C1‖vk+1 ◦ (wk+1 − wk)‖2

≥ α

2
‖uk+1 − uk‖2 +

λ1 + αc2

2
‖vk+1 − vk‖2 + C1ε

2‖wk+1 − wk‖2.

(21)
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Next, we will show that Lα(uk, vk, wk,Λk) is lower bounded. Readily one knows
that

Lα(uk, vk, wk,Λk)

≥ λ1

2

∥∥f − vk∥∥2
+ λ2

〈
(1−

1

wk
) ◦ uk − vk ◦ lnwk,1

〉
+
α

2

∥∥vk ◦ wk − uk∥∥2

= G(uk, vk, wk).

(22)

Then, following (22) and Lemma 3.4, the sequences {uk}, {vk}, {wk} and {G(uk, vk,
wk)} are all bounded as well as the boundedness of {Λk} due to Lemma 3.1.

Due to the boundedness of (uk, vk, wk,Λk), there exists a convergent subsequence
(uki , vki , wki ; Λki), i.e., (uki , vki , wki ,Λki)→ (u∗, v∗, w∗,Λ∗).

(2) By (22), one readily knows that the sequence Lα(uk, vk, wk,Λk) is bounded
below. Therefore, further by summing up (21) from k = 1 to ∞ implies that

∞∑
k=1

∥∥uk+1 − uk
∥∥2

+
∥∥vk+1 − vk

∥∥2
+
∥∥wk+1 − wk

∥∥2
<∞.

That immediately implies that uk+1 − uk → 0, vk+1 − vk → 0, wk+1 −wk → 0. By
Lemma 3.1, one can also knows that Λk+1 − Λk → 0.

(3) It follows from the optimality condition of u-subproblem that there exists

qk+1
1 ∈ ∂

∑
i

|∇uk+1
i | such that

qk+1
1 + λ21− Λk − α(vk ◦ wk − uk+1) = 0.

Letting pk+1
1 = qk+1

1 +λ2−Λk+1−α(vk+1 ◦wk+1−uk+1) ∈ ∂uLα(uk+1, vk+1, wk+1;
Λk+1), then we have

‖pk+1
1 ‖ = ‖qk+1

1 + λ21− Λk+1 − α(vk+1 ◦ wk+1 − uk+1)‖

= ‖Λk − Λk+1 + α(vk ◦ wk − vk+1 ◦ wk+1)‖

≤ ‖Λk+1 − Λk‖+ α‖wk ◦ (vk+1 − vk)‖+ α‖vk+1 ◦ (wk+1 − wk)‖.

(23)

The optimality condition of v-subproblem implies that there exists qk+1
2 ∈

∂χV(vk+1) such that

qk+1
2 + λ1v

k+1 + α(wk)2 ◦ vk+1 − λ1f

− λ2 lnwk − λ2 + wk ◦ Λk − αwk ◦ uk+1 = 0.
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Letting pk+1
2 = qk+1

2 + λ1v
k+1 + α(wk+1)2 ◦ vk+1 − λ1f − λ2 lnwk+1 − λ2 +

wk+1 ◦ Λk+1 − αwk+1 ◦ uk+1 ∈ ∂uLα(uk+1, vk+1, wk+1; Λk+1), then we have

‖pk+1
2 ‖

= ‖qk+1
2 + λ1v

k+1 + α(wk+1)2 ◦ vk+1 − λ1f − λ2 lnwk+1 − λ2

+ wk+1 ◦ Λk+1 − αwk+1 ◦ uk+1‖

= ‖αvk+1 ◦ [(wk+1)2 − (wk)2]− λ2(lnwk+1 − lnwk) + Λk+1 ◦ wk+1

− Λk ◦ wk − αuk+1(wk+1 − wk)‖

= ‖αvk+1 ◦ (wk+1 + wk) ◦ (wk+1 − wk)− λ2(lnwk+1 − lnwk)

− αuk+1 ◦ (wk+1 − wk)‖

= ‖(Λk+1 − Λk) ◦ (wk+1 − wk) + αvk+1 ◦ wk ◦ (wk+1 − wk)

− λ2(lnwk+1 − lnwk)‖

≤ ‖(Λk+1 − Λk)‖‖(wk+1 − wk)‖+ α‖vk+1 ◦ wk ◦ (wk+1 − wk)‖

+ λ2‖ lnwk+1 − lnwk‖.

