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Summary

The microbiome plays an important role in human health by mediating the path
from environmental exposures to health outcomes. The relative abundances of the
high-dimensional microbiome data have an unit-sum restriction, rendering standard
statistical methods in the Euclidean space invalid. To address this problem, we use
the isometric log-ratio (ilr) transformations of the relative abundances as the medi-
ator variables. To select significant mediators, we consider a closed testing-based
selection procedure with desirable confidence. Simulations are provided to verify
the effectiveness of our method. As an illustrative example, we apply the proposed
method to study the mediation effects of murine gut microbiome between sub-
therapeutic antibiotic treatment and body weight gain, and identify Coprobacillus
and Adlercreutzia as two significant mediators.
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1 INTRODUCTION

The human microbiome has been linked with complex diseases, such as diabetes, psoriasis, and obesity (Cho and Blaser1; Cho
et al.2; Ahn et al.3; Alekseyenko et al.4). In particular, gut microbiome plays as a key orchestrator of cancer therapy,5 especially
cancer immunotherapy.6 Petrosino7 commented that the microbiome is a key component of precision medicine. More related
results on microbiome analysis can be found in the review papers by Li8 and Xia and Sun9.
Mediation analysis has become an important tool in many research fields, e.g., behavioral sciences,10 11 12 management

research,13 social psychology,14 psychosomatic medicine,15 epidemiology,16 and clinical research.17 The main goal of media-
tion analysis is to investigate the role of intermediate variable(s), i.e., the mediator(s), that lie in the path between a treatment (or
exposure) and an outcome variable. For more related literatures on mediation analysis, we refer to the review papers byWood13,
MacKinnon18, Ten Have and Joffe19, Preacher20 and VanderWeele21.
Recently, there have been burgeoning statistical or bioinformatical research devoted to studying the mediation effects of

microbiome. For instance, Zhang et al.22 proposed a distance-based approach for testing the mediation effect of the human
microbiome. Sohn and Li23 proposed a sparse compositional mediation model in the simplex space and applied it to a gut
microbiome study. Wang et al.24 proposed a rigorous sparse microbial causal mediation model for the high dimensional and
compositional microbiome data. Zhang et al.25 adopted the ilr-transformation and de-biased Lasso techniques to develop a joint
significance test for the mediation effect of human gut microbiome with a focus on pre-specified taxa. In this work, we propose a
novel method to select mediating microbial taxa. As existing methods for microbiome mediation analysis are primarily designed
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FIGURE 1 A scenario of high-dimensional mediation model with ilr-transformed mediators (confounding variables omitted).

to test the overall mediation effect (e.g. Sohn and Li23; Wang et al.24), our major contribution is to propose a statistical procedure
to select individual taxa that mediate the path between exposure and phenotype.
The remainder of this article is organized as follows: In Section 2, we present the model and method, including ilr-

transformation formulas for relative abundances, high-dimensional inference for the linear mediation model in the Euclidean
space, and a closed testing-based selection procedure for the mediation effects of ilr-transformed mediators. In Section 3, we
use simulation studies to check the performance of the proposed method. In Section 4, we provide an application to a murine
gut microbiome study. Concluding remarks are reported in Section 5.

2 METHODS

2.1 Log-ratio Transformation for the Relative Abundances
Suppose that there are a total of d taxa in the microbiome for each sample, where the relative abundances are denoted by a vector
M = (M1,⋯ ,Md)′. The d-part compositionM lies in the “simplex” space,26 which is given as

d =

{

x = (x1,⋯ , xd)′ ∶
d
∑

k=1
xk = 1; xk > 0, k = 1,⋯ , d

}

.

