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Abstract

For two s-uniform hypergraphs H and F , the Turán number exs(H,F ) is the

maximum number of edges in an F -free subgraph of H. Let s, r, k, n1, . . . , nr be

integers satisfying 2 ≤ s ≤ r and n1 ≤ n2 ≤ · · · ≤ nr. De Silva, Heysse and

Young determined ex2(Kn1,...,nr , kK2) and De Silva, Heysse, Kapilow, Schenfisch and

Young determined ex2(Kn1,...,nr
, kKr). In this paper, as a generalization of these

results, we consider three Turán-type problems for k disjoint cliques in r-partite s-

uniform hypergraphs. First, we consider a multi-partite version of the Erdős matching

conjecture and determine exs(K
(s)
n1,...,nr , kK

(s)
s ) for n1 ≥ s3k2 + sr. Then, using a

probabilistic argument, we determine exs(K
(s)
n1,...,nr , kK

(s)
r ) for all n1 ≥ k. Recently,

Alon and Shikhelman determined asymptotically, for all F , the generalized Turán

number ex2(Kn,Ks, F ), which is the maximum number of copies of Ks in an F -free

graph on n vertices. Here we determine ex2(Kn1,...,nr
,Ks, kKr) with n1 ≥ k and n3 =

· · · = nr. Utilizing a result on rainbow matchings due to Glebov, Sudakov and Szabó,

we determine ex2(Kn1,...,nr
,Ks, kKr) for all n1, . . . , nr with n4 ≥ rr(k − 1)k2r−2.
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1 Introduction

An s-uniform hypergraph, or simply an s-graph, is a hypergraph whose edges have exactly

s vertices. For an s-graph H, let V (H) be the vertex set of H and E(H) the edge set of H.

An s-graph H is called F -free if H does not contain any copy of F as a subgraph. For two

s-graphs H and F , the Turán number exs(H,F ) is the maximum number of edges of an

F -free subgraph of H. Denote by K
(s)
t the complete s-graph on t vertices. A copy of K

(s)
t

in an s-graph H is also called a t-clique of H. Let kK
(s)
t denote the s-graph consisting

of k vertex-disjoint copies of K
(s)
t . If t = s, then kK

(s)
s represents a matching of size k.

Let n1, . . . , nr be integers and V1, V2, . . . , Vr be disjoint vertex sets with |Vi| = ni for each

i = 1, . . . , r. A complete r-partite s-graph on vertex classes V1, V2, . . . , Vr, denoted by
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K(s)(V1, V2, . . . , Vr) or K
(s)
n1,n2,...,nr , is defined to be the s-graph whose edge set consists of

all the s-element subsets S of V1∪V2∪· · ·∪Vr such that |S∩Vi| ≤ 1 for all i = 1, . . . , r. An

s-graph H is called an r-partite s-graph on vertex classes V1, V2, . . . , Vr if H is a subgraph

of K(s)(V1, V2, . . . , Vr). For s = 2, we often write Kt, kKt,K(V1, V2, . . . , Vr),Kn1,n2,...,nr

and ex(H,F ) instead of K
(2)
t , kK

(2)
t ,K(2)(V1, V2, . . . , Vr),K

(2)
n1,n2,...,nr and ex2(H,F ). Let

[n] denote the set {1, 2, . . . , n} and [m,n] denote the set {m,m+ 1, . . . , n} for m ≤ n.

Turán-type problems were first considered by Mantel [17] in 1907, who determined

ex(Kn,K3). In 1941, Turán [19] showed that the balanced complete t-partite graph on n

vertices, called the Turán graph and denoted by Tn,t, is the unique graph that maximises

the number of edges among all Kt+1-free graphs on n vertices. Since then, Turán numbers

of graphs and hypergraphs have been extensively studied. However, even though lots

of progress has been made, most of the Turán problems for bipartite graphs and for

hypergraphs are still open. Specifically, none of the Turán numbers exs(K
(s)
n ,K

(s)
t ) with

t > s > 2 has yet been determined, even asymptotically. We recommend the reader to

consult [15, 18] for surveys on Turán numbers of graphs and hypergraphs.

Many problems in additive combinatorics are closely related to Turán-type problems in

multi-partite graphs and hypergraphs. Recently, Turán problems in multi-partite graphs

have received a lot of attention, see [3, 6, 14]. The following result, which is attributed to

De Silva, Heysse and Young, determines ex(Kn1,...,nr , kK2).

