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Summary

For massive survival data, we propose a subsampling algorithm to efficiently approx-
imate the estimates of regression parameters in the additive hazards model. We
establish consistency and asymptotic normality of the subsample-based estimator
given the full data. The optimal subsampling probabilities are obtained via minimiz-
ing asymptotic variance of the resulting estimator. The subsample-based procedure
can largely reduce the computational cost compared with the full data method. In
numerical simulations, our method has low bias and satisfactory coverage probabil-
ities. We provide an illustrative example on the survival analysis of patients with
lymphoma cancer from the Surveillance, Epidemiology, and End Results Program.
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1 INTRODUCTION

Advancements in health information technology have led to an influx of massive data. One common feature of massive data is
the huge number of observations (large n), which lays a heavy burden on storage and computation. In recent years substantial
research effort has been devoted to the statistical analysis of massive data. For example, Zhao et al.1 considered a partially linear
framework for modeling massive heterogeneous data. Battey et al.2 investigated hypothesis testing and parameter estimation
using the “divide and conquer” algorithm. Shi et al.3 studied the “divide and conquer" method for cubic-rate estimators. Jordan
et al.4 presented a communication-efficient surrogate likelihood method for distributed statistical inference problems. Volgushev
et al.5 proposed a two-step distributed inference for quantile regression with massive datasets.
Another approach to the analysis of massive data is subsampling, e.g. Ma et al.6 proposed a leveraging-based subsampling

procedure. Wang et al.7 and Wang8 developed optimal subsampling methods for logistic regression. Wang et al.9 provided an
information-based optimal subdata selection approach in the context of linear models. Wang and Ma10 investigated optimal
subsampling for quantile regression. Zhang andWang11 proposed a distributed subsampling procedure for big data linearmodels.
Note that the “divide and conquer" method aims at analyzing the full data with parallel or distributed computing platforms,
while the subsampling method focuses on fast calculation with limited computing resources in practical applications.
The above-mentioned articles are mainly focused on completely observed (uncensored) data. Only a limited number of papers

have studied the topics onmassive survival data. For example, Kawaguchi et al.12 developed a new scalable sparse Cox regression
method for high-dimensional survival data with massive sample sizes. Wang et al.13 proposed an efficient “divide and conquer"
algorithm to fit sparse Cox regression with massive datasets. Xue et al.14 proposed an online updating approach for testing the
proportional hazards assumption with streams of survival data.
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As a competitive alternative to the Cox proportional hazards (PH) model, the additive hazards (AH) model (Aalen15; Lin
and Ying16) has several advantages: examining additive associations vs. multiplicative associations, not assuming proportional
hazards, and avoiding issues with the interpretation of the hazard ratio. These advantages may also scale well to the massive
data case, while Xue et al.14 demonstrated the complexity of examining PH with massive data. To the best of our knowledge,
subsampling procedures have not been developed for censored survival data. In this paper, we propose a subsampling-based
estimation method for massive survival data in the context of AH model. There are several advantages of our method. First,
we propose a subsample-based estimator to approximate the full data estimator, and our method effectively reduces the com-
putational CPU time. Second, the subsample-based estimator has an explicit expression, which is easy to calculate in practical
applications. Third, we establish the asymptotic distribution of the subsample-based estimator given full data, which is very
useful from the view of statistical inference.
The remainder of this paper is organized as follows. In Section 2, we review the AHmodel and propose a general subsampling

algorithm. Asymptotic properties of the subsample estimator are established. In Section 3, we give a desirable subsampling
strategy. In Section 4, we evaluate our method through numerical simulations. A real example of lymphoma cancer is illustrated
in Section 5. Section 6 concludes this paper with some discussions. Technical proofs of theoretical results, Tables S.1 − S.6, an
additional simulation study, and R codes for our proposed method are given in the Supporting Information.

2 METHODS

2.1 Notations and Estimation of AH Model
Let Ti be the failure time and Ci be the censoring time, i = 1,⋯ , n. Denote the observed follow-up time by T̃i = min(Ti, Ci),
where Ti and Ci are assumed to be independent in this paper. The failure indicator is Δi = I(Ti ≤ Ci), and the censoring rate
is � = 1 − n−1

∑n
i=1Δi. Denote the observed-failure counting process byNi(t) = I(T̃i ≤ t,Δi = 1), and the at-risk indicator by

Yi(t) = I(T̃i ≥ t). Following Lin and Ying,16 the intensity ofNi(t) with additive hazards function is

dΛi(t) = Yi(t){dΛ0(t) + �′Xidt}, 1 ≤ i ≤ n, (1)

where � = (�1,⋯ , �p)′ is a vector of regression parameters belonging to a compact subset ofℝp, Xi = (Xi1,⋯ , Xip)′ is a vector
of covariates, and Λ0(t) = ∫ t

0 �0(s)ds is an unknown baseline cumulative hazards function. From Lin and Ying,16 an estimator
�̂ZE can be obtained by solving the estimating equation Ψ(�) = 0, where

Ψ(�) = 1
n

n
∑

i=1

�

∫
0

{Xi − X̄(t)}{dNi(t) − Yi(t)�′Xidt}. (2)

Here X̄(t) =
∑n
i=1 Yi(t)Xi∕

∑n
i=1 Yi(t), and � > 0 is the length of the study. For convenience, denote the full data by n =

(Xfull, T̃full,�full), where Xfull = (X1,⋯ ,Xn)′ is the covariate matrix, T̃full = (T̃1,⋯ , T̃n) consists of the observed follow-
up times, and �full = (Δ1,⋯ ,Δn) consists of the failure indicators. Furthermore, (Xi, T̃i,Δi) are independent observations,
i = 1,⋯ , n. We rewrite (2) as

Ψ(�) = 1
n

n
∑

i=1
 i(�), (3)

where  i(�) = ∫ �
0 {Xi− X̄(t)}{dNi(t)−Yi(t)�′Xidt}, i = 1,⋯ , n. When the sample size n is very large, it is time-consuming to

calculate �̂ZE due to the heavy computational burden. To deal with this problem, we propose a subsampling-based procedure.
The basic idea is as follows: assign subsampling probabilities �i > 0 for full data (Xi, T̃i,Δi) with

∑

i∈S0
�i = � and

∑

i∈S1
�i =

1 − �, where � is the censoring rate, S0 = {i ∶ Δi = 0} and S1 = {i ∶ Δi = 1} are the index sets of censored and noncensored
individuals, respectively. Draw a random subsample of size r(≪ n) from the full data with replacement according to subsampling
probabilities {�i}ni=1. Denote the corresponding subsample as (X∗i , T̃

∗
i ,Δ

∗
i ) with subsampling probabilities �∗i , for i = 1,⋯ , r.

Based on this subsample, we propose a weighted estimating function

U∗(�) = 1
nr

r
∑

i=1

1
�∗i
U ∗
i (�), (4)

where U ∗
i (�) = ∫ �

0 {X
∗
i − X̄

∗(t)}{dN∗
i (t) − Y ∗i (t)�

′X∗i dt}, with X̄
∗(t) = {

∑r
i=1 �

∗−1
i Y ∗i (t)X

∗
i }∕{

∑r
i=1 �

∗−1
i Y ∗i (t)}, N

∗
i (t) =

I(T̃ ∗i ≤ t,Δ∗i = 1) and Y ∗i (t) = I(T̃ ∗i ≥ t), i = 1,⋯ , r. Later we will show that U∗(�) is asymptotically unbiased towards
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(3) given n. Hence, we can get a subsample-based estimator �̃ by solving U∗(�) = 0, and use �̃ to approximate the full data
estimate �̂ZE . Our method can effectively reduce the computational burden, and the comparison of CPU time is given in the
simulation section.

2.2 Subsampling Algorithm and Asymptotic Properties
In this section, we propose a subsampling algorithm for the subsample estimator �̃ as follows:

Algorithm 1 Subsampling Algorithm
Step 1 (Sampling): assign subsampling probabilities �i > 0 for the full data n with

∑

i∈S0
�i = � and

∑

i∈S1
�i = 1− �. Draw a

random subsample of size r(≪ n) from the full data with replacement according to {�i}ni=1. Denote the corresponding subsample
as (X∗i , T̃

∗
i ,Δ

∗
i ) together with �

∗
i , for i = 1,⋯ , r.