Compositions are subject to two constraints: the components are positive in (0, 1), and sum up to one. Due to the compositional
characteristic of relative abundances, many statistical models in the real Euclidean space are inappropriate. To address this issue,
additive log-ratio (alr) and centered log-ratio(clr)-transformations are commonly used (Aitchison27; Hron et al.28). However,
for linear regression with compositions as covariates, a linear constraint is needed for the estimator of regression coefficients
(Sohn and Li23; Wang et al.24), which poses a serious impediment to developing appealing optimization methods and theoretical
results.
Alternatively, Egozcue et al.29 suggested the isometric log-ratio (ilr) transformation technique by transforming the compo-

sitional data from the simplex d to the Euclidean space ℝd−1. The ilr-based transformations on the compositional mediators
M1,⋯ ,Md are

M̃k =
√

d − k
d − k + 1

ln
Mk

d−k
√

∏d
j=k+1Mj

, k = 1,⋯ , d − 1. (1)

One key advantage of the ilr-based transformation is that we can directly fit these ilr-transformed variables with linear models.
Hence, many statistical methods for linear models can be used directly to analyze microbiome data.
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Without loss of generality, we assume the response Y and M̃k are centered hereafter. We can fit a high-dimensional linear
mediation model in the Euclidean space (Figure 1),

E(Y |X,Z, M̃) = 
X + �1M̃1 +⋯ + �d−1M̃d−1 + Z′�, (2)
E(M̃k|X,Z) = �kX + Z′�k, k = 1,⋯ , d − 1,

where M̃ = (M̃1,⋯ , M̃d−1)′, X is an exposure, Z = (Z1,⋯ , Zq)′ is a vector of covariates; 
 represents the direct effect of X
on Y adjusting for {M̃k; k = 1,⋯ , d − 1} and Z; �k represents the relation betweenX and the mediator M̃k adjusting for Z; �k
represents the relation between M̃k and Y adjusting for the effects of X, Z and other mediators; �k�k denotes the indirect effect
of X on Y that is transmitted through the mediator M̃k; � = (�1,⋯ , �q)′ and �k = (�k1,⋯ , �kq)′ are regression coefficients for
Z for k = 1,⋯ , d − 1.
The transformed mediator M̃1 is a scaled sum of all log-ratios of the original composition part M1 and the other parts

M2,⋯ ,Md , where the linear relationship is described by

M̃1 =
1

√

d(d − 1)

(

ln
M1

M2
+⋯ + ln

M1

Md

)

(3)

=
√

d − 1
d

ln
M1

d−1
√

∏d
j=2Mj

.

It can be seen that M̃1 extracts all relative information ofM1 and captures the relative contribution ofM1 with respect to the
geometric mean of the remaining parts in the composition.28 From this point of view, the term �1�1 can describe the “relative
effect" rather than “absolute effect" of the original compositionM1. Of note, apart from the coefficient, the ilr transformation
of the first compositionM1 is equivalent to the centered log-ratio transformation

ln
M1

d
√

∏d
j=1Mj

= d − 1
d

ln
M1

d−1
√

∏d
j=2Mj

.

For more interpretations of the “relative effect" of compositions, we refer to Section 2.3 of Zhang et al.25

2.2 High-Dimensional Inference
In Model (2), the interpretation of M̃2,⋯ , M̃d−1 are not straightforward, becauseM1 is not contained therein. Hence, if we are
interested in understanding the mediation effects from taxaMl , l ∈ {2,⋯ , d}, we can reorderMl to play the role ofM1 as
(Ml ,M1,⋯ ,Ml−1,Ml+1,⋯ ,Md)′ to interpret the effect ofMl . For l = 1,⋯ , d, we propose the following ilr-transformation
based linear mediation models as

E(Y |X,Z, M̃[l]) = 
 [l]X + �[l]1 M̃ [l]
1 +⋯ + �[l]d−1M̃

[l]
d−1 + Z′�[l],

E(M̃ [l]
k |X,Z) = �[l]k X + Z′�[l]k , k = 1,⋯ , d − 1,

where M̃[l] = (M̃ [l]
1 ,⋯ , M̃ [l]

d−1)
′, and the other notations are defined similarly to those in (2). As mentioned before, �[l]1 �[l]1 is

an interpretable mediation effect term related to the lth taxon, for l = 1,⋯ , d. Consider the multiple testing problem:

H0l ∶ �
[l]
1 �[l]1 = 0 vs. HAl ∶ �

[l]
1 �[l]1 ≠ 0 for l = 1,⋯ , d. (4)

Assume that (Yi, Xi,Zi,Mi) are independently and identically distributed (i.i.d.) observations, i = 1,⋯ , n. For constructing
valid p-values, let P�[l]1 = 2{1 − Φ(|�̂[l]1 |∕�̂�[l]1 )} and P�[l]1