Theorem 1.1. For n1 ≤ n2 ≤ · · · ≤ nr and k ≤ n1,

ex(Kn1,n2,...,nr , kK2) = (k − 1)(n2 + · · ·+ nr).

Since it seems that their preprint has not been published online, we present a proof of

Theorem 1.1 in the Appendix for the completeness of the paper. In [6], De Silva, Heysse,

Kapilow, Schenfisch and Young determined ex(Kn1,...,nr , kKr).

Theorem 1.2. [6] For n1 ≤ n2 ≤ · · · ≤ nr and k ≤ n1,

ex(Kn1,...,nr , kKr) =
∑

1≤i<j≤r
ninj − n1n2 + (k − 1)n2.

In this paper, we consider three Turán-type problems for k disjoint cliques in r-partite

s-graphs. Let n1, n2, . . . , nr be integers. For any A ⊂ [r], denote
∏
i∈A ni by nA. Define

f
(s)
k (n2, . . . , nr) = (k − 1)

∑
A:A⊂[2,r]
|A|=s−1

nA,

g
(s)
k (n1, n2, . . . , nr) =

∑
A:A⊂[r]
|A|=s

nA − n[s] + (k − 1)n[2,s],

and

h
(s)
k (n1, n2, . . . , nr) =

∑
A:A⊂[r]

|A|=s,{1,2}6⊂A

nA +
∑

A:A⊂[3,r]
|A|=s−2

(k − 1)n2nA.

Theorem 1.3. For 2 ≤ s ≤ r, k ≥ 1 and n1 ≤ n2 ≤ · · · ≤ nr, if n1 ≥ s3k + sr for

s ≤ r − 2; n1 ≥ s3k2 + sr for s = r − 1 and n1 ≥ k for s = r, then

exs(K
(s)
n1,n2,...,nr

, kK(s)
s ) = f

(s)
k (n2, . . . , nr).
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It should be mentioned that the problem in Theorem 1.3 can be viewed as a multi-

partite version of the Erdős matching conjecture, which states that

exs(K
(s)
n , kK(s)

s ) = max

{(
ks− 1

s

)
,

(
n

s

)
−
(
n− k + 1

s

)}
and is still open when n is close to s(k − 1), see [5, 7, 10, 11, 12] for recent progress.

The lower bound in Theorem 1.3 follows from the following construction. Let H1 be an

r-partite s-graph on vertex classes V1, V2, . . . , Vr with sizes n1, n2, . . . , nr, respectively. Let

V ′1 be a (k − 1)-element subset of V1. An edge S of K(s)(V1, V2, . . . , Vr) forms an edge of

H1 if and only if S ∩ V ′1 6= ∅. It is easy to see that H1 is kK
(s)
s -free. Otherwise, if H1 has

a matching of size k, then we have |V ′1 | ≥ k since each edge of H1 contains a vertex in V ′1 .

As our second main result, we use a probabilistic argument to determine exs(K
(s)
n1,...,nr , kK

(s)
r ).

Theorem 1.4. For 2 ≤ s ≤ r, n1 ≤ n2 ≤ · · · ≤ nr and k ≤ n1,

exs

(
K(s)
n1,...,nr

, kK(s)
r

)
= g

(s)
k (n1, n2, . . . , nr).

The lower bound in Theorem 1.4 follows from the following construction. Let H2 be an

r-partite s-graph on vertex classes V1, V2, . . . , Vr with sizes n1, n2, . . . , nr, respectively. Let

V ′1 be an (n1−k+1)-element subset of V1 and let H2 be obtained by deleting all the edges

of K(s)(V ′1 , V2, . . . , Vs) from K(s)(V1, V2, . . . , Vr). It is easy to see that H2 is kK
(s)
r -free.

Otherwise, if there are k vertex-disjoint copies of K
(s)
r in H2, then we have |V1 \ V ′1 | ≥ k

since each copy of K
(s)
r in H2 contains a vertex in V1 \ V ′1 .

We also consider the generalized Turán problem in multi-partite graphs. Let ex(G,T, F )

denote the maximum number of copies of T in an F -free subgraph of G. The first result of

this type is due to Zykov [20], who showed that the Turán graph also maximises the number

of s-cliques in an n-vertex Kt+1-free graph for s ≤ t. Recently, Alon and Shikhelman [2] de-

termined ex(Kn,Ks, F ) asymptotically for any F with chromatic number χ(F ) = t+1 > s.

Precisely, they proved that

ex(Kn,Ks, F ) = ks(Tn,t) + o(ns),

where ks(Tn,t) denotes the number of s-cliques in the Turán graph Tn,t. Later, the error

term of this result was further improved by Ma and Qiu [16].