Step 2 (Estimation): We obtain a subsampling-based estimator �̃ satisfying U∗(�̃) = 0 with the subsample in Step 1, where �̃
has an explicit expression

�̃ =
[

1
nr

r
∑

i=1

1
�∗i

�

∫
0

Y ∗i (t){X
∗
i − X̄

∗(t)}⊗2dt
]−1[ 1

nr

r
∑

i=1

1
�∗i

�

∫
0

{X∗i − X̄
∗(t)}dN∗

i (t)
]

, (5)

where c⊗2 = cc′ for a vector c.

Given n, the consistency and asymptotic normality of �̃ are needed to determine the optimal subsampling probabilities in
Section 3. Under assumptions (A.1)−(A.7) in the Supporting Information, as n→∞ and r→∞, for any � > 0, with probability
approaching one, there exist finite Δ� and r� , such that

P (‖�̃ − �̂ZE‖ ≥ r−1∕2Δ�|n) < �, (6)

for all r ≥ r� . This consistency ensures that we can efficiently approximate �̂ZE by the subsample-based estimator �̃. Hence, we
use �̃ rather than �̂ZE to reduce the computational burden.
Next, we establish the asymptotic normality of �̃. Under assumptions (A.1)−(A.8) in the Supporting Information, as n→∞

and r→∞, conditional on n, we have

�−1∕2(�̃ − �̂ZE)
d
←→ N(0, I), (7)

where
d
←→ denotes convergence in distribution, � = −1�−1 with

 = 1
n

n
∑

i=1

�

∫
0

Yi(t){Xi − X̄(t)}⊗2dt, (8)

and

� = 1
rn2

n
∑

i=1

1
�i

�

∫
0

{Xi − X̄(t)}⊗2dNi(t). (9)

3 SUBSAMPLING STRATEGIES

We consider how to specify the subsampling probablities {�i}ni=1. A naive choice is the uniform subsampling strategy with
�i = n−1, for i = 1,⋯ , n. However, these uniform subsampling probabilities may not be optimal, and a nonuniform subsampling
method could have a better performance.7 Our idea is to determine the optimal subsampling probabilities by minimizing the
asymptotic variance matrix � of �̃ in (7). Since � is a matrix, the meaning of “minimizing" needs to be carefully defined. For
this purpose, we use the trace to induce a complete ordering of the asymptotic variance matrix.17 The asymptotic mean squared
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error (AMSE) of �̃ is equal to the trace of �, which is given by

AMSE(�̃) = tr(�), (10)

where tr(⋅) denotes the trace of a matrix.
As mentioned above, the subsampling probabilities derived by minimizing tr(�) require the calculation of−1, which takes

substantial time in the case of large n. Because  and � are nonnegative definite, and � = −1�−1, simple matrix algebra
yields that tr(�) = tr(�−2) ≤ [tr(�2)]1∕2[tr(−4)]1∕2 ≤ tr(�)tr(−2) ≤ n�max(−2)tr(�), where �max(⋅) denotes the maxi-
mum eigenvalue of a matrix. That is, the minimizer of tr(�) minimizes an upper bound of tr(�). In fact, � depends on �i only
through �, and is free of �i. Hence, we suggest to determine the subsampling probabilites by directly minimizing tr(�), which
can effectively speed up the subsampling algorithm. Note that

tr(�) = tr
(

1
rn2

n
∑

i=1

∫ �
0 {Xi − X̄(t)}

⊗2dNi(t)
�i

)

= 1
rn2

n
∑

i=1

tr(∫ �
0 {Xi − X̄(t)}

⊗2dNi(t))
�i

= 1
rn2

[

∑

i∈S0

tr(∫ �
0 {Xi − X̄(t)}

⊗2dNi(t))
�i

+
∑

i∈S1

tr(∫ �
0 {Xi − X̄(t)}

⊗2dNi(t))
�i

]

= 1
rn2

∑

i∈S1

tr(∫ �
0 {Xi − X̄(t)}

⊗2dNi(t))
�i

.

Due to dNi(t) = 0 for i ∈ S0, the corresponding subsampling probabilities {�i}i∈S0 are not included in tr(�). Hence, we cannot
determine {�i}i∈S0 by minimizing tr(�). We point out that �i > 0 is a basic requirement to ensure the asymptotic unbiasedness
of U∗(�). In this case, one choice for the subsampling probabilities of censored individuals is �mΓi = �∕K for i ∈ S0, where K
denotes the number of elements inS0. Till now, the key point is to assign subsampling probabilities for non-censored individuals.
The following result gives the subsampling probabilities �mΓi for i ∈ S1.
Under assumptions (A.1)−(A.8) in the Supporting Information, if the subsampling probabilities are chosen as

�mΓi = (1 − �) ⋅
tr1∕2{∫ �

0 {Xi − X̄(t)}
⊗2dNi(t)}

∑

i∈S1
tr1∕2{∫ �

0 {Xi − X̄(t)}⊗2dNi(t)}
, for i ∈ S1 (11)

then tr(�) attains its minimum, where � = 1−n−1
∑n
i=1Δi is the censoring rate. Of note, since

∑

i∈S0
�i = � and

∑

i∈S1
�i = 1−�,

a subsample has a similar censoring rate with the full data. In this case, a subsample can potentially capture the censoring
property of the full data. Numerical simulation indicates that this choice works well in practice.
In what follows, the subsample estimator �̆ can be obtained by replacing �i with �mΓi in (5), i = 1,⋯ , n. To reduce the

computational burden, we propose to estimate the covariance matrix of �̆ with one subsample as follows:

�̆ = ̆−1�̆̆−1
, (12)

where

̆ = 1
nr

r
∑

i=1

1
�∗i

�

∫
0

Y ∗i (t){X
∗
i − X̄

∗(t)}⊗2dt,

�̆ = 1
n2r2

r
∑

i=1

1
�∗i

2

�

∫
0

{X∗i − X̄
∗(t)}⊗2dN∗

i (t),

and {�∗i }
r
i=1 are the corresponding subsampling probabilities for a subsample. The standard errors of components in �̆ are the

square roots of the diagonal elements of �̆. We will evaluate the performance of (12) using numerical simulations in Section 4.

4 NUMERICAL STUDIES

In this section, we conduct three simulation studies to assess 1) our method’s performance with optimal and uniform subsampling
probabilities in comparison to the full data approach, 2) the gain in computation time, and 3) our method’s performance withmild
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Table 1. Simulation results on the subsample estimator �̆ with Case I‡.

OSP UNIF
r bias ESE SSE CP bias ESE SSE CP

�1 = −1 100 0.0465 0.2565 0.2483 0.961 0.0642 0.2665 0.2656 0.952
300 0.0177 0.1378 0.1339 0.963 0.0184 0.1426 0.1423 0.939
500 0.0101 0.1054 0.1101 0.940 0.0136 0.1087 0.1155 0.945

�2 = −0.5 100 0.0273 0.2146 0.2139 0.954 0.0322 0.2234 0.2303 0.956
300 0.0074 0.1126 0.1135 0.955 0.0100 0.1155 0.1080 0.966
500 0.0035 0.0852 0.0849 0.960 0.0034 0.0875 0.0889 0.951

�3 = 0 100 0.0001 0.1908 0.1871 0.959 0.0043 0.1957 0.2026 0.945
300 0.0029 0.0984 0.0975 0.945 0.0030 0.1002 0.1022 0.948
500 0.0006 0.0744 0.0723 0.959 0.0006 0.0760 0.0761 0.946

�4 = 0.5 100 0.0238 0.2120 0.2054 0.965 0.0333 0.2186 0.2174 0.957
300 0.0126 0.1115 0.1132 0.952 0.0176 0.1146 0.1192 0.938
500 0.0079 0.0846 0.0883 0.939 0.0078 0.0870 0.0890 0.961