= 2{1 − Φ(|�̂[l]1 |∕�̂�[l]1
)}, where Φ(x) is the cumulative distribution

function of N(0, 1), �̂[l]1 and �̂�[l]1 are based on the OLS method. �̂[l]1 and �̂�[l]1
can be obtained through the de-biased Lasso

estimate.
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First, we calculate the Lasso estimate by
(


̃ [l], �̃ [l], �̃[l]
)

= argmin

,�,�

{ 1
2n

n
∑

i=1

(

Yi − 
 [l]Xi −
d−1
∑

j=1
�[l]j M̃ [l]

ij

−
q
∑

j=1
�[l]j Zij

)2
+ �

d−1
∑

j=1
|�[l]j |

}

, (5)

where � > 0 is a penalty parameter, which can be determined using 10-fold cross-validation. By Zhang and Zhang30, the
de-biased Lasso estimator of �[l]1 is

�̂[l]1 = �̃[l]1 +

∑n
i=1R

[l]
i (Yi − 
̃

[l]Xi −
∑d−1
j=1 �̃

[l]
j M̃ [l]

ij −
∑q
j=1 �̃

[l]
j Zij)

∑n
i=1R

[l]
i M̃ [l]

i1

,

where 
̃ [l], �̃ [l] and �̃[l] are defined in (5); R[l]i = M̃ [l]
i1 − �̂[l]1 Xi −

∑d−1
j=2 �̂

[l]
j M̃ [l]

ij −
∑q
j=1 �̂

[l]
d−1+jZij is the residual from a

Lasso regression of M̃ [l]
i1 versus Xi, Zi and M̃[l]

ij , i = 1,⋯ , n, j = 2,⋯ , d − 1; and �̂[l] = (�̂[l]1 ,⋯ , �̂[l]d+q−1)
′ is the Lasso

solution from

�̂[l] = argmin
�

{ 1
2n

n
∑

i=1

(

M̃ [l]
i1 − �[l]1 Xi −

d−1
∑

j=2
�[l]j M̃ [l]

ij −
q
∑

j=1
�[l]d−1+jZij

)2

+�∗
d+q−1
∑

j=1
|�[l]i |

}

,

where �∗ > 0 is a penalty parameter determined by 10-fold cross-validation as for �.
It follows from Zhang and Zhang30 that the standard error for �̂[l]1 is

�̂�[l]1
= n−1∕2

�̂[l]�

√

∑n
i=1(R

[l]
i )2∕n

|

∑n
i=1R

[l]
i M̃ [l]

i1 ∕n|
,

where (�̂[l]� )2 =
∑n
i=1(Yi − 
̃

[l]Xi −
∑d−1
j=1 �̃

[l]
j M̃ [l]

ij −
∑q
j=1 �̃

[l]
j Zij)2∕(n− ŝ), and ŝ is the number of nonzero coefficients in the

Lasso estimator �̃ [l].
Based on the idea of joint significance test (MacKinnon11; Zhang et al.31), the raw (unadjusted) p-values for (4) are given as

follows,

Praw,l = max{P�[l]1 , P�[l]1
}, l = 1,⋯ , d. (6)

To adjust for multiple testing, one possible solution is the Bonferroni criterion, i.e. Praw,l < 0.05∕d. However, this Bonferroni-
based method suffers from vanishing power in the case of large-scale multiple hypothesis testing.32 In the next section, we will
propose a closed testing-based selection procedure adapting the method of Goeman et al.,32 which can effectively control false
discovery proportions when the number of hypotheses goes to infinity.

2.3 Closed Testing-Based Mediation Effect Selection Procedure
In this section, we focus on developing a selection procedure for mediation effects. Denote by {H0l}dl=1 the collection of
hypotheses of interest (elementary hypotheses) in Equation (4), T0 ⊆ {1,⋯ , d} is the index set of true null hypotheses. The
closed testing methods (Marcus et al.33; Goeman and Solari34) consider not only the elementary hypotheses, but also all inter-
section hypotheses of the form HA =