In this paper, we also study the maximum number of s-cliques in a kKr-free subgraph

of Kn1,...,nr . By the same probabilistic argument as in the proof of Theorem 1.4, we obtain

the following result.

Theorem 1.5. For 2 ≤ s ≤ r, n1 ≤ n2 ≤ n3 and k ≤ n1,

ex(Kn1,n2,n3, . . . , n3︸ ︷︷ ︸
r−2

,Ks, kKr) = h
(s)
k (n1, n2, n3, . . . , n3︸ ︷︷ ︸

r−2

).

Note that for r = 3, s ≤ 3 and arbitrary n1, n2, n3, the Turán number ex (Kn1,n2,n3 ,Ks, kK3)

is determined by Theorem 1.5. Utilizing a result on rainbow matchings due to Glebov, Su-

dakov and Szabó [13], we also determine ex(Kn1,...,nr ,Ks, kKr) for r ≥ 4 and n4 sufficiently

larger than k.

Theorem 1.6. For r ≥ 4, 2 ≤ s ≤ r, n1 ≤ n2 ≤ · · · ≤ nr and k ≤ n1, if n4 ≥
rr(k − 1)k2r−2, then

ex (Kn1,...,nr ,Ks, kKr) = h
(s)
k (n1, n2, . . . , nr).
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The lower bounds in Theorems 1.5 and 1.6 follow from the same construction as follows.

Let G be an r-partite graph on V1, V2, . . . , Vr, which are of sizes n1, n2, . . . , nr, respectively.

Let V ′1 be an (n1 − k + 1)-element subset of V1. Then G is obtained by deleting all the

edges of K(V ′1 , V2) from K(V1, V2, . . . , Vr). It is easy to see that G is kKr-free. Otherwise,

if there are k vertex-disjoint copies of Kr in G, then we have |V1 \ V ′1 | ≥ k since each copy

of Kr in G contains a vertex in V1 \ V ′1 .

The rest of the paper is organized as follows. We will prove Theorem 1.3 in Section 2.

In Section 3, we prove Theorem 1.4. In Section 4, we prove Theorems 1.5 and 1.6.

2 Turán number of kK
(s)
s in r-partite s-graphs

In this section, we prove Theorem 1.3. First, we consider the case s = r, which is the base

case for other results in this paper. Aharoni and Howard [1] determined the maximum

number of edges in a balanced r-partite r-graph that is kK
(r)
r -free. By the same argument,

we prove the following result:

Lemma 2.1. For any integers 1 ≤ k ≤ n1 ≤ n2 ≤ · · · ≤ nr,

exr(K
(r)
n1,...,nr

, kK(r)
r ) = (k − 1)n2 · · ·nr.

Proof. We shall partition the edge set of K(r)(V1, . . . , Vr) into n2n3 · · ·nr matchings of size

n1 each. Let Vi = {vi,0, vi,1, . . . , vi,ni−1} for i = 1, 2, . . . , r and

Λ = [0, n2 − 1]× [0, n3 − 1]× · · · × [0, nr − 1].

For any (r − 1)-tuple (x2, x3, . . . , xr) ∈ Λ, define

E(x2, x3, . . . , xr) =
{
{v1,x, v2,(x+x2) mod n2

, . . . , vr,(x+xr) mod nr
} : x ∈ [0, n1 − 1]

}
.

It is easy to see that E(x2, x3, . . . , xr) is a matching of size n1. Moreover, let

Ω = {E(x2, x3, . . . , xr) : (x2, x3, . . . , xr) ∈ Λ} .

We shall show that Ω forms a partition of the edge set of K(r)(V1, . . . , Vr). On one hand,

let e = {v1,x1 , v2,x2 , . . . , vr,xr} be an edge in K(r)(V1, . . . , Vr) with vi,xi ∈ Vi for each

i = 1, 2, . . . , r. Define

yi :≡ (xi − x1) mod ni

for each i = 2, . . . , r. It is easy to check that e ∈ E(y2, y3, . . . , yr). Moreover, for each

(x2, x3, . . . , xr) ∈ Λ, E(x2, x3, . . . , xr) ⊂ E(K(r)(V1, . . . , Vr)) holds. Thus, we have

E(K(r)(V1, . . . , Vr)) =
⋃

(x2,x3,...,xr)∈Λ

E(x2, x3, . . . , xr).