(24)

By the optimality condition of w-subproblem and (6d), we have

‖∇wLα
(
uk+1, vk+1, wk+1; Λk+1

)
‖

= ‖
α(vk+1)2 ◦ (wk+1)2 + (Λk+1 ◦ vk+1 − αvk+1 ◦ uk+1) ◦ wk+1 − λ2v

k+1

wk+1
‖

= ‖vk+1 ◦ (Λk+1 − Λk)‖,

(25)

and

‖∇ΛLα
(
uk+1, vk+1, wk+1; Λk+1

)
‖

= ‖vk+1 ◦ wk+1 − uk+1‖ =
1

α
‖Λk+1 − Λk‖.

(26)

Finally, (23)-(26) and Item (1) in this theorem suggest that (u∗, v∗, w∗; Λ∗) is a
stationary point of Lα(u, v, w,Λ). Since (u∗, v∗, w∗; Λ∗) is a stationary point, we
have u∗ = v∗w∗ from (26), then (23) and (24) imply that 0 ∈ ∂uH(u∗, v∗) and
0 ∈ ∂vH(u∗, v∗), i.e., (u∗, v∗) is a stationary point of H(u, v).

We remark that in order to prove the theoretical convergence of the proposed
BCA algorithm, we assume that ε is a positive constant. Simulation results re-
ported in the experimental section of this paper will not be affected if ε is selected
appropriately. As for the case ε = 0, we will investigate the theoretical convergence
in the future.

3.3. BCAf . The proposed BCA algorithm has a subproblem in (7) w.r.t. total
variation minimization problem, which requires inner loop. To get a fully splitting
scheme, we propose the following BCAf algorithm.

We introduce one more auxiliary variable p satisfying the constraint pi = ∇ui
(p ∈ Rn,2 with pi ∈ R2 as its ith row), in additional to the constraint ui = viwi
in proposed BCA, and then rewrite (2) as the following equivalent constrained
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optimization problem:

min
(u,v,w,p)

{
λ1

2

∑
i

(fi − vi)2 +
∑
i

|pi|+ χV(v) + λ2

∑
i

(ui − vi lnwi − vi)

}
,

s.t. ui = viwi, pi = ∇ui.
(27)

Then we can easily get the augmented Lagrangian of the above constrained opti-
mization problem by introducing the multipliers Λw and Λp:

Lαw,αp(u, v, w, p,Λw,Λp) =
λ1

2

∑
i

(fi − vi)2 +
∑
i

|pi|

+ λ2

∑
i

(ui − vi lnwi − vi) + 〈Λw, v ◦ w − u〉+ 〈Λp, p−∇u〉

+
αw
2
‖v ◦ w − u‖2 +

αp
2
‖p−∇u‖2 + χV(v),

(28)

where αw > 0 and αp > 0 are the penalization parameters.
Given the previous iterative solution (uk, vk, wk, pk,Λkw,Λ

k
p), the ADMM consists

of the following iterations

uk+1 = arg min
u
Lαw,αp(u, vk, wk, pk,Λkw,Λ

k
p),(29a)

vk+1 = arg min
v
Lαw,αp(uk+1, v, wk, pk,Λkw,Λ

k
p),(29b)

wk+1 = arg min
w
Lαw,αp(uk+1, vk+1, w, pk,Λkw,Λ

k
p),(29c)

pk+1 = arg min
p
Lαw,αp(uk+1, vk+1, wk+1, p,Λkw,Λ

k
p),(29d)

Λk+1
w = Λkw + αw(vk+1 ◦ wk+1 − uk+1),(29e)

Λk+1
p = Λkp + αp(p

k+1 −∇uk+1).(29f)

We will show how to solve the subproblems w.r.t. (u, v, w, p) in the rest of this
part. We consider the u-subproblem below:

uk+1 = arg min
u

λ2

∑
i

ui +
αw
2

∥∥∥∥vk ◦ wk +
Λkw
αw
− u
∥∥∥∥2

+
αp
2

∥∥∥∥∥pk +
Λkp
αp
−∇u

∥∥∥∥∥
2
 .

