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Abstract

Let {Zn, n ≥ 0} be a supercritical branching process in an independent and identically distribut-
ed random environment. We prove Cramér moderate deviations and Berry-Esseen bounds for
ln(Zn+n0/Zn0) uniformly in n0 ∈ N, which extend the corresponding results by Grama et al.
(Stochastic Process. Appl. 2017) established for n0 = 0. The extension is interesting in theory,
and is motivated by applications. A new method is developed for the proofs; some conditions
of Grama et al. (2017) are relaxed in our present setting. An example of application is given in
constructing confidence intervals to estimate the criticality parameter in terms of ln(Zn+n0/Zn0)
and n.
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1. Introduction

As an important generalization of the Galton-Watson process, the branching process in a
random environment (BPRE) was first introduced by Smith and Wilkinson [19] to modelize the
growth of a population submitted to an independent and identically distributed (iid) random
environment. Basic results for a BPRE can be found in Athreya and Karlin [2, 3] who considered
the stationary and ergodic environment case.

A BPRE can be described as follows. Let ξ = (ξ0, ξ1, ...) be a sequence of independent
and identically distributed (iid) random variables, where ξn stands for the random environment
at time n. Each realization of ξn corresponds to a probability law p(ξn) = {pi(ξn) : i ∈ N}
on N = {0, 1, ...} (pi(ξn) ≥ 0 and

∑∞
i=0 pi(ξn) = 1). A branching process {Zn, n ≥ 0} in the
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random environment ξ can be defined as follows:

Z0 = 1, Zn+1 =
Zn∑
i=1

Xn,i for n ≥ 0,

where Xn,i is the number of offspring of the i-th individual in generation n. Conditioned on the
environment ξ the random variables Xn,i (n ≥ 0, i ≥ 1) are independent, and each Xn,i has the
same law p(ξn). Denote by Pξ the probability when the environment ξ is given, τ the law of
the environment ξ, and

P(dx, dξ) = Pξ(dx)τ(dξ)

the total law of the process; Pξ can be considered as the conditional law of P given the environ-
ment ξ. The conditional probability Pξ is called the quenched law, while the total probability P
is called annealed law. In the sequel Eξ and E denote respectively the quenched and annealed
expectations. Set for n ≥ 0,

mn =
∞∑
k=0

k pk(ξn) and Πn =
n−1∏
i=0

mi,

with the convention that Π0 = 1. Then mn = EξXn,i for each i ≥ 1 and Πn = EξZn. Let

X = logm0, µ = EX.

The process {Zn, n ≥ 0} is called supercritical, critical or subcritical according to µ > 0, µ = 0
or µ < 0, respectively. We call µ the criticality parameter.

Limit theorems for BPRE have attracted a lot of attentions. See for example Vatutin
[21], Afanasyev et al. [1], Vatutin and Zheng [22] and Bansaye and Vatutin [6] on the survival
probability and conditional limit theorems for subcritical BPRE. For supercritical BPRE, a
number of researches have studied moderate and large deviations; see, for instance, Kozlo [15],
Bansaye and Berestycki [4], Böinghoff and Kersting [8], Bansaye and Böinghoff [5], Huang and
Liu [14], Nakashima [18], Böinghoff [7], and Grama, Liu and Miqueu [13].

In this paper, we are interested in Cramér moderate deviations and Berry-Esseen bounds
for a supercritical BPRE. For simplicity we assume that

p0(ξ0) = 0 P-a.s. and σ2 = E(X − µ)2 ∈ (0,∞), (1.1)

which imply that the process is supercritical and Zn →∞ a.s. Under the additional conditions:

EZp1
m0

< ∞ for a constant p > 1 and Eeλ0X < ∞ for a constant λ0 > 0, Grama et al. [13] have
established the Cramér moderate deviation expansion, which implies in particular that for
0 ≤ x = o(

√
n) as n→∞, ∣∣∣∣∣ ln P

(
lnZn−nµ

σ
√
n
≥ x

)
1− Φ(x)

∣∣∣∣∣ ≤ C
1 + x3

√
n

, (1.2)
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where throughout the paper the symbol C, probably supplied with some indices, denotes a
positive constant whose value may differ from line to line. Inequality (1.2) is interesting due to
the fact that it implies a moderate deviation principle (MDP) and the following result about
the equivalence to the normal tail:

P
(

lnZn−nµ
σ
√
n
≥ x

)
1− Φ(x)

= 1 + o(1), (1.3)

for x ∈ [0, o(n1/6)), as n → ∞. Assuming E
(
Z1

m0

)p
< ∞ for a constant p > 1 and EX2+ρ < ∞

for a constant ρ ∈ (0, 1), Grama et al. [13] have also obtained the following Berry-Esseen bound
for lnZn:

sup
x∈R

∣∣∣P( lnZn − nµ
σ
√
n

≤ x
)
− Φ(x)

∣∣∣ ≤ C

nρ/2
. (1.4)

The results (1.2), (1.3) and (1.4) are interesting both in theory and in applications. For
example, they can be applied to obtain confidence intervals to estimate the criticality parameter
µ in terms of the observation Zn and the present time n, or to estimate the population size Zn in
terms of µ and n. In the real-world applications, it may happen that we know a historical data
Zn0 for some n0 > 0, the current population size Zn0+n, as well as the increment n of generation
numbers, but do not know the generation number n0 + n. In such a case (1.2), (1.3) and (1.4)
are no longer applicable to obtain confidence intervals to estimate µ in terms of Zn0 , Zn0+n and
n, while n0 > 0. The same problem exists while we want to construct confidence intervals to
preview Zn0+n in terms of Zn0 , µ and n. Motivated by these problems, we will extend (1.2),

(1.3) and (1.4), with lnZn replaced by ln
Zn0+n
Zn0

, uniformly in n0 ∈ N (so that in applications n0

can be taken as a function of n). This is the main objective of the present paper.
The main results are presented in Section 2. Let us introduce them briefly. Denote by

x+ = max{x, 0} and x− = max{−x, 0} the positive and negative parts of x, respectively. In
Theorem 2.1, assuming E Z1

m0
ln+ Z1 <∞ and Eeλ0X <∞ for a constant λ0 > 0, we prove that

uniformly in n0 ∈ N, for 0 ≤ x = o(
√
n), as n→∞,

∣∣∣∣∣ ln P
( ln

Zn0+n
Zn0

−nµ

σ
√
n

≥ x
)

1− Φ(x)

∣∣∣∣∣ ≤ C(1 + x3)
1 + 1[0,

√
lnn)(x) lnn
√
n

. (1.5)

When n0 = 0, inequality (1.5) reduces nearly to (1.2), with lnn as an additional factor. Notice

that here we do not need the additional condition that EZp1
m0

<∞ for some p > 1 assumed in [13]

for (1.2) to hold. As a consequence, we obtain a uniform MDP for ln
Zn0+n
Zn0

, see Corollary 2.1.

