Uniform Cramér moderate deviations and Berry-Esseen bounds for a
supercritical branching process in a random environment

Xiequan Fan**, Haijuan HuP, Quansheng Liu®

@Center for Applied Mathematics, Tianjin University, Tianjin 300072, China
bSchool of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao, China
¢ Université de Bretagne-Sud, LMBA, UMR CNRS 6205, Campus de Tohannic, 56017 Vannes, France

Abstract

Let {Z,,n > 0} be a supercritical branching process in an independent and identically distribut-
ed random environment. We prove Cramér moderate deviations and Berry-Esseen bounds for
In(Zy4ny/Zn,) uniformly in ng € N, which extend the corresponding results by Grama et al.
(Stochastic Process. Appl. 2017) established for ny = 0. The extension is interesting in theory,
and is motivated by applications. A new method is developed for the proofs; some conditions
of Grama et al. (2017) are relaxed in our present setting. An example of application is given in
constructing confidence intervals to estimate the criticality parameter in terms of In(Z,, 1,/ Zn,)
and n.
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1. Introduction

As an important generalization of the Galton-Watson process, the branching process in a
random environment (BPRE) was first introduced by Smith and Wilkinson [19] to modelize the
growth of a population submitted to an independent and identically distributed (iid) random
environment. Basic results for a BPRE can be found in Athreya and Karlin [2, 3] who considered
the stationary and ergodic environment case.

A BPRE can be described as follows. Let & = (&, &,...) be a sequence of independent
and identically distributed (iid) random variables, where &, stands for the random environment
at time n. Each realization of , corresponds to a probability law p(&,) = {pi(§.) : i € N}
on N ={0,1,...} (pi(&) > 0 and > ;2 pi(§,) = 1). A branching process {Z,,n > 0} in the
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random environment ¢ can be defined as follows:

Zn,
Zo =1, Zni1 =Y Xpi for n>0,

i=1

where X, ; is the number of offspring of the i-th individual in generation n. Conditioned on the
environment ¢ the random variables X,,; (n > 0,7 > 1) are independent, and each X,,; has the
same law p(,). Denote by P, the probability when the environment ¢ is given, 7 the law of
the environment &, and

P(dx,df) = Pe(dx)T(dE)

the total law of the process; P¢ can be considered as the conditional law of P given the environ-
ment . The conditional probability PP is called the quenched law, while the total probability PP
is called annealed law. In the sequel E; and E denote respectively the quenched and annealed
expectations. Set for n > 0,

[e'e] n—1
my, = Z kpp(&,) and 10, = H m;,
k=0 i=0

with the convention that IIy = 1. Then m,, = EcX,,; for each ¢ > 1 and II,, = E¢Z,,. Let
X =logmgy, p=EX.

The process {Z,,n > 0} is called supercritical, critical or suberitical according to p > 0, 4 =0
or i < 0, respectively. We call p the criticality parameter.

Limit theorems for BPRE have attracted a lot of attentions. See for example Vatutin
[21], Afanasyev et al. [1], Vatutin and Zheng [22] and Bansaye and Vatutin [6] on the survival
probability and conditional limit theorems for subcritical BPRE. For supercritical BPRE, a
number of researches have studied moderate and large deviations; see, for instance, Kozlo [15],
Bansaye and Berestycki [4], Boinghoff and Kersting [8], Bansaye and Béinghoff [5], Huang and
Liu [14], Nakashima [18], Boinghoff [7], and Grama, Liu and Miqueu [13].

In this paper, we are interested in Cramér moderate deviations and Berry-Esseen bounds
for a supercritical BPRE. For simplicity we assume that

po(&%) =0 P-as. and o> =E(X — u)? € (0,00), (1.1)

which imply that the process is supercritical and Z,, — oo a.s. Under the additional conditions:
P

E% < oo for a constant p > 1 and Ee** < oo for a constant \g > 0, Grama et al. [13] have
established the Cramér moderate deviation expansion, which implies in particular that for

0 <z =o0(y/n) as n — oo,

P > )

1 —d(z)

3
<Cl—|—a:

<O

In (1.2)




where throughout the paper the symbol C', probably supplied with some indices, denotes a
positive constant whose value may differ from line to line. Inequality (1.2) is interesting due to
the fact that it implies a moderate deviation principle (MDP) and the following result about
the equivalence to the normal tail:
P > )
1—®(x)

=1+ o(1), (1.3)

for x € [0,0(n'/%)), as n — co. Assuming E(%)p < oo for a constant p > 1 and EX* < oo
for a constant p € (0,1), Grama et al. [13] have also obtained the following Berry-Esseen bound
for In Z,,:

sup (P
zeR

<ann—n C (1.4)

Tgx) —@(x)‘ gm.