On the other hand, for any two different tuples (y2, y3, . . . , yr), (z2, z3, . . . , zr) ∈ Λ, we claim

that E(y2, y3, . . . , yr)∩E(z2, z3, . . . , zr) = ∅. Otherwise if there exists {v1,x1 , v2,x2 , . . . , vr,xr}
∈ E(y2, y3, . . . , yr) ∩ E(z2, z3, . . . , zr), then we have

xi ≡ (x1 + yi) mod ni ≡ (x1 + zi) mod ni

for all i = 2, . . . , r. It follows that yi ≡ zi mod ni. Since yi, zi ∈ {0, 1, . . . , ni − 1}, we

obtain yi = zi for all i = 2, . . . , r, a contradiction. Therefore, Ω forms a partition of the

edge set of K(r)(V1, . . . , Vr).
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Assume that H ⊆ K(r)(V1, . . . , Vr) and e(H) ≥ (k−1)n2 · · ·nr +1. Then the partition

{E(H) ∩ E(x2, x3, . . . , xr) : (x2, x3, . . . , xr) ∈ Λ}

of E(H) shows that at least one of the matchings E(H) ∩ E(x2, x3, . . . , xr) has size k or

more, a contradiction.

For the lower bound, K
(r)
k−1,n2,...,nr

is a kK
(r)
r -free r-graph with (k − 1)n2 · · ·nr edges.

Thus, we conclude that exr(K
(r)
n1,...,nr , kK

(r)
r ) = (k − 1)n2 · · ·nr.

Let H be an s-graph. For u, v ∈ V (H) and e ∈ E(H), we define a shifting operator

Suv on e as follows:

Suv(e) =

{
(e \ {v}) ∪ {u}, if v ∈ e, u /∈ e and (e \ {v}) ∪ {u} /∈ E(H),

e, otherwise.

Define Suv(H) be the s-graph with vertex set V (H) and edge set {Suv(e) : e ∈ E(H)}.
It is easy to see that e(Suv(H)) = e(H). Let ν(H) denote the size of a largest matching

in H. Frankl [9] showed that applying the shifting operator to H does not increase ν(H).

For the completeness we also include a short proof of this.

Lemma 2.2. [9] Let H be an s-graph. For any u, v ∈ V (H),

ν(Suv(H)) ≤ ν(H).

Proof. Suppose for contradiction that ν(H) = k but ν(Suv(H)) = k + 1. Let M =

{e1, e2, . . . , ek+1} be a matching of size k + 1 in Suv(H). Since each edge in E(Suv(H)) \
E(H) contains u, it follows that exactly one of e1, e2, . . . , ek+1 is not in H. Without

loss of generality, we assume that ek+1 /∈ E(H). Then, u ∈ ek+1, v /∈ ek+1 and e′k+1 =

ek+1 \ {u} ∪ {v} ∈ E(H). Since ν(H) = k, it is easy to see that e′k+1 ∩ ei = {v} for

some i ∈ [k]. Since ei ∈ E(H) ∩ E(Suv(H)) and u /∈ ei, by the definition of Suv we have

e′i = ei \ {v} ∪ {u} ∈ E(H). Then, M \ {ei, ek+1} ∪ {e′i, e′k+1} forms a matching of size

k + 1 in H, a contradiction.

Let H be an r-partite s-graph on vertex classes V1, V2, . . . , Vr, and

Vi = {ai,1, ai,2, . . . , ai,ni}

for i = 1, 2, . . . , r. Define a partial order ≺ on V = ∪ri=1Vi such that

ai,1 ≺ ai,2 ≺ · · · ≺ ai,ni

for each i and vertices from different parts are incomparable. For two different edges

S1 = {a1, a2, . . . , as} and S2 = {b1, b2, . . . , bs} in K(r)(V1, . . . , Vr), we define S1 ≺ S2 if

and only if there exists a permutation σ1σ2 · · ·σs of [s] such that aj ≺ bσj or aj = bσj
holds for all j = 1, . . . , s.

An r-partite s-graph H is called a stable r-partite s-graph if Sab(H) = H holds for

all a, b ∈ V (H) with a ≺ b. If H is stable and e ∈ E(H), it is easy to see that for any

s-element vertex subset S with S ≺ e, we have S ∈ E(H). Indeed, let S = {a1, a2, . . . , as}
and e = {b1, b2, . . . , bs} . Without loss of generality, we may assume that ai ≺ bi for each

i = 1, . . . , s0 and ai = bi for each i = s0 + 1, . . . , s. Since Sa1b1(H) = H and e ∈ E(H),

it is easy to see that e1 = e \ {b1} ∪ {a1} ∈ E(H). Since Sa2b2(H) = H and e1 ∈ E(H),
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it follows that e2 = e1 \ {b2} ∪ {a2} ∈ E(H). Repeat the same argument for i = 3, . . . , s0

and we shall obtain that S ∈ E(H).