From (1.5), we also obtain the following equivalence to the normal tail: uniformly in n0 ∈ N,
for x ∈ [0, o(n1/6)), as n→∞,

P
( ln

Zn0+n
Zn0

−nµ

σ
√
n

≥ x
)

1− Φ(x)
= 1 + o(1). (1.6)
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When the exponential moment condition Eeλ0X <∞ is relaxed to the sub-exponential moment

condition that E exp{λ0X
4γ

1−2γ } < ∞ for some γ ∈ (0, 1
6
], we prove that (1.6) still holds for

x ∈ [0, o(nγ)); see Theorem 2.2 for a result of type Linnik [16]. Using (1.6), we can prove,
under the exponential moment condition, the following uniform Berry-Esseen bound: uniformly
in n0 ∈ N,

sup
x∈R

∣∣∣P( ln
Zn0+n
Zn0

− nµ
σ
√
n

≤ x
)
− Φ(x)

∣∣∣ ≤ C lnn√
n
. (1.7)

Compared to the best rate C√
n

of the Berry-Esseen bound for random walks, here the factor lnn

is added. We believe that this factor lnn can be removed from (1.7), just as in the case n0 = 0
considered in Grama et al. [13]. In fact for n0 = 0, the more general Berry-Esseen bound C

nρ/2

was established in [13] under the moment condition EX2+ρ <∞ with ρ ∈ (0, 1]. In this paper,

we prove that if EX2+ρ <∞ for some ρ ∈ (0,
√

5−1
2

), then uniformly in n0 ∈ N,

sup
x∈R

∣∣∣P(Zn0,n ≤ x
)
− Φ(x)

∣∣∣ ≤ C

nρ/2
. (1.8)

See Theorem 2.4. Clearly, inequality (1.8) with n0 = 0 reduces to (1.4), which was obtained in
[13] under the additional condition that E

(
Z1

m0

)p
<∞ for some p > 1.

In Section 3, some applications of the main results are demonstrated. We construct confi-
dence intervals for estimating the criticality parameter µ in terms of

Zn0+n
Zn0

and n; see Proposi-

tions 3.1 and 3.2. The proofs of the main results are given in Sections 4 - 8, by developing a
method different to that used in [13] .

2. Main results

It is well-known that the normalized population size

Wn =
Zn
Πn

, n ≥ 0,

is a nonnegative martingale both under the quenched law Pξ and under the annealed law P,
with respect to the natural filtration F0 = σ{ξ}, Fn = σ{ξ,Xk,i, 0 ≤ k ≤ n− 1, i ≥ 1}, n ≥ 1.
Then the limit

W = lim
n→∞

Wn

exists P-a.s. by Doob’s convergence theorem, and satisfies EW ≤ 1 by Fatou’s lemma. Through-
out the paper, assume that

E
Z1

m0

ln+ Z1 <∞. (2.1)

Together with the condition that p0(ξ0) = 0 a.s., condition (2.1) implies that P(W > 0) =
P(Zn → ∞) = limn→∞ P(Zn > 0) = 1, and that the martingale Wn converges to W in L1(P)
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(see Athreya and Karlin [3] and also Tanny [20]). Clearly, the following decomposition holds:

lnZn =
n∑
i=1

Xi + lnWn, (2.2)

where Xi = lnmi−1(i ≥ 1) are iid random variables depending only on the environment ξ. The
asymptotic behavior of lnZn is crucially affected by the associated random walk

Sn =
n∑
i=1

Xi = ln Πn, n ≥ 0.

By our notation and hypothesis (see (1.1)), it follows that X = X1, µ = EX > 0 and σ2 =
E(X − µ)2 ∈ (0,∞); the later implies that the random walk {Sn, n ≥ 0} is non-degenerate.

We will need the following Cramér condition on the associated random walk.

A1. The random variable X = lnm0 has an exponential moment, i.e. there exists a constant
λ0 > 0 such that

Eeλ0X = Emλ0
0 <∞.

Our first result concerns the uniform Cramér moderate deviations for

Zn0,n :=
ln

Zn0+n
Zn0

− nµ
σ
√
n

, n0 ∈ N. (2.3)

Theorem 2.1. Assume condition A1. Then the following results hold uniformly in n0 ∈ N:
for n ≥ 2 and 0 ≤ x <

√
lnn,∣∣∣∣∣ ln P

(
Zn0,n ≥ x

)
1− Φ(x)

∣∣∣∣∣ ≤ C(1 + x3)
lnn√
n

; (2.4)

for n ≥ 2 and
√

lnn ≤ x = o(
√
n) as n→∞,∣∣∣∣∣ ln P

(
Zn0,n ≥ x

)
1− Φ(x)

∣∣∣∣∣ ≤ C
x3

√
n
. (2.5)

The results remain valid when
P(Zn0,n≥x)

1−Φ(x)
is replaced by

P(−Zn0,n≥x)

Φ(−x)
.

The uniformity in n0 is interesting in applications. Due to the uniformity, in (2.4) and (2.5)
we can take n0 as a function of n. Inequality (2.5) coincides with the corresponding result
for the random walk (cf. [9] or inequality (1) of [10]), while in inequality (2.4) there is the
additional factor lnn for BPRE. When n0 = 0, the inequalities (2.4) and (2.5) but without the

factor lnn have been proved by Grama et al. [13] under the additional condition that EZp1
m0

<∞
for some p > 1.

Theorem 2.1 implies the following uniform MDP for Zn0,n.
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Corollary 2.1. Assume condition A1. Let an be any sequence of real numbers satisfying an →
∞ and an/

√
n→ 0 as n→∞. Then, for each Borel set B,

− inf
x∈Bo

x2

2
≤ lim inf

n→∞

1

a2
n

ln inf
n0∈N

P
(
Zn0,n

an
∈ B

)
≤ lim sup

n→∞

1

a2
n

ln sup
n0∈N

P
(
Zn0,n

an
∈ B

)
≤ − inf

x∈B

x2

2
, (2.6)

where Bo and B denote the interior and the closure of B, respectively.