⋂

i∈AH0i, where A ⊆ {1,⋯ , d} and A ≠ ∅. An intersection hypothesis HA is true if
and only if Hi is true for all i ∈ A. Let  be the collection of all subsets of {1,⋯ , d}. We define 0.05 as the collection of all
A ∈  such thatHA is rejected, where P (T0 ∉ 0.05) ≥ 0.95 (or equivalently P (T0 ∈ 0.05) ≤ 0.05). For any S ⊆ {1,⋯ , d} of
selected hypotheses to reject (referred to as discoveries), Goeman et al.32 provided a simultaneous 0.95-confidence lower-bound,
LB0.05(S), for the number of true discoveries in S. Below we summarize the procedure of Goeman et al.32 in Algorithm 1.
Of note, the term LB0.05(S) is given in Theorem 1 of Goeman et al.,32 which can provide a 0.95-confidence lower-bound for

the number of true discoveries in any set S. For example, if S = {1, 2, 3, 4, 5} and LB0.05(S) = 3, we can say that there are at
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Algorithm 1 Closed Testing-Based Algorithm
Step 1: Obtain the raw (unadjusted) p-values P1,⋯ , Pd for the elementary hypothesesH01,⋯ ,H0d . Sort these p-values in the
increasing order as Pr1 ≤ Pr2 ≤ ⋯ ≤ Prd , where ri ∈ {1,⋯ , d}. Let Ri = {r1,⋯ , ri} be the set of the smallest i p-values.
Similarly define Rd−i = {r1,⋯ , rd−i} to be the set of the smallest d − i p-values. Denote by Li = {1,⋯ , d}∖Rd−i the set of the
largest i p-values, as in Eq. (8) of Goeman et al.32
Step 2: Calculate the 0.95-confidence lower-bound for the number of true discoveries in S,

LB0.05(S) = max
1≤k≤|S|

1 − k + |{i ∈ S ∶ ℎ0.05Pi ≤ 0.05k}|, (7)

where |S| denotes the number of elements in S, and ℎ0.05 = max{1 ≤ i ≤ d ∶ Li ∉ 0.05} denotes the size of the set of largest
p-values not rejected.

least 3 true discoveries in S with 0.95-confidence. Here we point out that the lower-bound (7) is exact and applicable to all S,
and we can easily obtain LB0.05(S) using the R package hommel for practical applications.
Let 0 = {l ∶ �

[l]
1 �[l]1 ≠ 0, l = 1,⋯ , d} be the index set of significant mediators. Below, we propose a novel mediation

effect selection procedure. Our basic idea is to sort the p-values {Praw,l}dl=1 in (6) as Praw,r1 ≤ Praw,r2 ≤ ⋯Praw,rd . Let K =
max{i ∶ Praw,ri ≤ 0.05, i = 1,⋯ , d}, and S1 = {r1}, S2 = {r1, r2}⋯SK = {r1, r2,⋯ , rK}. Based on (7), we know that
LB0.05(S1) ≤ LB0.05(S2) ≤ ⋯ ≤ LB0.05(SK ). It is reasonable to regard Mrk as a significant mediator if there is a jump of
size one from LB0.05(Sk−1) to LB0.05(Sk), i.e., the corresponding mediator Mrk leads to an increase of the 0.95-confidence
lower-bound of true discoveries. More specifically, we show our proposed mediation effect selection procedure in Algorithm 2.

Algorithm 2Mediation Effect Selection Algorithm
Step 1: Sort the p-values {Praw,l}dl=1 in (6) as Praw,r1 ≤ Praw,r2 ≤ ⋯ ≤ Praw,rd . Let S1 = {r1}, S2 = {r1, r2},⋯ , SK =
{r1, r2,⋯ , rK}, and K = max{i ∶ Praw,ri ≤ 0.05, i = 1,⋯ , d}.
Step 2: Run Algorithm 1 to obtain the values of LB0.05(Sk) in (7), for k = 1,⋯ , K .
Step 3: Define J1 = LB0.05(S1) and Jk = LB0.05(Sk)−LB0.05(Sk−1), where k = 2,⋯ , K . The estimated index set of significant
mediators is

̂ = {rk ∶ Jk = 1, for k = 1,⋯ , K}. (8)

Remark 1: In Algorithm 2, sorting the p-values {Praw,l}dl=1 can save computation time as only K values of LB0.05(S) are
calculated. Otherwise, a total of d lower-bounds LB0.05(S) need to be calculated. Hence, our method has a computational
advantage, especially when the value of K∕d is small.
In summary, we first impose the ilr-transformation on the relative abundances, then we refit the ilr-transformed variables in

the linear mediation models. Because only the first element of the ilr-transformed variables is interpretable, we permute the
orders of the original d mediators in turn to ensure that each taxon should play the role of the first element. In the structural
equation modeling framework, we obtain the raw p-values by joint significant tests for the component-wise mediation effects.
Further, we apply a novel closed testing-based selection method for the ilr-transformed high dimensional mediators.