The results (1.2), (1.3) and (1.4) are interesting both in theory and in applications. For
example, they can be applied to obtain confidence intervals to estimate the criticality parameter
1 in terms of the observation Z,, and the present time n, or to estimate the population size Z,, in
terms of  and n. In the real-world applications, it may happen that we know a historical data
Zy, for some ny > 0, the current population size Z,, ,, as well as the increment n of generation
numbers, but do not know the generation number ny + n. In such a case (1.2), (1.3) and (1.4)
are no longer applicable to obtain confidence intervals to estimate p in terms of Z,,,, Z,, 1. and
n, while ng > 0. The same problem exists while we want to construct confidence intervals to
preview Z,,in in terms of Z,,, u and n. Motivated by these problems, we will extend (1.2),
(1.3) and (1.4), with In Z,, replaced by In "Oz" uniformly in ny € N (so that in applications ny

can be taken as a function of n). This is the main objective of the present paper.

The main results are presented in Section 2. Let us introduce them briefly. Denote by
xt = max{z,0} and x~ = max{—=x,0} the positive and negative parts of x, respectively. In
Theorem 2.1, assuming E% Int Z; < oo and Ee*X < oo for a constant \g > 0, we prove that
uniformly in ng € N, for 0 < x = o(y/n), as n — oo,

In n0+n_nu
P =g > 1+1 z)Inn
In - ) <O+ 2°) o, () I (1.5)
1—®(x) vn

When ngy = 0, inequality (1.5) reduces nearly to (1.2), With Inn as an additional factor. Notice
that here we do not need the additional condition that E L < oo for some p > 1 assumed in [13]

n0+n

for (1.2) to hold. As a consequence, we obtain a umform MDP for In , see Corollary 2.1.

From (1.5), we also obtain the following equivalence to the normal tall. unlformly in ng € N,
for z € [0,0(n'/%)), as n — oo,

o —1+o0(1). (1.6)



When the exponential moment condition Ee*oX

< o0 is relaxed to the sub-exponential moment

condition that ]Eexp{)\oleigV} < oo for some vy € (0,%], we prove that (1.6) still holds for
€ [0,0(n")); see Theorem 2.2 for a result of type Linnik [16]. Using (1.6), we can prove,
under the exponential moment condition, the following uniform Berry-Esseen bound: uniformly

in ng € N,

In notn nu Cl
Z nn

Compared to the best rate f of the Berry-Esseen bound for random walks, here the factor Inn
is added. We believe that this factor Inn can be removed from (1.7), just as in the case ng =0
considered in Grama et al. [13]. In fact for ny = 0, the more general Berry-Esseen bound nP—C/Q
was established in [13] under the moment condition EX?*™” < oo with p € (0,1]. In this paper,

we prove that if EX2t < oo for some p € (0, ¥2= >—1), then uniformly in ng € N,

C
ilég P(Zngn < ) — Q)(x)‘ < T

(1.8)

See Theorem 2.4. Clearly, inequality (1.8) with ny = 0 reduces to (1.4), which was obtained in
[13] under the additional condition that E(%)p < oo for some p > 1.

In Section 3, some applications of the main results are demonstrated We construct confi-
dence intervals for estimating the criticality parameter y in terms of ”L;" and n; see Proposi-
tions 3.1 and 3.2. The proofs of the main results are given in Sections A - 8, by developing a
method different to that used in [13] .

2. Main results

It is well-known that the normalized population size

Zy,
Wn = H_n’ n 2 07
is a nonnegative martingale both under the quenched law P¢ and under the annealed law PP,
with respect to the natural filtration Fy = o{¢}, F,, = 0{§, Xk, 0 <k <n—1,i>1},n > 1.
Then the limit
W = lim W,

n—oo

exists P-a.s. by Doob’s convergence theorem, and satisfies EW < 1 by Fatou’s lemma. Through-
out the paper, assume that
Z
EZL Int 7, < 0. (2.1)
mo

Together with the condition that py(§y) = 0 a.s., condition (2.1) implies that P(WW > 0) =
P(Z, — o) = lim, o P(Z, > 0) = 1, and that the martingale W,, converges to W in L!(PP)



(see Athreya and Karlin [3] and also Tanny [20]). Clearly, the following decomposition holds:

nZ, =Y X;+InW,, (2.2)

i=1

where X; = Inm;_;(i > 1) are iid random variables depending only on the environment &. The
asymptotic behavior of In Z,, is crucially affected by the associated random walk

Sp=>Y X;=Mnll,, n>0
=1

By our notation and hypothesis (see (1.1)), it follows that X = X;, uy = EX > 0 and 02 =
E(X — u)? € (0,00); the later implies that the random walk {S,,n > 0} is non-degenerate.
We will need the following Cramér condition on the associated random walk.

A1l. The random variable X = Inmg has an exponential moment, i.e. there exists a constant
Ao > 0 such that
Ee*X = Emy° < oo.

Our first result concerns the uniform Cramér moderate deviations for

Zno “+n
Zng WM

o\v/n ’

Theorem 2.1. Assume condition A1. Then the following results hold uniformly in ng € N:
form>2and 0 <z <+Inn,

In
Lnon =

ng € N. (23)

P(Zpyn > )
11— ®(x)

<CO(1+ :1:3)1117:;; (2.4)

In

forn >2 and vVInn < x = o(y/n) as n — oo,

P(Zpyn > ) x?

