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We investigated the linear stability of pipe flow with anisotropic slip length at the wall by
considering streamwise and azimuthal slip separately as the limiting cases. Our numerical
analysis shows that streamwise slip renders the flow less stable but does not cause insta-
bility. The exponential decay rate of the least stable mode appears to be ∝ Re−1 when
the Reynolds number is sufficiently large. Azimuthal slip can cause linear instability if
the slip length is sufficiently large. The critical Reynolds number can be reduced to a
few hundred given large slip lengths. Besides numerical calculations, we present a proof
of the linear stability of the flow to three-dimensional yet streamwise-independent dis-
turbances for arbitrary Reynolds number and slip length, as an alternative to the usual
energy analysis. Meanwhile we derived analytical solutions to the eigenvalue and eigen-
vector, and explained the structure of the spectrum and the dependence of the leading
eigenvalue on the slip length. The scaling of the exponential decay rate of streamwise
independent modes is shown to be rigorously ∝ Re−1. Our non-modal analysis shows
that overall streamwise slip reduces the non-modal growth and azimuthal slip has the
opposite effect. Nevertheless, both slip cases still give the Re2-scaling of the maximum
non-modal growth and the most amplified disturbances are still streamwise rolls, which
are qualitatively the same as in the no-slip case.
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1. Introduction

The classic pipe flow with no-slip boundary condition has been proved linearly stable
to axisymmetric perturbations (Herron 1991, 2017), and numerical studies suggest that
the flow is linearly stable to any perturbations at arbitrary Reynolds numbers (Meseguer
& Trefethen 2003). The recent work of Chen et al. (2019) presented a rigorous proof
of the linear stability of the flow to general perturbations at high Reynolds number
regime. Therefore, transition to turbulence in pipe flow is subcritical via finite-amplitude
perturbations (see e.g. Eckhardt et al. (2007); Avila et al. (2011)).
However, velocity slip of viscous fluid can occur on super-hydrophobic surfaces (Voronov

et al. 2008; Rothstein 2010), for which slip boundary condition instead of the classic no-
slip condition should be adopted for the momentum equations, and the slip boundary
condition can potentially influence the stability of the flow. A simplified and widely used
slip boundary condition is the Navier slip boundary condition, which has been shown to
apply to many flow problems and frequently adopted for linear stability studies (Vino-
gradova 1999; Lauga & Cossu 2005; Min & Kim 2005; Gan & Wu 2006; Ren et al. 2008;
Ghosh et al. 2014; Seo & Mani 2016; Chattopadhyay et al. 2017, to list a few). For pipe
geometry, although many studies have investigated the linear stability of immiscible and
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miscible multi-fluid flows with either no-slip or Navier slip boundary condition (Hu &
Joseph 1989; Joseph 1997; Li & Renardy 1999; Selvam et al. 2007; Sahu 2016; Chat-
topadhyay et al. 2017, etc.), much fewer studies were dedicated to the linear stability of
single-phase pipe flow with slip boundary condition. Pr̊uša (2009) investigated this prob-
lem and showed that, subject to Navier slip boundary condition, pipe flow becomes less
stable compared to the no-slip case, however, the destabilization effect is constrained to
small Reynolds numbers and is not sufficient to render the flow linearly unstable. Their
results indicated that the stability property of pipe flow is not qualitatively affected by
the slip boundary condition, regardless of the slip length. For its counterpart in plane
geometry, i.e. channel flow, on the contrary, Min & Kim (2005); Lauga & Cossu (2005)
reported a stabilizing effect of velocity slip on the linear stability.

Usually, slip length is assumed homogeneous and isotropic, i.e. independent of posi-
tion and direction at the wall in stability analysis. However, anisotropy in the effective
slip length can be incurred by anisotropy in the texture pattern on superhydrophobic
surfaces, such as parallel periodic slats, grooves and grates (Lecoq et al. 2004; Bazant
& Vinogradova 2008; Ng & Wang 2009; Belyaev & Vinogradova 2010; Asmolov & Vino-
gradova 2012; Pralits et al. 2017). For example, Ng & Wang (2009) reported a ratio of
down to about 0.25 between the transverse slip length (in the direction perpendicular
to the slats) and longitudinal slip length (parallel to the slats). The linear stability of
channel flow with anisotropic slip caused by parallel micro-graves was analyzed by Pralits
et al. (2017) using the the tensorial formulation of slip boundary condition proposed by
Bazant & Vinogradova (2008). Their results showed possibilities of linear instability using
special alignment of the micro-graves. Recently, Chai & Song (2019) studied the linear
stability of single-phase channel flow subject to anisotropy in slip length by considering
streamwise and azimuthal slip separately as the limiting cases, which can potentially
be realized or approximated by using specially designed surface texture, e.g. specially
aligned micro-grates/graves, according to Bazant & Vinogradova (2008). Their results
showed that streamwise slip mainly stabilizes the flow (with increased critical Reynolds
number), although it surprisingly destabilizes the flow slightly in a small Reynolds num-
ber range, and that azimuthal slip can greatly destabilize the flow and reduce the critical
Reynolds number given sufficiently large slip length. The critical Reynolds number can
be reduced to a few hundred with a dimensionless azimuthal slip length of O(0.1), in
contrast to Recr = 5772 for the no-slip case. Their study also indicated that Squire’s
theorem (Squire 1933) ceases to apply when the wall normal velocity and vorticity are
coupled via the slip boundary condition, such that the leading instability becomes three
dimensional (3-D) rather than two dimensional (2-D) when slip length is sufficiently
large, in agreement with Pralits et al. (2017). The stability of 3-D perturbations was not
considered by Min & Kim (2005); Lauga & Cossu (2005) in which Squire’s theorem was
seemingly assumed.

Differing from channel flow, linear instability is absent at arbitrary Reynolds numbers
in classic pipe flow. This raises the question of whether the anisotropy in slip length can
also cause linear instability in pipe flow. To our knowledge, this problem has not been
studied in pipe geometry. The pseudospectrum analysis of classic pipe flow of Schmid &
Henningson (1994); Meseguer & Trefethen (2003) suggests that, despite the linear sta-
bility, at sufficiently large Reynolds numbers, a small perturbation to the linear operator
associated with the governing equation can possibly change the stability of the system.
The slip boundary condition can be thought of as a perturbation to the linear operator
with no-slip boundary condition. However, Pr̊uša (2009) showed that homogeneous and
isotropic slip does not change the spectrum qualitatively no matter how large the slip
length (i.e. operator perturbation) is. Following Chai & Song (2019), in this work, we
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still consider anisotropic slip length in the limiting cases and explore the possibility of
linear instability for pipe flow. Aside from the critical Reynolds number as focused on
by Chai & Song (2019), here we also investigate the effects of the slip on the spectrum
and on the scaling of the leading eigenvalues with Reynolds number. Besides numerical
calculations, we also perform analytical studies on the eigenvalues and eigenvectors of
the 3-D yet streamwise-independent modes, and discuss about their structure as well as
their dependence on the slip length on a theoretical basis, which to our knowledge have
not been reported in the literature.

2. Numerical methods

The nondimensional incompressible Navier-Stokes equations read

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∇

2u, ∇ · u = 0, (2.1)

where u denotes velocity and p denotes pressure. For pipe geometry, cylindrical co-
ordinates (r, θ, x) are considered, where r, θ and x denote the radial, azimuthal, and
streamwise coordinates, respectively. Velocity components ur, uθ and ux are normalized
by 2Ub where Ub is the bulk speed (the average of the streamwise velocity on the pipe
cross-section), length by pipe radius R and time by R/Ub. The Reynolds number is de-
fined as Re = UbR/ν where ν is the kinematic viscosity of the fluid. In order to eliminate
the pressure and impose the incompressibility condition, we adopt the velocity-vorticity
formulation of Schmid & Henningson (1994), with which the governing equations of dis-
turbances reduce to only two equations about the wall normal velocity ur and wall normal
vorticity η. With a Fourier-Fourier-Chebyshev collocation discretization, considering per-
turbations of the form of {ur, η} = {ûr(r), η̂(r)}e−i(αx+nθ), the governing equations in
the Fourier spectral space read

Lq +
∂

∂τ
Mq = 0, (2.2)

where

L =







iαReUΓ + i
αRe

r

(

U ′

k2r

)′

+ Γ(k2r2Γ) 2αn2ReΓ

− iU ′

r
+

2α

Re
Γ iαRek2r2U + φ






, (2.3)

M =

(

Γ 0
0 k2r2

)

, (2.4)

τ =
t

Re
is the scaled time, and unknowns are

q =

(

Φ̂

Ω̂

)

=

( −irûr

αrûθ − nûx

nRek2r2

)

=

( −irûr

η̂

inRek2r

)

. (2.5)

The real number α is the axial wave number and n, which is an integer, is the azimuthal

wavenumber. The base flow is denoted as U , k2 = α2 +
n2

r2
, i =

√
−1 and the prime

denotes the derivative with respect to r. The operators Γ and φ are defined as Γ =
1

r2
− 1

r

d

dr

(

1

k2r

d

dr

)

and φ = k4r2− 1

r

d

dr

(

k2r3
d

dr

)

. The other two velocity components
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ûx and ûθ can be calculated as

ûx = − α

k2r

∂Φ̂

∂r
− n2rΩ̂, ûθ = − n

k2r2
∂Φ̂

∂r
+ αnrReΩ̂. (2.6)

We use the Robin-type Navier slip boundary condition at the pipe wall for streamwise
and azimuthal velocities separately, i.e.

(

lx
∂ux

∂r
+ ux

) ∣

∣

∣

∣

r=1

= 0,

(

lθ
∂uθ

∂r
+ uθ

) ∣

∣

∣

∣

r=1

= 0, (2.7)

where lx > 0 and lθ > 0 are streamwise and azimuthal slip lengths, respectively, and are
independent of each other. In spectral space, these boundary conditions apply identically
to ûx and ûθ given the homogeneity of the slip length. We use the no-penetration con-
dition for the wall-normal velocity component at the wall, i.e. ur(1, θ, x, t) = 0. Lauga
& Cossu (2005); Chai & Song (2019) considered the same boundary conditions for slip
channel flow. Note that in the isotropic slip case considered by Pr̊uša (2009), lx and lθ

are related as lθ =
lx

1 + lx
, which gives lθ ≈ lx for small slip lengths. With boundary

condition (2.7), given that we impose the same volume flux as in the no-slip case, i.e.