The first-order optimality condition of this subproblem is directly given below:

(30) αwu− αp4u = −λ2 + Λkw −∇ · Λkp + αwv
k ◦ wk − αp∇ · pk,

where ∇· denotes the divergence operator (conjugate operator of negative gradient
−∇). We can readily solve the above equations by using conjugate gradient (CG)
method or fast Fourier transform.

For v, w-subproblems (same to BCA, but with different notations), one can read-
ily obtain that

(31) vk+1 = max
(
ε1, ṽk+1

)
,

where

ṽk+1 =
1

λ11 + αw(wk)2
◦
(
λ1f + λ2 lnwk + λ2 − wk ◦ Λkw + αww

k ◦ uk+1
)
.
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and

(32) wk+1
i =

1

2vk+1
i

(uk+1
i −

Λkw(i)

αw
) +

√
(uk+1
i −

Λkw(i)

αw
)2 +

4λ2v
k+1
i

αw

 .
For the p-subproblem, one has

pk+1 = arg min
p

{∑
i

|pi|+
αp
2

∥∥∥∥p+
Λkp
αp
−∇uk+1

∥∥∥∥2
}
.

The solution is exactly the soft thresholding of ∇uk+1 − Λkp
αp

:

(33) pk+1 = Thresh 1
αp

(∇uk+1 − Λkp
αp

),

where Threshη(p) := max{0, |p| − η} ◦ sign(p), and sign(p) :=
(p(1)
|p|
,
p(2)

|p|

)
, |p| =√

|p(1)|2 + |p(2)|2. Note that all the operations here are element-wise.
Finally, the overall algorithm summarizing the above analysis is given below:

Algorithm 2 BCAf

Input: Noisy data f and parameters λ1, λ2, αw, αp.
Initialization: u0 = f, v0 = f, w0 = 1, p0 = 0,Λ0

w = 0,Λ0
p = 0, k = 0.

1: while Stopping criteria is not satisfied do
2: Solve uk+1 by using CG for (30)
3: Find vk+1 by (31)
4: Find wk+1 by (32)
5: Find pk+1 by (33)
6: Update the multipliers by

Λk+1
w = Λkw + αw(vk+1 ◦ wk+1 − uk+1);

Λk+1
p = Λkp + αp(p

k+1 −5uk+1).

7: k ← k + 1.
8: end while

Here we remark that the convergence study of BCAf seems more difficult. If
directly following the technique for BCA in the last subsection, since the subprob-
lem for p is non-differentiable, the successive errors of Λp cannot be controlled by
the successive errors of p such that it seems impossible to guarantee the sufficient
decrease of the whole iterative sequences. In order to investigate the convergence of
BCAf algorithm, we adopt the Huber type TV (HTV) regularization [20, 5] instead
of the traditional total variation for the TV-IC model, which is Lipschitz differen-
tiable. This change will not affect the solutions to the subproblems w.r.t. u, v, w.
Hence only the p-subproblem of BCAf algorithm with HTV is given below.

(34) pk+1 = arg min
p

{∑
i

Hτ (pi) +
αp
2

∥∥∥∥p+
Λkp
αp
−∇uk+1

∥∥∥∥2
}
,

where

Hτ (p) =

{
τ
2 |p|

2 |p| ≤ 1
τ ,

|p| − 1
2τ otherwise,
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is Huber function, τ is a positive constant. By using an operator splitting technique
[31], we can readily get that

(35) pk+1 = max

 αp
τ + αp

, 1− 1

αp|∇uk+1 − Λkp
αp
|

 ◦(∇uk+1 −
Λkp
αp

)
Following the same framework in section 3.2, we can prove the convergence of

algorithm BCAf -HTV (BCAf with Huber type TV regularization). Assumption 1
is still required to ensure that the iterative sequence is sufficiently decreased and
bounded. Since the procedure of BCAf -HTV’s convergence analysis is similar to
BCA, here we only give relevant theorems and no longer give detailed proofs.

Lemma 3.6. Letting wk+1, pk+1,Λk+1
w ,Λk+1

p be generated by (29c), (34), (29e) and
(29f), then we have

Λk+1
w ◦ wk+1 = λ21.