In —2 — 2| < (0. 2.5
. O(z) | T /n (2:5)
The results remain valid when % 15 replaced by P(;(f([%zm.

The uniformity in ng is interesting in applications. Due to the uniformity, in (2.4) and (2.5)
we can take ng as a function of n. Inequality (2.5) coincides with the corresponding result
for the random walk (cf. [9] or inequality (1) of [10]), while in inequality (2.4) there is the
additional factor Inn for BPRE. When ny = 0, the inequalities (2.4) and (2.5) but without the
factor Inn have been proved by Grama et al. [13] under the additional condition that ]Efl—i < 00
for some p > 1.

Theorem 2.1 implies the following uniform MDP for Z,,, .

5



Corollary 2.1. Assume condition A1. Let a, be any sequence of real numbers satisfying a,, —
oo and a,//n — 0 as n — oo. Then, for each Borel set B,

2 1 Z
— inf T < liminf—zln inf P(M GB)

zeBe 9 n—oo  ag noEN an,
1 Z z?
< limsup — In sup ]P’(M € B> < —inf —, (2.6)
n—oo Qp noeN Qp, zeB

where B° and B denote the interior and the closure of B, respectively.

The MDP for Z,,, has been established by Huang and Liu [14] (see Theorem 1.6 therein)
when the random variable X = Inm, satisfies A; < mg and mg(1 +6) < A9 for constants
9, A; and A, satisfying § > 0 and 1 < A; < A, and by Wang and Liu [23] under the same
condition A1 but in a more general setting.

From Theorem 2.1, using the inequality |e¥ — 1] < e%Jy| valid for |y| < C, we obtain the
following result about the uniform equivalence to the normal tail.

Corollary 2.2. Assume condition A1. Then, uniformly for ng € N, as n — oo,

P(Znyn >
for x € [0, o(n'/%)). The result remains valid when % is replaced by W

Inequality (2.7) states that the relative error for normal approximation tends to zero uni-
formly for = € [0,0(n'/%)). Notice that the normal range = € [0,0(n'/%)) coincides with the
random walk case, under Cramér’s condition A1l. In the following Cramér moderate deviation
result of type Linnik [16], we give a normal range when the exponential moment condition A1
is relaxed to

A2. The random variable X = Inmg has a sub-exponential moment, i.e. there exist two con-
stants Ao > 0 and v € (0, ¢] such that

Eexp{AoX%} < 0.

Theorem 2.2. Assume condition A2. Then (2.7) holds uniformly inng € N, forz € [0, o(n")),

Aoz s peplaced by “granze)

as n — 0o. The result remains valid when
Notice that when v = %, Theorem 2.2 reduces to Corollary 2.2.
We now consider the uniform Berry-Esseen bound for Z,,, ,, and —Z2,,, ,,. The following result
under the exponential moment condition A1l can be obtained as a corollary to Theorem 2.1.



Theorem 2.3. Assume condition A1. Then the following holds uniformly in ny € N: for
n>2,

Inn
sup |P(Zpyn < —@x’ﬁC— 2.8
SUp |P(Znyn < 2) = &(2) NG (2.8)
and |
sup |P( — Zpyn < ) — <I>(:1:)‘ < o2 (2.9)

zeR \/ﬁ

In (2.8) and (2.9) there is the additional factor Inn for BPRE compared to the Berry-Esseen

bound for random walks, for which the best rate is % We conjecture that the factor Inn in

(2.8) and (2.9) can be removed, just as in the case where ng = 0 considered in Grama et al.

[13]. Actually Grama et al. [13] gave the more general Berry-Esseen bound - for Z;,, under

a moment condition of order 2 4+ p on X, with p € (0,1]. We shall prove the same bound for

Znen When p € (0, ‘/52_1

), namely, when the following moment condition holds:

A3. There exists a constant p € (0, */52_1) such that

EX?T < 0.

Theorem 2.4. Assume condition A3. Then uniformly in ng € N,

C
sup P(Zpom < ) — <I>(.r)’ <—% (2.10)
and c
sup P(— Zngn < ) — <I>(a:)‘ < (2.11)

For ny = 0, the inequalities (2.10) and (2.11) have been established by Grama et al. [13,
Theorem 1.1] assuming EX?** < oo for some p € (0,1] and E(fl—t)” < oo for some p > 1.
3. Applications to construction of confidence intervals

Cramér moderate deviations can be applied to constructing confidence intervals for the
criticality parameter p. Assume that o is known. The following two propositions give two
confidence intervals for p.

Proposition 3.1. Assume condition A1. Let k,, € (0,1). Assume that
| In Iin‘ = 0(n1/3). (3.1)
Let

A, = %@*(1 — ki /2).