3 NUMERICAL SIMULATION

In this section, we conduct some simulations to check the performance of our proposedmethod. For simplicity and concentration,
we do not consider covariates in the simulation, although our microHIMA package has the capacity for covariate adjustment.

3.1. Simulation study 1.
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To begin with, we introduce some compositional operators as follows. For two compositions �, � ∈ Sd , the perturbation
operator is defined by

�⊕ � =

(

�1�1
∑d
j=1 �j�j

,⋯ ,
�d�d

∑d
j=1 �j�j

)′

. (9)

Of note, for three compositions �,! and � ∈ Sd , �⊕!⊕� = (�⊕!)⊕� . Moreover, the power transformation for a composition
� by a scalar v is given as

�v =

(

�v1
∑d
j=1 �

v
j

,⋯ ,
�vd

∑d
j=1 �

v
j

)′

. (10)

First we generate data from the compositional mediation model in Sohn and Li,23

M = m0 ⊕ aX ⊕ e, (11)
Y = c0 + cX + (logM)′b + �, (12)

where
∑d
i=1 bi = 0, the baseline composition m0 is from the standard uniform distribution, Unif(0,1), under the unit-sum

constraint. We randomly generate the exposure X from N(0, 1), and aX is defined in (10). The compositional distribution e is
generated from a multivariate logistic normal distribution with mean zero and variance Σe, c0 = 1 and c = 0.5. We consider the
following three settings:

Table 1. Accuracy of mediation effect selection in Simulation study 1†.

d = 50 d = 100
Methods MS CMR FPR FDP MS CMR FPR FDP

Case I Proposed 3.004 0.996 8.5 × 10−5 0.0010 3.002 0.998 2.1 × 10−5 5 × 10−4

B-H 3.110 0.906 0.0023 0.0256 3.102 0.906 0.0011 0.0246
CMMa 6.22 0.05 0.0685 0.4784 11.08 0 0.0833 0.7121
CMMb 3.36 0.70 0.0077 0.0835 4.76 0.21 0.0181 0.3131

Case II Proposed 2.984 0.974 0.0001 0.0015 2.968 0.972 2.1 × 10−5 5 × 10−4

B-H 3.078 0.914 0.0019 0.0210 3.086 0.896 0.0011 0.0268
CMMa 6.66 0.02 0.0779 0.5129 11.33 0 0.0859 0.7213
CMMb 3.96 0.39 0.0204 0.1982 6.29 0.04 0.0339 0.4778

Case III Proposed 0.002 0.998 4 × 10−5 0.0020 0.002 0.998 2 × 10−5 0.0020
B-H 0.032 0.968 0.0006 0.0320 0.016 0.984 0.0002 0.0160
CMMa 4.59 0.01 0.0918 0.99 9.05 0 0.0905 1
CMMb 0.80 0.40 0.0160 0.60 2.37 0.10 0.0237 0.9

† “Proposed" denotes our method in Algorithm 2; “B-H" denotes the classical B-H algorithm in Benjamini and Hochberg (1995) 35, adopted by Zhang et al. (2019) 25;

“CMMa" and “CMMb" denote the methods in Sohn and Li (2019) 23; “MS" denotes the mean model size; “CMR" denotes the proportion of times selecting the correct

model 0; “FPR" and “ FDP" denote the false positive rate, and the false discovery proportion.