Λk+1
p = −∇Hτ (pk+1).

(36)

Lemma 3.7. Letting (uk, vk, wk, pk,Λkw,Λ
k
p) be the sequence generated by algorithm

BCAf -HTV, and αw >
√

2λ2

c2ε , αp >
√

2L, then under Assumption 1 we have

Lαw,αp(uk, vk, wk, pk,Λkw,Λ
k
p)− Lαw,αp(uk+1, vk+1, wk+1, pk+1,Λk+1

w ,Λk+1
p )

≥ αw
2
‖uk+1 − uk‖2 +

λ1

2
‖vk+1 − vk‖2 +

αw
2
‖wk ◦ (vk+1 − vk)‖2

+D1‖vk+1 ◦ (wk+1 − wk)‖2 +D2‖pk+1 − pk‖2,

(37)

where L is the Lipschitz coefficient for the gradient of the Huber function Hτ (p),
D1 and D2 are positive constants which are independent to k.

Lemma 3.8. Denote G1 : Ω1 → R by

G1(u, v, w, p) =
λ1

2
‖f − v‖2 + λ2

〈
(1−

1

w
) ◦ u− v ◦ lnw,1

〉
+
αw
2
‖v ◦ w − u‖2 +

αp
2
‖p−∇u‖2 ,

with αw > max
(
λ2, λ2

(
1
c − 1

)2)
, where Ω1 := {(u, v, w, p) | vi ≥ ε > 0, wi ≥ c >

0 ∀ i;u, v, w ∈ Rn, p ∈ Rn×2}. If ‖(u, v, w, p)‖Ω1
:= max{‖u‖∞, ‖v‖∞, ‖w‖∞, ‖p‖∞

} → +∞, then we have G1(u, v, w, p)→ +∞.

Now, let us consider the convergence of algorithm BCAf -HTV.

Theorem 3.9. Letting αw > max(
√

2λ2

c2ε , λ2, λ2( 1
c−1)2), αp >

√
2L, under Assump-

tion 1, we have

(1) The sequence (uk, vk, wk, pk,Λkw,Λ
k
p) generated by proposed BCAf -HTV is

bounded and has at least one limit point.
(2) The successive errors uk+1 − uk → 0, vk+1 − vk → 0, wk+1 − wk → 0,

pk+1 − pk → 0, Λk+1
w − Λkw → 0 and Λk+1

p − Λkp → 0 as k → +∞.
(3) Each limit point (u∗, v∗, w∗, p∗,Λ∗w,Λ

∗
p) is a stationary point of Lα(u, v, w, p,

Λw,Λp), and (u∗, v∗) is a stationary point of H(u, v).
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4. Numerical experiments. Since Poisson noise is data-dependent, the noise
level of the observed images depends on the pixel value, and therefore we intro-
duce a scale factor η ∈ (0,∞) to control the scale of the image (simulating different
number of photons detector received), which is inversely proportional to the amount
of noise added to the data, i.e. vi ∼ Poisson(ηu)/η. Meanwhile, we add Gaussian
noise with different variances σ2.

The Signal-to-Noise Ratio (SNR) in dB is used to measure the quality of the

recovery result, defined as: SNR(u, ug) = −10 log10

∑
i
|ui−(ug)i|2∑
i
|ui|2 , where ug is the

ground-truth image (See Fig. 1) and u is the reconstructed image. The structural
similarity (SSIM) index [38] is also provided to measure the quality of restored
results (Bigger values mean the better quality).

(a) (b) (c)

Figure 1. (A) Circles; (B) Fluorescent Cells; (C) Cameraman

We set the stopping criterion as the successive error SE := ‖uk+1−uk‖
‖uk‖ ≤ ξ or

the iteration reaches 1000, where ξ is a desired tolerance. To evaluate the perfor-
mance of the proposed algorithms, we compare them with other operator-splitting
algorithms, including the L2 data fitting (TV+L2) method [39], KL-divergence
(TV+KL) method [40], the exact Poisson-Gaussian (TV+EPG) likelihood model
[11], Shifted-Poisson (TV+SP) method [7], the combination of L2 data fitting and
KL-divergence (TV+KL+L2) method [32, 4] and the primal-dual (TV+PD) method
for (2) following [22]. The last three algorithms were specially designed for the MPG
noise. All the parameters for the compared algorithms are tuned heuristically to
gain optimal image quality. For fair comparison, we set ξ = 5 × 10−4 for all com-
pared algorithms and set initialization of the variable w.r.t. reconstructed output
to noisy images. In order to further evaluate the performance of BCAf -HTV, we
compare it with the SSN algorithm [6] which is also designed for Huber-regularized
TV-IC model.