Then [A,, By, with

AnZ%m(@) — A, and B, = lhn(@) A,

no n
15 a 1 — Kk, confidence interval for u, for n large enough.
Proof. By Corollary 2.2, for 0 < z = o(n!/%),

P(Zyyn > )
1—®(x)

P(Znym < —x)
O (—x)

=1+o0(1) and =1+o0(1). (3.2)

Clearly, the upper (k,/2)th quantile of a standard normal distribution

(1 — Kp/2) = =D H(Kn/2) = O(v/|Ink,|),
which, by (3.1), is of order o(nl/ﬁ). Then applying the last equality to (3.2), we have
P(Zno’n > (1 - /in/Q)) ~ K,/2 and P(Zno’n < -0 11— Iin/Z)) ~ Kp/2 (3.3)

as n — oo. Clearly, Z,,, < ® (1 — k,/2) means that p > A, while Z,,,,, > —®7'(1 — x,,/2)
means 4 < B,. This completes the proof of Proposition 3.1. 0
When the risk probability &, goes to 0, we have the following result.

Proposition 3.2. Assume condition A1. Let k, € (0,1) such that k, — 0. Assume that

| In linl =o(n). (3.4)
Let o
A, = %\/2| In(k,/2)|.

Then [A,, By, with

Anzlln(%> - A, and B,= l111(@> + A,
n

ng n

is a 1 — Kk, confidence interval for u, for n large enough.

Proof. By Theorem 2.1, we have

P(Zngn > @) (Inn)3 + 2* P(—Zpyy > ) (Inn)3 + 2*
T{)(I) = exXp {9107 and P (_x) = exXp GQCT (35)

uniformly for 0 < z = o(n'/?), where 0,6, € [~1,1]. Notice that

1 2 £C2 2
1= ®(2,) = ®(—2,) ~ ———e /2 = ——"<1 2 In(z,v?2 ) = 00,
() (—zp) %\/ﬁe exp{ 5 +x% n(r,V2r)) ¢, x 00

8



When k,, — 0, the upper (k,/2)th quantile of the distribution

L (10 ) e {poE

has the same order as /2|In(k,/2)|, which by (3.4) is of order o(n'/?) as n — oo. Then

applying (3.5) to Z,, , and —Z,, ,, by an argument similar to the proof of Proposition 3.1, we
obtain the desired result. OJ

4. Proof of Theorem 2.1

We should prove Theorem 2.1 for the case of (”0—’(’?), x > 0. Thanks to the existence a
harmonic moment (see Lemma 4.2), the case of w can be proved in the similar way.

To this end, we start with the proofs of Lemmas 4.1 and 4.3, and conclude with the proof of
Theorem 2.1. In the sequel, we denote

1=1,....n9+n.

Then it is easy to see that Y ., ]Eni’no +i = L. Denote

Wno+n w
d W, .= .
W, 0 W,

Whom =

Then (Wyyn)n>o is also a nonnegative martingales both under the quenched law P¢ and under
the annealed law P with respect to the natural filtration.
The following lemma gives the upper bound of Theorem 2.1.

Lemma 4.1. Assume condition A1. Then the following holds uniformly in ng € N:
form>2and 0 <z < +VlInn,

P(Znonzx) Inn
_\Znon = 7)o ‘
In o0 C’(1+x)\/ﬁ (4.1)
and for n > 2 and VInn < x = o(y/n),
P(Znyn = 3
o PGnon 2 2) _ 2 (4.2)

— - < (—=.
o) = vm
Proof. We first give a proof for (4.2). Clearly, by (2.2), it holds for z € R,

- ann n lHWn n)
P(Znovnzx) = P(;nmno-l—i_’_ U\/ﬁo = )<P(Z"7nno+z \/0— Zl‘)

< L+ 1, (4.3)




where

= x? (In Wyyn)™ x?
L =P onoti > (T — d IL=P ol > .
1 <;”’°+—(x aﬁ)) B ( oV —aﬁ)

Next, we give some estimations for [; and ;. Notice that Z?:l Nnono+i 15 @ sum of iid random
variables. By upper bound of Cramér moderate deviations for sums of iid random variables (cf.
inequality (1.1) of [12]), we obtain for VInn < z = o(y/n),

x? C x?
L <([1—-®(x— —(z — 3L
- ( “ aﬁ)) exp{ﬁ@ v }
Using the following inequalities
1 1
e PP (2) < ——— 2, 2 >0, (4.4)

Vor(1+z) = V7l +x) ’

we deduce that for x > In2 and ¢, > 0,

x 1 2
1— @ (I‘(l — gn)) - 1 + fm(lfsn) \/_27_‘_6 t /th
1—®(x) 1—®(x)
_1 _xQ(l_En)2/2xg
var n
1+ T

V2r(1+x)
1+ szgnecx%n

exp {Ca:an}. (4.5)

IN

_$2/2

IN A

Hence, for vInn < x = o(y/n),

I < (1 - @(x)) exp {cj—;} (4.6)

By Markov’s inequality and (4.4), it is easy to see that for VInn <z = o(y/n),
P<Wn0,n > exp {x2}>
exp { — x2}EWn07n = exp{ — xz}

< cljﬁw (1- (). (4.7)