The MDP for Z0,n has been established by Huang and Liu [14] (see Theorem 1.6 therein)
when the random variable X = lnm0 satisfies A1 ≤ m0 and m0(1 + δ) ≤ A1+δ for constants
δ, A1 and A2 satisfying δ > 0 and 1 < A1 < A, and by Wang and Liu [23] under the same
condition A1 but in a more general setting.

From Theorem 2.1, using the inequality |ey − 1| ≤ eC |y| valid for |y| ≤ C, we obtain the
following result about the uniform equivalence to the normal tail.

Corollary 2.2. Assume condition A1. Then, uniformly for n0 ∈ N, as n→∞,

P
(
Zn0,n ≥ x

)
1− Φ(x)

= 1 + o(1) (2.7)

for x ∈ [0, o(n1/6)). The result remains valid when
P(Zn0,n≥x)

1−Φ(x)
is replaced by

P(−Zn0,n≥x)

Φ(−x)
.

Inequality (2.7) states that the relative error for normal approximation tends to zero uni-
formly for x ∈ [0, o(n1/6)). Notice that the normal range x ∈ [0, o(n1/6)) coincides with the
random walk case, under Cramér’s condition A1. In the following Cramér moderate deviation
result of type Linnik [16], we give a normal range when the exponential moment condition A1
is relaxed to

A2. The random variable X = lnm0 has a sub-exponential moment, i.e. there exist two con-
stants λ0 > 0 and γ ∈ (0, 1

6
] such that

E exp{λ0X
4γ

1−2γ } <∞.

Theorem 2.2. Assume condition A2. Then (2.7) holds uniformly in n0 ∈ N, for x ∈ [0, o(nγ)),

as n→∞. The result remains valid when
P(Zn0,n≥x)

1−Φ(x)
is replaced by

P(−Zn0,n≥x)

Φ(−x)
.

Notice that when γ = 1
6
, Theorem 2.2 reduces to Corollary 2.2.

We now consider the uniform Berry-Esseen bound for Zn0,n and −Zn0,n. The following result
under the exponential moment condition A1 can be obtained as a corollary to Theorem 2.1.
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Theorem 2.3. Assume condition A1. Then the following holds uniformly in n0 ∈ N: for
n ≥ 2,

sup
x∈R

∣∣∣P(Zn0,n ≤ x
)
− Φ(x)

∣∣∣ ≤ C
lnn√
n

(2.8)

and

sup
x∈R

∣∣∣P(− Zn0,n ≤ x
)
− Φ(x)

∣∣∣ ≤ C
lnn√
n
. (2.9)

In (2.8) and (2.9) there is the additional factor lnn for BPRE compared to the Berry-Esseen
bound for random walks, for which the best rate is C√

n
. We conjecture that the factor lnn in

(2.8) and (2.9) can be removed, just as in the case where n0 = 0 considered in Grama et al.
[13]. Actually Grama et al. [13] gave the more general Berry-Esseen bound C

nρ/2
for Z0,n under

a moment condition of order 2 + ρ on X, with ρ ∈ (0, 1]. We shall prove the same bound for

Zn0,n when ρ ∈ (0,
√

5−1
2

), namely, when the following moment condition holds:

A3. There exists a constant ρ ∈ (0,
√

5−1
2

) such that

EX2+ρ <∞.

Theorem 2.4. Assume condition A3. Then uniformly in n0 ∈ N,

sup
x∈R

∣∣∣P(Zn0,n ≤ x
)
− Φ(x)

∣∣∣ ≤ C

nρ/2
(2.10)

and

sup
x∈R

∣∣∣P(− Zn0,n ≤ x
)
− Φ(x)

∣∣∣ ≤ C

nρ/2
. (2.11)

For n0 = 0, the inequalities (2.10) and (2.11) have been established by Grama et al. [13,
Theorem 1.1] assuming EX2+ρ <∞ for some ρ ∈ (0, 1] and E( Z1

m0
)p <∞ for some p > 1.

3. Applications to construction of confidence intervals

Cramér moderate deviations can be applied to constructing confidence intervals for the
criticality parameter µ. Assume that σ is known. The following two propositions give two
confidence intervals for µ.

Proposition 3.1. Assume condition A1. Let κn ∈ (0, 1). Assume that∣∣ lnκn∣∣ = o
(
n1/3

)
. (3.1)

Let
∆n =

σ√
n

Φ−1(1− κn/2).
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Then [An, Bn], with

An =
1

n
ln
(Zn0+n

Zn0

)
−∆n and Bn =

1

n
ln
(Zn0+n

Zn0

)
+ ∆n,

is a 1− κn confidence interval for µ, for n large enough.

Proof. By Corollary 2.2, for 0 ≤ x = o(n1/6),

P(Zn0,n ≥ x)

1− Φ (x)
= 1 + o(1) and

P(Zn0,n ≤ −x)

Φ (−x)
= 1 + o(1). (3.2)

Clearly, the upper (κn/2)th quantile of a standard normal distribution

Φ−1(1− κn/2) = −Φ−1(κn/2) = O(
√
| lnκn|),

which, by (3.1), is of order o
(
n1/6

)
. Then applying the last equality to (3.2), we have

P
(
Zn0,n ≥ Φ−1(1− κn/2)

)
∼ κn/2 and P

(
Zn0,n ≤ −Φ−1(1− κn/2)

)
∼ κn/2 (3.3)

as n→∞. Clearly, Zn0,n ≤ Φ−1(1− κn/2) means that µ ≥ An, while Zn0,n ≥ −Φ−1(1− κn/2)
means µ ≤ Bn. This completes the proof of Proposition 3.1. �

When the risk probability κn goes to 0, we have the following result.

Proposition 3.2. Assume condition A1. Let κn ∈ (0, 1) such that kn → 0. Assume that∣∣ lnκn∣∣ = o
(
n
)
. (3.4)

Let
∆n =

σ√
n

√
2| ln(κn/2)|.

Then [An, Bn], with

An =
1

n
ln
(Zn0+n

Zn0

)
−∆n and Bn =

1

n
ln
(Zn0+n

Zn0

)
+ ∆n,

is a 1− κn confidence interval for µ, for n large enough.