�5 = 1 100 0.0519 0.2547 0.2466 0.966 0.0613 0.2670 0.2742 0.957
300 0.0236 0.1376 0.1364 0.951 0.0290 0.1420 0.1462 0.943
500 0.0124 0.1047 0.1055 0.946 0.0128 0.1088 0.1123 0.937

‡ “OSP" denotes the proposed method with optimal subsampling probabilities; “UNIF" denotes the proposed method with uniform subsampling probabilities; “bias" denotes the sample mean of the estimates minus

the estimator �̂ZE ; “ESE" denotes the estimated standard error of the estimates; “SSE" denotes the sampling standard error of the estimates; “CP" denotes the empirical 95% coverage probability towards �̂ZE .

vs. heavy censoring and how the censoring proportion could affect the choice of r. First, we generate failure times (T1,⋯ , Tn)
from the AH model with hazards function �(t|X) = 1 + �′X, where the true parameter is � = (−1,−0.5, 0, 0.5, 1)T with p = 5.
We consider four cases for the generation of covariate matrix X,
Case I : X ∼N(0,�), where Σij = 0.5|i−j|.
Case II: X ∼N(0,�), where Σij = 0.5I(i≠j).
Case III: X = (X1,⋯ , X5)T , and Xi are independent exponential random variables with probability density function f (x) =
2e−2xI(x > 0), i = 1,⋯ , 5.
Case IV: X ∼ t5(0,�), where X follows a multivariate t distribution with degree 5 and covariance matrix Σij = 0.5|i−j|.
Note that the above Cases I and II are symmetric, Case III is asymmetric, and Case IV is heavy-tailed. The censoring time Ci

are generated from the uniform distribution over (0, 3), which leads to about 28% censoring rate. The observed follow-up times
are T̃i = min(Ti, Ci), for i = 1,⋯ , n. We carry out computation on a sever with 128GB memory using R software. In Table 1,
we report the estimation results from “the proposed method with optimal subsampling probabilities (OSP)" vs. “the proposed
method with uniform subsampling probabilities (UNIF)" for Case I (other cases are given in Tables S.1 − S.3 of the Supporting
Information) including the estimated bias (bias) given by the sample mean of the estimates minus the full data estimator �̂ZE ,
the estimated standard error (ESE) of the estimates, the sampling standard error (SSE) of the estimates, and the empirical 95%
coverage probability (CP). Given n, the above simulation results are based on L =1000 replications with n = 105, r = 100,
300 and 500. It can be seen from the results that both estimators are unbiased. The ESE and SSE of subsample estimator are
close to each other, and the coverage probabilities are satisfactory. Their performances become better as the subsample size r
increases. Moreover, both ESE and SSE of the OSP-based estimates are smaller than those of UNIF-based method.
For further comparison, let

MSE = 1
L

L
∑

l=1
‖�̆(l) − �̂ZE‖2, (13)

where �̆(l) is from the lth replication, l = 1,⋯ , L. In Figure 1, we present the MSEs of each method. From the results, we can
see that the MSEs of OSP are smaller than those of UNIF. To evaluate the estimation performances of OSP and UNIF towards
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Figure 1. The MSEs for different subsampling methods.

different distribution of covariates, we define the estimation efficiency of OSP-based estimator relative to UNIF as

Relative Eff iciency =
MSE(�̆unif )

MSE(�̆osp)
,

where MSE is define in (13), �̆unif and �̆osp are the subsample estimators with UNIF and OSP, respectively. Figure 2 presents
the relative efficiency towards different settings of covariates. We can conclude that �̆osp is more efficient than �̆unif , especially
in Cases III and IV.

Table 2. The CPU time for Case I with r = 100 (seconds)‡.

n
Method 104 2 × 104 5 × 104 105

UNIF 13.847 13.870 13.896 13.926
OSP 21.990 26.349 51.674 148.560

Full data 40.853 115.781 871.220 4476.960

‡ “OSP" and “UNIF" are given in the footnotes of Table 1.
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Figure 2. Relative efficiency for different settings of covariates.

We conduct the second simulation to evaluate the computational efficiency of the proposed subsampling algorithm, where
the mechanism of data generation is the same as the first simulation. For fair comparison, we record the CPU time with one core
based on the mean calculation time of 1000 repetitions of each subsample-based method. In Table 2, we report the results for
the computing time for Case I with r = 100, n = 104, 2 × 104, 5 × 104 and 105. The computing time for the full data method is
given in the last row. The UNIF requires the least computing time, because its subampling probabilities, �i = 1∕n, do not take
time to compute. Note that the computational burden for the full data method is heavy, e.g. the CPU time is about 4476 seconds
(n = 105). As the sample size n increases, the computational advantage of our proposed method becomes more convincing.
Moreover, in Table 3 we report the computing time for Case I with n = 105, r=200, 400, 600, 800 and 1000, respectively. The
results also indicate that our subsampling-based algorithm has great computation advantages over the full data method.

Table 3. The CPU time for Case I with n = 105 (seconds)‡.

r
Method 200 400 600 800 1000
UNIF 14.012 14.419 14.617 14.903 15.363
OSP 149.952 150.439 152.584 153.621 155.384

Full data 4476.960

‡ “OSP" and “UNIF" are given in the footnotes of Table 1.

We conduct the third simulation to evaluate how the subsample-based method performs with different censoring rates. The
simulation settings are the same as the first simulation, except that censoring times are generated from uniform distributions over
(0, 6), (0, 3) and (0, 2), with corresponding censoring rate 16%, 28% and 38%, respectively. In Table 4, we report the bias, ESE,
SSE and CP of the OSP-based subsample estimate �̆1 with Case I (other cases are given in Tables S.4 − S.6 of the Supporting
Information), where �̆i are similar and omitted, for i = 2,⋯ , 5. It can be seen from the results that the ESE and SSE become
larger as the censoring rate � increases. Hence, we suggest to use a larger subsample size r if the survival data is heavily censored
in practice.
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Table 4. Simulation results on OSP-based �̆1 under varying censoring rates (Case I)‡.

� bias ESE SSE CP
r = 100 16% 0.0468 0.2393 0.2427 0.951

28% 0.0465 0.2565 0.2483 0.961
38% 0.0486 0.2917 0.2965 0.946

r = 300 16% 0.0089 0.1282 0.1238 0.953
28% 0.0177 0.1378 0.1339 0.963
38% 0.0259 0.1586 0.1664 0.935

r = 500 16% 0.0099 0.0980 0.0913 0.958
28% 0.0101 0.1054 0.1101 0.940
38% 0.0011 0.1205 0.1189 0.954

‡ � is the censoring rate; “Bias", “ESE", “SSE" and “CP" are given in the footnotes of Table 1.

5 A REAL DATA EXAMPLE

We apply our proposed method to a lymphoma cancer dataset in the Surveillance, Epidemiology, and End Results program
(https://seer.cancer.gov/). There were 111,283 lymphoma cancer patients with full information between 1975 to 2007 in USA.
For analysis, we set the censoring time as the first 60 months after being diagnosed as lymphoma cancer. Among those 111,283
subjects, the total number of event is 46,067 and the censoring rate is 58.6%. The risk factorsXi = (Xi1, Xi2)′ are age (centered
and scaled) and biological sex (male=1 and female=0). Our task is to approximate the �̂ZE in model (1) with our subsample-
based method.
For comparison, we also report the full data based estimate �̂ZE = (�̂1, �̂2)′ with �̂1 = 0.0077 and �̂2 = 0.0011, respectively.

In Table 5, we report the the subsample estimator (Est), the standard error (SE) and the 95% confidence interval towards �̂ZE
(CI) with one subsample, where the subsample size r = 200, 400 and 600, respectively. The results in Table 5 indicate that both
UNIF and OSP based estimators are close to �̂ZE . The SEs of OSP-based estimators are smaller than those of UNIF. The effects
of age and gender are positive, which agree with the findings in Mukhtar et al.18 Moreover, it seems that age (�1) is a significant
risk factor. To further check the rationality of our method, we give bias, ESE and SSE of the subsample-based estimates based
on 1000 subsamples in Table 6, where r = 200, 400 and 600, respectively. It can be seen from the results that both subsample-
based estimators are unbiased, and the ESE is close to SSE. Hence, it is desirable to use one subsample with our method when
analyzing real data in practice.