∫ 1

0

Ux(r)rdr =
1

4
, (2.8)

the velocity profile of the constant-volume-flux base flow reads

U(r) =
1− r2 + 2lx

1 + 4lx
x̂, (2.9)

where x̂ represents the unit vector in the streamwise direction. Note that the base flow is
independent of lθ. Converting to the (Ω̂, Φ̂) system, the boundary condition (2.7) reads

α

k2
∂Φ̂

∂r
+ n2ReΩ̂ + lx

(

n2Re
∂Ω̂

∂r
+

α

k2
∂2Φ̂

∂r2
+ α

n2 − α2

(n2 + α2)2
∂Φ̂

∂r

)

= 0 (2.10)

and

αnReΩ̂− n

n2 + α2

∂Φ̂

∂r
+

lθ

(

αnReΩ̂ + αnRe
∂Ω̂

∂r
− n

n2 + α2

∂2Φ̂

∂r2
+

2nα2

(n2 + α2)2
∂Φ̂

∂r

)

= 0. (2.11)

It can be seen that Ω̂ and Φ̂, i.e. ûr and η̂, are coupled via the slip boundary condition.
In order to avoid the singularity at the pipe center, i.e. r = 0, the domain [0, 1]

is extended to [-1, 1] and an even number of Chebyshev grid points over [-1, 1] are
used such that there is no grid point at r = 0. This extension also allows us to use
the Chebyshev collocation method for the discretization in the radial direction and the
resulted redundancy is circumvented by setting proper parity conditions on Φ̂ and Ω̂
with respect to r (Trefethen 2000; Meseguer & Trefethen 2003). In this way, no explicit
boundary condition is imposed at the pipe center.

To determine whether a mode (α, n) is linearly stable or not, one only needs to calcu-
late the eigenvalues of the operator −M−1L and check if any eigenvalue has a positive
real part, λr, which determines the asymptotic growth/decay rate of the corresponding
eigenvector as t → ∞.
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Figure 1. Spectrum of the flow at Re = 3000 with lx = 0.005 (circles), 0.05 (triangles) and 0.5
(squares). (a) The mode (α, n) = (0, 1). (b) The mode (α, n) = (0.5, 1).

3. Streamwise slip

We consider the case of lx 6= 0 and lθ = 0 as the limiting case of streamwise slip being
significant and azimuthal slip being negligible.

The effect of the slip on the spectrum is investigated for Re = 3000 and is shown in
Figure 1 for the modes (α, n) = (0, 1) and (0.5, 1). Firstly, Figure 1(a) shows that the
eigenvalues of the (α, n) = (0, 1) mode visually all fall on the λi = 0 line (λi denotes
the imaginary part of the eigenvalue) and in the left half-plane, which suggests that the
eigenvalues are all real and negative. Meseguer & Trefethen (2003) reported the same
finding for the no-slip case in a large Reynolds number range up to 107. In fact, the
eigenvalues being real and negative can be rigorously proved, see our proof in Section
5.1. Secondly, as lx increases, it can be observed that there are two groups of eigenvalue,
one of which stays constant and the other of which shifts to the right, see the two insets
in Figure 1(a). Specifically, as lx is increased to 0.5, the left eigenvalue in the left inset has
moved from the circle to the triangle and finally to the square while the right eigenvalue
stays constant. Nonetheless, the rightmost eigenvalue increases as lx increases (see the
right inset) which indicates that the flow becomes less stable. In Section 5.2, we will show
that the former group corresponds to disturbances with Φ 6≡ 0, i.e. ur 6≡ 0 and the latter
group, on the contrary, is associated with disturbances with Φ ≡ 0, i.e. ur ≡ 0 and, the
rightmost eigenvalue belongs to the latter group (see Figure 13). Figure 1(b) shows the
case for the mode (α, n) = (0.5, 1). The slip does not qualitatively change the shape of the
spectrum. As lx increases, the eigenvalues overall move to the right. Besides a horizontal
shift, there is a shift in the vertical direction either, and meanwhile the spectrum is
compressed in the vertical direction, see the comparison between the lx = 0.5 and the
other two cases. Using the term of Schmid & Henningson (1994); Meseguer & Trefethen
(2003), the horizontal branch of the spectrum (the part with λr . −600) corresponds
to mean modes, the upper branch corresponds to wall modes and the lower branch to
center modes. Note that the speed of a wave is given by −λi

αRe
in our formulation. It has

been known that the wave speed of the mean modes follows the mean velocity of the

‘two-dimensional’ axial base flow, i.e.
∫ 1

0
Ux(r)dr in pipe flow (see e.g. Drazin & Reid

(1981)), which gives 2
3 in the no-slip case (Schmid & Henningson 1994). In our case, the

wave speed of the mean modes is decreased by the slip, reducing to 0.5559 for lx = 0.5

( 833.868
0.5×3000 , see the eigenvalue in Table 1) which is very close to 5

9 given by
∫ 1

0
Ux(r)dr

with the base flow shown in (2.9). The wall modes, which are located close to the wall,
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Figure 2. The maximum eigenvalue, maxλr, as a function of α, for Re = 3000 (a,b) and 104

(c,d). For each Reynolds number, azimuthal wavenumbers n = 0, 1, 2, 3, 4 and slip lengths
lx = 0.1 and 1.0 are shown.

move at lower speed than the center modes, which are located close to the pipe center
and move at speeds close to the centerline velocity. Since we fix the volume flux of the
flow while the slip length is varied, the speed of the base flow close to the wall increases
as lx increases, whereas the speed near the pipe center decreases, i.e. the velocity profile
becomes flatter, see the base flow given by (2.9). Therefore, it can be expected that as lx
increases, the speed of the wall-modes increases and that of the center modes decreases,
and all three types of modes move at closer speeds. This is exactly what the compression
in the vertical direction of the spectrum reveals. The other noticeable effect is that the
slip brings the adjacent eigenvalues associated with the mean modes closer as the slip
length increases, causing a seemingly degeneracy of the spectrum, see Figure 1(b).

Figure 2 shows the maximum of the real part of the eigenvalue, maxλr, as a function of
the streamwise wavenumber, α, for Re = 3000 and 104. For each Re, slip lengths lx = 0.1
and 1.0, and azimuthal wavenumbers n = 0, 1, 2, 3 and 4 are considered. The trend shown
in the figure suggests that, for both Reynolds numbers, α = 0 is nearly the least stable
mode, i.e. the slowest decaying mode given that all maxλr’s are negative, regardless of
the slip length. At small α, where maxλr is largest, the results suggest that n = 1 is
always the least stable one. At larger α, however, n = 1 is still the least stable when lx is
small, see the case of lx = 0.1 in Figure 2(a, c), but is not in a range of α around α = 1,
see the case of lx = 1.0 in Figure 2(b, d). Nevertheless, in this range, maxλr is much
smaller than that in the small α regime. Therefore, as we are most interested in the least
stable mode, in the following, we will focus on the n = 1 modes. In fact, for the α = 0
modes, we can rigorously prove that n = 1 is the least stable azimuthal wavenumber, see
Appendix B.

Figure 3 shows maxλr as a function of α of the n = 1 modes for Re = 3000 (a) and
104 (b). For each Re, overall maxλr increases as lx increases, i.e. the n = 1 modes decay
more slowly as lx increases. The insets show the close-up of the small α region, in which
the dependence of maxλr on α is not monotonic, with the maximum appears at some
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Figure 3. The influence of streamwise slip on maxλr of n = 1 modes for Re = 3000 (a) and
104 (b). Slip lengths of lx = 0.005 (thin black), 0.05 (blue) and 0.5 (bold red) are shown. The
insets show the close-up of the regions with very small α.
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Figure 4. maxλr of n = 1 modes with α = 0, 0.1, 0.5, 1.0 and 2.0 as a function of lx for
Re = 3000 (a) and Re = 104 (b).

small but finite α instead of α = 0. Nevertheless, the difference between the peak value
and the value for α = 0 is very small, i.e. α = 0 is nearly the least stable mode, as
aforementioned. In fact, the dependence on lx is not fully monotonic either, see the very
small region around α = 0.03 for the lx = 0.005 (the thin black line) and lx = 0.05 (the
blue line) cases as shown in the inset in (a) and around α = 0.01 in the inset in (b).
However, for α = 0 and in most range of α, our results show a monotonic increase of
maxλr as lx increases.

Figure 4 illustrates the dependence of maxλr of the n = 1 modes on lx in a broader
range of lx. For each Re, α = 0, 0.1, 0.5, 1 and 2 are shown. The trend shows that as
lx keeps increasing, maxλr seems to asymptotically approach a plateau with a negative
value, i.e. all the modes shown in the figure appear to be linearly stable, for both Reynolds
numbers.

The above results suggest that, with streamwise slip, the flow is linearly stable to
any perturbations, regardless of the slip length. In order to show evidences in a broader
parameter regime, we numerically searched for the global maximum of maxλr over α
and n and explored a wider range of lx up to 10 and of Re up to 106. Practically, based
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Figure 5. (a) The global maximum of maxλr, i.e. the maximum of maxλr over α and n,
for Re = 100, 1000, 1 × 104, 1 × 105, and 1 × 106 (symbols). The bold black line shows the
maximum maxλr of the α = 0 modes, which is associated with the (α, n) = (0, 1) mode and is
independent of Re. The dashed line marks the value for the (α, n) = (0, 1) mode in the no-slip
case (Meseguer & Trefethen 2003). The inset shows the zoom-in at lx = 0.005. (b) The product
of Re and αmaxλr

(the α at which maxλr takes the maximum) plotted against Re.

on our analysis, we only need to search in a small range of α immediately above zero (see
the insets in Figure 3) while setting n = 1. Specifically, the range of [0, 1.2] is searched
at Re = 100, and the range is decreased as Re−1 for higher Reynolds numbers. Then we
plotted the global maximum of maxλr, still denoted as maxλr, as a function of lx, for a
few Reynolds numbers ranging from 102 to 106 in Figure 5(a).

It is interesting to note that our data for high Reynolds numbers all collapse over the
whole lx range investigated, see the cases with Re above 1× 104 in Figure 5, suggesting
that the maximum eigenvalue of the system is independent of Re. At lower Reynolds
numbers, e.g. Re = 100 and 103 in the figure, there is almost a collapse for small lx
(. 0.1) but a small deviation from the high Reynolds number cases can be seen, see
the inset that shows the zoom-in at lx = 0.005. As lx increases further, the maximum
eigenvalue for Re = 100 and 103 approaches to that of α = 0 modes, which is strictly
Re-independent (see the proof in Section 5.1). Besides, the figure also shows that the
global maximum of maxλr is slightly larger than the maximum of the α = 0 modes
over the whole lx range and the difference is most significant at small lx. We did not
explore further larger lx considering that the range we investigated is already much
larger than the slip length that can be encountered in applications (. 0.1 in set-ups
with characteristic length of one millimeter or larger, because so far the maximum slip
length achieved in experiments is O(100) micron, see Voronov et al. (2008); Lee et al.