To obtain a stable r-partite s-graph, we can apply the shifting operator to H iteratively.

For an intermediate step, let H∗ be the current r-partite s-graph. If H∗ is stable, we are

done. If H∗ is not stable, there exists a pair (a, b) such that a ≺ b and Sab(H
∗) 6= H∗.

Then, apply Sab to H∗ and we obtain a new r-partite s-graph. Define

g(H∗) :=
∑

e∈E(H∗)

r∑
i=1

∑
j:ai,j∈e

j.

Since after each step g(H∗) decreases strictly and g(H) > 0 holds for all the non-empty

r-partite s-graphs H, the process will end in finite steps. It should be mentioned that if

we apply the shifting operator in different orders, at the end we may arrive at different

stable r-partite s-graphs. For more properties of the shifting operator, we refer the reader

to [10].

For u, v ∈ V (H), let LH(u) denote the set of edges in H containing u and LH(u, v)

denote the set of edges in H containing u and v. Let dH(u) and dH(u, v) denote the

cardinality of LH(u) and LH(u, v), respectively. For X ⊂ V (H), let ΓH(X) denote the set

of edges in H that intersect X. It should be noticed that ΓH({u}) is the same as LH(u).

The subscripts will be dropped if there is no confusion. For S ⊂ V (H), let H[S] denote

the s-graph induced by S and H \ S the s-graph induced by V (H) \ S.

Lemma 2.3. For 3 ≤ s ≤ r − 1, if n ≥ s3k + sr for s ≤ r − 2 and n ≥ s3k2 + sr for

s = r − 1, then

exs(K
(s)
n, . . . , n︸ ︷︷ ︸

r

, kK(s)
s ) = (k − 1)

(
r − 1

s− 1

)
ns−1.

Proof. We prove the lemma by induction on k. For k = 1, the lemma holds trivially.

Suppose that the lemma holds for all k′ < k and H is a kK
(s)
s -free subgraph of K

(s)
n, . . . , n︸ ︷︷ ︸

r

with the maximum number of edges. By Lemma 2.2, we may further assume that H is

stable. Let T0 = {a1,1, a2,1, . . . , ar,1}, ν(H \ T0) = t and M ′ = {e1, . . . , et} be a largest

matching in H \ T0. Since H is stable, H[T0] is not empty. Then, it is easy to see that

t ≤ k − 2. Otherwise, for any edge e ∈ H[T0], {e} ∪ M ′ forms a matching of size k

in H. Since H \ T0 is (t + 1)K
(s)
s -free and n − 1 ≥ s3(t + 1) + rs for s ≤ r − 2 and

n− 1 ≥ s3(t+ 1)2 + rs for s = r − 1, by the induction hypothesis, it follows that

e(H \ T0) ≤ t
(
r − 1

s− 1

)
(n− 1)s−1.

If

|Γ(T0)| ≤ (k − 1)

(
r − 1

s− 1

)
ns−1 − t

(
r − 1

s− 1

)
(n− 1)s−1,

then we conclude that

e(H) = e(H \ T0) + |Γ(T0)| ≤ (k − 1)

(
r − 1

s− 1

)
ns−1.

Thus, we are left with the case

|Γ(T0)| > (k − 1)

(
r − 1

s− 1

)
ns−1 − t

(
r − 1

s− 1

)
(n− 1)s−1. (2.1)
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We will show that inequality (2.1) either implies the lemma or leads to a contradiction.

The proof splits into two cases according to the value of t.

Case 1. t = k − 2. Without loss of generality, assume that a1,1 is the vertex in T0

with the maximum degree within H. Since

r∑
i=1

d(ai,1) ≥ |Γ(T0)|,

by the inequality (2.1) it follows that

d(a1,1) ≥ 1

r
|Γ(T0)|

>
1

r

(
r − 1

s− 1

)(
(k − 1)ns−1 − (k − 2)(n− 1)s−1

)
≥ 1

r

(
r − 1

s− 1

)
ns−1.

Then, the structure of H can be partly described by the following claim.

Claim 1. Every edge in H intersects V1.

Proof. Suppose to the contrary that there exists an edge in H that does not intersect V1.