Proof. By Theorem 2.1, we have

P(Zn0,n ≥ x)

1− Φ (x)
= exp

{
θ1C

(lnn)3 + x3

n1/2

}
and

P(−Zn0,n ≥ x)

Φ (−x)
= exp

{
θ2C

(lnn)3 + x3

n1/2

}
(3.5)

uniformly for 0 ≤ x = o(n1/2), where θ1, θ2 ∈ [−1, 1]. Notice that

1− Φ (xn) = Φ (−xn) ∼ 1

xn
√

2π
e−x

2
n/2 = exp

{
− x2

n

2

(
1 +

2

x2
n

ln(xn
√

2π)
)}

, xn →∞.
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When kn → 0, the upper (κn/2)th quantile of the distribution

1−
(

1− Φ (x)
)

exp

{
θ1C

(lnn)3 + x2+ρ

nρ/2

}
has the same order as

√
2| ln(κn/2)|, which by (3.4) is of order o

(
n1/2

)
as n → ∞. Then

applying (3.5) to Zn0,n and −Zn0,n, by an argument similar to the proof of Proposition 3.1, we
obtain the desired result. �

4. Proof of Theorem 2.1

We should prove Theorem 2.1 for the case of
P(Zn0,n≥x)

1−Φ(x)
, x ≥ 0. Thanks to the existence a

harmonic moment (see Lemma 4.2), the case of
P(−Zn0,n≥x)

Φ(−x)
can be proved in the similar way.

To this end, we start with the proofs of Lemmas 4.1 and 4.3, and conclude with the proof of
Theorem 2.1. In the sequel, we denote

ηn,i =
Xi − µ
σ
√
n
, i = 1, ..., n0 + n.

Then it is easy to see that
∑n

i=1 Eη2
n,n0+i = 1. Denote

Wn0,n =
Wn0+n

Wn0

and Wn0,∞ =
W

Wn0

.

Then (Wn0,n)n≥0 is also a nonnegative martingales both under the quenched law Pξ and under
the annealed law P with respect to the natural filtration.

The following lemma gives the upper bound of Theorem 2.1.

Lemma 4.1. Assume condition A1. Then the following holds uniformly in n0 ∈ N:
for n ≥ 2 and 0 ≤ x <

√
lnn,

ln
P
(
Zn0,n ≥ x

)
1− Φ(x)

≤ C(1 + x3)
lnn√
n

; (4.1)

and for n ≥ 2 and
√

lnn ≤ x = o(
√
n),

ln
P
(
Zn0,n ≥ x

)
1− Φ(x)

≤ C
x3

√
n
. (4.2)

Proof. We first give a proof for (4.2). Clearly, by (2.2), it holds for x ∈ R,

P
(
Zn0,n ≥ x

)
= P

( n∑
i=1

ηn,n0+i +
lnWn0,n

σ
√
n
≥ x

)
≤ P

( n∑
i=1

ηn,n0+i +
(lnWn0,n)+

σ
√
n

≥ x

)
≤ I1 + I2, (4.3)
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where

I1 = P
( n∑

i=1

ηn,n0+i ≥ (x− x2

σ
√
n

)

)
and I2 = P

(
(lnWn0,n)+

σ
√
n

≥ x2

σ
√
n

)
.

Next, we give some estimations for I1 and I2. Notice that
∑n

i=1 ηn,n0+i is a sum of iid random
variables. By upper bound of Cramér moderate deviations for sums of iid random variables (cf.
inequality (1.1) of [12]), we obtain for

√
lnn ≤ x = o(

√
n),

I1 ≤
(

1− Φ(x− x2

σ
√
n

)

)
exp

{
C√
n

(x− x2

σ
√
n

)3

}
.

Using the following inequalities

1√
2π(1 + x)

e−x
2/2 ≤ 1− Φ (x) ≤ 1√

π(1 + x)
e−x

2/2, x ≥ 0, (4.4)

we deduce that for x ≥ ln 2 and εn ≥ 0,

1− Φ (x(1− εn))

1− Φ (x)
= 1 +

∫ x
x(1−εn)

1√
2π
e−t

2/2dt

1− Φ (x)

≤ 1 +

1√
2π
e−x

2(1−εn)2/2xεn
1√

2π(1+x)
e−x2/2

≤ 1 + Cx2εne
Cx2εn

≤ exp
{
Cx2εn

}
. (4.5)

Hence, for
√

lnn ≤ x = o(
√
n),

I1 ≤
(

1− Φ(x)
)

exp
{
C
x3

√
n

}
. (4.6)

By Markov’s inequality and (4.4), it is easy to see that for
√

lnn ≤ x = o(
√
n),

I2 = P
(
Wn0,n ≥ exp

{
x2
})

≤ exp
{
− x2

}
EWn0,n = exp

{
− x2

}
≤ C

1 + x√
n

(
1− Φ(x)

)
. (4.7)

Combining (4.6) and (4.7) together, we obtain for
√

lnn ≤ x = o(
√
n),

P
(
Zn0,n ≥ x

)
≤

(
1− Φ(x)

)
exp

{
C1

x3

√
n

}
+ C2

(1 + x)√
n

(
1− Φ(x)

)
≤

(
1− Φ(x)

)
exp

{
C3

x3

√
n

}
,
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which gives the desired inequality for
√

lnn ≤ x = o(n1/2).
Next, we give a proof for (4.1). By an argument similar to that of (4.3), we have for x ∈ R,

P
(
Zn0,n ≥ x

)
≤ I3 + I4, (4.8)

where

I3 = P
( n∑

i=1

ηn,n0+i ≥ (x− x2 lnn

σ
√
n

)

)
and I4 = P

(
(lnWn0,n)+

σ
√
n

≥ x2 lnn

σ
√
n

)
.

With arguments similar to that of (4.6) and (4.7), we get for 1 ≤ x <
√

lnn,

I3 ≤
(

1− Φ(x− x2 lnn

σ
√
n

)

)
exp

{
C1√
n

(x− x2 lnn

σ
√
n

)3

}
≤

(
1− Φ(x)

)
exp

{
C2x

3 lnn√
n

}
(4.9)

and

I4 = P
(
Wn0,n ≥ exp

{
x2 lnn

})
≤ exp

{
− x2 lnn

}
EWn0,n = exp

{
− x2 lnn

}
≤ C

1 + x√
n

(
1− Φ(x)

)
. (4.10)

Combining (4.8), (4.9) and (4.10) together, we obtain the desired inequality for 1 ≤ x <
√

lnn.
Again by an argument similar to that of (4.3), we have for x ∈ R,

P
(
Zn0,n ≥ x

)
≤ I5 + I6, (4.11)

where

I5 = P
( n∑

i=1

ηn,n0+i ≥ (x− lnn

σ
√
n

)

)
and I6 = P

(
(lnWn0,n)+

σ
√
n

≥ lnn

σ
√
n

)
.