Combining (4.6) and (4.7) together, we obtain for VInn <z = o(y/n),

b+ “\%”’) (1- ()
3

I

IN

3

8

P(Zno,n > x) < (1 - <1>(g;)) exp {01

S S

< <1 — @(:v)) exp {03

10



which gives the desired inequality for vInn < 2 = o(n'/?).
Next, we give a proof for (4.1). By an argument similar to that of (4.3), we have for z € R,

P(Znon =) < I3+ 14, (4.8)

where

= r?Inn (InW,yn)™ _ 2%Inn
Iy =P onoti > (T — d L=P ol > .
‘°’ (2" o 20 )) e ( N wﬁ)

With arguments similar to that of (4.6) and (4.7), we get for 1 <z < VInn,

I; < (1 — Pz - ‘ii;lﬁn)) exp {%(:ﬁ - xji;lﬁn)?’}
< (1-ow) e o) (19

and

I, = P(Wno’n > exp {x2 1nn}>

< exp { —2%In n}EWnM = exp { —2%In n}

IN

01;; (1- (). (4.10)

Combining (4.8), (4.9) and (4.10) together, we obtain the desired inequality for 1 < z < vInn.
Again by an argument similar to that of (4.3), we have for x € R,

IED(Zno,n Z I’) S I5 + ]67 (411)

where

& Inn (InWpn)t . Inn
I;=P nnoti > (T — d Ig=P o > :
5 (;n ,no+ —(':C O'\/ﬁ)) an 6 ( O‘\/ﬁ - U\/ﬁ)

By the Berry-Esseen bound for a sum of iid random variables, we get for 0 <z < 1,

I < (1—@(x—;n_\/7%)>(1+%>

< (1-o@)(1+ OQmTZ) (1+ %)
< (1 . <I>(:v)) (1 + cngZ) (4.12)

11



and, with an arguments similar to that of (4.7),

Iy = P(Wno,n > exp { 1nn}>

1
< exp{ —1In n}]EWnO,n = —. (4.13)
n

Combining (4.11), (4.12) and (4.13) together, we obtain for 0 < z < 1,

P(Zno,nz:c) < (1—@( ))(1+Cgl%) 1

< (1-2@) (1+0413%1)

< (1 - @(x)) exp {04132}

which gives the desired inequality for 0 < x < 1. This completes the proof of Lemma 4.1. [J

To prove the lower bound of Theorem 2.1, we shall make use of the following lemma (see
Theorem 3.1 of Grama et al. [13]). The lemma shows that condition A1 implies the existence
of harmonic moments of order a > 0.

n

Lemma 4.2. Assume condition A1. There exists a constant ag > 0 such that for a € (0, ag),
EW™ < o0. (4.14)
The following lemma gives the lower bound of Theorem 2.1.

Lemma 4.3. Assume condition A1. Then the following holds uniformly in ng € N:
form>2and 0 <z <+Inn,

P(Znonzx) 5. Inn
— 2 — 7> _(C(1 —; 4.1
In - 0@ = O +m)\/ﬁ, (4.15)

and for n > 2 and VInn < z = o(y/n), n — oo,

]P’(Zno,n > x) a3
—Tew 2 (4.16)

Proof. We first give a proof for (4.16). Clearly, it holds for all z € R,

IP><Zno,n— > (Znnnoﬂ lnmjz_on_ )>P<Z77nno+z anj}O—n) Z:L’)

12



Notice that

(InWion)™  (InWyyn)™ 422
{Znnnﬁlzx—i_aa\/_} {Znnnﬁl_ ovn * o\v/n 2x+aa\/ﬁ}

- 2
I It

where a is a constant satisfying a € (0, min{ao, 1}) with ay given by Lemma 4.2. Thus, we have

& 4 (In Wi n)~ 4
P Zn n > > P n,no+1 > -P m >
< 0 _x) - (;n’°+ _x+aa\/ﬁ) ( o\v/n _aa\/ﬁ>

Next, we give estimations for terms P; and P». By lower bound of Cramér moderate deviations
for sums of iid random variables (cf. inequality (1.1) of [10]), we obtain for vInn < z = o(y/n),

P > <1 — ®(z + aifjﬁ)) eXp{ — %(m + aigjﬁ)i”}.

By an argument similar to that of (4.5), we deduce that for x > In2 and 0 <¢, <1,

1—®(z(l1+e,))
1 - (x)

> exp { — szen}. (4.18)

Hence, for vInn < x = o(y/n),

II??’

P > (1 . @(x)) exp{ . c%}. (4.19)
By Markov’s inequality, it is easy to see that for VInn < z = o(y/n),

P - P(ln Wigin — In W,y < —4:1:2/a>

IA

IP’(ln Wigan < —2x2/a) + IP’< 1aW,, < —2x2/a>
< exp { — 2z }EWn0+n + exp { - 2x2/a} o
= exp { —2x }EWno+n + exp { - 2m2/a}. (4.20)

By (2.1), it is known that W, — W in L'. Then we have W, = E[W|F,] a.s. By Jensen’s
inequality, we get

Woghn = (EW|Fngn]) ™ < E[WFpin].

no+n

13



Taking expectations with respect to P on both sides of the last inequality, we deduce that
EW ¢ <EW™“ (4.21)

no+n

By Lemma 4.2, we have for vVInn < x = o(y/n),
P, < exp { — ZxZ}EW*“ + exp { — 23:2}

< exp{ — 2:1:2}

_ 2
C’g\/_(l O(x )> exp{ x } (4.22)
Combining (4.17), (4.19) and (4.22) together, we obtain for VInn < z = o(y/n),

3

P(Znow =) > (1 — @(x)) exp{ — Cl%} - 02%(1 - @(x)) exp{ — xQ}

> (1= @) e { - cgj—;},

which gives the desired inequality for VInn < z = o(y/n).