(2008); Lee & Jim (2009)). Nevertheless, the S-shaped trend as lx increases suggests
that the flow stays stable no matter how large the slip length is. In fact, as lx → ∞,
full slip boundary condition is recovered, and the velocity profile of the base flow will be
completely flat and no mean shear exists, in which case linear stability can be expected
for any perturbations. Figure 5(b) shows the product of Re and the α at which maxλr

maximizes globally, denoted as αmaxλr
. Interestingly, it seems that this product is a

constant when lx is small (. 0.1) for all the Re’s investigated and approaches a constant
as Re is sufficiently high (& 104) if lx & 0.1. This indicates that αmaxλr

scales as Re−1

for either not very large lx or in high Reynolds number regime. It should be noted that we
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Figure 6. Spectrum of the flow at Re = 3000 with lθ = 0.005 (circles), 0.05 (triangles) and 0.5
(squares). (a) The mode (α, n) = (0, 1). (b) The mode (α, n) = (0.5, 1).

observed a non-monotonic dependence of αmaxλr
·Re on the slip length, which minimizes

at around lx = 0.1.
That the global maxλr is Re-independent, as our results suggest, indicates that the

slowest exponential decay rate (referred to as decay rate for simplicity hereafter) of
perturbations scales as Re−1 given that the scaled time τ = t

Re
is used in our formulation,

see Eqs. (2.2). The same scaling was observed by the calculation of Meseguer & Trefethen
(2003) for the (α, n) = (0, 1) mode of the classic pipe flow. Therefore, our results suggest
that, as Re → ∞, the decay rate of perturbations asymptotically approaches zero and
stays negative, i.e. the flow is linearly stable at arbitrary Reynolds number. The Re−1-
scaling of the slowest decay rate can be rigorously proved for the α = 0 modes, see
Section 5.1.

In a word, in the pure streamwise slip case, we did not observe any linear instability
in the large ranges of lx and Re that we considered, and based on the data shown in
Figure 5, we propose that streamwise slip destabilizes the flow but does not cause linear
instability, regardless of the slip length and Reynolds number. A similar destabilizing
effect was reported by Pr̊uša (2009) for the isotropic slip case.

4. Azimuthal slip

We consider the case of lθ 6= 0 and lx = 0 as the limiting case of azimuthal slip being
significant and streamwise slip being negligible.

The effect of azimuthal slip on the spectrum is investigated for Re = 3000 and is
shown in Figure 6 for the modes (α, n) = (0, 1) and (0.5, 1). Similar to the streamwise
slip case, the eigenvalues of the α = 0 mode also fall on the λi = 0 line and in the left
half-plane, see Figure 6(a). This suggests that the eigenvalues of streamwise-independent
modes are all real and negative. We will show a rigorous proof of this observation in
Section 5.1. As lθ increases, similar to the streamwise slip case, we also observed two
groups of eigenvalues. One group stays constant as the azimuthal slip length changes and
the other shifts to the right, see the inset in Figure 6(a). As we will theoretically show
in Section 5.2 and 5.3, the former group is associated with the disturbances with Φ ≡ 0
and is independent of lθ, and the latter group is associated with the disturbances with
Φ 6≡ 0. The rightmost eigenvalue belongs to the former group for lθ < 1 and can only be
overtaken by the latter group if lθ > 1 (the two groups precisely overlap when lθ = 1), i.e.



10 Kaiwen Chen, Baofang Song

0 1 2
lθ

-60

-40

-20

0

20

40

m
a
x
λ
r

n = 3

n = 2

n = 4

n = 1

n = 0

Re = 3000

Figure 7. The maxλr maximized over α, still denoted as maxλr, as a function of lθ. Modes
with n = 0, 1, 2, 3 and 4 are shown for Re = 3000.

the rightmost eigenvalue can only increase with lθ if lθ > 1. For the α = 0.5 and n = 1
mode, the mean-mode branch overall does not show either a vertical or horizontal shift,
but adjacent eigenvalues are brought closer by the increasing slip length, and for lθ = 0.5
there is almost an eigenvalue degeneracy (see the inset in Figure 6(b)). The center-mode
branch is nearly unchanged as lθ increases. However, the wall-mode branch is significantly
affected. As lθ increases, the wall mode overtakes the center mode and becomes the least
stable perturbation, and as lθ is sufficiently large, the rightmost eigenvalue appears in the
right half-plane, indicating the onset of a linear instability. In contrast to the streamwise
slip case, the wave speed of the mean modes does not change because the speed follows
∫ 1

0
Ux(r)dr as aforementioned and the base flow U(r) is not affected by the azimuthal

slip. The speed of the center modes is also not affected, whereas the wave speed of the
wall modes is considerably decreased by the slip. This is reasonable because the slip
boundary condition should mostly affect the flow close to the wall and should not affect
significantly the flow far from the wall.

Figure 7 shows maxλr maximized over α (over [0, 2] in practice), still denoted as
maxλr, as a function of lθ for n = 0, 1, 2, 3 and 4 at Re = 3000. Overall, maxλr

increases monotonically as lθ increases, while the n = 0 case seems to stay constant until
it starts to increase at around lθ = 0.4. In the small lθ regime, all modes are linearly
stable. As lθ is increased to around 0.1, maxλr of the n = 1 mode becomes positive,
indicating a linear instability. As lθ increases further, n = 2 and 3 also become unstable.
In the whole range of lθ investigated, n = 1 is the least stable/most unstable one, which
is also the case for other Reynolds numbers we investigated. Therefore, in the following,
we mainly discuss about n = 1 modes.

Figure 8 shows maxλr of modes α = 0.1, 0.5, 1.0 and 2.0 for Re = 3000 and n = 1
as a function of lθ. The results show that when lθ is small, overall maxλr decreases
as α increases. As lθ is increased, some moderate α turns to be the least stable/most
unstable mode, see the crossover of α = 0.1 (cyan thin line) and 0.5 (red dashed line)
cases in the figure. Figure 8(b) shows the small lθ range, in which it appears that maxλr

first stays nearly unchanged and then starts to increase, and the trend shows that the
larger α, the later maxλr starts to increase as lθ is increased. The same behavior is also
observed for α = 0 modes and we will show a rigorous proof of this behavior in Section
5.3. Interestingly, the case of α = 2 seems to stay unchanged up to lθ = 2.0.

The dependence of maxλr on α is more comprehensively shown in Figure 9. The
smallest lθ = 0.005 shows a monotonic decrease with increasing α, which completely
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Figure 8. maxλr of modes α = 0.1, 0.5, 1.0 and 2.0 for Re = 3000 and n = 1 as a function of
lθ. Panel (b) shows the details in the small lθ regime.
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Figure 9. maxλr of the n = 1 modes as a function of α for Re = 3000. The data for lθ = 0,
0.005, 0.05, 0.1 and 0.5 are plotted. Note that the curves for lθ = 0 (the black bold dotted line)
and lθ = 0.005 (the green thin solid line) coincide.

collapses onto the curve for lθ = 0, i.e. the classic no-slip case. However, as lθ increases,
maxλr significantly increases in the region of 0 < α . 1 such that a bump appears
in the curves, see those for lθ = 0.05, 0.1 and 0.5. At certain point, the bump reaches
maxλr = 0 and the flow starts to become linearly unstable if lθ increases further, see
the cases of lθ = 0.1 and 0.5. As observed in Figure 8 for the α = 2 case, the results
suggest that maxλr of sufficiently large α seems unaffected by azimuthal slip in the lθ
range investigated, see the collapse of all curves above α ≃ 1.2 in Figure 9. It should be
noted that as lθ becomes larger, the bump widens up, i.e. maxλr is affected by the slip
in a wider range of α.

Figure 10 shows the velocity field of the most unstable perturbation of mode (α, n) =
(0.383, 1) for Re = 3000 with lθ = 0.1. Figure 10(a) shows the in-plane velocity field in
the r−θ pipe cross-section and Figure 10(b) shows the pattern of the streamwise velocity
in the x−r cross-section. The patterns shown suggest that the flow manifests with a pair
of helical waves. The flow structures are mostly located near the wall (r & 0.5), indicating
that the most unstable mode is a wall-mode, which can also been seen in Figure 6(b).

Obviously, azimuthal slip can cause linear instability given sufficiently large slip length.
We can search in the lθ-α plane to obtain the neutral stability curve for given Re and n.
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Figure 10. Visualization of the most unstable mode (α, n) = (0.383, 1) for Re = 3000 with
lθ = 0.1. Panel (a) shows the r− θ cross-section and (b) the x− r cross-section. In both panels,
the streamwise velocity is plotted as the colormap with red color representing positive and blue
representing negative values with respect to the base flow. In (a), the in-plane velocity field is
plotted as arrows.

(b)

n = 1

0 0.1 0.2

lθ

0

0.2

0.4

0.6

0.8

1

α

Re = 3000

Re = 5000

Re = 7000

10−2 10−1 100

lθ

102

104

106

R
e
cr

(c)(a)

n = 1

n = 2

n = 3

Re = 3000

0 1 2

lθ

0

0.5

1

1.5

2

α

Figure 11. (a)The neutral stability curves for Re = 3000 and n = 1, 2 and 3 in the lθ-α plane.
(a) The neutral stability curves for n = 1 and Re = 3000, 5000 and 7000. (b) The critical
Reynolds number Recr as a function of lθ.

Figure 11(a) shows the neutral stability curves for Re = 3000 and n = 1, 2 and 3 (n = 4
and higher are all stable, see Figure 7). It can be seen that, as n increases, the unstable
region shifts to the right and upward. However, as the results in Figure 7 show, n = 1
is the most unstable based on the eigenvalue maximized over α and therefore, we only
investigate the n = 1 case in the following. Figure 11(b) shows the neutral stability curves
for n = 1 and Re = 3000, 5000 and 7000. As Re increases, the neutral stability curve
moves towards the smaller lθ region, indicating that, for a given lθ, the flow becomes
more unstable as Re increases, as expected. The data show that the wavelength of the
unstable modes is comparable or significantly larger than the pipe diameter, whereas
very long waves (α → 0) and short waves (α ≫ 1.0) are generally stable. That the flow
is always stable to perturbations with α = 0, regardless of the value of lθ and Re, can be
rigorously proved (see Section 5.1).

Further, for each lθ, a critical Reynolds number Recr can be determined by searching
the first appearance of a positive maxλr in the lθ-α plane by varying Re. Figure 11(c)
shows Recr as a function of lθ. As shown, Recr is a few hundred if lθ is large (lθ & 0.3),
but the trend suggests that it does not reduce to zero if lθ → ∞. Since the classic pipe
flow is linearly stable for arbitrary Reynolds number, there is an explosive increase in
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Figure 12. The neutral stability curve in the Re− α plane for lθ = ∞ and n = 1.