By the Berry-Esseen bound for a sum of iid random variables, we get for 0 ≤ x < 1,

I5 ≤
(

1− Φ(x− lnn

σ
√
n

)

)(
1 +

C1√
n

)
≤

(
1− Φ(x)

)(
1 + C2

lnn√
n

)(
1 +

C1√
n

)
≤

(
1− Φ(x)

)(
1 + C3

lnn√
n

)
(4.12)

11



and, with an arguments similar to that of (4.7),

I6 = P
(
Wn0,n ≥ exp

{
lnn
})

≤ exp
{
− lnn

}
EWn0,n =

1

n
. (4.13)

Combining (4.11), (4.12) and (4.13) together, we obtain for 0 ≤ x < 1,

P
(
Zn0,n ≥ x

)
≤

(
1− Φ(x)

)(
1 + C3

lnn

σ
√
n

)
+

1

n

≤
(

1− Φ(x)
)(

1 + C4
lnn√
n

)
≤

(
1− Φ(x)

)
exp

{
C4

lnn√
n

}
,

which gives the desired inequality for 0 ≤ x < 1. This completes the proof of Lemma 4.1. �
To prove the lower bound of Theorem 2.1, we shall make use of the following lemma (see

Theorem 3.1 of Grama et al. [13]). The lemma shows that condition A1 implies the existence
of harmonic moments of order a > 0.

Lemma 4.2. Assume condition A1. There exists a constant a0 > 0 such that for a ∈ (0, a0),

EW−a <∞. (4.14)

The following lemma gives the lower bound of Theorem 2.1.

Lemma 4.3. Assume condition A1. Then the following holds uniformly in n0 ∈ N:
for n ≥ 2 and 0 ≤ x <

√
lnn,

ln
P
(
Zn0,n ≥ x

)
1− Φ(x)

≥ −C(1 + x3)
lnn√
n

; (4.15)

and for n ≥ 2 and
√

lnn ≤ x = o(
√
n), n→∞,

ln
P
(
Zn0,n ≥ x

)
1− Φ(x)

≥ −C x3

√
n
. (4.16)

Proof. We first give a proof for (4.16). Clearly, it holds for all x ∈ R,

P
(
Zn0,n ≥ x

)
= P

( n∑
i=1

ηn,n0+i +
lnWn0,n

σ
√
n
≥ x

)
≥ P

( n∑
i=1

ηn,n0+i −
(lnWn0,n)−

σ
√
n

≥ x

)
.

12



Notice that{ n∑
i=1

ηn,n0+i ≥ x+
4x2

aσ
√
n

}
=
{ n∑

i=1

ηn,n0+i −
(lnWn0,n)−

σ
√
n

+
(lnWn0,n)−

σ
√
n

≥ x+
4x2

aσ
√
n

}
⊂
{ n∑

i=1

ηn,n0+i −
(lnWn0,n)−

σ
√
n

≥ x
}
∪
{(lnWn0,n)−

σ
√
n

≥ 4x2

aσ
√
n

}
,

where a is a constant satisfying a ∈ (0,min{a0, 1}) with a0 given by Lemma 4.2. Thus, we have

P
(
Zn0,n ≥ x

)
≥ P

( n∑
i=1

ηn,n0+i ≥ x+
4x2

aσ
√
n

)
− P

(
(lnWn0,n)−

σ
√
n

≥ 4x2

aσ
√
n

)
=: P1 − P2. (4.17)

Next, we give estimations for terms P1 and P2. By lower bound of Cramér moderate deviations
for sums of iid random variables (cf. inequality (1.1) of [10]), we obtain for

√
lnn ≤ x = o(

√
n),

P1 ≥
(

1− Φ(x+
4x2

aσ
√
n

)

)
exp

{
− C√

n
(x+

4x2

aσ
√
n

)3

}
.

By an argument similar to that of (4.5), we deduce that for x ≥ ln 2 and 0 ≤ εn ≤ 1,

1− Φ (x(1 + εn))

1− Φ (x)
≥ exp

{
− Cx2εn

}
. (4.18)

Hence, for
√

lnn ≤ x = o(
√
n),

P1 ≥
(

1− Φ(x)
)

exp
{
− C x3

√
n

}
. (4.19)

By Markov’s inequality, it is easy to see that for
√

lnn ≤ x = o(
√
n),

P2 = P
(

lnWn0+n − lnWn0 ≤ −4x2/a
)

≤ P
(

lnWn0+n ≤ −2x2/a
)

+ P
(
− lnWn0 ≤ −2x2/a

)
≤ exp

{
− 2x2

}
EW−a

n0+n + exp
{
− 2x2/a

}
EWn0

= exp
{
− 2x2

}
EW−a

n0+n + exp
{
− 2x2/a

}
. (4.20)

By (2.1), it is known that Wn → W in L1. Then we have Wn = E[W |Fn] a.s. By Jensen’s
inequality, we get

W−a
n0+n = (E[W |Fn0+n])−a ≤ E[W−a|Fn0+n].

13



Taking expectations with respect to P on both sides of the last inequality, we deduce that

EW−a
n0+n ≤ EW−a. (4.21)

By Lemma 4.2, we have for
√

lnn ≤ x = o(
√
n),

P2 ≤ exp
{
− 2x2

}
EW−a + exp

{
− 2x2

}
≤ C1 exp

{
− 2x2

}
≤ C2

x√
n

(
1− Φ(x)

)
exp

{
− x2

}
. (4.22)

Combining (4.17), (4.19) and (4.22) together, we obtain for
√

lnn ≤ x = o(
√
n),

P
(
Zn0,n ≥ x

)
≥

(
1− Φ(x)

)
exp

{
− C1

x3

√
n

}
− C2

x√
n

(
1− Φ(x)

)
exp

{
− x2

}
≥

(
1− Φ(x)

)
exp

{
− C3

x3

√
n

}
,

which gives the desired inequality for
√

lnn ≤ x = o(
√
n).