Table 5. Estimation results for the lymphoma cancer data with one subsample‡.

UNIF OSP
� Est SE CI Est SE CI

r = 200 �1 0.0065 0.0011 (0.0045, 0.0099) 0.0079 0.0010 (0.0060, 0.0085)
�2 0.0005 0.0023 (−0.0033, 0.0067) 0.0017 0.0019 (−0.0006, 0.0042)

r = 400 �1 0.0077 0.0009 (0.0059, 0.0096) 0.0079 0.0008 (0.0062, 0.0095)
�2 0.0017 0.0017 (−0.0016, 0.0050) 0.0011 0.0016 (−0.0021, 0.0043)

r = 600 �1 0.0081 0.0007 (0.0068, 0.0095) 0.0075 0.0006 (0.0062, 0.0085)
�2 0.0002 0.0014 (−0.0022, 0.0026) 0.0011 0.0012 (−0.0035, 0.0019)

‡ Est: the subsample estimator; SE: the standard error; CI: the 95% confidence interval towards �̂ZE .

6 CONCLUDING REMARKS

In this paper, we have proposed a subsampling algorithm for the AH model with massive survival data. The subsample-based
method can effectively approximate the full data estimator. The main advantage of our method is its much reduced computational
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Table 6. Bias and (ESE, SSE) for the lymphoma cancer data‡.

� UNIF OSP
r = 200 �1 −0.00016 (0.00123, 0.00125) −0.00009 (0.00113, 0.00122)

�2 −0.00014 (0.00239, 0.00242) −0.00011 (0.00222, 0.00233)
r = 400 �1 −0.00018 (0.00122, 0.00122) −0.00009 (0.00112, 0.00118)

�2 0.00012 (0.00238, 0.00237) −0.000004 (0.00222, 0.00232)
r = 600 �1 −0.00003 (0.00070, 0.00071) −0.00002 (0.00064, 0.00068)

�2 0.00002 (0.00136, 0.00145) 0.00001 (0.00127, 0.00135)

‡ “Bias", “ESE", “SSE", “UNIF" and “OSP" are given in the footnotes of Table 1.

burden. From the view of statistical efficiency, the OSP-based estimator has a smaller SE than the UNIF method. Hence, we
recommend theOSPwhen applying ourmethod in practical applications. In conclusion, it is desirable to choose our subsampling
approach over the methods of Kawaguchi et al.12 or Xue et al.14 when we have limited computing resources at hand.
Of note, the UNIF approach is different from bootstrap. Specifically, the UNIF method uses one subsample to approximate

the full data estimator, and its main purpose is to reduce the computational time. However, the classic bootstrap needs many
samples with full-size by repeatedly sampling, which aims to conduct statistical inference (e.g. estimating standard errors or
confidence intervals). To further improve our method, we can consider an iterative subsampling procedure. Specifically, we
perform L replications of our proposed approach. Let �̃ = 1

L

∑L
l=1 �̆

(l), where �̆(l) is the subsampling-based estimator from the
lth replication, for l = 1,⋯ , L. The asymptotic properties of �̃ needs further research. Second, the simulations and real data
example indicate that the proposed method works well with a moderate subsample size (e.g., r = 500). Our method has a higher
estimation efficiency with a larger subsample, while it requires more computing resource. Hence, the recommended subsample
size is taken according to the available computing resource at hand. Third, it is interesting to extend our proposed methods to
other survival models, such as the Cox model19 and the accelerated failure time model.20 Fourth, a known limitation of the
additive hazards approach is that the hazard is not constrained to be positive. Therefore, it is interesting to assess the model fit
or appropriateness of the additive hazards model in the massive data setting.
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Supporting Information for “Sampling-Based Estimation for

Massive Survival Data with Additive Hazards Model ”

Lulu Zuo, Haixiang Zhang, HaiYing Wang and Lei Liu

The Supporting Information contains technical proofs for the theoretical results, as well

as Tables S.1 − S.6 for the main document of this article. Moreover, an additional simula-

tion study is presented. In order to characterize the asymptotic properties of the proposed

subsample estimator, we need the following regularity assumptions:

(A.1)
∫ τ

0
λ0(t)dt <∞.

(A.2) As n → ∞, the Ψ̇(θ) = 1
n

∑n
i=1

∫ τ
0
Yi(t){Xi − X̄(t)}⊗2dt converges to a positive defi-

nite matrix in probability.

(A.3) The parameter space Θ ⊂ Rp is a compact convex set, and θ̂ZE is in the interior of Θ.

(A.4) 1
n

∑n
i=1 ‖Xi‖ = OP (1) and 1

n2

∑n
i=1

‖Xi‖2
πi

= Op(1), where ‖ · ‖ denotes the Euclidean

norm of a vector.

(A.5) supθ∈Θ
1
n2

∑n
i=1

‖
∫ τ
0 {Xi−X̄(t)}{dNi(t)−Yi(t)θ′Xidt}‖2

πi
= Op(1).

(A.6) 1
n2

∑n
i=1

{
∫ τ
0 ‖Yi(t){Xi−X̄(t)}‖2dt}2

πi
= Op(1).

(A.7) supθ∈Θ
1
n3

∑n
i=1

‖
∫ τ
0 {Xi−X̄(t)}{dNi(t)−Yi(t)θ′Xidt‖3

π2
i

= Op(1).

(A.8) For θ ∈ Θ andMi(t) = Ni(t)−
∫ t

0
Yi(s){dΛ0(s)+θ′Xids}, the 1

n2

∑n
i=1

{
∫ τ
0 {Xi−X̄(t)}dMi(t)}⊗2

πi

and 1
n2

∑n
i=1

∫ τ
0 {Xi−X̄(t)}⊗2dNi(t)

πi
converge to a positive definite matrix in probability as n→∞,

respectively.

Assumptions (A.1) and (A.2) are commonly used for the AH model, e.g. Lin and Ying

(1994). Assumption (A.3) is a standard condition in the proofs. Assumptions (A.4), (A.5),

(A.6) and (A.7) are some conditions on the subsampling probabilities and the AH model.

For uniform subsampling with {πi = 1/n}ni=1, sufficient conditions for these assumptions are

E‖X‖2 <∞, E[‖
∫ τ

0
{X− X̄(t)}{dN(t)− Y (t)θ′Xdt}‖2] <∞, E{

∫ τ
0
Y (t)‖X− X̄(t)‖2dt}2 <

∞, and E[‖
∫ τ

0
{X− X̄(t)}{dN(t)− Y (t)θ′Xdt}‖3] < ∞, respectively. Assumption (A.8) is

1



used to establish the asymptotic properties of the subsample-based estimator. For uniform

subsampling with {πi = 1/n}ni=1, this assumption is reduced to the regularity condition in

Lin and Ying (1994).

S.1 Proofs

We give the proof details for (6), (7) and (11) in the main text of our paper. First, we

need the following lemmas.

Lemma 1 If Assumptions (A.1), (A.3) and (A.4) hold, then as n → ∞ and r → ∞,

conditionally on Fn, for θ ∈ Θ we have

U∗(θ) = Ψ∗(θ) + oP |Fn(1), (S.1)

and

Ψ∗(θ) = Φ∗(θ) + oP |Fn(1), (S.2)

where Ψ∗(θ) = 1
nr

∑r
i=1

1
π∗i

∫ τ
0
{X∗i−X̄(t)}{dN∗i (t)−Y ∗i (t)θ′X∗i dt}, Φ∗(θ) = 1

nr

∑r
i=1

1
π∗i

∫ τ
0
{X∗i−

X̄(t)}dM∗
i (t), and M∗

i (t) = N∗i (t)−
∫ t

0
Y ∗i (s){dΛ0(s) + θ′X∗i ds}.

Proof. Note that

U∗(θ) =
1

nr

r∑
i=1

1

π∗i

∫ τ

0

{X∗i − X̄∗(t)}{dN∗i (t)− Y ∗i (t)θ′X∗i dt}

=
1

nr

r∑
i=1

1

π∗i

∫ τ

0

{X∗i − X̄(t) + X̄(t)− X̄∗(t)}{dN∗i (t)− Y ∗i (t)θ′X∗i dt}

= Ψ∗(θ) +
1

nr

r∑
i=1

1

π∗i

∫ τ

0

{X̄(t)− X̄∗(t)}{dN∗i (t)− Y ∗i (t)θ′X∗i dt}

= Ψ∗(θ) +

∫ τ

0

{X̄(t)− X̄∗(t)} 1

nr

r∑
i=1

1

π∗i
{dN∗i (t)− Y ∗i (t)θ′X∗i dt}.