Since H is stable, there exists an edge in T0 that does not contain a1,1. Let e0 be such

an edge. Let S be the set of vertices covered by the edges in M ′ ∪ {e0}, where, as before,

M ′ is a matching of size k − 2 in H \ T0. Clearly, |S| = (k − 1)s. For each u ∈ S, the

number of edges containing u and a1,1 is at most
(
r−2
s−2

)
ns−2. Then, there are at most

(k − 1)s
(
r−2
s−2

)
ns−2 edges in L(a1,1) that intersect S. It follows that the number of edges

in L(a1,1) that are disjoint from the edges in M ′ ∪ {e0} is at least

d(a1,1)− (k − 1)s

(
r − 2

s− 2

)
ns−2

>
1

r

(
r − 1

s− 1

)
ns−1 − (k − 1)s

(
r − 2

s− 2

)
ns−2

=

(
r − 2

s− 2

)
ns−2

(
r − 1

r(s− 1)
n− (k − 1)s

)
>0,

where the last inequality follows from the assumption that n ≥ 2s2k. Thus, let e′0 be an

edge in L(a1,1) that is disjoint from the edges in M ′ ∪ {e0}. Then M ′ ∪ {e0, e
′
0} forms a

matching of size k in H, which contradicts the fact that H is kK
(s)
s -free. Therefore, the

claim holds.

Define an r-partite r-graph H∗ on vertex classes V1, . . . , Vr. An r-element subset T of

V (H) forms an edge of H∗ if H[T ] is non-empty and |T∩Vi| = 1 for i = 1, . . . , r. Since H is

kK
(s)
s -free, it follows that H∗ is kK

(r)
r -free. By Lemma 2.1, we have e(H∗) ≤ (k− 1)nr−1.

Now we prove the result by double counting. Let

Φ = {(e, T ) : e ∈ E(H), T ∈ E
(
K(r)(V1, V2, . . . , Vr)

)
, and e ⊂ T}.

For every T = {x1, x2, . . . , xr} ∈ E(H∗) with xi ∈ Vi for each i, since by Claim 1 each

edge in H[T ] contains x1, it follows that

e(H[T ]) ≤
(
r − 1

s− 1

)
.
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Moreover, H[T ] is non-empty if and only if T forms an edge in H∗. Thus,

|Φ| ≤ (k − 1)nr−1

(
r − 1

s− 1

)
.

On the other hand, each edge in H appears in nr−s pairs in Φ. Therefore, we have

e(H) = |Φ|/nr−s ≤ (k − 1)

(
r − 1

s− 1

)
ns−1.

Case 2. t ≤ k − 3. Let X be the set of vertices in T0 with degree greater than
1
2r

(
r−1
s−1

)
ns−1 and Y = T0 \X.

First, we prove the following claim, which will be used several times.

Claim 2. ν(H \X) ≤ k − 1− |X|.

Proof. Suppose to the contrary that ν(H \X) ≥ k − |X|. Let M∗ be a largest matching

in H \X. We shall show that M∗ can be greedily enlarged to a matching of size k in H,

which contradicts the fact that ν(H) ≤ k − 1. Since ν(H \X) ≥ k − |X|, it follows that

|X| ≥ k − ν(H \X) = k − |M∗|. Let l = k − |M∗| and x1, x2, . . . , xl be l vertices in X.

Set X+
i = {xi+1, xi+2, . . . , xl} and M0 = M∗. Note that

d(x1) ≥ 1

2r

(
r − 1

s− 1

)
ns−1

=
n

2(s− 1)
· r − 1

r
·
(
r − 2

s− 2

)
ns−2

≥ n

2(s− 1)
· 2

3
·
(
r − 2

s− 2

)
ns−2

> sk ·
(
r − 2

s− 2

)
ns−2

> (|M0|s+ |X+
1 |)
(
r − 2

s− 2

)
ns−2,

where the second inequality follows from the fact that r ≥ 3, the third inequality follows

form the assumption that n ≥ 3s2k and the last inequality follows from the fact that

k = |M∗|+l > |M0|+|X+
1 |. Since there are at most (|M0|s+|X+

1 |)
(
r−2
s−2

)
ns−2 edges in L(x1)

that intersect (∪e∈M0e)
⋃
X+

1 , we can choose e′1 from L(x1) such that M1 = M0 ∪ {e′1} is

a matching of size |M0| + 1 and x2, x3, . . . , xl are not used. Now we continue to choose

an edge from each of L(x2), . . . , L(xl) to enlarge the matching. When dealing with L(xi),