Recr as lθ decreases, which can be expected because the classic pipe flow will be recovered
if lθ → 0. We also explored the limit of lθ → ∞, in which case the boundary condition
for the azimuthal velocity becomes the full slip condition of

∂uθ

∂r
= 0. (4.1)

The neutral stability curve for n = 1 in the Re − α plane is shown in Figure 12, which
shows that the unstable modes are still long waves with α approximately between 0
and 0.8. The critical Reynolds number (the nose of the curve) appears approximately at
Recr = 260.

5. Eigenvalues and eigenvectors of streamwise independent modes

We can rigorously prove the linear stability of the base flow to perturbations with
α = 0. In the following, we do not consider the (α, n) = (0, 0) mode, which should be
strictly stable as it is purely dissipative and there can be no energy production mechanism
associated with it. In fact, the stability of the classic pipe flow to streamwise independent
perturbations has already been proved by Joseph & Hung (1971) using an energy analysis.
Nevertheless, here we also account for the effect of the velocity slip and perform analytical
studies on the eigenvalues and eigenvectors of α = 0 modes.

5.1. Proof of linear stability to α = 0 modes

For α = 0, the eigenvalue λ of the operator −M−1L satisfies

Γ(n2Γ)Φ + λΓΦ = 0, (5.1)

and
2i

1 + 4lx
Φ+ φΩ+ λn2Ω = 0, (5.2)

where Φ and Ω compose the eigenvector q associated with λ (see the definition of q in
(2.5)). The boundary conditions (2.10) and (2.11) reduce to

lxΩ
′ +Ω = 0 (5.3)

and

lθΦ
′′ +Φ′ = 0 (5.4)

It can be seen that for α = 0 modes, Ω and Φ are decoupled in the boundary conditions
(5.3) and (5.4).
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We define a space Θ = {f |f ∈ C2[0, 1], f(0) = f(1) = 0} and an inner product
associated with this space

(f1, f2) =

∫ 1

0

rf1f̄2dr, (5.5)

where the over-bar represents complex conjugate. Then the operator Γ has the following
two properties.

(a)

(Γf1, f2) = (f1,Γf2), ∀f1, f2 ∈ Θ, (5.6)

Proof.

(Γf1, f2) =

∫ 1

0

r

(

f1
r2

− 1

r

d

dr

(

r

n2

df1
dr

))

f̄2dr

=

∫ 1

0

f1f̄2
r

dr −
∫ 1

0

f̄2d

(

r

n2

df1
dr

)

=

∫ 1

0

f1f̄2
r

dr − f̄2

(

r

n2

df1
dr

) ∣

∣

∣

∣

1

0

+

∫ 1

0

r

n2

df1
dr

df̄2

=

∫ 1

0

f1f̄2
r

dr +

∫ 1

0

r

n2

df̄2
dr

df1 (5.7)

and similarly, using intergration by parts, it can be derived that

(f1,Γf2) =

∫ 1

0

r

(

f̄2
r2

− 1

r

d

dr

(

r

n2

df̄2
dr

))

f1dr

=

∫ 1

0

f1f̄2
r

dr +

∫ 1

0

r

n2

df̄2
dr

df1 = (Γf1, f2) (5.8)

(b)

(Γf, f) > 0, ∀f ∈ Θ. (5.9)

Proof. Taking f = f1 = f2 in Proof a,

(Γf, f) =

∫ 1

0

ff̄

r
dr +

∫ 1

0

r

n2

df̄

dr
df =

∫ 1

0

ff̄

r
dr +

∫ 1

0

r

n2

df̄

dr

df

dr
dr > 0. (5.10)

Note that property (5.9) still holds for those f with f(1) 6= 0 but satisfy f(1)+bf ′(1) = 0,
where b > 0 is a constant, because

(Γf, f) =

∫ 1

0

ff̄

r
dr − f

(

r

n2

df̄

dr

) ∣

∣

∣

∣

1

0

+

∫ 1

0

r

n2

df̄

dr
df

=

∫ 1

0

ff̄

r
dr +

∫ 1

0

r

n2

df̄

dr

df

dr
dr +

1

bn2
f(1)f̄(1) > 0. (5.11)

Firstly, for the case of Φ ≡ 0 (i.e. the wall normal velocity component ur ≡ 0) and
Ω 6≡ 0, Eqs. (5.2) becomes

φΩ+ λn2Ω = 0, (5.12)

and the operators φ and Γ are related as φ =
n4

r2
− 1

r

d

dr

(

n2r
d

dr

)

= n4Γ. Therefore,
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Eqs. (5.12) becomes

n4ΓΩ + λn2Ω = 0. (5.13)

Taking the inner product of Eqs. (5.13) with Ω, we have

(n4ΓΩ,Ω) + (λn2Ω,Ω) = 0. (5.14)

According to property (5.9), (n4ΓΩ,Ω) > 0 given Ω(1) = 0 (without streamwise slip) or
Ω(1)+ lxΩ

′(1) = 0 (with streamwise slip), which leads to λ < 0, i.e. the eigenvalue is real
and negative.

Secondly, we discuss about the Φ 6≡ 0 case, i.e. the wall normal velocity component
ur 6≡ 0. From Eqs. (5.1), by denoting g = n2ΓΦ + λΦ, we have Γg = 0, i.e.

n2g = r(rg′)′, (5.15)

from which it can be obtained that

rng = Cr2n + C1, (5.16)

where C and C1 are constants. Note that for n = 2, r2g = n2r2ΓΦ + λr2Φ = n2Φ −
nr(rΦ′)′ has to vanish at r = 0, because Φ vanishes, and Φ′ and Φ′′ are finite at r = 0.

The same applies to n > 2. If n = 1, rg =
Φ

r
− (rΦ′)′+λrΦ =

Φ

r
−Φ′−rΦ′′+λrΦ, which

also vanishes when r → 0 (using L’Hopital rule). Therefore, C1 ≡ 0 and rng = Cr2n, i.e.

n2ΓΦ + λΦ = Crn. (5.17)

5.1.1. The case without azimuthal slip, i.e. lθ = 0

In case of lθ = 0, the boundary condition (2.11) or (5.4) becomes Φ′ = 0. Taking the
inner product (5.5) of Eqs. (5.17) and ΓΦ, we have

n2(ΓΦ,ΓΦ) + λ(Φ,ΓΦ) = C(rn,ΓΦ) = C(Γrn,Φ) = C(0,Φ) = 0. (5.18)

The second equality in Eqs. (5.18) holds in spite of that rn /∈ Θ and thus, property (5.6)
cannot be applied directly. Nevertheless, as Φ = Φ′ = 0 at r = 1 in case of lθ = 0,
property (5.6) still holds (this can been seen by taking Φ as f2 and rn as f1 in Proof
a). What follows is that the eigenvalue λ is real and λ < 0 because (ΓΦ,ΓΦ) > 0 and
(Φ,ΓΦ) > 0.

5.1.2. The case with azimuthal slip, i.e. lθ 6= 0

In case of lθ 6= 0, Eqs. (5.18) does not hold, except for C = 0, because Φ′ = 0 at r = 1
does not necessarily hold and therefore the second equality in Eqs. (5.18) does not hold
either. For C 6= 0, consider the special case of C = 1 (if C 6= 1, a rescaling of Φ̃ = Φ/C
can easily convert to this special case), Eqs. (5.17) can be written as

(n2 + λr2)Φ− r(rΦ′)′ = (n2 + λr2)Φ− r(Φ′ + rΦ′′) = rn+2. (5.19)

As r → 1, Eqs. (5.19) turns to

−(Φ′ +Φ′′) = 1. (5.20)

Further, the azimuthal slip requires

Φ′(1) + lθΦ
′′(1) = 0, lθ ∈ (0,+∞). (5.21)

It follows that, for lθ = 1, C has to be zero, otherwise Eqs. (5.20) and (5.21) would
conflict with each other. That C = 0 leads to λ < 0, see Eqs. (5.18). For lθ 6= 1, one can
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solve for Φ′(1) from Eqs. (5.20) and (5.21) as

Φ′(1) =
lθ

1− lθ
, (5.22)

which indicates that Φ′(1) is real and Φ′(1) ∈ (−∞,−1) ∪ (0,+∞).

It can be verified that Eqs. (5.19) has a special solution

Φ =
rn

λ
, (5.23)

and its corresponding homogeneous differential equation is

r2Φ′′ + rΦ′ − (n2 + λr2)Φ = 0. (5.24)

From the theory of ordinary differential equation, this equation has two linearly inde-
pendent solutions in (0, 1]. One of the two solutions can be represented as a generalized
power series

Φ1 =

∞
∑

m=0

Bmrm+ρ (B0 6= 0), (5.25)

in which it can be obtained that ρ = n, B2k+1 = 0 and B2k =

(

λ

4

)k
B0

k!(n+ k)!
using

the standard undetermined coefficient method. Denoting an = B0, Eqs. (5.25) can be
written as

Φ1 = anr
n

∞
∑

k=0

(

λ

4

)k
r2k

k!(n+ k)!
. (5.26)

The other solution of Eqs. (5.24) has the following form

Φ2 = Φ1

∫ r

1

1

Φ2
1(s)

exp

(

−
∫ s

1

1

t
dt

)

ds = Φ1

∫ r

1

1

sΦ2
1(s)

ds. (5.27)

However, by L’Hopital rule,

lim
r→0

Φ2(r) = lim
r→0

∫ r

1

1

sΦ2
1(s)

ds

1

Φ1(r)

= lim
r→0

1

rΦ2
1(r)

Φ′
1(r)

Φ2
1(r)

= ∞, (5.28)

which is unphysical, and therefore Φ2 should not appear in the general solution of Eqs.
(5.19), i.e. the general solution of Eqs. (5.19) can be solved as

Φ =
1

λ
rn + anr

n

∞
∑

k=0

(

λ

4

)k
r2k

k!(n+ k)!
. (5.29)

For simplicity, denoting µ =
λ

4
and using the boundary condition Φ(1) = 0, one can solve

for an as

an = − 1

4µ

(

∞
∑

k=0

µk

k!(n+ k)!

)−1

, (5.30)
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consequently,

Φ′(1) =
n

4µ
+ an

∞
∑

k=0

µk(n+ 2k)

k!(n+ k)!

=− 1

4µ

(

∞
∑

k=0

µk

k!(n+ k)!

)−1 ∞
∑

k=0

2kµk

k!(n+ k)!
, (5.31)

i.e. µ satisfies
∞
∑

k=1

kµk−1

k!(n+ k)!
+ 2Φ′(1)

∞
∑

k=0

µk

k!(n+ k)!
= 0. (5.32)

In the following, we prove that µ has to be real and µ < 0 given Eqs. (5.32). For simplicity,
let s = Φ′(1) and define f(z) as

f(z) =
∞
∑

k=0

zk

k!(n+ k)!
, (5.33)

where z is complex. Then, Eqs. (5.32) states that µ is a root of the equation f ′(z) +
2sf(z) = 0. Note that

(

zn+1f ′(z)
)′

=

(

∞
∑

k=1

kzn+k

k!(n+ k)!