Given Fn and t ∈ [0, τ ], direct calculation yields that

E
[ 1

nr

r∑
i=1

{N∗i (t)− Y ∗i (t)θ′X∗i }
π∗i

∣∣∣Fn] =
1

n

n∑
i=1

{Ni(t)− Yi(t)θ′Xi}, (S.3)

2



and

E
[ 1

nr

r∑
i=1

{N∗i (t)− Y ∗i (t)θ′X∗i }
π∗i

− 1

n

n∑
i=1

{Ni(t)− Yi(t)θ′Xi}
∣∣∣Fn]2

=
1

r

[ 1

n2

n∑
i=1

{Ni(t)− Yi(t)θ′Xi}2

πi
−
( 1

n

n∑
i=1

{Ni(t)− Yi(t)θ′Xi}
)2]

≤ 1

r

[ 1

n2

n∑
i=1

{Ni(t)− Yi(t)θ′Xi}2

πi

]
≤ 1

r

[ 1

n2

n∑
i=1

1 + (‖θ‖‖Xi‖)2

πi

]
= OP |Fn(r−1), (S.4)

where (S.4) holds by Assumptions (A.3) and (A.4). Using Markov’s inequality, we have

1

nr

r∑
i=1

{N∗i (t)− Y ∗i (t)θ′X∗i }
π∗i

=
1

n

n∑
i=1

{Ni(t)− Yi(t)θ′Xi}+OP |Fn(r−1/2). (S.5)

Similarly,

E
[ 1

nr

r∑
i=1

1

π∗i
Y ∗i (t)X∗i

∣∣∣Fn] =
1

n

n∑
i=1

Yi(t)Xi. (S.6)

From Assumption (A.4), we can derive that

E
[ 1

nr

r∑
i=1

1

π∗i
Y ∗i (t)X∗i −

1

n

n∑
i=1

Yi(t)Xi

∣∣∣Fn]2

≤ 1

rn2

r∑
i=1

‖Xi‖2

πi
= OP |Fn(r−1). (S.7)

Combining (S.6), (S.7) and Markov’s inequality, we have

1

nr

r∑
i=1

1

π∗i
Y ∗i (t)X∗i =

1

n

n∑
i=1

Yi(t)Xi +OP |Fn(r−1/2). (S.8)

Similar to (S.8), we can deduce that

1

nr

r∑
i=1

1

π∗i
Y ∗i (t) =

1

n

n∑
i=1

Yi(t) +OP |Fn(r−1/2). (S.9)

Note that

X̄∗(t)− X̄(t) =

1
nr

∑r
i=1

1
π∗i
Y ∗i (t)X∗i

1
n

∑n
i=1 Yi(t)−

1
nr

∑r
i=1

1
π∗i
Y ∗i (t) 1

n

∑n
i=1 Yi(t)Xi

1
nr

∑r
i=1

1
π∗i
Y ∗i (t) 1

n

∑n
i=1 Yi(t)

.
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By Slutsky’s theorem, Assumptions (A.4), (S.8) and (S.9), we know that X̄(t) − X̄∗(t) =

OP |Fn(r−1/2). Denote f(t) = 1
nr

∑r
i=1

1
π∗i
{N∗i (t)−Y ∗i (t)θ′X∗i }. From Royden and Fitzpatrick

(2010), we know that f = f+(t)− f−(t), where f+(t) and f−(t) are positive and monotone

functions of t. In view of (S.5) and Lemma 1 of Lin et al. (2000), we can ensure that as

n→∞ and r →∞,∫ τ

0

{X̄(t)− X̄∗(t)} 1

nr

r∑
i=1

1

π∗i
{dN∗i (t)− Y ∗i (t)θ′X∗i dt}

=

∫ τ

0

{X̄(t)− X̄∗(t)}df+(t)−
∫ τ

0

{X̄(t)− X̄∗(t)}df−(t)

= oP |Fn(1). (S.10)

Hence, (S.1) holds. Next we prove (S.2). Note that

Ψ∗(θ) = Φ∗(θ) +
1

nr

r∑
i=1

1

π∗i

∫ τ

0

{X∗i − X̄(t)}Y ∗i (t)λ0(t)dt

= Φ∗(θ) +

∫ τ

0

1

nr

r∑
i=1

1

π∗i
{X∗i − X̄(t)}Y ∗i (t)λ0(t)dt

= Φ∗(θ) +

∫ τ

0

[
1

nr

r∑
i=1

1

π∗i
X∗iY

∗
i (t)− X̄(t)

{
1

nr

r∑
i=1

1

π∗i
Y ∗i (t)

}]
λ0(t)dt.

Given Fn and t ∈ [0, τ ], the (S.8) and (S.9) lead to

1

nr

r∑
i=1

1

π∗i
X∗iY

∗
i (t)− X̄(t)

{
1

nr

r∑
i=1

1

π∗i
Y ∗i (t)

}
= OP |Fn(r−1/2). (S.11)

By mean value theorem for integrals, together with Assumption (A.1) and (S.11), as r →∞

we can get ∫ τ

0

[ 1

nr

r∑
i=1

1

π∗i
X∗iY

∗
i (t)− X̄(t)

1

nr

r∑
i=1

1

π∗i
Y ∗i (t)

]
λ0(t)dt = oP |Fn(1). (S.12)

�

Lemma 2 If Assumptions (A.1)− (A.7) hold, then as n → ∞ and r → ∞, conditionally

on Fn, we have

Ψ∗(θ̂ZE) = OP |Fn(r−1/2), (S.13)
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and

Ψ̇∗(θ̂ZE)−1 = OP |Fn(1), (S.14)

where Ψ̇∗(θ̂ZE) = 1
nr

∑r
i=1

1
π∗i

∫ τ
0
Y ∗i (t){X∗i − X̄(t)}X∗i ′dt.

Proof. For θ ∈ Θ, we can derive that

E{Ψ∗(θ)|Fn} = Ψ(θ). (S.15)

For the jth component of Ψ∗(θ), denoted as Ψ∗j(θ) = 1
nr

∑r
i=1

1
π∗i
ψ∗ij(θ), where ψ∗ij(θ) =∫ τ

0
{X∗ij − X̄j(t)}{dN∗i (t)− Y ∗i (t)θ′X∗i dt}, we have

E
{

Ψ∗j(θ)−Ψj(θ)|Fn
}2

= E
{ 1

nr

r∑
i=1

1

π∗i
ψ∗ij(θ)− 1

n

n∑
l=1

ψlj(θ)
∣∣∣Fn}2

=
1

n2r2
E

[ r∑
i=1

{ψ∗ij(θ)

π∗i
−

n∑
l=1

ψlj(θ)
}∣∣∣Fn]2

=
1

n2r2
E

[ r∑
i=1

{ψ∗ij(θ)

π∗i
−

n∑
l=1

ψlj(θ)
}2

+
∑
i 6=k

{ψ∗ij(θ)

π∗i
−

n∑
l=1

ψlj(θ)
}{ψ∗kj(θ)

π∗k
−

n∑
l=1

ψlj(θ)
}∣∣∣Fn]

=
1

n2r2
E

[ r∑
i=1

{ψ∗ij(θ)

π∗i
−

n∑
l=1

ψlj(θ)
}2∣∣∣Fn]

=
1

n2r
·

n∑
i=1

{ψij(θ)

πi
−

n∑
l=1

ψlj(θ)
}2

· πi

=
1

r

[
1

n2

n∑
i=1

ψij(θ)2

πi
−
{ 1

n

n∑
i=1

ψij(θ)
}2
]

≤ 1

r

[
1

n2

n∑
i=1

‖
∫ τ

0
{Xi − X̄(t)}{dNi(t)− Yi(t)θ′Xidt}‖2

πi

−
{ 1

n

n∑
i=1

∥∥∥∫ τ

0

{Xi − X̄(t)}{dNi(t)− Yi(t)θ′Xidt}
∥∥∥}2

]
≤ 1

rn2

n∑
i=1

‖
∫ τ

0
{Xi − X̄(t)}{dNi(t)− Yi(t)θ′Xidt}‖2

πi
.
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By Assumption (A.5), we have

E
{

Ψ∗j(θ)−Ψj(θ)|Fn
}2

= OP |Fn(r−1).