For 0 < x < VInn, the assertion of Lemma 4.3 follows by a similar argument, but in
(4.17) with % replaced by 43;\1;%" when 1 < z < vInn and aifjﬁ replaced by 2L when
0<z <1, an accordingly in the subsequent statements. Then we get the desired inequality

for 0 < x < v/Inn. This completes the proof of Lemma 4.3. O

IN

5. Proof of Corollary 2.1

We only give a proof for the case of Z,,,,. We first show that for each Borel set B,

1 Znon o
lim sup — In sup IP’( &t e B> < —inf —. (5.1)
n—o0 a no€EN (07% x€B
When B = (), the last inequality is obvious, with the convention —inf,cg % = oo. Thus,

we may assume that B # (). Given a Borel set B C R, let zg = inf,cp |z|. Clearly, we have
xo > inf 5 |z|. Then, by Theorem 2.1,

sup P(Zno’n € anB> < sup IP’( |Zn0 n| > anx())

no€eN no€eN

< 2(1 — P (a,xo) ) exp {C’ (14 (anzo)?)

1+ 1 /iy (@no) lnn}

NG

Using (4.4), after some calculations, we get

1 Lo m 2 2
limsup—ansup]P’(LGB) < -2 < —inf %,

n—oo no€EN Qp

14



which gives (5.1).
Next, we show that

1 A 2
liminf — In inf P(M € B) > inf T (5.2)

n—oo  ay noeN A, z€Be 2

When B° = (), the last inequality is obvious, with the convention inf,cg % = oo. Therefore, we
may assume that B° # (). For any given small £; > 0, there exists an oy € B°, such that

2

inf l + &1.

2
e
-0 <
reB° 2

0<
Since B° is an open set, for o € B° and all small enough €5 € (0, |xo], it holds (zg—eq, xo+e2] C
B°. Therefore, |zg| > inf,cpo |x|. Without loss of generality, we may assume that zo > 0.
Obviously, we have
inf P(Zno,n S anB) > inf ]P’(Znom € (an(xo — €2), an(xo + 52)])

noeN no€EN

= inf <P<Zno,n > CLn(l'Q - 82)) - ]P)(Zn()ﬂ > an(l‘o + EQ))).

no€eN

Again by Theorem 2.1, it is easy to see that

i SUProen P(Zngm = an(zo + €2)) o
n—00 infnoeNP<Zn0,n Z an<x0 - 62))

Therefore, by Theorem 2.1, it holds for all n large enough,

Lo m . 1
inf IP(# S B) > inf —P <Zn07n > ap(xo — 52))

no€eN an, no€N 2

1

> 5(1 — & (ap(zg — 62))>

1+ 1 iy (an(zo —€2)) Inn
xexp{—0(1+(an(;p0—52))3) i [Oﬂr)(\/ﬁ( £2)) }

Using (4.4), after some calculations, we get

1 Lnom 1
liminf — In inf ]P’(¢ € B) > —5(3:0 —&9)%

n—00 (A, no€EN ap,

Letting €5 — 0, we deduce that
1 Zn N 2 2
liminf — In inf ]P’(L S B) > —% > _inf = —£1.

n—oo  ac no€EN Qp, - zeBe 2

Since €1 can be arbitrarily small, we get (5.2). Combining (5.1) and (5.2) together, we complete
the proof of Corollary 2.1. O
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6. Proof of Theorem 2.2

To prove Theorem 2.2, we shall make use of the following lemma.

Lemma 6.1. Assume condition A2. There exists a constant by > 0 such that for b € (0, by),

Eexp{b|In W|1i737}1{w§1} < 00.

Proof. Denote
o(t) = Ee ",

(6.1)

for t > 0. From inequality (2.7) of Grama et al. [13], there exists a positive constant K such

that forall A>1,n>1andt > KA",

o(t) < o™ +P(I1, > A™),

(6.2)

where a € (0,1). Choose A such that In A > u. By condition A2 and Theorem 2.1 of [11], there

exists a constant C' > 0 such that for all n > 1,

P(IL, > A") =P(S, —np >n(ln A — p)) <exp{ — C’nl%v}

From (6.2), we get for alln > 1 and t > K A",
4y
¢(t) < exp{—Cn™7}.
Now for any t > K A, there exists an integer ng depending on ¢ such that
KA™H >t > KA™,
so that