All compared algorithms are implemented in Matlab, and performed using a
Laptop with Intel Core i5 processor and 8GB RAM.

4.1. Performances and convergence. We first show how to determine the op-
timal inner iteration number for the proposed BCA, where we employ the gradient
descent method proposed by Chambolle [8] to solve the u-subproblem. To find
the optimal inner iteration number (More inner iterations will increase the overall
computational cost), we show the SNR values of different inner iteration numbers
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(1, 2, 5, 10, 20, 100) in Table 1. Obviously one can see that when the inner iteration
number is greater than 10, the SNR value is almost unchanged. Hence, in the latter
tests, the inner loop number sets to 10 for the proposed BCA.

Table 1. SNR changes w.r.t. the number of inner iterations using
gradient descent method [8] for proposed BCA Algorithm.

η σ 1 2 5 10 20 100

1 10−1 15.20 18.08 17.57 18.16 18.17 18.17

1 10−4 16.20 18.39 16.35 18.40 18.40 18.40

4 10−1 19.92 21.92 21.90 21.98 21.97 21.98

4 10−4 20.05 22.37 22.36 22.47 22.48 22.49

16 10−1 22.50 25.17 25.27 25.28 25.26 25.28

16 10−4 23.59 26.17 26.40 26.37 26.38 26.40

Corruption:

η = 4, σ = 10−4

TV+L2 :
21.64

Zoomed
TV+KL:

21.83
Zoomed

TV+EPG:
21.14

Zoomed
TV+SP:

21.83
Zoomed

TV+KL+L2 :
22

Zoomed
TV+PD:

22.16
Zoomed

BCA:
22.18

Zoomed
BCAf :
22.35

Zoomed

Figure 2. Recovery results by proposed algorithms and other
compared algorithms (with SNRs(dB) below the figures) for the
image “Circles” in the case of MPG noises which are generated
with η = 4, σ = 10−4.
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We evaluate the performances of our proposed methods – BCA and BCAf , com-
pared with six other methods. The recovery results with zoomed regions are put in
Figs. 2-4, where noises are generated with η = 4, σ = 10−4, η = 16, σ = 10−4, and
η = 64, σ = 10−1 for the three different images respectively. Generally speaking, one
readily sees that the proposed BCA and BCAf generate better results compared
with denoising methods including TV+L2, TV+KL and TV+SP. In Fig. 2, one
can observe that the region located at the red circles in the recovery results by the
proposed BCA and BCAf , especially the part below the edges, appears more flat
than other compared algorithms. The recovery accuracy of recovery results by pro-
posed algorithms with higher SNRs is also better than other compared algorithms,
inferred from Fig. 2.

Corruption:
η = 16, σ = 10−4

TV+L2:
14.17

Zoomed
TV+KL:

14.16
Zoomed

TV+EPG:
14.30

Zoomed
TV+SP:

14.16
Zoomed

TV+KL+L2:
14.59

Zoomed
TV+PD:

14.47
Zoomed

BCA:
14.42

Zoomed
BCAf :
14.62

Zoomed

Figure 3. Recovery results by proposed algorithms and other
compared algorithms (with SNRs(dB) below the figures) for the
image “Fluorescent Cells” in the case of MPG noises which are
generated with η = 16, σ = 10−4.

In Fig. 4, there are less grey blocks in the restoration images of our proposed
algorithms. We plot some line profiles to show it much clearer in Fig.5. It is obvious
that the line profiles of clean image and our proposed methods are much smoother
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than the others from 150 to 256 (x-axis) in Fig. 5, which indicates there are less
grey blocks in our recovery images.Table 2 reports the SNRs and SSIMs of recovery
images for all compared algorithms with more different noisy levels (η = 1, 4, 16
and σ = 10−1, 10−4), that demonstrates that the proposed algorithms gain highest
SNRs and SSIMs averagely.