For 0 ≤ x <
√

lnn, the assertion of Lemma 4.3 follows by a similar argument, but in
(4.17) with 4x2

aσ
√
n

replaced by 4x2 lnn
aσ
√
n

when 1 ≤ x <
√

lnn and 4x2

aσ
√
n

replaced by 4 lnn
aσ
√
n

when
0 ≤ x < 1, and accordingly in the subsequent statements. Then we get the desired inequality
for 0 ≤ x <

√
lnn. This completes the proof of Lemma 4.3. �

5. Proof of Corollary 2.1

We only give a proof for the case of Zn0,n. We first show that for each Borel set B,

lim sup
n→∞

1

a2
n

ln sup
n0∈N

P
(
Zn0,n

an
∈ B

)
≤ − inf

x∈B

x2

2
. (5.1)

When B = ∅, the last inequality is obvious, with the convention − infx∈∅
x2

2
= ∞. Thus,

we may assume that B 6= ∅. Given a Borel set B ⊂ R, let x0 = infx∈B |x|. Clearly, we have
x0 ≥ infx∈B |x|. Then, by Theorem 2.1,

sup
n0∈N

P
(
Zn0,n ∈ anB

)
≤ sup

n0∈N
P
( ∣∣Zn0,n

∣∣ ≥ anx0

)
≤ 2

(
1− Φ (anx0)

)
exp

{
C (1 + (anx0)3)

1 + 1[0,
√

lnn)(anx0) lnn
√
n

}
.

Using (4.4), after some calculations, we get

lim sup
n→∞

1

a2
n

ln sup
n0∈N

P
(
Zn0,n

an
∈ B

)
≤ −x

2
0

2
≤ − inf

x∈B

x2

2
,
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which gives (5.1).
Next, we show that

lim inf
n→∞

1

a2
n

ln inf
n0∈N

P
(
Zn0,n

an
∈ B

)
≥ − inf

x∈Bo
x2

2
. (5.2)

When Bo = ∅, the last inequality is obvious, with the convention infx∈∅
x2

2
=∞. Therefore, we

may assume that Bo 6= ∅. For any given small ε1 > 0, there exists an x0 ∈ Bo, such that

0 <
x2

0

2
≤ inf

x∈Bo
x2

2
+ ε1.

Since Bo is an open set, for x0 ∈ Bo and all small enough ε2 ∈ (0, |x0|], it holds (x0−ε2, x0+ε2] ⊂
Bo. Therefore, |x0| ≥ infx∈Bo |x|. Without loss of generality, we may assume that x0 > 0.
Obviously, we have

inf
n0∈N

P
(
Zn0,n ∈ anB

)
≥ inf

n0∈N
P
(
Zn0,n ∈ (an(x0 − ε2), an(x0 + ε2)]

)
= inf

n0∈N

(
P
(
Zn0,n ≥ an(x0 − ε2)

)
− P

(
Zn0,n ≥ an(x0 + ε2)

))
.

Again by Theorem 2.1, it is easy to see that

lim
n→∞

supn0∈N P
(
Zn0,n ≥ an(x0 + ε2)

)
infn0∈N P

(
Zn0,n ≥ an(x0 − ε2)

) = 0.

Therefore, by Theorem 2.1, it holds for all n large enough,

inf
n0∈N

P
(
Zn0,n

an
∈ B

)
≥ inf

n0∈N

1

2
P
(
Zn0,n ≥ an(x0 − ε2)

)
≥ 1

2

(
1− Φ (an(x0 − ε2))

)
× exp

{
− C (1 + (an(x0 − ε2))3)

1 + 1[0,
√

lnn)(an(x0 − ε2)) lnn
√
n

}
.

Using (4.4), after some calculations, we get

lim inf
n→∞

1

a2
n

ln inf
n0∈N

P
(
Zn0,n

an
∈ B

)
≥ −1

2
(x0 − ε2)2.

Letting ε2 → 0, we deduce that

lim inf
n→∞

1

a2
n

ln inf
n0∈N

P
(
Zn0,n

an
∈ B

)
≥ −x

2
0

2
≥ − inf

x∈Bo
x2

2
− ε1.

Since ε1 can be arbitrarily small, we get (5.2). Combining (5.1) and (5.2) together, we complete
the proof of Corollary 2.1. �
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6. Proof of Theorem 2.2

To prove Theorem 2.2, we shall make use of the following lemma.

Lemma 6.1. Assume condition A2. There exists a constant b0 > 0 such that for b ∈ (0, b0),

E exp{b | lnW |
4γ

1−2γ }1{W≤1} <∞. (6.1)

Proof. Denote
φ(t) = Ee−tW ,

for t ≥ 0. From inequality (2.7) of Grama et al. [13], there exists a positive constant K such
that for all A > 1, n ≥ 1 and t ≥ KAn,

φ(t) ≤ αn + P(Πn ≥ An), (6.2)

where α ∈ (0, 1). Choose A such that lnA > µ. By condition A2 and Theorem 2.1 of [11], there
exists a constant C > 0 such that for all n ≥ 1,

P(Πn ≥ An) = P
(
Sn − nµ ≥ n(lnA− µ)

)
≤ exp

{
− Cn

4γ
1−2γ

}
.

From (6.2), we get for all n ≥ 1 and t ≥ KAn,

φ(t) ≤ exp{−Cn
4γ

1−2γ }. (6.3)

Now for any t ≥ KA, there exists an integer n0 depending on t such that

KAn0+1 > t ≥ KAn0 ,

so that

n0 >
ln(t/K)

lnA
− 1.

Then, for any t ≥ KA2,

φ(t) ≤ exp{−Cn
4γ

1−2γ

0 } ≤ exp
{
− C(

ln(t/K)

lnA
− 1)

4γ
1−2γ

}
≤ exp

{
− C1(ln t)

4γ
1−2γ

}
, (6.4)

where the last line follows by the fact that ( ln(t/K)
lnA

− 1)/ ln t→ 1/ lnA as t→∞. By the facts
that P(W ≤ t−1) ≤ eφ(t), t > 0, and

E exp{b | lnW |
4γ

1−2γ }1{W≤1} =
4bγ

1− 2γ

∫ ∞
1

1

t
P(W ≤ t−1)(ln t)

6γ−1
1−2γ exp{b (ln t)

4γ
1−2γ }dt,

it follows that E exp{b | lnW |
4γ

1−2γ }1{W≤1} <∞ for b ∈ [0, C1). �
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Now we are in position to prove Theorem 2.2. We only give a proof of Theorem 2.2 for the

case of
P(Zn0,n≥x)

1−Φ(x)
. For the case of

P(−Zn0,n≥x)