)′

= zn
∞
∑

k=1

zk−1

(k − 1)!(n+ k − 1)!
= zn

∞
∑

k=0

zk

k!(n+ k)!
= znf(z).

(5.34)
Then, defining fµ(z) = f(µz), it can be verified that

(zn+1f ′
µ(z))

′ = µznfµ(z), (5.35)

in which the prime denotes the derivative with respect to z. Further, note that µ̄ is also
a root of Eqs. (5.32), because the coefficients are all real. That is to say,

(zn+1f ′
µ̄(z))

′ = µ̄znfµ̄(z), (5.36)

where fµ̄ = f(µ̄z). Then, the difference between Eqs (5.35) multiplied by fµ̄(z) and Eqs.
(5.36) multiplied by fµ(z), integrated along the real axis from 0 to 1 gives that

∫ 1

0

(zn+1f ′
µ(z))

′fµ̄(z)dz −
∫ 1

0

(zn+1f ′
µ̄(z))

′f ′
µ(z)dz

= zn+1f ′
µ(z)fµ̄(z)

∣

∣

∣

∣

1

0

−
∫ 1

0

zn+1f ′
µ(z)dfµ̄(z)− zn+1f ′

µ̄(z)fµ(z)

∣

∣

∣

∣

1

0

+

∫ 1

0

zn+1f ′
µ̄(z)dfµ(z)

=

∫ 1

0

zn+1|f ′
µ(z)|2dz −

∫ 1

0

zn+1|f ′
µ(z)|2dz + f ′

µ(1)fµ̄(1)− fµ(1)f
′
µ̄(1)

= 2s(µ̄− µ)|fµ(1)|2 = (µ− µ̄)

∫ 1

0

zn|fµ(z)|2dz,

where the condition f ′(z) + 2sf(z) = 0 is used to derive f ′
µ(z) + 2µsfµ(z) = 0 and

f ′
µ̄(z) + 2µ̄sfµ̄(z) = 0. Then we have

(µ− µ̄)

(∫ 1

0

zn|fµ(z)|2dz + 2s|fµ(1)|2
)

= 0. (5.37)

Similarly, the sum of Eqs (5.35) multiplied by fµ̄(z) and Eqs. (5.36) multiplied by
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fµ(z), integrated along the real axis from 0 to 1 gives that

(µ+ µ̄)

(∫ 1

0

zn|fµ(z)|2dz + 2s|fµ(1)|2
)

= −2

∫ 1

0

zn+1|f ′
µ(z)|2dz, (5.38)

which indicates
∫ 1

0
zn|fµ(z)|2dz+2s|fµ(1)|2 6= 0 because the right hand side is non-zero.

Consequently, Eqs. (5.37) indicates that µ− µ̄ = 0, i.e. µ is real.
Subsequently, we can deduce that µ < 0 if s ∈ (0,∞) because the term in the paren-

theses and the integral on the right hand side of Eqs. (5.38) are all positive. In case of
s ∈ (−∞,−1), if µ were positive, one would obtain

−2s

∞
∑

k=0

µk

k!(n+ k)!
=

∞
∑

k=1

kµk−1

k!(n+ k)!
=

∞
∑

k=0

µk

k!(n+ k + 1)!
6

∞
∑

k=0

µk

k!(n+ k)!
, (5.39)

and consequently −2s 6 1, which would conflict with s ∈ (−∞,−1). Therefore, µ < 0.
Finally, we obtain that µ < 0 for s ∈ (−∞,−1) ∪ (0,+∞), i.e. for any value of lθ 6= 1.
Since we have shown before that λ < 0 for lθ = 1 and for lθ = 0, now we reach the
conclusion that λ is real and λ < 0 for any lθ ∈ [0,+∞), regardless of lx, i.e. the flow is
rigorously linearly stable to perturbations with α = 0 with or without velocity slip.

5.2. Analytical solution of the eigenvalue and eigenvector for α = 0 modes

We consider the general case with both streamwise and azimuthal slip. For Φ 6≡ 0, if

C 6= 0, we obtain from Eqs. (5.32) that µ =
λ

4
satisfies

(1− lθ)

∞
∑

k=1

kµk−1

k!(n+ k)!
+ 2lθ

∞
∑

k=0

µk

k!(n+ k)!
= 0, (5.40)

where Eqs. (5.22) is used. The Bessel functions of integer order n and n+ 1 read

Jn(z) =

∞
∑

k=0

(−1)k

k!(n+ k)!

(z

2

)2k+n

=
(z

2

)n
∞
∑

k=0

1

k!(n+ k)!

(

−z2

4

)k

, (5.41)

Jn+1(z) =

∞
∑

k=0

(−1)k

k!(n+ 1 + k)!

(z

2

)2k+n+1

=
(z

2

)n+1 ∞
∑

k=0

1

k!(n+ k + 1)!

(

−z2

4

)k

.

(5.42)

Denoting µ = −η2

4
, i.e. the eigenvalue λ = 4µ = −η2, it can be observed that η is a root

of the equation

(1− lθ)Jn+1(z) + lθzJn(z) = 0. (5.43)

Next, we show that C 6= 0 if lθ 6= 1. Assuming C = 0 and lθ 6= 1, Φ′(1) + Φ′′(1) = 0
and the boundary condition Φ′(1) + lθΦ

′′(1) = 0 would give Φ′(1) = Φ′′(1) = 0. Recall
that the solution to the homogeneous equation Eqs. (5.24) is

Φ1 = anr
n

∞
∑

k=0

(

λ

4

)k
r2k

k!(n+ k)!
, (5.44)

where an is a constant. Using the notation of (5.33), f(µ) =
∑∞

k=0 µ
k 1

k!(n+ k)!
= 0

results from Φ1(1) = 0 (note that Φ = Φ1 if C = 0), which would indicate that the



Linear stability of slip pipe flow 19

corresponding η satisfies Jn(z) = 0. Further, Φ′(1) = 0 gives

∞
∑

k=0

µk n+ 2k

k!(n+ k)!
= 0. (5.45)

In combination with f(µ) = 0, we would obtain that

∞
∑

k=1

µk 1

(k − 1)!(n+ k)!
=

∞
∑

k=0

µk 1

k!(n+ k + 1)!
= 0, (5.46)

which means that η would also be a zero of Jn+1(z), i.e. η would be a zero of both Jn(z)
and Jn+1(z). This would conflict with the fact that there exists no comment zero of Jn(z)
and Jn+1(z). Therefore, C 6= 0 and η is a root of Eqs. (5.43) if lθ 6= 1.
We have proved before that C = 0 if lθ = 1, which gives Φ = Φ1. Consequently,

Φ(1) = Φ1(1) = 0 gives f(µ) = 0, which means η is a root of Jn(z) = 0, i.e. η is also a
root of Eqs. (5.43) (note that the first term disappears if lθ = 1). Therefore, η is a root
of Eqs. (5.43) for any lθ > 0.

For the case of Φ ≡ 0, Eqs. (5.13) and the corresponding boundary condition Ω(1) +
lxΩ

′(1) = 0 (see Eqs. (2.11) and (5.3)) imply that the eigenvector Ω has the same form
as the solution Φ1, and we can deduce that λ = −γ2, in which γ is a root of

(1 + nlx)Jn(z)− lxzJn+1(z) = 0. (5.47)

For an eigenvalue λ = −η2, the corresponding eigenvector can be solved as

Φ = Jn(ηr)− Jn(η)r
n, (5.48)

Ω = bnJn(ηr) +
2i

(1 + 4lx)n2

(

r

2η
Jn+1(ηr)−

Jn(η)

η2
rn
)

, (5.49)

where bn is a constant and should be determined by the boundary condition Eqs. (5.3).
For an eigenvalue λ = −γ2, the eigenvector can be solved as

Φ ≡ 0, Ω = Jn(γr). (5.50)

To sum up, there are always two groups of eigenvalues, corresponding to Φ ≡ 0 (given
by Eqs. 5.47) and Φ 6≡ 0 (given by Eqs. 5.43), respectively. Particularly, for the no-slip
case, Eqs. (5.43) reduces to Jn+1(z) = 0 and Eqs. (5.47) reduces to Jn(z) = 0, and
it is known that the zeros of Jn(z) and Jn+1(z) distribute alternately. Therefore, in
the no-slip case, these two groups of eigenvalues distribute alternately either. For the
streamwise slip case, Eqs. (5.43) still reduces to Jn+1(z) = 0, i.e. the Φ 6≡ 0 eigenvalues
do not change with lx, whereas the Φ ≡ 0 eigenvalues will change with lx. However, there
cannot be common roots between Jn+1(z) = 0 and Eqs. 5.47, otherwise there would
be common zeros between Jn(z) and Jn+1(z), which conflicts with the fact that there
are none common zero between the two. Therefore, as lx changes, the two groups of
eigenvalues distribute in the same alternating pattern as in the no-slip case and there
is no over-taking between the two groups, see Figure 1(a) and Figure 13(a). However,
this behavior is not guaranteed in the azimuthal slip case as there can be common roots
between Eqs. (5.43) and (5.47)) given lx = 0 and lθ = 1.0, i.e. the roots of Jn(z) = 0.
Nonetheless, it should be noted that the common roots can only exist at lθ = 1.0. This
implies that, when eigenvalues change with lθ, an over-taking between the two groups
may occur at precisely lθ = 1.0.

Figure 13 shows the comparison between our analytical solution of the two groups of
eigenvalues and numerical calculation for the streamwise slip case of Re = 3000, n = 1,
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Figure 13. Validation of the analytical eigenvalues against the numerical calculation for the
case of Re = 3000, n = 1, lx = 1.0 and lθ = 0. In (a), the first 20 eigenvalues are shown as
squares and circles, and the numerical results are shown as crosses. The circles are the first
ten eigenvalues (in descending order) for the cases with Φ ≡ 0 and the squares are the first
10 eigenvalues (in descending order) for the Φ 6≡ 0 case. (b) The relative error ǫ between the
analytical and numerical ones.

lx = 1.0 and lθ = 0. In Figure 13(a), blue circles are analytical solutions of the first
10 largest eigenvalues given by Eqs. (5.47), i.e. the corresponding eigenvectors all have
Φ ≡ 0, and red squares represent the first 10 largest eigenvalues given by Eqs. (5.43),
i.e. the corresponding eigenvectors all have Φ 6≡ 0. Clearly, the leading eigenvalue is and
will always be associated with Φ ≡ 0 disturbances because no over-taking between the
two groups of eigenvalues can occur as lx varies, as we concluded in Section 5.2. These
analytical solutions agree very well with the numerical calculations (the crosses) with
relative errors of O(10−11) or lower, see Figure 13(b). The eigenvector associated with
the leading eigenvalue (the leftmost circle in Figure 13(a)) is plotted in Figure 14(a).
The black line shows the analytical solution given by (5.50) and the circles show the
numerical calculation. The Φ part of the eigenvector is not shown because Φ ≡ 0. Figure
14(b) shows the eigenvector associated with the second largest eigenvalue (the leftmost
red square in Figure 13(a)), which has a non-zero Φ part. The figure shows that, for both
Φ and Ω, our analytical solutions (lines) agree very well with the numerical calculations
(symbols). This comparison validates our theory about the eigenvalue and eigenvector.