Corruption:
η = 64, σ = 10−1
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Zoomed
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Figure 4. Recovery results by proposed algorithms and other
compared algorithms (with SNRs(dB) below the figures) for the
image “Cameraman” in the case of MPG noises which are gener-
ated with η = 64, σ = 10−1. Comparing with other results, there
are less grey blocks in the restoration images of proposed algo-
rithms on the blue circle, which can show the better performance
of our proposed algorithms.

In order to further show the advantage in term of speed for the proposed algo-
rithms compared with TV+PD for the same model, we report the SNRs changes
w.r.t. the elapsed CPU time in Fig. 6. Readily one can see the proposed algorithm
converges much faster than TV+PD1. Table 3 reports the computational time of

1The iteration number for subproblems solved by Newton method affect the convergence speed
of TV+PD, and 5 iterations are adopted heuristically to gain best speed.
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the proposed algorithms and TV+PD. It is obvious that the proposed algorithms
have higher speed than TV+PD. The fully splitting algorithm BCAf computes
much faster than BCA. We also remark that our proposed BCA and BCAf have
fewer parameters (three parameters for BCA, and four parameters for BCAf ), while
compared TV+PD has six parameters.

Table 2. Denoising performance (First row: SNR in dB. Second
row: SSIM.) with Poisson-Gaussian Noise