Φ(−x)
, Theorem 2.2 can be proved in a similar way. We

first consider the case of
√

lnn ≤ x = o(nγ). Clearly, it holds for
√

lnn ≤ x = o(nγ),

P
(
Zn0,n ≥ x

)
= P

( n∑
i=1

ηn,n0+i +
lnWn0,n

σ
√
n
≥ x

)
≥ P

( n∑
i=1

ηn,n0+i ≥ x+
2x2

σn3γ

)
− P

(
lnWn0,n

σ
√
n
≥ 2x2

σn3γ

)
=: T1 − T2. (6.5)

Next, we give estimations for terms T1 and T2. By lower bound of Linnik type Cramér moderate
deviations for sums of iid random variables (cf. Linnik [16]), we deduce that

T1 ≥
(

1− Φ(x+
2x2

σn3γ
)

)(
1− gn(x)

)
,

where gn(x) ≥ 0 and gn(x) → 0 uniformly for 0 ≤ x = o(nγ) as n → ∞. Hence, by (4.18), we
get for

√
lnn ≤ x = o(nγ),

T1 ≥
(

1− Φ(x)
)

exp
{
− C x3

n3γ

}(
1− gn(x)

)
≥

(
1− Φ(x)

)(
1− gn(x)− C x3

n3γ

)
. (6.6)

By Markov’s inequality, it is easy to see that for
√

lnn ≤ x = o(nγ),

T2 = P
(

lnWn0+n − lnWn0 ≥ 2x2n
1
2
−3γ
)

≤ P
(

lnWn0+n ≥ x2n
1
2
−3γ
)

+ P
(
− lnWn0 ≥ x2n

1
2
−3γ
)

≤ exp
{
− x2n

1
2
−3γ
}
EWn0+n

+ exp
{
− b0

2
(x2n

1
2
−3γ)

4γ
1−2γ

}
E exp{b0

2
| lnWn0|

4γ
1−2γ }1{Wn0≤1},

where b0 is given by Lemma 6.1. Recall that Wn = E[W |Fn] a.s. Since the function

f(x) = exp{b0

2
| lnx|

4γ
1−2γ }1{x≤1}

is convex in the interval (0, 1], by Jensen’s inequality, we get

f(Wn) = f(E[W |Fn]) ≤ E[f(W )|Fn].
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Taking expectations with respect to P on both sides of the last inequality, we deduce that

E[exp{b0

2
| lnWn|

4γ
1−2γ }1{Wn≤1}] ≤ E[exp{b0

2
| lnW |

4γ
1−2γ }1{W≤1}].

By the fact EWn0+n = 1 and Lemma 6.1, we have for
√

lnn ≤ x = o(nγ),

T2 ≤ C exp
{
− min{2, b0}

2
(x2n

1
2
−3γ)

4γ
1−2γ

}
≤ C1√

n

(
1− Φ(x)

)
. (6.7)

Combining (6.5), (6.6) and (6.7) together, we obtain for
√

lnn ≤ x = o(nγ),

P
(
Zn0,n ≥ x

)
≥

(
1− Φ(x)

)(
1− gn(x)− C x3

n3γ

)
− C1√

n

(
1− Φ(x)

)
=

(
1− Φ(x)

)(
1− gn(x)− C x3

n3γ
− C1√

n

)
. (6.8)

Similarly, we can prove that for
√

lnn ≤ x = o(nγ),

P
(
Zn0,n ≥ x

)
≤

(
1− Φ(x)

)(
1 + gn(x) + C

x3

n3γ
+
C1√
n

)
. (6.9)

Combining (6.8) and (6.9) together, we have

P
(
Zn0,n ≥ x

)
=

(
1− Φ(x)

)(
1 + o(1)

)
uniformly for

√
lnn ≤ x = o(nγ). This completes the proof of Theorem 2.2 for

√
lnn ≤ x =

o(nγ). For 0 ≤ x ≤
√

lnn, Theorem 2.2 can be proved in a similar way, but in (6.5) with 2x2

σn3γ

replaced by 2 lnn
σn3γ , and accordingly in the subsequent statements. �

7. Proof of Theorem 2.3

We only give a proof of (2.8). Inequality (2.9) can be proved in a similar way. Clearly, it
holds

sup
x∈R

∣∣P(Zn0,n ≤ x
)
− Φ (x)

∣∣
≤ sup

x>n1/8

∣∣P(Zn0,n ≤ x
)
− Φ (x)

∣∣+ sup
0≤x≤n1/8

∣∣P(Zn0,n ≤ x
)
− Φ (x)

∣∣
+ sup
−n1/8≤x≤0

∣∣P(Zn0,n ≤ x
)
− Φ (x)

∣∣+ sup
x<−n1/8

∣∣P(Zn0,n ≤ x
)
− Φ (x)

∣∣
=: H1 +H2 +H3 +H4. (7.1)
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By Theorem 2.1 and (4.4), it is easy to see that

H1 = sup
x>n1/8

∣∣P(Zn0,n > x
)
−
(
1− Φ (x)

)∣∣
≤ sup

x>n1/8

P
(
Zn0,n > x

)
+ sup

x>n1/8

(
1− Φ (x)

)
≤ P

(
Zn0,n > n1/8

)
+
(
1− Φ

(
n1/8

) )
≤

(
1− Φ

(
n1/8

) )
eC + exp{−1

2
n1/4}

≤ C1
lnn√
n

and

H4 ≤ sup
x<−n1/8

P
(
Zn0,n ≤ x

)
+ sup

x<−n1/8

Φ (x)

≤ P
(
Zn0,n ≤ −n1/8

)
+ Φ

(
−n1/8

)
≤ Φ

(
−n1/8

)
eC + exp{−1

2
n1/4}

≤ C2
lnn√
n
.

By Theorem 2.1 and the inequality |ex − 1| ≤ |x|e|x|, we have

H2 = sup
0≤x≤n1/8

∣∣P(Zn0,n > x
)
−
(
1− Φ (x)

)∣∣
≤ sup

0≤x≤n1/8

(
1− Φ(x)

)∣∣eC(1+x3)(lnn)/
√
n − 1

∣∣
≤ C3

lnn√
n

and

H3 = sup
−n1/8≤x≤0

∣∣P(Zn0,n ≤ x
)
− Φ (x)

∣∣
≤ sup

−n1/8≤x≤0

Φ(x)
∣∣eC(1+|x|3)(lnn)/

√
n − 1

∣∣
≤ C4

lnn√
n
.