note that |X+
i | = l− i. Since there are at most (|Mi−1|s+ |X+

i |)
(
r−2
s−2

)
ns−2 edges in L(xi)

that intersect (∪e∈Mi−1e)
⋃
X+
i and

d(xi) ≥
1

2r

(
r − 1

s− 1

)
ns−1

> sk

(
r − 2

s− 2

)
ns−2

>
(
|Mi−1|s+ |X+

i |
)(r − 2

s− 2

)
ns−2,

where the last inequality follows from k = |M∗| + l > |Mi−1| + |X+
i |, therefore we can

choose e′i from L(xi) such that Mi = Mi−1 ∪ {e′i} is a matching of size |Mi−1| + 1 and
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xi+1, xi+2, . . . , xl are not used. Finally, we end up with Ml, which is a matching of size

|M∗| + l = k. It contradicts the fact that H is kK
(s)
s -free. Thus, we conclude that

ν(H \X) ≤ k − 1− |X|.

Then, we show that the sizes of both X and the matching number of H \ X can be

determined by the matching number of H \ T0.

Claim 3. |X| = k − 1− t.

Proof. By Claim 2 we have

t = ν(H \ T0) ≤ ν(H \X) ≤ k − 1− |X|.

Thus, |X| ≤ k − 1− t. If |X| ≤ k − 2− t, then

|Γ(T0)| ≤ |X|
(
r − 1

s− 1

)
ns−1 + (r − |X|) · 1

2r

(
r − 1

s− 1

)
ns−1

= |X|
(
r − 1

s− 1

)
ns−1

(
1− 1

2r

)
+

1

2

(
r − 1

s− 1

)
ns−1

≤
(

(k − 2− t)
(

1− 1

2r

)
+

1

2

)(
r − 1

s− 1

)
ns−1

< (k − 1− t)
(
r − 1

s− 1

)
ns−1,

which contradicts the inequality (2.1). Thus, the claim holds.

Claim 4. ν(H \X) = ν(H \ T0) = t.

Proof. By Claims 2 and 3, we have

ν(H \X) ≤ k − 1− |X| = t = ν(H \ T0).

Moreover, since H \T0 is a subgraph of H \X, it follows that ν(H \X) ≥ ν(H \T0). Thus,

the claim holds.

We also claim that Y cannot be an empty set. Otherwise, by Claim 3 we have

|Γ(T0)| = |Γ(X)| ≤ |X|
(
r − 1

s− 1

)
ns−1 = (k − 1− t)

(
r − 1

s− 1

)
ns−1,

which contradicts the inequality (2.1).

By Claim 4, we have that all edges in LH\X(y) intersect ∪e∈M ′e for each y ∈ Y .

Otherwise, if there exists an edge e0 in LH\X(y) that is disjoint from ∪e∈M ′e for some

y ∈ Y , then M ′ ∪ {e0} forms a matching of size t+ 1 in H \X, a contradiction. Then, we

can obtain an upper bound on |ΓH\X(Y )| by the following argument. For ei ∈M ′, define

a bipartite graph Gi on vertex classes Y and ei, where ei is viewed as one of the sides of

Gi. For u ∈ ei and v ∈ Y , {u, v} is an edge of Gi if dH\X(u, v) > (t + 1)s
(
r−3
s−3

)
ns−3. If

there is an i such that ν(Gi) ≥ 2, let {up, vp} and {uq, vq} be two disjoint edges of Gi with

up, uq ∈ ei and vp, vq ∈ Y . Since there are at most ts
(
r−3
s−3

)
ns−3 edges in LH\X(up, vp) that

intersect (∪e∈M ′e)∪{vq}\{up}, we can find an edge fp in LH\X(up, vp) that is disjoint from

(∪e∈M ′e)∪{vq}\{up}. Similarly, there are at most (t+1)s
(
r−3
s−3

)
ns−3 edges in LH\X(uq, vq)

that intersect (∪e∈M ′e) ∪ {fp} \ {uq}. Thus, we can find an edge fq in LH\X(uq, vq) that
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is disjoint from (∪e∈M ′e) ∪ {fp} \ {uq}. Now (M ′ \ {ei}) ∪ {fp, fq} forms a matching of

size t+ 1 in H \X, which contradicts with Claim 4. Thus, we conclude that each Gi has

matching number at most one.

Let ei ∈M ′ and

ΓH\X(ei, Y ) = {e ∈ E(H \X) : e ∩ ei 6= ∅ and e ∩ Y 6= ∅}.