From Markov’s inequality, together with (S.15), we can get

Ψ∗(θ)−Ψ(θ) = OP |Fn(r−1/2). (S.16)

By Assumption (A.3), we have Ψ∗(θ̂ZE)− Ψ(θ̂ZE) = OP |Fn(r−1/2). Because Ψ(θ̂ZE) = 0, it

follows that (S.13) holds.

To prove (S.14), some direct calculations yield that

E{Ψ̇∗(θ)|Fn} = Ψ̇(θ).

For any component Ψ̇∗j1j2(θ) of Ψ̇∗(θ), where 1 ≤ j1, j2 ≤ p, we can derive that

E
{

Ψ̇∗j1j2(θ)− Ψ̇j1j2(θ)|Fn
}2

=
1

r

[
1

n2

n∑
i=1

{
∫ τ

0
Yi(t){Xi − X̄(t)}⊗2dt}2

j1j2

πi
−
{ 1

n

n∑
i=1

(∫ τ

0

Yi(t){Xi − X̄(t)}⊗2dt
)
j1j2

}2
]

≤ 1

rn2

n∑
i=1

{
∫ τ

0
Yi(t){Xi − X̄(t)}⊗2dt}2

j1j2

πi

≤ 1

rn2

n∑
i=1

{
∫ τ

0
‖Yi(t){Xi − X̄(t)}‖2dt}2

πi
.

By Assumption (A.6), we have

E
{

Ψ̇∗j1j2(θ)− Ψ̇j1j2(θ)|Fn
}2

= OP |Fn(r−1/2). (S.17)

From Markov’s inequality, we can derive the following equation

Ψ̇∗(θ)− Ψ̇(θ) = OP |Fn(r−1/2).

Based on Assumptions (A.2) and (A.3), we know that (S.14) holds. �

Proof of (6). As r →∞, Lemma 1 and (S.16) lead to U∗(θ)−Ψ(θ)→ 0 in probability

conditional on Fn. Note that the parameter space is compact, and θ̂ZE is the unique solution
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of Ψ(θ) = 0 (Lin and Ying , 1994). Thus, from Theorem 5.9 and its remark of van der Vaart

(1998), conditionally on Fn, as n→∞ and r →∞, we know that

‖θ̃ − θ̂ZE‖ = oP |Fn(1).

Using the Taylor’s theorem (Ferguson, 1996, Chapter 4) and (S.1) of Lemma 1, we have

0 = U∗j(θ̃) = Ψ∗j(θ̂ZE) + Ψ̇∗j(θ̂ZE)(θ̃ − θ̂ZE) + oP |Fn(1). (S.18)

Then,

θ̃ − θ̂ZE = −Ψ̇∗(θ̂ZE)−1Ψ∗(θ̂ZE) + oP |Fn(1). (S.19)

From Lemma 2, it is obvious that θ̃ − θ̂ZE = OP |Fn(r−1/2). �

Proof of (7). Note that

Φ∗(θ̂ZE) =
1

r

r∑
i=1

∫ τ
0
{X∗i − X̄(t)}dM∗

i (t)

nπ∗i
=

1

r

r∑
i=1

W ∗
i , (S.20)

where W ∗
i =

∫ τ
0 {X

∗
i−X̄(t)}dM∗i (t)

nπ∗i
, and M∗

i (t) is defined in Lemma 1. Given Fn, we know that

W ∗
1 , · · · ,W ∗

r are independently and identically distributed random variables with

E(W ∗
i |Fn) = E

[∫ τ
0
{X∗i − X̄(t)}dM∗

i (t)

nπ∗i

∣∣∣∣Fn]
=

1

n

n∑
i=1

∫ τ

0

{Xi − X̄(t)}{dNi(t)− Yi(t)θ̂′ZEXidt}

= Ψ(θ̂ZE) = 0,

and

V ar{W ∗
i |Fn} = E

[
1

n2π∗i
2

{∫ τ

0

{X∗i − X̄(t)}dM∗
i (t)

}⊗2
∣∣∣∣Fn]

=
1

n2

n∑
i=1

{
∫ τ

0
{Xi − X̄(t)}dMi(t)}⊗2

πi
, (S.21)
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whereMi(t) = Ni(t)−
∫ t

0
Yi(s){dΛ0(s)+θ′Xids}. Note thatMi(·) is a local squared integrable

martingale, and the variation process 〈Mi,Mi〉(t) satisfies (Fleming and Harrington, 1991)

〈Mi,Mi〉(t) = Λi(t) =

∫ t

0

Yi(s){dΛ0(s) + θ′Xids}, and 〈Mi,Mj〉(t) = 0, i 6= j. (S.22)

From Theorem 2.4.1 and Lemma 2.4.1 of Fleming and Harrington (1991), for any t ∈ [0, τ ],

E
[ 1

n2

n∑
i=1

{
∫ t

0
{Xi − X̄(s)}dMi(s)}⊗2

πi

]
= E

[ 1

n2

n∑
i=1

∫ t
0
{Xi − X̄(s)}⊗2d〈Mi,Mi〉(s)

πi

]
= E

[ 1

n2

n∑
i=1

∫ t
0
{Xi − X̄(s)}⊗2dΛi(s)

πi

]
= E

[ 1

n2

n∑
i=1

∫ t
0
{Xi − X̄(s)}⊗2dNi(s)

πi

]
. (S.23)

By Assumption (A.8) and (S.23), as n→∞ we have

1

n2

n∑
i=1

{
∫ τ

0
{Xi − X̄(t)}dMi(t)}⊗2

πi
=

1

n2

n∑
i=1

∫ τ
0
{Xi − X̄(t)}⊗2dNi(t)

πi
+ oP (1). (S.24)

Thus,

V ar{W ∗
i |Fn} =

1

n2

n∑
i=1

∫ τ
0
{Xi − X̄(t)}⊗2dNi(t)

πi
+ oP |Fn(1). (S.25)

By Assumption (A.8), it is known that V ar(W ∗
i |Fn) = OP (1) as n → ∞. Meanwhile, for

every ε > 0,

E

{ r∑
i=1

(r−1/2W ∗
i )2I(|W ∗

i r
−1/2| > ε)

∣∣∣Fn}
≤ 1

r

r∑
i=1

E
(
‖W ∗

i ‖2 · ‖W
∗
i ‖

r1/2ε

∣∣∣Fn)
=

1

r1/2ε
E(‖W ∗

i ‖3|Fn)

=
1

r1/2ε
· 1

n3

n∑
i=1

‖
∫ τ

0
{Xi − X̄(t)}{dNi(t)− Yi(t)θ′Xidt}‖

3

π2
i

.
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By Assumption (A.7), as r →∞ we have

E

{ r∑
i=1

(r−1/2W ∗
i )2I(|W ∗

i r
−1/2| > ε)

∣∣∣Fn} ≤ 1

r1/2ε
OP (1) = op(1). (S.26)

From (S.20) and (S.25), together with the Lindeberg-Feller central limit theorem (Proposition

2.27 of van der Vaart, 1998) and the Slutsky’s theorem, conditionally on Fn, it can be proved

that as n → ∞ and r → ∞, Γ−1/2Φ∗(θ̂ZE)
d−→ N(0, I). By Lemma 1 and the Slutsky’s

theorem, we have

Γ−1/2Ψ∗(θ̂ZE)
d−→ N(0, I). (S.27)