Applying the bounds of H1, H2, H3 and H4 to (7.1), we obtain inequality (2.8). This completes
the proof of Theorem 2.3. �
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8. Proof of Theorem 2.4

We should prove Theorem 2.4 for the case of Zn0,n. The cases of −Zn0,n can be proved in
the similar way. To prove the lower bound of Theorem 2.4, we shall make use of the following
lemma, which is an improvement on Lemma 2.3 of Grama et al. [13], in which p ∈ (0, 1 + ρ/2)
instead of p ∈ (0, 1 + ρ).

Lemma 8.1. Assume condition A3. Then for p ∈ (0, 1 + ρ),

E| lnW |p <∞ and sup
n∈N

E| lnWn|p <∞. (8.1)

Proof. By Jensen’s inequality, it is enough to prove Lemma 8.1 for p ∈ [1, 2 + ρ). Recall that
µ = EX and Sn = ln Πn =

∑n
i=1Xi. Then Sn is a sum of iid random variables with (2 + ρ)-

moments. Choose A such that lnA > µ. Clearly, we have A > 1. By Nagaev’s inequality (see
Corollary 1.8 of Nagaev [17] or Corollary 2.5 of [11]), there exists a constant C ′ > 0 such that
for n ≥ 1,

P(Πn ≥ An) = P
(
Sn − nµ ≥ n(lnA− µ)

)
≤ C ′

n1+ρ
.

From (6.2), we get for all n ≥ 1 and t ≥ KAn,

φ(t) ≤ C

n1+ρ
. (8.2)

Now for any t ≥ KA, set n0 be the integer such that KAn0+1 > t ≥ KAn0 , so that

n0 >
ln(t/K)

lnA
− 1.

Thus, by (8.2), for any t ≥ KA2,

φ(t) ≤ C

n1+ρ
0

≤ C
( ln(t/K)

lnA
− 1
)−1−ρ

≤ C0(ln t)−1−ρ. (8.3)

By the facts that P(W ≤ t−1) ≤ eφ(t), t > 0, and

E| lnW |p1{W≤1} = p

∫ ∞
1

1

t
(ln t)p−1P(W ≤ t−1)dt,

it follows that E| lnW |p1{W≤1} <∞ for p ∈ [1, 1+ρ). Using the inequality | lnx|p ≤ Cx, x > 1,
we deduce that E| lnW |p1{W>1} ≤ CEW ≤ CEWn = C. Thus, we have

E| lnW |p = E| lnW |p1{W≤1} + E| lnW |p1{W>1} <∞.
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Notice that x 7→ | lnx|p1{0<x≤1} is a non-negative and convex function for p ∈ [1, 1 + ρ). By
Lemma 2.1 of Huang and Liu [14], we have supn E| lnWn|p1{Wn≤1} = E| lnW |p1{W≤1} <∞. It
is also easy to see that for p ∈ [1, 1 + ρ),

sup
n

E| lnWn|p ≤ sup
n

E| lnWn|p1{Wn≤1} + sup
n

E| lnWn|p1{Wn>1}

≤ E| lnW |p1{W≤1} + C sup
n

EWn = E| lnW |p1{W≤1} + C <∞.

This completes the proof of Lemma 8.1. �
Now we are in position to prove Theorem 2.4. We first prove that for x ∈ R,

P
(
Zn0,n ≤ x

)
− Φ(x) ≤ C

nρ/2
. (8.4)

It is easy to see that

P
(
Zn0,n ≤ x

)
≤ P

( n∑
i=1

ηn,n0+i −
(lnWn0,n)−

σ
√
n

≤ x

)
≤ R1 +R2, (8.5)

where

R1 = P
( n∑

i=1

ηn,n0+i ≤ x+
2

σnρ/2

)
and R2 = P

(
(lnWn0,n)−

σ
√
n

≥ 2

σnρ/2

)
.

Next, we give estimations for R1 and R2. By the Berry-Esseen bound for a sum of iid random
variables, we obtain

R1 ≤ Φ(x+
2

σnρ/2
) +

C1

nρ/2

≤ Φ(x) +
C2

nρ/2
. (8.6)

Notice that when ρ ∈ (0, (
√

5 − 1)/2), we have p := ρ
1−ρ < 1 + ρ. By Markov’s inequality and

Lemma 8.1, it is easy to see that

R2 ≤ P
(
| ln(Wn0+n/Wn0)| ≥ 2n(1−ρ)/2

)
≤ P

(
| lnWn0+n|+ | lnWn0 | ≥ 2n(1−ρ)/2

)
≤ P

(
| lnWn0+n| ≥ n(1−ρ)/2

)
+ P

(
| lnWn0| ≥ n(1−ρ)/2

)
≤ n−p(1−ρ)/2E| lnWn0+n|p + n−p(1−ρ)/2E| lnWn0|p ≤ 2n−ρ/2 sup

n
E| lnWn|p

≤ C

nρ/2
. (8.7)
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Applying the upper bounds of R1 and R2 to (8.5), we obtain (8.4).
Next, we prove that for x ∈ R,

P
(
Zn0,n ≤ x

)
− Φ(x) ≥ − C

nρ/2
. (8.8)

Clearly, it holds

P
(
Zn0,n ≤ x

)
≥ P

( n∑
i=1

ηn,n0+i +
(lnWn0,n)+

σ
√
n

≤ x

)
≥ R3 −R4, (8.9)

where

R3 = P
( n∑

i=1

ηn,n0+i ≤ x− 1

σnρ/2

)
and R4 = P

(
(lnWn0,n)+

σ
√
n

≥ 1

σnρ/2

)
.

Again by the Berry-Esseen bound for a sum of iid random variables, we obtain

R3 ≥ Φ(x− 1

σnρ/2
)− C1

nρ/2

≥ Φ(x)− C2

nρ/2
. (8.10)

Again by Markov’s inequality, we get

R4 ≤ P
(
Wn0,n ≥ exp{n(1−ρ)/2}

)
≤ exp{−n(1−ρ)/2}EWn0,n = exp{−n(1−ρ)/2}

≤ C

nρ/2
. (8.11)

Applying the upper bounds of R3 and R4 to (8.9), we obtain (8.8).
Combining (8.4) and (8.8) together, we get∣∣∣P(Zn0,n ≤ x

)
− Φ(x)

∣∣∣ ≤ C

nρ/2
, (8.12)

which gives the desired inequality. �
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