The two groups of eigenvalues of the azimuthal slip cases of lθ = 0.05 and 2.0 for
Re = 3000, n = 1 and lx = 0 are also shown in Figure 15. Again, perfect agreement
between the analytical and numerical ones is observed. We can see that, for lθ = 0.05,
the Φ 6≡ 0 group is entirely below the Φ ≡ 0 group, which is independent of lθ, whereas is
entirely above the Φ ≡ 0 group for lθ = 2.0, indicating that an over-taking indeed occurs
between the two groups as lθ increases. Therefore, for lθ < 1.0, the leading eigenvalue is
associated with Φ ≡ 0 disturbances and does not change with lθ (see also Figure 6(a)),
whereas it is associated with Φ 6≡ 0 disturbances and increases with lθ for lθ > 1.0.

5.3. The dependence of the leading eigenvalue on slip length for α = 0 modes

Denoting F (z, lθ) = (1− lθ)Jn+1(z) + lθzJn(z), it can be obtained that, as z → 0,

Jn(z) ∼
zn

2nn!
, F (z, lθ) ∼

(

1− lθ
2n+1(n+ 1)!

+
lθ

2nn!

)

zn+1. (5.51)
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Figure 14. Validation of the analytical eigenvectors against the numerical calculation for the
case of Re = 3000, n = 1, lx = 1.0 and lθ = 0. (a) The Ω component of the eigenvector associated
with the leading eigenvalue (the leftmost blue circle in Figure 13(a)). The Φ component is zero
and is not shown. (b) The Ω and Φ component of the eigenvector associated with the second
largest eigenvalue (the leftmost red square in Figure 13(a)).
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Figure 15. Eigenvalues for Re = 3000, n = 1 and lx = 0 with lθ = 0.05 and 2.0. In (a),
analytical eigenvalues are shown as circles (Φ ≡ 0, for which eigenvalues are independent of lθ),
squares (Φ 6≡ 0 and lθ = 0.05) and triangles (Φ 6≡ 0 and lθ = 2.0), and the numerical calculations
are shown as crosses. Panel (b) and (c) show the zoom-in of the two ends of the spectrum shown
in (a).

It can be seen that
1− lθ

2n+1(n+ 1)!
+

lθ
2nn!

> 0 for lθ > 0, therefore, F (z, lθ) is positive for

sufficiently small z. Let z1 be the minimum root of F (z, lθ1) = 0 and z2 be the minimum
root of F (z, lθ2) = 0. If lθ1 < lθ2, it can be derived that

F (z1, lθ2) =(1− lθ2)Jn+1(z1) + lθ2z1Jn(z1)

=(1− lθ2)Jn+1(z1)−
1− lθ1
lθ1

lθ2Jn+1(z1)

=
lθ1 − lθ2

lθ1
Jn+1(z1) < 0. (5.52)

In (5.52), Jn+1(z) > 0 follows from that, at the minimum positive zero of Jn+1(z),
denoted as z0, we have F (z0, lθ1) < 0 because Jn(z0) < 0. We showed before that
F (z, lθ1) > 0 at sufficiently small z, therefore, the minimum positive zero of F (z, lθ1),
z1, should be smaller than z0 given that F (z, lθ1) is continuous with respect to z, i.e.
z1 < z0, and therefore Jn+1(z1) > 0. Consequently, given F (z1, lθ2) < 0, there must be
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Figure 16. The dependence of maxλ on slip length for Re = 3000 and n = 1. (a) Both
streamwise and azimuthal slip are present. The black line shows the dependence on lx given
lθ 6 1. Symbol lines show two cases for lθ > 1. (b) The dependence on lθ in case of lx = 0.

a zero in (0, z1), i.e. z2 < z1 because the function F (z, lθ2) is continuous with respect
to z. This states that, for the case of Φ 6≡ 0, the maximum eigenvalue λ, denoted as
λ1 in the following, increases as lθ increases and is independent of lx. Similarly, one can
deduce that the minimum root of Eqs. (5.47) decreases as lx increases, consequently, the
maximum eigenvalue for the Φ ≡ 0 case, denoted as λ2, increases as lx increases and is
independent of lθ. For the special case of lx = 0, Eqs. (5.47) becomes Jn(z) = 0 and for
the case of lθ = 1, Eqs. (5.43) turns into zJn(z) = 0. Clearly, these two cases share the
non-zero roots, i.e. λ1 = λ2. Therefore, the minimum root of Eqs. (5.47) is always greater
than that of Eqs. (5.43), i.e. λ1 > λ2, when lθ < 1. This explains why, for a given lθ 6 1,
maxλ increases monotonically as lx increases from zero, whereas for a given lθ > 1, maxλ
first stays constant and only starts to increase until lx is increased above a threshold, see
Figure 16(a). If only azimuthal slip is present, i.e. lx = 0, maxλ firstly stays constant
and only starts to increase precisely at lθ = 1, see Figure 16(b). The data shown in the
inset of Figure 6(a) also support this conclusion, see that maxλ for lθ = 0.005, 0.05 and
0.5 are identical. It can also be inferred that, given a fixed lx > 0 and that λ2 increases
with lx, maxλ can only start to increase as lθ increases at some lθ > 1.

In summary, the maximum eigenvalue of α = 0 modes is an increasing function of lθ
or lx (may not be strictly increasing, depending on the slip length setting, as Figure 16
shows) and is independent of the Reynolds number, which is obvious as Re does not
appear in Eqs. (5.43) and (5.47). Nevertheless, the eigenvalues remain negative.

6. Non-modal stability

It has been known that in many shear flows (e.g., pipe, channel and plane-Couette
flows), small disturbances can be transiently amplified due to the non-normality of the
linearized equations, despite their asymptotic linear stability (Schmid & Henningson
1994; Meseguer & Trefethen 2003; Schmid 2007). This transient amplification is believed
to play an important role in the subcritical transition in shear flows. Here, we also
investigated the effects of the anisotropic slip on the non-modal stability of the flow. The
same method for calculating the transient growth described by Schmid & Henningson
(1994) is adopted. The transient growth at time t for a mode (α, n) is defined as

G(t;α, n) = max
E(0) 6=0

E(t)

E(0)
, (6.1)
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Figure 17. The maximum transient growth, Gmax, at Re = 3000 plotted in the lx-α plane for
n = 1 (a) and n = 2 (b). Azimuthal slip length lθ=0. The contour level step is 80 in both panels.
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Figure 18. The maximum transient growth, Gmax, at Re = 3000 plotted in the lθ-α plane
for n = 1 (a) and n = 2 (b). Streamwise slip length lx=0. The bold lines enclose the linearly
unstable regions.

where E(t) =
∫

V
u(t)2dV is the kinetic energy of the perturbation u integrated in the

whole flow domain at time t. For linearly stable flow, G will reach the maximum, Gmax,
at certain time and monotonically decay at larger times. For linearly unstable flow, G
can be either non-monotonic or monotonic at early stages, depending on the competition
between the modal and non-modal growth, and will be dominated by the exponential
growth of the most unstable disturbance at large times.

Figure 17 shows Gmax at Re = 3000 in the lx-α plane (lx = 0) for n = 1 and n = 2
(low azimuthal wavenumbers are generally most amplified by non-normality). From the
contour lines we can see that streamwise slip reduces Gmax and the decrease is monotonic
as lx increases. Intuitively, streamwise slip reduces the background shear such that the
lift-up mechanism (Brandt 2014) is subdued. Therefore, the transient growth should
be reduced as our results show. The most amplified mode is still the (α, n) = (0, 1)
mode (streamwise rolls) as in the no-slip case (Schmid & Henningson 1994; Meseguer &
Trefethen 2003).
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Figure 19. The time instant when Gmax is reached, tmax, in the lx-α plane for n = 1 (a) and
n = 2 (b) and in the lθ-α plane for n = 1 (c) and n = 2 (d).

Figure 18 shows Gmax for the azimuthal slip case at Re = 3000 in the lθ-α plane.
Azimuthal wavenumbers n = 1 and n = 2 are considered. From the orientation of the
contour lines we can see that azimuthal slip increases Gmax. Presumably, azimuthal
slip can enhance streamwise vortices because it reduces wall friction and allows finite
azimuthal velocity at the wall, and therefore, the lift-up mechanism can be enhanced
exhibiting increased transient growth as our results show. For n = 1, in the lθ range
investigated, the most amplified mode is still the (α, n) = (0, 1) mode as in the no-slip
case. However, for n = 2, as lθ increases, the most amplified mode is no longer the
streamwise independent one but one with a small finite streamwise wavenumber (long
wavelength), see Figure 18(b). For example, the most amplified mode is approximately
α = 0.05 for lθ above about 0.1. Similar behavior has also been reported for channel
flow (Chai & Song 2019). The two bold lines in the figure enclose the linearly unstable
regions in which Gmax is theoretically infinite, therefore, the linearly unstable region is
left blank. Unlike the streamwise slip case where the slip length significantly reduces the
transient growth throughout the α and lx ranges investigated (see Figure 17), azimuthal
slip only significantly affects the transient growth for small α and nearly does not affect
that of larger α, see the nearly horizontal contour lines for relatively large α. Besides,
even for small α, Gmax quickly saturates as lθ increases. To sum up, azimuthal slip only
affects the transient growth of the modes with small streamwise wavenumbers and the
effect saturates as the slip length increases.

Figure 19 shows the time instant when Gmax is reached, tmax, for the cases shown in
Figure 17 and 18. In the streamwise slip case (Figure 19(a,b)), for both n = 1 and 2, the
slip increases tmax and the effect is more significant for larger α. In the azimuthal slip case
(Figure 19(c,d)), for small α (. 0.2), tmax is also slightly increased by the slip, whereas
for larger α, tmax is slightly decreased by the slip, in contrast to the streamwise slip case.
Overall, for the modes with small α, i.e. most amplified modes due to non-normality,
both streamwise and azimuthal slip only mildly increase tmax.
In the no-slip case, the global Gmax (maximized over α and n) is known to scale as

Re2 when Re is large (Meseguer & Trefethen 2003). In the presence of streamwise and
azimuthal slip, the scaling is also investigated and shown in Figure 20. In the streamwise
slip case (Figure 20(a)), the lines for lx = 0.005, 0.05 and 0.5 appear to be parallel to the
no-slip case with a downward vertical shift, suggesting a Re2-scaling for any streamwise
slip length. Similarly, for azimuthal slip, the scaling also seem to be Re2. For this case,
we only investigated lθ = 0.005 and 0.02 in the linearly stable regime because larger lθ
will cause linear instability.