Case I: We set a = (1∕3, 1∕4, 1∕5, a4,⋯ , ad)′, and ai =
13ui

60
∑d
i=4 ui

for i = 4,⋯ , d, where ui follows from U (0, 1); and b =
(1.3,−0.7,−0.6, 0,⋯ , 0)′. Following Sohn and Li23, let Σe = 2 with = d−1+1d−11′d−1, where d−1 is the (d−1)×(d−1)
identity matrix, and 1d−1 = (1,⋯ , 1)′. The compositional regression disturbance � follows from a normal distribution with
mean 0 and variance 2. Let 0 = {1, 2, 3} denote the index set of significant mediators.
Case II: The setting is the same as Case I, except that Σe =  and � is generated from the t3 distribution, i.e., t distribution

with 3 df.
Case III: The setting is the same as Case I, except that b = (0,⋯ , 0)′ with 0 = ∅. There are no significant mediators in this

case.
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Let ̂ be the estimated index set of the significant mediators (1) based on Algorithm 2. To evaluate the performance of
mediation effect selection, we record: the model size (MS), |̂|; the rate that the correct model is selected (CMR), I(̂ = 1);
the false positive rate (FPR), |̂ ⧵ 1|∕(d − |1|), where ̂ ⧵ 1 denotes the set difference of ̂ and 1; the false discovery
proportion (FDP), |̂ ⧵ 1|∕|̂|.
For comparison, we also consider the classical B-H algorithm35 which adjusts the p-values in equation (6) directly, as in Zhang

et al.25 Moreover, letCIj be the 100(1−�)% bootstrap confidence interval (1000 bootstrap samples) for the jth component-wise
mediation effect in Sohn and Li23, j = 1,⋯ , d. The selected index set of the significant mediators by Sohn and Li23 is

̂ = {j ∶ 0 ∉ CIj , for j = 1,⋯ , d}. (13)

For fair competition, we set � = 0.05 (denoted as CMMa) and � = 0.05∕d (denoted as CMMb) for the 100(1 − �)%
CI proposed by Sohn and Li23, where the computation procedure is available from the R package ccmm (https://CRAN.R-
project.org/package=ccmm). For the “Proposed" and “B-H" methods, the computations are based on 500 repetitions, while
results from CMMa and CMMb are based on 100 repetitions in view of their computational burden. For all cases, the sam-
ple size is n = 200. Table 1 indicates that our method tends to select a smaller model, and has notable advantage over B-H
algorithm35 25 in the performance of CMR towards significant mediators, FPR and FDP. Compared to Sohn and Li23, our method
has substantial advantages in all four criteria under consideration.

3.2. Simulation study 2.

We generate microbial relative abundances by the method of Wang et al.24, using the Dirichlet regression to model the
microbial relative abundance as a function of exposure. For i = 1,⋯ , n, we assume thatMi|Xi ∼Dirichlet(!1(Xi),⋯ , !d(Xi)),
and their microbial relative means are linked with exposure in the generalized linear model fashion:

E(Mij) =
!j(Xi)

∑d
m=1 !m(Xi)

,

log{!j(Xi)} = �0j + �Xj
Xi, for j = 1,⋯ , d,

where �0j represents the log-transformed baseline relative abundances for the jth taxa, and �Xj
is the

coefficient of exposure for the jth taxa. Let �0 = (�01,⋯ , �0d)′. Following Wang et al.24, we set �0
as the corresponding estimates from the murine microbiome experiment data in Section 4, i.e. �0 =
(−1.771,−1.682,−1.587,−1.130,−1.747,−1.861,−1.873,−1.642,−1.543,−1.265,−1.788, 2.278,−1.618,−1.137,−1.559,
−1.344,−1.462,−1.568,−0.522,−1.078,−1.584,−1.471,−1.680,−1.711,−1.757,−0.135,−1.325,−1.541,−0.961,−0.565,
−1.612,−1.702,−0.578,−1.883, 0.072,−1.684)′. We set �X = (1, 1.2, 1.5, 0,⋯ , 0)′ with d = 36 (the number of taxa in
Section 4). We consider the following two situations:
Case A: The exposure Xi follows from binomial distribution B(1, 0.5). The response Y is generated from Model (12), where

c0 = 0, c = 1, and b = (3,−1.5,−1.5, 0,⋯ , 0)′; � is generated fromN(0, 1).
Case B: As suggested by a reviewer, we consider a setting with b = (1.3,−0.7,−0.6, 0,⋯ , 0)′, and �X =