Based on Lemma 2, (S.19) and Theorem 1, we can get that

θ̃ − θ̂ZE = −{Ψ̇∗(θ̂ZE)}−1Ψ∗(θ̂ZE) + oP |Fn(1). (S.28)

Note that

−Ψ̇∗(θ̂ZE)−1Ψ∗(θ̂ZE)

= −Ψ̇(θ̂ZE)−1Ψ∗(θ̂ZE)−
(

Ψ̇∗(θ̂ZE)−1 − Ψ̇(θ̂ZE)−1
)

Ψ∗(θ̂ZE)

= −Ψ̇(θ̂ZE)−1Ψ∗(θ̂ZE) +
[
Ψ̇(θ̂ZE)−1

{
Ψ̇∗(θ̂ZE)− Ψ̇(θ̂ZE)

}
Ψ̇∗(θ̂ZE)−1

]
Ψ∗(θ̂ZE)

= −Ψ̇(θ̂ZE)−1Ψ∗(θ̂ZE) +OP |Fn(1)OP |Fn(r−1/2)OP |Fn(1)OP |Fn(r−1/2)

= −Ψ̇(θ̂ZE)−1Ψ∗(θ̂ZE) +OP |Fn(r−1).

Hence,

θ̃ − θ̂ZE = −Ψ̇(θ̂ZE)−1Ψ∗(θ̂ZE) +OP |Fn(r−1). (S.29)

By Assumptions (A.2) and (A.8), together with the fact that Ψ̇(θ̂ZE) = HX , we get

Σ = H−1
X ΓH−1

X = {Ψ̇(θ̂ZE)}−1Γ{Ψ̇(θ̂ZE)}−1 = OP |Fn(r−1). (S.30)

Thus, (S.29) and (S.30) yield that

Σ−1/2(θ̃ − θ̂ZE) = −Σ−1/2H−1
X Ψ∗(θ̂ZE) +OP |Fn(r−1/2)
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= −Σ−1/2H−1
X Γ1/2Γ−1/2Ψ∗(θ̂ZE) +OP |Fn(r−1/2). (S.31)

Note that

Σ−1/2H−1
X Γ1/2(Σ−1/2H−1

X Γ1/2)′ = Σ−1/2H−1
X Γ1/2Γ1/2H−1

X Σ−1/2 = I. (S.32)

By (S.31), (S.32) and the Slutsky’s theorem, as n→∞ and r →∞, we have

Σ−1/2(θ̃ − θ̂ZE)
d−→ N(0, I).

�

Proof of (11). It can be deduced that

tr(Γ) = tr

(
1

rn2

n∑
i=1

∫ τ
0
{Xi − X̄(t)}⊗2dNi(t)

πi

)
=

1

rn2

n∑
i=1

tr(
∫ τ

0
{Xi − X̄(t)}⊗2dNi(t))

πi

=
1

rn2

[∑
i∈S0

tr(
∫ τ

0
{Xi − X̄(t)}⊗2dNi(t))

πi
+
∑
i∈S1

tr(
∫ τ

0
{Xi − X̄(t)}⊗2dNi(t))

πi

]

=
1

rn2(1− δ)
∑
i∈S1

πi
∑
i∈S1

tr(
∫ τ

0
{Xi − X̄(t)}⊗2dNi(t))

πi
(S.33)

≥ 1

rn2(1− δ)

[∑
i∈S1

tr1/2
{∫ τ

0

{Xi − X̄(t)}⊗2dNi(t)
}]2

, (S.34)

where (S.33) holds by the fact that dNi(t) = 0 for i ∈ S0. Hence, (S.34) follows by the

Cauchy-Schwarz inequality. The equality in (S.34) holds if and only if πi ∝ tr1/2{
∫ τ

0
{Xi −

X̄(t)}⊗2dNi(t)} for i ∈ S1. �
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Table S.1 Simulation results on the subsample estimator with Case II†.

OSP UNIF

r bias ESE SSE CP bias ESE SSE CP

θ1 = −1 100 0.0486 0.2631 0.2600 0.951 0.0576 0.2705 0.2687 0.947

300 0.0164 0.1417 0.1354 0.965 0.0256 0.1457 0.1451 0.956

500 0.0120 0.1087 0.1077 0.958 0.0108 0.1108 0.1071 0.959

θ2 = −0.5 100 0.0217 0.2002 0.1967 0.959 0.0364 0.2096 0.2088 0.963

300 0.0049 0.1057 0.1043 0.962 0.0129 0.1090 0.1090 0.954

500 0.0058 0.0805 0.0816 0.952 0.0073 0.0829 0.0838 0.952

θ3 = 0 100 0.0016 0.1765 0.1789 0.955 0.0020 0.1830 0.1896 0.955

300 0.0022 0.0919 0.0969 0.940 0.0014 0.0937 0.0957 0.940

500 0.0014 0.0693 0.0686 0.958 0.0045 0.0714 0.0719 0.947

θ4 = 0.5 100 0.0125 0.1999 0.2007 0.959 0.0271 0.2065 0.2021 0.968

300 0.0119 0.1059 0.1040 0.954 0.0113 0.1088 0.1111 0.947

500 0.0047 0.0807 0.0822 0.949 0.0049 0.0826 0.0813 0.958

θ5 = 1 100 0.0486 0.2597 0.2617 0.954 0.0622 0.2703 0.2662 0.953

300 0.0142 0.1400 0.1317 0.967 0.0235 0.1450 0.1412 0.954

500 0.0093 0.1076 0.1068 0.947 0.0090 0.1106 0.1084 0.958

† “OSP” denotes the proposed method with optimal subsampling probabilities; “UNIF” denotes the proposed method with uniform subsampling

probabilities; “bias” denotes the sample mean of the estimates minus the full data estimator θ̂ZE ; “ESE” denotes the estimated standard error of

the estimates; “SSE” denotes the sampling standard error of the estimates; “CP” denotes the empirical 95% coverage probability towards θ̂ZE .
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Table S.2 Simulation results on the subsample estimator with Case III†.

OSP UNIF

r bias ESE SSE CP bias ESE SSE CP

θ1 = −1 100 0.0374 0.3551 0.3793 0.950 0.0345 0.3616 0.3852 0.950

300 0.0098 0.1808 0.1794 0.955 0.0149 0.1868 0.1888 0.951

500 0.0057 0.1360 0.1299 0.970 0.0038 0.1399 0.1422 0.950

θ2 = −0.5 100 0.0640 0.4066 0.4174 0.965 0.0525 0.4457 0.4358 0.963

300 0.0215 0.2142 0.2253 0.943 0.0153 0.2379 0.2440 0.946

500 0.0103 0.1632 0.1662 0.944 0.0044 0.1806 0.1769 0.958

θ3 = 0 100 0.0646 0.3425 0.3664 0.956 0.0553 0.3690 0.3915 0.951

300 0.0190 0.1738 0.1761 0.944 0.0167 0.1892 0.1983 0.938

500 0.0124 0.1311 0.1396 0.942 0.0090 0.1417 0.1453 0.942

θ4 = 0.5 100 0.0669 0.4137 0.4310 0.954 0.0631 0.4461 0.4480 0.954

300 0.0215 0.2168 0.2166 0.951 0.0340 0.2415 0.2445 0.951

500 0.0214 0.1662 0.1744 0.932 0.0185 0.1822 0.1781 0.950

θ5 = 1 100 0.0876 0.4724 0.4711 0.963 0.1278 0.5294 0.5287 0.955

300 0.0279 0.2533 0.2648 0.953 0.0446 0.2833 0.2814 0.948

500 0.0095 0.1936 0.1983 0.949 0.0164 0.2153 0.2091 0.961

† “OSP” denotes the proposed method with optimal subsampling probabilities; “UNIF” denotes the proposed method with uniform subsampling

probabilities; “bias” denotes the sample mean of the estimates minus the full data estimator θ̂ZE ; “ESE” denotes the estimated standard error of

the estimates; “SSE” denotes the sampling standard error of the estimates; “CP” denotes the empirical 95% coverage probability towards θ̂ZE .
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Table S.3 Simulation results on the subsample estimator with Case IV†.