Linear stability of slip pipe flow 25

103 104 105

Re

100

102

104

106
G

m
a
x

(a)

no slip
lx = 0.005
lx = 0.05
lx = 0.5

103 104 105

Re

102

104

106

G
m
a
x

(b)

lθ = 0.005

lθ = 0.02

no-slip

2600 3000 3400
600

700

800

Figure 20. The scaling of global Gmax with Re. (a) Streamwise slip lx = 0.005, 0.05 and 0.5.
(b) Azimuthal slip lθ = 0.005 and 0.02. In both panels, the bold black line shows the scaling for
the no-slip case. The inset in (b) is a zoom-in around Re = 3000.

7. Conclusions and discussions

It has been well established that the classic pipe flow is (asymptotically) linearly stable.
In this paper, we studied the effect of velocity slip on the linear stability of pipe flow.
Our results show that the leading eigenvalue increases with streamwise slip length lx
but remains negative, i.e. streamwise slip renders the flow less stable but does not cause
linear instability, similar to the effect of isotropic slip length on the flow (Pr̊uša 2009).
Interestingly, our results suggest that the leading eigenvalue is independent of Re, or
equivalently, the slowest decay rate of disturbances scales as Re−1 (note that time is
scaled by Re−1 in our formulation). It should be pointed out that this scaling holds at
sufficiently high Reynolds numbers (& 104). For relatively low Reynolds numbers (100
and 1000 in our study), there is a very slight deviation from the scaling for lx . 0.1 and
the deviation is substantial at larger lx. The Re−1-scaling of the decay rate is the same
as what was observed for the mode (α, n) = (0, 1) of the classic pipe flow by Meseguer
& Trefethen (2003). Besides, our results show that the streamwise wavenumber at which
the eigenvalue maximizes is not α = 0 but also scales as Re−1. However, if lx is very
large (& 1.0, and note that in applications the slip length is generally much smaller), the
eigenvalue maximizes at α = 0 at relatively low Reynolds numbers (100 and 1000 in our
study) and this scaling also only holds at high Reynolds numbers (& 104).
This destabilizing effect appears to be opposite to the stabilizing effect of streamwise

slip reported for channel flow (the stabilizing effect is mainly observed for 2-D pertur-
bations) (Lauga & Cossu 2005; Min & Kim 2005; Chai & Song 2019). Here, we only
provide a possible explanation for the least stable/most unstable perturbation (referred
to as the leading perturbation for simplicity) of the two flows. We speculate that the
different flow structures of the leading perturbations of the two flows are responsible.
For pipe flow, we proved that the ur component of the leading perturbation for α = 0
modes vanishes. The globally leading perturbation has very small α (∼ 1

Re
), which in-

dicates that ur should be nearly vanishing. Therefore, the production rate of kinetic
energy (−

∫

V
urux

dUx

dr dV ) should be also very small and the decay rate of disturbances
should be dominated by the dissipation rate. Intuitively, velocity slip reduces the dissi-
pation rate due to the reduced wall friction, therefore, the decay rate of the least stable
perturbation decreases, i.e. the flow appears to be destabilized. In contrast, for channel
flow, the leading perturbations are 2-D Tollmien-Schlichting waves for small slip length,
which have a substantial wall-normal velocity component (comparable to the streamwise
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component). Therefore, the kinetic energy production is significant and even dominant
in the variation of the kinetic energy. Streamwise slip reduces the base shear (dUx

dr ) and
therefore subdues the production. If the reduction in the production rate outweighs the
decrease in the energy dissipation rate due to the reduced wall friction, the flow will be
stabilized. This is probably why stabilizing effect of the streamwise slip on channel flow
was observed.

On the contrary, azimuthal slip, given sufficiently large slip length, causes linear in-
stability, similar to the finding of Chai & Song (2019) for channel flow. Our results show
that azimuthal slip destabilizes helical waves with wavelengths considerably larger than
the pipe diameter, whereas it does not affect the stability of waves with much shorter
wavelengths and in the long wavelength limit, i.e. α → 0. The critical Reynolds number
decreases sharply as lθ increases and gradually levels off at around a few hundred as
lθ & 0.3 and at approximately 260 as lθ → ∞. Similar destabilizing effect was reported
for channel flow (Chai & Song 2019). Azimuthal slip serves as an example for a pertur-
bation to the linear operator associated with the linearized Navier-Stokes equations with
no-slip boundary condition that destabilizes the originally stable system.
Regarding the stability of the classic pipe flow to streamwise independent perturba-

tions, using an energy analysis, Joseph & Hung (1971) concluded the absolute and global
stability of the flow, i.e. the flow is asymptotically (as t → ∞) stable to such perturba-
tions with arbitrary amplitude. Here, for the linear case and from a mathematical point of
view, we rigorously proved that the eigenvalues of streamwise independent modes (α = 0)
are real and negative, for arbitrary slip length and arbitrary Reynolds number. Besides,
the eigenvalue of the α = 0 modes is proved to be strictly independent of Reynolds
number in our formulation, in agreement with the numerical calculation by Meseguer &
Trefethen (2003). We derived analytical solutions to the eigenvalue and eigenvector for
α = 0 modes and verified our theory by numerical calculations. We also proved that, the
eigenvalues of α = 0 modes consist of two groups: One group is associated with distur-
bances with Φ ≡ 0, i.e. ur ≡ 0, and the other is associated with disturbances with Φ 6≡ 0,
i.e. ur 6≡ 0 (see Fig 13 and Figure 15). The two groups distribute alternately. For the
streamwise slip case, the latter group stays constant while the former group changes with
lx. It is the other way round for the azimuthal slip case. Interestingly, for the streamwise
slip case, the leading eigenvalue belongs to the Φ ≡ 0 group and does not switch group
as lx changes, whereas for the azimuthal slip case, it switches from the Φ ≡ 0 group to
the Φ 6≡ 0 group as lθ crosses 1.0 from below (see Figure 15). When both lx and lθ are
non-zero, lx dominates the leading eigenvalue if lθ < 1. If lθ > 1, the leading eigenvalue
first stays constant and can only start to increase at a threshold as lx increases (see
Figure 16). Such analytical solutions might inspire asymptotic analysis in the limit of
small streamwise wavenumber.

Non-modal analysis shows that streamwise slip greatly reduces the transient growth,
whereas azimuthal slip significantly increases the transient growth for disturbances with
very small streamwise wavenumbers but nearly does not affect that for disturbances with
larger streamwise wavenumbers, aside from the linear instability caused by the slip. Both
streamwise slip and azimuthal slip give the Re2-scaling of the maximum transient growth,
the same as in the no-slip case (Schmid & Henningson 1994; Meseguer & Trefethen 2003).
Similar effects were observed for channel flow (Chai & Song 2019).
Linear instability caused by anisotropic slip at low Reynolds numbers is of interest for

small flow systems, such as microfluidics, in which the Reynolds number is usually low
but the non-dimensional slip length can be significantly large using advanced surface tex-
turing techniques. The instability can be exploited to enhance mixing or heat transfer in
applications involving small flow systems. Larger non-modal growth caused by azimuthal
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slip can potentially cause earlier subcritical transition to turbulence. Besides, introducing
modal instability into originally sub-critical flows may also help to better understand the
transition mechanism in such flows.
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Appendix A. Numerics

Firstly, we briefly explain the implementation of the boundary condition (2.10) and
(2.11) in the eigenvalue problem for the linear system (2.2).
The eigenvalue equation reads

−L−1Mq = λq, (A 1)

where q is the unknown vector composed of Φ̂ and Ω̂, see (2.5). Boundary conditions
(2.10) and (2.11) couple Φ̂ and Ω̂, unlike in the no-slip case. In our Fourier-Fourier-
Chebyshev collocation discretization, q is a 2N × 1 vector and the operator −L−1M is
discretized as a 2N × 2N matrix, where N is the number of collocation grid point on the
radius. Adopting the Chebyshev differentiation matrix of Trefethen (2000) which is of
spectral accuracy, the matrix is dense and the radial differentiation of q at a single grid
point is calculated using the value of q at all collocation points on the radius. Given that
Φ̂ is known at r = 1, i.e. Φ̂ = 0 at r = 1, the size of the system can be reduced by one.
The boundary conditions (2.10) and (2.11) give two linear algebraic equations about Φ̂
and Ω̂ at the collocation points, from which we can further eliminate two unknowns. By
doing so, the system size is reduced by 3, i.e. to (2N − 3) × (2N − 3), from which the
eigenvalue problem can be solved with the boundary conditions being taken accounted
for.

Secondly, we show the convergence test of our numerical calculation. We consider the
case of Re = 3000, α = 0.5 and n = 1, as presented in Figure 1(b) and Figure 6(b).
We change the number of Chebyshev points and check the convergence of the mean-
mode, wall-mode and center-mode separately. Table 1, 2 and 3 shows the resolutions
and the eigenvalue of an arbitrarily selected mean mode and the rightmost eigenvalues
corresponding to the wall- and center-mode. It can be seen that grid numbers N = 32,
64 and 128 give very close values of the eigenvalues, which differ only after about 7 digits
after the decimal point (the relative difference is O(10−11)), for all the slip length of 0.005,
0.05, 0.5 and the case of lθ = ∞. The convergence test show that, for the calculation of
the rightmost eigenvalues and for calculating the mean mode at Re = 3000, 32 points are
sufficient. Solely for calculating the rightmost eigenvalue, we used 32 points for Re = 100,
1000 and 10000, and 64 points for Re = 105 and Re = 106. We checked the convergence by
doubling the number of grid points and found these numbers sufficient. It should be noted
that, although 32 points are sufficient for calculating both of the rightmost eigenvalue and
the spectrum at Re = 3000, more grid points may be needed for accurately calculating
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Re = 3000, α = 0.5, n = 1, lx = 0.005 and lθ = 0

N mean-mode wall-mode
32 -622.180970763082-1006.803438258427i -106.901701568167-600.000309196652i
64 -622.180970617437-1006.803438460110i -106.901701568129-600.000309195248i
128 -622.180970549502-1006.803438403115i -106.901701574121-600.000309193566i

N center-mode
32 -87.144443682906-1299.140360156589i
64 -87.144443682943-1299.140360156482i
128 -87.144443681739-1299.140360155874i

Re = 3000, α = 0.5, n = 1, lx = 0.05 and lθ = 0

N mean-mode wall-mode
32 -530.922788817816-953.518793751342i -68.522846170133-646.557599422173i
64 -530.922788815748-953.518793737632i -68.522846166147-646.557599425783i
128 -530.922788808102-953.518793754673i -68.522846166147-646.557599425783i

N center-mode
32 -80.309678415026-1203.366029301252i
64 -80.309678415070-1203.366029301237i
128 -80.309678413737-1203.366029300673i

Re = 3000, α = 0.5, n = 1, lx = 0.5 and lθ = 0

N mean-mode wall-mode
32 -582.2041335894776-833.8681859837275i -32.3669400581618-546.6565442837639i
64 -582.2041335893674-833.8681859850334i -32.3669400570418-546.6565442835596i
128 -582.2041336044291-833.8681859835294i -32.3669400643051-546.6565442852506i

N center-mode
32 -36.8382964038017-757.7599724649968i
64 -36.8382964035955-757.7599724652722i
128 -36.8382963977050-757.7599724664044i

Table 1. The convergence of the eigenvalue corresponding to the mean mode (arbitrarily se-
lected) and the rightmost wall-mode and center-mode as the radial grid number N . The stream-
wise slip cases of lx = 0.005, 0.05 and 0.5 for Re = 3000, α = 0.5, n = 1 and lθ = 0 are
listed.

the spectrum than for calculating the rightmost eigenvalue at higher Reynolds numbers
(Trefethen 2000; Meseguer & Trefethen 2003).