(0, 0, 0, �X4
,⋯ , �Xd

)′, where �Xj
= uj

∑d
j=4 uj

, and uj follows from U (0, 1). Other parameters are set the same as in Case A. In
Case B there are no significant mediators, i.e. 0 = ∅, representing a “null hypothesis" setting for our method.
Similar to Simulation study 1, we run the method in Zhang et al.25 using the classical B-H algorithm35 to adjust the p-values

in equation (6). Furthermore, we consider the sparse MCMM methods in Wang et al.24. Let CIj be the 100(1 − �)% bootstrap
confidence interval (100 bootstrap samples) for the jth component-wise mediation effect in24, where the resulting ̂ is similarly
given as (13). Denote SparseMCMMa and SparseMCMMb for the situations with � = 0.05 and � = 0.05∕d, respectively. Of
note, the results for Wang et al.24 are obtained via the R package SparseMCMM (https://github.com/chanw0/SparseMCMM).
For the “Proposed" and “B-H" methods, the computations are based on 500 repetitions. In view of the computation burden of

Wang et al.,24 the simulations of SparseMCMMa and SparseMCMMb are based on 50 repetitions. For all methods, the sample
size is chosen as n = 300. We run Algorithm 2 to get the estimated index set ̂ of significant mediators. We present the MS,
CMR, FPR and FDP for our method, B-H algorithm and Wang et al.24 in Table 2.
From the results in Table 2, we can see that among all 500 replicates, our method correctly identifies all 3 mediators in

Case A, and 0 mediators under the “null hypothesis" in Case B, demonstrating the excellent performance of our method. In
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contrast, the B-H algorithm35 implemented in Zhang et al.25 performs slightly worse. Additionally, our method is superior over
SparseMCMMa and SparseMCMMb in terms of selecting significant mediators accurately.

Table 2. Accuracy of mediation effect selection in Simulation study 2 with d = 36†.

Methods MS CMR FPR FDP
Case A Proposed 3 1 0 0

B-H 3.004 0.998 0.0001 0.0008
SparseMCMMa 20.54 0 0.53 0.85
SparseMCMMb 15.10 0 0.37 0.79

Case B Proposed 0 1 0 0
B-H 0.008 0.992 0.0002 0.0080

SparseMCMMa 19.30 0 0.54 1
SparseMCMMb 13.88 0 0.39 1

† “Proposed" denotes our method in Algorithm 2; “B-H" denotes the classical B-H algorithm in Benjamini and Hochberg (1995) 35, adopted by Zhang et al. (2019) 25;

“SparseMCMMa" and “SparseMCMMb" denote the methods in Wang et al. (2019) 24; “MS" denotes the mean model size; “CMR" denotes the proportion of times

selecting the correct model 0; “FPR" and “ FDP" denote the false positive rate, and the false discovery proportion.

4 APPLICATION TOMICROBIOME DATA

We apply our method to a murine microbiome experiment,36 where the DNAs were extracted from fecal samples using the
96-well MO BIO PowerSoil DNA Isolation Kit by targeting the V4 region of the bacterial 16S rRNA gene. We focus on 36
male mice, where the taxa table was constructed using the QIIME pipeline (Caporaso et al.37) on day 28. There were originally
149 genera. The number of taxa in the microbiome data set is high-dimensional, with high absence rates of many taxa across
samples. We remove the taxa that appear in less than 10% of the mice with mean relative abundance less than 10−4, leaving 36
taxa for each sample in our analysis. Since the number of sequencing reads varies greatly across samples, the count data are
transformed into compositions after zero counts are replaced by the maximum rounding error 0.5 ( Lin et al.38; Wang et al.24).
The observed body weight (in grams) prior to sacrifice, i.e. on day 116 for the male mice, is taken as the outcome. We consider
STAT (sub-therapeutic antibiotic treatment; X = 1) and control group (X = 0) as the exposure. Moreover, we assume that all
potential confounders were well-controlled in the randomized experiment. Our interest is to select significant gut microbial taxa
that play the mediating role between treatment and body weight gain.

Table 3. Summary results of potential mediating taxa†.