Image η σ Noisy TV+L2 TV+KL TV+EPG TV+SP TV+KL+L2 TV+PD BCA BCAf

Circle

1 10−1
2.50 17.21 16.68 17.07 16.76 17.28 17.44 17.84 17.97

0.0452 0.6147 0.4044 0.6580 0.4059 0.3975 0.7544 0.7125 0.9007

1 10−4
2.57 17.34 17.16 17.11 17.24 17.76 17.00 18.02 18.10

0.5494 0.6087 0.7997 0.7740 0.8678 0.8251 0.8711 0.8913 0.9029

4 10−1
5.92 21.48 20.44 20.74 20.77 21.29 21.64 22.01 21.78

0.0687 0.7149 0.4763 0.6260 0.5305 0.5259 0.9216 0.7153 0.9357

4 10−4
6.32 21.64 21.83 21.14 21.83 22.00 22.16 22.18 22.35

0.5793 0.7397 0.9385 0.9395 0.9385 0.9299 0.9466 0.9472 0.9180

16 10−1
9.88 24.64 22.33 22.54 22.62 23.89 23.54 25.28 25.04

0.0971 0.8411 0.5088 0.5315 0.5436 0.5438 0.8141 0.9697 0.8079

16 10−4
11.55 25.46 26.41 25.14 26.41 26.46 26.47 26.37 27.12

0.6149 0.8816 0.9500 0.9447 0.9500 0.9594 0.9651 0.9676 0.9168

Average
6.46 21.30 20.81 20.62 20.94 21.45 21.38 21.95 22.06

0.3258 0.7335 0.6796 0.745 0.7061 0.6969 0.8788 0.8673 0.8970

Fluorescent
Cells

1 10−1
1.16 9.88 9.72 9.29 9.72 9.96 9.48 10.37 10.33

0.0402 0.4861 0.4508 0.3149 0.4532 0.4512 0.4572 0.5026 0.4971

1 10−4
1.22 9.97 9.83 9.46 9.83 9.98 9.79 10.43 10.41

0.0598 0.5058 0.4954 0.3289 0.4954 0.5003 0.4471 0.5108 0.5014

4 10−1
3.14 11.10 11.58 11.12 11.54 11.75 11.62 11.66 12.06

0.1181 0.5554 0.5369 0.5093 0.5239 0.5588 0.5674 0.5753 0.5801

4 10−4
3.59 11.25 11.88 11.32 11.88 12.17 11.88 11.96 12.38

0.1680 0.5765 0.6078 0.4593 0.6078 0.6133 0.5531 0.6160 0.6139

16 10−1
5.77 13.43 12.66 12.52 12.64 13.27 13.45 13.37 13.50

0.2282 0.6424 0.5998 0.5271 0.5989 0.6383 0.6669 0.6557 0.6685

16 10−4
7.87 14.17 14.16 14.30 14.16 14.59 14.47 14.42 14.62

0.4003 0.7360 0.7228 0.6895 0.7228 0.7388 0.7309 0.7379 0.7368

Average
3.79 11.63 11.64 11.34 11.63 11.95 11.78 12.04 12.22

0.1691 0.5837 0.5689 0.4710 0.5670 0.5835 0.5704 0.5997 0.5996

Cameraman

1 10−1
1.97 13.06 14.25 13.13 14.19 14.30 14.30 14.59 14.56

0.0496 0.4167 0.5498 0.3452 0.5322 0.5432 0.5524 0.5633 0.5644

1 10−4
2.00 13.09 14.36 13.04 14.36 14.40 14.33 14.57 14.52

0.0628 0.4238 0.4602 0.3342 0.4602 0.4760 0.4362 0.5854 0.5659

4 10−1
5.02 15.66 16.46 15.5 16.43 16.56 16.17 16.79 16.83

0.1178 0.5729 0.6552 0.4863 0.6540 0.6720 0.6422 0.6417 0.6655

4 10−4
5.28 15.81 16.27 15.64 16.27 16.47 16.14 16.99 17.00

0.1514 0.5879 0.6301 0.5027 0.6301 0.6160 0.6047 0.6697 0.6770

16 10−1
9.06 18.25 18.60 18.24 18.60 18.81 18.18 18.99 19.02

0.1992 0.6393 0.7126 0.6355 0.7181 0.7163 0.6527 0.7112 0.7214

16 10−4
10.24 18.88 19.44 18.83 19.44 19.64 19.59 19.81 19.53

0.2920 0.6980 0.7321 0.6616 0.7321 0.7503 0.7317 0.7614 0.7764

Average
5.60 15.79 16.56 15.73 16.55 16.70 16.45 16.96 16.91

0.1455 0.5564 0.6233 0.4940 0.6211 0.6290 0.6033 0.6555 0.6618



BC-ADMM for MPG noise removal 21

Since SSN and BCAf -HTV both considered the HTV regularization, we com-
pare their performance, with the same Huber regularization parameter τ = 1e3.
Both algorithms are implemented in Matlab and performed using a Laptop with
Intel Core i5 processor and 8G RAM. Fig. 7 shows that BCAf -HTV can produce
comparable results with SSN with less computational complexity.

Figure 5. Line profiles of recovery results showed in Fig. 4

Figure 6. Histories of SNR changes for proposed algorithms and
TV+PD w.r.t. the elapsed CPU time (in log scale). Left: η =
4, σ = 10−1. Right: η = 16, σ = 10−1.

To show the convergence of BCA, BCAf and BCAf -HTV, we plot the conver-
gence curves in Fig. 8 (η = 1 and σ = 10−1, 10−4). One can readily see that
the errors (SE) are quite steadily decreasing, demonstrating the convergence of the
proposed algorithms.
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Table 3. Computational time of the proposed algorithms and
TV+PD (in seconds)

Image η σ TV+PD BCA BCAf

Circle

1 10−1 40.4971 4.6052 1.0314

1 10−4 18.5340 4.6922 1.2650

4 10−1 7.3436 0.7641 0.7001

4 10−4 39.6196 1.1891 0.6030

16 10−1 36.3221 1.2652 0.4643

16 10−4 39.5773 0.6123 0.3070

Average 30.3156 2.1880 0.7285

Fluorescent
Cells

1 10−1 21.7999 8.3016 2.1735

1 10−4 41.6892 8.9243 2.5687

4 10−1 40.1406 4.1263 2.4025

4 10−4 38.6224 3.8464 2.0889

16 10−1 37.7174 7.3265 6.1742

16 10−4 7.7788 7.6185 1.1258

Average 31.2914 6.6906 2.7556

Cameraman

1 10−1 9.3735 1.3062 1.2272

1 10−4 40.9848 3.2183 0.9053

4 10−1 36.8623 0.6872 1.5084

4 10−4 36.4358 0.6179 1.4209

16 10−1 3.3691 0.5151 0.9925

16 10−4 11.0407 0.3607 0.5260

Average 23.0140 1.1176 1.0967

(a) (b) (c)