In(t/K)
InA

ng >

Then, for any t > K A2,

o(t) < eXp{—C’ng%”} < exp{ _ C(ln(t/K) _ 1)137}

In A
< exp{ - C’l(lnt)l%w},

(6.4)

where the last line follows by the fact that (2 — 1)/Int — 1/In A as t — co. By the facts

In A
that P(W < ¢ 1) <eo(t),t > 0, and

4by

Y & 1 Y— 2l
E exp{b | 1HW|1E727}1{W§1} = _/ SP(W <t (In t)% exp{b (hlt)lfi%/}dt,
1

1—2y t
it follows that E exp{b|In W‘%}l{wgl} < oo for b € [0,CY).
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Now we are in position to prove Theorem 2.2. We only give a proof of Theorem 2.2 for the

case of %. For the case of W, Theorem 2.2 can be proved in a similar way. We

first consider the case of VInn <z = o(n”). Clearly, it holds for vVInn <z = o(n?),
u In W, »

u 222 In W, 22
> P e S - | -P on >
> H( Sz 25) (2 07
= Tl—TQ. (65)

Next, we give estimations for terms 77 and T5. By lower bound of Linnik type Cramér moderate
deviations for sums of iid random variables (cf. Linnik [16]), we deduce that

2

T, > (1 — O(z + j;y) (1 - gn(w)>,

where g,(x) > 0 and g,,(z) — 0 uniformly for 0 < z = o(n”) as n — oco. Hence, by (4.18), we
get for vVInn < x = o(n?),

3

T, > (1 — <I>(a:)> exp{ — C%} <1 — gn(zz:))
> (1 - q)(szz)) (1 — galz) — CZ%) (6.6)

By Markov’s inequality, it is easy to see that for vVInn < x = o(n7),

Ty = P(ln Whotn —In Wy > 2x2n%_37>

IA

P(ln Whotn = ané—iﬁ) + P( —InW,, > $2n%_37>

IN

exp { — xzn%_3V}EWno+n

b 1 4y b 4y
+exp{ - Eo(xznf?”)l‘” }Eexp{io | In W |72 g, <13

where b is given by Lemma 6.1. Recall that W,, = E[W|F,] a.s. Since the function

b
fx) = exp{ | In 2|75 e
is convex in the interval (0, 1], by Jensen’s inequality, we get

fWh) = FEW|F]) < E[f(W)|F].
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Taking expectations with respect to P on both sides of the last inequality, we deduce that
bo _4y bo _4y
E[CXP{E | In Wn| 1-2v }l{anl}] S E[exp{; | In W| 1—2v }1{W§1}]

By the fact EW,,,+, = 1 and Lemma 6.1, we have for vInn < z = o(n"),

(22398 }

T, < Cexp{——min{jbO}
< %(1-@(@). (6.7)

Combining (6.5), (6.6) and (6.7) together, we obtain for vInn < z = o(n?),

P(Zyyw > ) > (1—®()) (1 — gu(z) — 05—;) - %(1 — ()
- (- 0@) (1- s - 5 - ) (63
Similarly, we can prove that for vInn < z = o(n?),
P(Zoyn >2) < (1- () (1 + () + an—; + %) (6.9)

Combining (6.8) and (6.9) together, we have
P(Znow =) = (1—@(2))(1+0(1))

uniformly for vInn < x = o(n?). This completes the proof of Theorem 2.2 for vinn < z =
o(nY). For 0 < x < v/Inn, Theorem 2.2 can be proved in a similar way, but in (6.5) with

replaced by ii{g?, and accordingly in the subsequent statements.

222
on37

7. Proof of Theorem 2.3

We only give a proof of (2.8). Inequality (2.9) can be proved in a similar way. Clearly, it
holds

sup |P(Zpem < ) — @ (2) |

zeR
< sup |P(Zpgn <) =@ (2) |+ sup |P(Zpgn <) — @ ()]
z>nl/8 0<z<nl/8
+ sup  |P(Znn<z)—@(2)|+ sup |P(Zngn <z)— P (2))|
—nl/8<2<0 x<—nl/8
= H1+H2+H3+H4. (71)
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By Theorem 2.1 and (4.4), it is easy to see that

H,

and

VANVA

VAN

IN

IN

IN

IN

sup |]P’(Zn0m > $) — (1 — & (z) )‘

x>nl/8

sup P(Zpgn > ) + sup (1—@(x))

x>nl/8

x>nl/8

P(Zngm > n'®) + (1= @ (n'/?))
(1@ (%) ) + exp(— '/}

sup P(Zygn <)+ sup @(z)

x<—nl/8

r<—nl/8

P(Zpyn < —1'%) + @ (—n'/®)

1
o (—nl/g) e’ + exp{—§n1/4}

Inn
CHy——.
2\/5

By Theorem 2.1 and the inequality |e” — 1| < |z|el*!, we have

H,

and

IN

<

<

sup  |P(Zpgn > ) = (1= @ ()]

0<z<nl/8

sup (1 — ®(x)) ‘60(1”3)(1‘1")/‘/5 — 1|

0<z<nl/8
Inn

C3—=
NZD

sup
_nl/SSxSO

sup
_nl/SSxSO

Inn
Cy—=.