Appendix B. The dependence of the leading eigenvalue on the

azimuthal wavenumber n for α = 0

Our numerical calculations in Section 3 and 4 showed that n = 1 modes are the least
stable/most unstable modes. Here we show the dependence of maxλ of α = 0 modes on
the azimuthal wavenumber n and prove that n = 1 is indeed the least stable azimuthal
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Re = 3000, α = 0.5, n = 1, lθ = 0.005 and lx = 0

N mean-mode wall-mode
32 -878.143428857252-1000.225260064803i -147.212095816072-565.187041064729i
64 -878.143429638119-1000.225258436485i -147.212095816866-565.187041057138i
128 -878.143429646590-1000.225258451813i -147.212095817673-565.187041057973i

N center-mode
32 -88.016026669448-1311.995868654545i
64 -88.016026669520-1311.995868654469i
128 -88.016026668333-1311.995868653794i

Re = 3000, α = 0.5, n = 1, lθ = 0.05 and lx = 0

N mean-mode wall-mode
32 -818.018362966476-992.813175584590i -30.701258513947-434.347551571943i
64 -818.018361688704-992.813172416195i -30.701258511491-434.347551570607i
128 -818.018361708603-992.813172372158i -30.701258513706-434.347551572422i

N center-mode
32 -88.015855528115-1312.001178576785i
64 -88.015855528186-1312.001178576701i
128 -88.015855526922-1312.001178575825i

Re = 3000, α = 0.5, n = 1, lθ = 0.5 and lx = 0

N mean-mode wall-mode
32 -794.161410360041-1006.311883474201i 33.866513836957-391.619593748286i
64 -794.161408826090-1006.311880389063i 33.866513839707-391.619593747032i
128 -794.161408715927-1006.311880293383i 33.866513840046-391.619593749138i

N center-mode
32 -88.013747237500-1312.003625793072i
64 -88.013747237549-1312.003625792987i
128 -88.013747236338-1312.003625792171i

Table 2. The convergence of the eigenvalue corresponding to the mean mode (arbitrarily se-
lected) and the rightmost wall-mode and center-mode as the radial grid number N . The az-
imuthal slip cases of lθ = 0.005, 0.05 and 0.5 for Re = 3000, α = 0.5, n = 1 and lx = 0 are
listed.

mode. For this purpose, we only need to prove that the minimum non-zero roots of Eqs.
(5.43) and (5.47) all increase with n.

Note that the root of Eqs. (5.43) is independent of lx. Because the zeros of Jn(z) and
Jn+1(z) distribute alternately, it can be easily seen that, if lθ 6 1, the minimum positive
root of Eqs. (5.43) is located between the minimum positive zeros of Jn(z) and Jn+1(z).
Therefore, the minimum positive root of Eqs. (5.43) increases with n because the positive
zeros of Jn(z) and Jn+1(z) all increase with n, i.e., λ1 decreases as n increases if lθ 6 1.

If lθ > 1, we need to prove that the minimum positive root of

gn(z) = (1− lθ)Jn(z) + lθzJn−1(z) = 0, n > 2 (B 1)
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Re = 3000, α = 0.5, n = 1, lθ = ∞ and lx = 0

N mean-mode wall-mode
32 -637.771735030362-1019.911762553870i 45.558397965700-383.081240915272i
64 -637.771735090255-1019.911762536828i 45.558397968779-383.081240913500i
128 -637.771735157437-1019.911762419706i 45.558397965363-383.081240919212i

N center-mode
32 -88.013312066798-1312.003902287461i
64 -88.013312066887-1312.003902287400i
128 -88.013312039270-1312.003902226469i

Table 3. The convergence of the eigenvalue corresponding to the mean mode (arbitrarily se-
lected) and the rightmost wall-mode and center-mode as the radial grid number N . The az-
imuthal slip case of lθ = ∞ for Re = 3000, α = 0.5, n = 1 and lx = 0 is listed.

is smaller than that of gn+1(z) = 0, i.e. Eqs. (5.43). We already showed in Eqs. (5.51)
that F (z, lθ) > 0 at sufficiently small z, i.e. gn(z) > 0 for sufficiently small z. Denoting
the minimum positive root of Eqs. (5.43) as z0, we only need to show that gn(z0) < 0.
Using the property of Bessel function of

Jn+1(z) + Jn−1(z) =
2n

z
Jn(z) (B 2)

and Eqs. (5.43), gn(z) can be rewritten as

gn(z0) = (1− lθ)Jn(z0) + lθz0

(

2n

z0
− lθ

lθ − 1
z0

)

Jn(z0). (B 3)

It is easily seen that Jn(z0) > 0, therefore, we need to show that

(1− lθ) + lθz0

(

2n

z0
− lθ

lθ − 1
z0

)

< 0, (B 4)

or equivalently,

z20 > (1− l−1
θ )(2n− 1 + l−1

θ ), (B 5)

in order to prove that gn(z0) < 0, given lθ > 1. Noticing that (1− l−1
θ )(2n− 1 + l−1

θ ) <
2n− 1 if lθ > 1, we can prove gn(z0) < 0 if we can show that z20 > 2n− 1.
In Section 5.3 we proved that the minimum positive root of Eqs. (5.43) decreases as

lθ increases, therefore, z0 is minimized at lθ = +∞. To prove that z20 > 2n − 1 for
any lθ > 1, we only need to show that z20 > 2n − 1 holds for lθ = +∞, with which
Eqs. (5.43) reduces to Jn+1(z) − zlθJn(z) = 0. That F (z, lθ) > 0 at sufficiently small z
indicates that Jn+1(z) − zJn(z) < 0 at sufficiently small z given lθ = +∞. Therefore,
Jn+1(z0) − z0Jn(z0) = 0 requires that Jn+1(z) − zJn(z) < 0, i.e. Jn+1(z) < zJn(z) for
any z < z0. In fact, we can show that Jn+1(z) < zJn(z) if 0 < z2 < 2n− 1 such that z0
has to satisfy z20 > 2n − 1. Using the series form of Bessel function, Jn+1(z) < zJn(z)
means

+∞
∑

k=0

(−1)2

k!

1

(n+ k + 1)!

(z

2

)2k+n+1

< z

+∞
∑

k=0

(−1)2

k!

1

(n+ k)!

(z

2

)2k+n

. (B 6)

Because of the absolute convergence of the two infinite series in Eqs. (B 6), we only need
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to show that for any positive even number k,

1

k!

1

(n+ k + 1)!

(z

2

)2k+n+1

− 1

(k + 1)!

1

(n+ k + 2)!

(z

2

)2k+2+n+1

<

z

k!

1

(n+ k)!

(z

2

)2k+n

− z

(k + 1)!

1

(n+ k + 1)!

(z

2

)2k+2+n

,

(B 7)

if 0 < z2 < 2n− 1. Rearranging Eqs. (B 7), we have

z2 < 4(k + 1)(n+ k + 2), (B 8)

which obviously holds because z2 < 2n − 1 < 4n + 4k + 8 6 4(k + 1)(n + k + 2). To
sum up, we have proved that Jn+1(z) < zJn(z) if z2 < 2n − 1, therefore, z0, which
satisfies Jn+1(z0)− z0Jn(z0) = 0, must satisfy z20 > 2n− 1. Consequently, Eqs. (B 5) and
gn(z0) < 0 hold, and thusly the minimum positive root of Eqs. (B 1) is smaller than z0,
which indicates that the minimum positive root of Eqs. (5.43) increases with n, i.e. λ1

decreases with n.
Next, we prove that the minimum positive root of Eqs. (5.47) also increases with n.

The equation

hn(z) = (1 + nlx)z
nJn(z)− lxz

n+1Jn+1(z) = 0 (B 9)

share the non-zero roots with Eqs. (5.47), therefore, we only need to prove the same
statement for Eqs. (B 9). Denoting the minimum positive zero of hn−1(z) as z0, we next
show that hn(z) monotonically increases in [0, z0] such that there is no positive root of
Eqs. (B 9) in [0, z0], i.e. the minimum positive root of Eqs. (B 9) increases with n. Using
the property of Bessel function of (zn+1Jn+1(z))

′ = zn+1Jn(z), where ‘′’ denotes the
derivative with respect to z, we take the derivative of hn(z) with respect to z and obtain

h′
n(z) = (1 + nlx)z

nJn−1(z)− lxz
n+1Jn(z) = z(hn−1(z) + lxz

n−1Jn−1(z)). (B 10)

It is easy to see that hn−1(z) is positive at sufficiently small z (the derivation is similar
to that of F (z, lθ) being positive at sufficiently small z, see Eqs. (5.51)), consequently,
hn−1(z) > 0 in (0, z0). As z0 is smaller than the minimum positive zero of Jn−1(z),
we have Jn−1(z) > 0 in (0, z0). Therefore, h

′
n(z) > 0 in (0, z0), i.e. hn(z) monotonically

increases and there is no positive root of Eqs. (B 9) in (0, z0]. In other words, the minimum
positive root of hn(z) = 0 is always larger than that of hn−1(z) = 0, i.e. the minimum
positive root of Eqs. (5.47) increases with n, and therefore λ2 decreases with n. Now,
we reach the conclusion that maxλ = max{λ1, λ2} decreases with n for α = 0 modes
because λ1 and λ2 both decrease with n.
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