(d) (e) (f)

Figure 7. Rcovery results by SSN and BCAf -HTV. (A): Noisy
image, SNR=12.79. (B): Recovery result by SSN, SNR =
18.86, t = 6.763386s. (C): Recovery result by BCAf -HTV, SNR =
18.88, t = 2.377923s. (D): Poisson residuums of noisy images. (E):
Poisson residuums by SSN. (F): Poisson residuums by BCAf -HTV.
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Figure 8. SE (‖uk+1−uk‖
‖uk‖ ) changes v.s. iteration number (both

in log scale): Top: BCA; Medium:BCAf ; Bottom: BCAf -HTV;
Left: η = 1, σ = 10−1; Right: η = 1, σ = 10−4. The test image is
Circles(Fig1(A)).

4.2. Robustness w.r.t. the parameters. One readily knows that the model
parameters λ1 and λ2 are critical to recovery results, which essentially balance
the data fitting terms and the regularization terms. Here we only study how the
algorithm parameters α, αw and αp affect the performance of proposed BCA and
BCAf respectively. In Fig. 9, the SNR changes w.r.t. α for BCA algorithm is
illustrated, in which λ1 and λ2 are fixed, and α varies from 12 to 500. Readily one
can see that BCA is robust w.r.t. the parameter α.

As for BCAf , the SNR changes w.r.t. different parameters are illustrated in
Fig. 10(A), in which λ1, λ2 and αp are fixed, and αw varies from 18 to 700. The
SNR changes are put in Fig. 10(B), where αp varies from 1 to 512. Similar tests
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are conducted for BCAf -HTV, and related results are put in Fig. 11(A) and Fig.
11(B). All these results demonstrate that BCAf and BCAf -HTV are quite robust
w.r.t. the parameters αw and αp.

We have introduced a positive scalar ε for convergence guarantee of proposed
BCA algorithm. To demonstrate its reasonableness, we show the performances
changes w.r.t. this parameter, and put the SNRs changes of recovery results by
BCA algorithm in Fig. 12. One can readily observe that when ε lies in the range
from 10−10 to 10−1, the SNR value is quite stable.

Figure 9. The performance of BCA w.r.t. α (in log scale), where
η = 1, σ = 10−4, using test image Circles(Fig1(A)).

(a) (b)

Figure 10. The performance of BCAf w.r.t. αw (in log scale),
αp (in log scale), where η = 1, σ = 10−4, using test image Cir-
cles(Fig1(A))

(a) (b)

Figure 11. The performance of BCAf -HTV w.r.t. αw (in log
scale), αp (in log scale), where η = 1, σ = 10−4, using test image
Circles(Fig1(A))
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4.3. Numerical validations. To validate the Assumption 1 numerically, which is
used for the convergence analysis of the proposed BCA, we plot the minimum value
curves of the iterative solutions {wk} (see Fig. 13), which clearly show that the
minimum value of w during iteration are almost bigger than 0.2, which show the
reasonableness of this assumption.

Figure 12. SNR changes w.r.t. the parameter ε for BCA Algo-
rithm, using test image Circles(Fig1(A)).

Figure 13. Minimum value curves of w for BCA Algorithm. The
test image is Circles(Fig1(A)).

5. Conclusion. In this paper, we proposed new operator-splitting algorithms for
MPG noise removal. A new bilinear constraint was introduced to ensure that all
corresponding subproblems can be very efficiently solved. Numerical experiments
showed that the proposed algorithms produced comparable results visually. Espe-
cially, compared with the TV+PD solving the same variational model, the proposed
algorithms with fewer tunable parameters produced better recovery results at much
faster speed. In the future, we aim to analyze the convergence of the proposed
algorithm BCAf with TV regularizer, particularly without Assumption 1, although
it is empirically verifiable. Inspired by the outlook on parameter learning in [6], we
plan to explore the optimal noise model learning as well. In addition, we are also
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interested in extending the proposed algorithms to more general image reconstruc-
tion problem [13] as well as deblurring with background noise, and we also leave it
as future work.
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