Vn

IP(Zpyn < x) — @ (2) |

B()| ATl ImVi _ g

Applying the bounds of Hy, Hs, H and Hy to (7.1), we obtain inequality (2.8). This completes

the proof of Theorem 2.3.
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8. Proof of Theorem 2.4

We should prove Theorem 2.4 for the case of Z,,,,. The cases of —Z,,, can be proved in
the similar way. To prove the lower bound of Theorem 2.4, we shall make use of the following
lemma, which is an improvement on Lemma 2.3 of Grama et al. [13], in which p € (0,1 + p/2)
instead of p € (0,1 + p).

Lemma 8.1. Assume condition A83. Then forp € (0,14 p),

ElmW||P <oco and supE|lnW,|P’ < co. (8.1)
neN

Proof. By Jensen’s inequality, it is enough to prove Lemma 8.1 for p € [1,2 + p). Recall that
p=EX and S, = Inll, = > | X;. Then S, is a sum of iid random variables with (2 + p)-
moments. Choose A such that In A > u. Clearly, we have A > 1. By Nagaev’s inequality (see
Corollary 1.8 of Nagaev [17] or Corollary 2.5 of [11]), there exists a constant C’ > 0 such that
forn > 1,

!

P(IL, > A") =P(S, —np > n(ln A — p)) <

nlte’
From (6.2), we get for all n > 1 and t > K A",

C

Now for any ¢t > KA, set ng be the integer such that K A™*™t > ¢ > KA™_ so that
In(t/K)
o > InA
Thus, by (8.2), for any t > K A%
C In(t/K) —1-p 1
6(t) < o < (J( - 1) < Cy(lnt)~1. (8.3)

By the facts that P(W < ¢t71) < eg(t),t > 0, and
1
E|lnW[P1ay<yy —p/ g(lnt)pfl]P(W <t ')dt,
1

it follows that E|In W{P1{w<1y < oo for p € [1,1+p). Using the inequality |Inz? < Cz,z > 1,
we deduce that E|In WPlpws1y < CEW < CEW,, = C. Thus, we have

E[ln WP = E|[In W[P1gy<yy +E[In W[P1gysyy < oo,
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Notice that x +— [Inz|Plio<z<1y is a non-negative and convex function for p € [1,1 + p). By
Lemma 2.1 of Huang and Liu [14], we have sup, E|In W, [P1iw, <13 = E|In W|Plgy<iy < oo. It
is also easy to see that for p € [1,1 + p),

supE[In W, [P < supE|InW,|P1iw, <1y +supE[In W, "Ly, ~1y
< EllnW|Plpw<y + CsupEW, = E[In W|P1py<y + C < o0.

This completes the proof of Lemma 8.1. 0J
Now we are in position to prove Theorem 2.4. We first prove that for z € R,
C
P(zm,,n < x) —0@) < —. (8.4)

It is easy to see that

(1
]P(Zno,n < > < P(Znn no+i — HW\;O_n) < a:) < Ry + Ry, (8.5)

where

2 (InWhgn)~ 2
Ry = (ZnnnoJrsz"i_O_n /2) and R2:P< O'\/ﬁ EUnP/Z)-

=1

Next, we give estimations for R; and Rs. By the Berry-Esseen bound for a sum of iid random
variables, we obtain

2 Ch
R, < ®(x+ —cmf’/Q) + o
Co

Notice that when p € (0, (v/5 — 1)/2), we have p := 15, <1+ p. By Markov’s inequality and
Lemma 8.1, it is easy to see that

Ry

IN

P (| 10(Wig 4/ Way )| = 2007/2)

IP’(] 10 Wiy sn| + | In Wiy | > 277,(1”3)/2)

IN

IN

P(’ In WnoJrn‘ 2 n(lip)/2> + P(’ In Wno’ > n(lip)ﬂ)
n PP 2R I W, P + 0 PA=P2E| In W, [P < 20~/ sup E| In W, |?
C

np/2‘

IN

IN

(8.7)
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Applying the upper bounds of R; and Rs to (8.5), we obtain (8.4).
Next, we prove that for x € R,

P(Zpyn <) — O(z) > ———. (8.8)

nP/ 2

Clearly, it holds

(In W,
P(Zno’n < > > P(Znn no+i n—\/%> < .r) > R3 — Ry, (8.9)

where

1 oI W )" 1
(Znnnw_ Un/) and R4—]P’( o/ ZanP/Q )

Again by the Berry-Esseen bound for a sum of iid random variables, we obtain

1 4
By z ®@-05) = om
Cy
Again by Markov’s inequality, we get
R, < ]P(Wno,n > exp{n(l_p)/2}>
< exp{-nCPPYEW,, , = exp{—n(0}
C
< — (8.11)
Applying the upper bounds of R3 and Ry to (8.9), we obtain (8.8).
Combining (8.4) and (8.8) together, we get
C
(P(Zno,n <z)- @(x)‘ < (8.12)
which gives the desired inequality. ([l
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