OSP UNIF

r bias ESE SSE CP bias ESE SSE CP

θ1 = −1 100 0.0465 0.2632 0.2614 0.959 0.0796 0.2920 0.2967 0.950

300 0.0233 0.1420 0.1415 0.953 0.0210 0.1558 0.1518 0.954

500 0.0097 0.1081 0.1077 0.943 0.0041 0.1188 0.1173 0.956

θ2 = −0.5 100 0.0250 0.2193 0.2223 0.962 0.0287 0.2360 0.2363 0.957

300 0.0157 0.1132 0.1103 0.959 0.0089 0.1229 0.1159 0.965

500 0.0015 0.0860 0.0835 0.956 0.0033 0.0936 0.0901 0.962

θ3 = 0 100 0.0095 0.1936 0.1876 0.961 0.0019 0.2094 0.2066 0.964

300 0.0038 0.0985 0.0955 0.956 0.0013 0.1066 0.1071 0.949

500 0.0001 0.0740 0.0715 0.956 0.0003 0.0807 0.0825 0.949

θ4 = 0.5 100 0.0204 0.2183 0.2181 0.956 0.0328 0.2382 0.2367 0.965

300 0.0147 0.1128 0.1116 0.956 0.0127 0.1238 0.1291 0.947

500 0.0016 0.0849 0.0869 0.943 0.0050 0.0940 0.0891 0.963

θ5 = 1 100 0.0615 0.2632 0.2739 0.951 0.0742 0.2911 0.2905 0.961

300 0.0146 0.1404 0.1405 0.953 0.0209 0.1556 0.1563 0.952

500 0.0124 0.1074 0.1090 0.955 0.0093 0.1188 0.1173 0.957

† “OSP” denotes the proposed method with optimal subsampling probabilities; “UNIF” denotes the proposed method with uniform subsampling

probabilities; “bias” denotes the sample mean of the estimates minus the full data estimator θ̂ZE ; “ESE” denotes the estimated standard error of

the estimates; “SSE” denotes the sampling standard error of the estimates; “CP” denotes the empirical 95% coverage probability towards θ̂ZE .
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Table S.4

Simulation results on OSP-based θ̆1 under varying censoring rates (Case II)†.

δ bias ESE SSE CP

r = 100 16% 0.0480 0.2479 0.2440 0.957

28% 0.0486 0.2631 0.2600 0.951

38% 0.0518 0.3027 0.3047 0.952

r = 300 16% 0.0057 0.1337 0.1265 0.956

28% 0.0164 0.1417 0.1354 0.965

38% 0.0172 0.1636 0.1612 0.953

r = 500 16% 0.0065 0.1024 0.1013 0.957

28% 0.0120 0.1087 0.1077 0.958

38% 0.0065 0.1251 0.1233 0.958

† δ is the censoring rate; “bias”, “ESE”, “SSE” and “CP” are given in the footnotes of Table S.1.
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Table S.5

Simulation results on OSP-based θ̆1 under varying censoring rate (Case III)†.

δ bias ESE SSE CP

r = 100 16% 0.0095 0.3173 0.3153 0.957

28% 0.0374 0.3551 0.3793 0.950

38% 0.0436 0.4110 0.4090 0.961

r = 300 16% 0.0064 0.1604 0.1555 0.963

28% 0.0098 0.1808 0.1794 0.955

38% 0.0011 0.2138 0.2105 0.960

r = 500 16% 0.0026 0.1214 0.1201 0.958

28% 0.0057 0.1360 0.1299 0.970

38% 0.0051 0.1615 0.1680 0.944

† δ is the censoring rate; “bias”, “ESE”, “SSE” and “CP” are given in the footnotes of Table S.1.
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Table S.6

Simulation results on OSP-based θ̆1 under varying censoring rate (Case IV)†.

δ bias ESE SSE CP

r = 100 16% 0.0409 0.2334 0.2303 0.959

28% 0.0465 0.2632 0.2614 0.959

38% 0.0513 0.2862 0.2786 0.954

r = 300 16% 0.0134 0.1253 0.1214 0.961

28% 0.0233 0.1420 0.1415 0.953

38% 0.0119 0.1547 0.1490 0.962

r = 500 16% 0.0082 0.0954 0.0913 0.966

28% 0.0097 0.1081 0.1077 0.943

38% 0.0081 0.1180 0.1134 0.954

† δ is the censoring rate; “bias”, “ESE”, “SSE” and “CP” are given in the footnotes of Table S.1.
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S.2 An additional simulation study

In this section, we conduct a simulation to study the performance of θ̆ if we set
∑

i∈S0
πi =

δ + c, where c =−δ, −0.2, −0.12, 0, 0.12 and 0.2, respectively. Of note, c = 0 leads to∑
i∈S0

πi = δ, which is the adopted setting in our proposed subsampling method. The

generation of data is the same as the first simulation study. In Tables S.7 and S.8, we report

the bias of OSP-based subsample estimator θ̆1 (other θ̆i are similar) and MSE of θ̆ with∑
i∈S0

πi = δ+ c, respectively. More specifically, the subsampling probabilities {πmΓ
i }ni=1 are

given by replacing δ with δ + c in (11). Table S.7 shows that the estimators are unbiased

in all cases except for c = − δ. One possible explanation for this phenomenon is due to∑
i∈S0

πi = 0 when c = −δ. This case results in the situation that all censored observations

cannot be selected into a subsample. Hence, U∗(θ) in (4) is surely biased towards equation

(3) with full data. From the results in Table S.8, θ̆ with c = 0 has the smallest MSE.

The MSEs become worse as the value of c departs from zero. Hence, it is feasible to set∑
i∈S0

πi = δ in our method for determining the optimal subsampling probabilities for the

AH model.
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Table S.7 Bias of θ̆1 with
∑

i∈S0
πi = δ + c.

Case c = −δ c = −0.2 c = −0.12 c = 0 c = 0.12 c = 0.2

r = 100 I 0.0313 0.0268 0.0232 0.0199 0.0173 0.0164

II 0.0294 0.0211 0.0244 0.0301 0.0454 0.0440

III 0.1208 0.0216 0.0140 0.0203 0.0214 0.0310

IV 0.0143 0.0823 0.0588 0.0757 0.0677 0.0582

r = 300 I 0.0694 0.0076 0.0056 0.0133 0.0066 0.0100

II 0.0706 0.0190 0.0018 0.0118 0.0109 0.0097

III 0.1368 0.0010 0.0129 0.0121 0.0021 0.0141

IV 0.0293 0.0390 0.0137 0.0182 0.0193 0.0145

r = 500 I 0.0645 0.0026 0.0081 0.0041 0.0090 0.0084

II 0.0816 0.0056 0.0029 0.0051 0.0080 0.0020

III 0.1243 0.0097 0.0048 0.0054 0.0018 0.0081

IV 0.0787 0.0224 0.0163 0.0173 0.0125 0.0141
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Table S.8 MSE of θ̆ with
∑

i∈S0
πi = δ + c.

Case c = −δ c = −0.2 c = −0.12 c = 0 c = 0.12 c = 0.2

r = 100 I 0.5990 0.4673 0.3505 0.2988 0.3130 0.3258

II 0.6316 0.4268 0.3324 0.2882 0.2946 0.3149

III 1.2997 1.5139 1.1011 0.8563 0.8812 0.9328

IV 0.4570 0.3915 0.3129 0.2872 0.3042 0.3140

r = 300 I 0.1717 0.1325 0.0928 0.0831 0.0885 0.0902

II 0.1753 0.1189 0.0904 0.0843 0.0863 0.0871

III 0.3558 0.4786 0.3018 0.2311 0.2368 0.2477

IV 0.1308 0.1178 0.0864 0.0758 0.0845 0.0859

r = 500 I 0.1065 0.0742 0.0548 0.0464 0.0487 0.0552

II 0.1132 0.0673 0.0501 0.0466 0.0479 0.0514

III 0.2176 0.2896 0.1707 0.1263 0.1279 0.1403

IV 0.0787 0.0661 0.0487 0.0446 0.0469 0.0485
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