Genus Proposed CMMb SparseMCMMb

Coprobacillus p-value = 9 × 10−7 CI = [0.3956, 2.6055] ∗
Adlercreutzia p-value = 6 × 10−6 ∗ CI = [−0.0893, −0.1940]

† “Proposed" denotes our method in Algorithm 2; CMMb and SparseMCMMb are defined in Tables 1 and 2, respectively; p-value is given in (6); CI is the

100(1 − 0.05∕d)% confidence interval for component-wise mediation effect; ∗ denotes that the corresponding causal taxon is not selected out.

In Table 3, we report the summary results of two potential mediating taxa, which are survived by our closed testing-based
method in Algorithm 2. For the identified taxa, Coprobacillus and Adlercreutzia, we also give the corresponding confidence
intervals (CIs) based on Sohn and Li23 andWang et al.24, respectively. By our method, forCoprobacillus, the estimated pathway
effect (�) on X → M is −3.04 (SE 0.44); the estimated pathway effect (�) onM → Y is −34.92 (SE 7.11); for Adlercreutzia,
the pathway effects on X → M and M → Y are 0.96 (SE 0.21) and −15.56 (SE 3.18), respectively. Hence, Coprobacillus
has a positive mediation effect, while Adlercreutzia has a negative mediation effect. These conclusions are consistent with the
directions of mediation effects estimated by CMMb and SparseMCMMb (Table 3).



ZHANG ET AL 9

5 CONCLUDING REMARKS

We have proposed a novel closed testing-based selection method for the ilr-transformed high dimensional mediators. Simula-
tions and a real data example are provided to illustrate the validity and applicability of the method. Specifically, numerical studies
indicated that our proposed method is more accurate than FDR-based procedure towards mediator selection. One possible expla-
nation for this phenomenon is that the well-known Benjamini-Hochberg procedure35 controls the FDR under independence
or positive-dependence structure39. However, the p-values may have more complicated dependence structure in microbiome
studies. We also note that our method has some computationally advantages since we do not need to rely on bootstrapping for
inference.
The proposed method focuses on the high dimensional microbiome sequencing data. It will take all the available microbes’

relative abundances into the modeling and use the penalization technique to select the important microbes. We are thus able to
conduct the microbiome-wide quantification to identify microbes that play important mediating roles in linking the treatmen-
t/exposure and human phenotype/response. In contrast, a confirmative hypothesis is needed if only a few candidate taxa are of
interest. For such analysis, the conventional mediation methods can be used directly, which is not subject to the high dimensional
and compositional data challenges.
Note that the aim of the ilr-transformation in our method is to remove the compositional structure of the original d mediators.

However, one drawback of the ilr-transformed mediators is how to reasonably interpret the corresponding meditation effect.
Numerically, our proposed method can correctly select those significant mediators if they have true mediation effects in some
popular compositional mediation models. For example, when data are generated from the models in Sohn and Li23 and Wang
et al.,24 our method can select significant mediators satisfactorily, demonstrating the robustness of our method.
Our proposed procedure can be extended in several directions. First, we have replaced zero values by 0.5 to deal with the

zero-inflated problem in the microbiome data. With more rigor, we can adopt the two part models (e.g. Chen and Li40; Chai et
al.41; and Liu et al.42) to separately model the odds of the presence of zero values and the amount of positive values. Second,
as a reviewer pointed out, it is interesting to incorporate the interaction between the exposure and the microbiome in model
(2). Third, the bacterial taxa are related to each other by a phylogenetic tree (Tang et al.43; Wang and Zhao44). We can propose
a novel tree-guided procedure similar to the tree-guided fused Lasso in Wang and Zhao44. Fourth, longitudinal measurements
of microbial communities can be obtained in many microbiome studies (Chen and Li40; Lugo-Martinez et al.45). Mediation
analysis for longitudinal microbiome data is a topic for future research. Finally, there are two frameworks of mediation analysis:
the structural equation modeling (SEM) framework, e.g., Zhang et al.31; Boca et al.46; Sampson et al.47; and the counterfactual
or potential outcome approach, e.g., Huang and Pan48; Cheng et al.49; and Derkach et al.50. Our current approach falls into the
SEM framework. Note that one benefit of counterfactual based mediation models is how nonlinear methods are handled. It is of
great interest to adapt our method in the counterfactual or potential outcome framework in further research.
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