The rest of the proof is divided into two subcases according to the size of |Y |.
Case 2.1. |Y | ≥ s. Since ν(Gi) ≤ 1, by Lemma 2.1, there are at most |Y | edges in

Gi. Then,

|ΓH\X(ei, Y )| ≤ e(Gi)
(
r − 2

s− 2

)
ns−2 + (|Y ||ei| − e(Gi)) (t+ 1)s

(
r − 3

s− 3

)
ns−3

= e(Gi)

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n− (t+ 1)s

)
+ |Y ||ei|(t+ 1)s

(
r − 3

s− 3

)
ns−3

≤ |Y |
(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n− (t+ 1)s

)
+ |Y |s2(t+ 1)

(
r − 3

s− 3

)
ns−3,

= (r − |X|)
(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(s− 1)

)
,

where the second inequality follows from the assumption that n > sk and e(Gi) ≤ |Y |.
By Claim 4, for any y ∈ Y all edges in LH\X(y) intersect ∪e∈M ′e. It follows that

|ΓH\X(Y )| ≤
t∑
i=1

|ΓH\X(ei, Y )| ≤ t(r − |X|)
(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(s− 1)

)
.

Since

|Γ(X)| ≤
|X|∑
i=1

d(xi) ≤ |X|
(
r − 1

s− 1

)
ns−1,

therefore

|Γ(T0)| = |Γ(X)|+ |ΓH\X(Y )|

≤ |X|
(
r − 1

s− 1

)
ns−1 + t(r − |X|)

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(s− 1)

)
. (2.2)

By combining the inequalities (2.1) and (2.2) and using the fact that |X| = k − 1− t, we

arrive at

t

(
r − 1

s− 1

)(
ns−1 − (n− 1)s−1

)
≤ t(r − |X|)

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(s− 1)

)
.

Since |X| ≥ 2 (because |X| = k − 1 − t and in Case 2 we assume that t ≤ k − 3), we

have

(r − 1)(r − 2)

(s− 1)(s− 2)

(
ns−1 − (n− 1)s−1

)
≤ (r − 2)ns−3

(
r − 2

s− 2
n+ (t+ 1)s(s− 1)

)
. (2.3)

By Taylor’s Theorem with Lagrange remainder, it can be deduced that

ns−1 − (n− 1)s−1 ≥ (s− 1)ns−2 − (s− 1)(s− 2)

2
ns−3. (2.4)

10



By combining the inequalities (2.3) and (2.4), we obtain that

r − 1

s− 2
ns−2 − r − 1

2
ns−3 ≤ ns−3

(
r − 2

s− 2
n+ (t+ 1)s(s− 1)

)
. (2.5)

Since t ≤ k − 3, by simplifying the inequality (2.5) we arrive at

n ≤ s(s− 1)(s− 2)(k − 2) +
(r − 1)(s− 2)

2
< s3k + sr,

which contradicts the fact that n ≥ s3k + sr.

Case 2.2. |Y | ≤ s− 1.

For each i = 1, 2, . . . , t, since ν(Gi) ≤ 1, by Lemma 2.1 we have e(Gi) ≤ s. Then

|ΓH\X(ei, Y )| ≤ e(Gi)
(
r − 2

s− 2

)
ns−2 + (|Y ||ei| − e(Gi)) (t+ 1)s

(
r − 3

s− 3

)
ns−3

= e(Gi)

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n− (t+ 1)s

)
+ |Y ||ei|(t+ 1)s

(
r − 3

s− 3

)
ns−3

≤ s
(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n− (t+ 1)s

)
+ |Y |s2(t+ 1)

(
r − 3

s− 3

)
ns−3,

= s

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(|Y | − 1)

)
,

where the second inequality follows from the assumption that n > sk and e(Gi) ≤ s.

Thus,

|ΓH\X(Y )| ≤
t∑
i=1

|ΓH\X(ei, Y )| ≤ st
(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(|Y | − 1)

)
. (2.6)

Since

|Γ(X)| ≤
|X|∑
i=1

d(xi) ≤ |X|
(
r − 1

s− 1

)
ns−1,

therefore

|Γ(T0)| = |Γ(X)|+ |ΓH\X(Y )|

≤ |X|
(
r − 1

s− 1

)
ns−1 + st

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(|Y | − 1)

)
. (2.7)

By combining the inequalities (2.1) and (2.7) and using Claim 3, we arrive at

t

(
r − 1

s− 1

)(
ns−1 − (n− 1)s−1

)
≤ st

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(|Y | − 1)

)
. (2.8)

Then by combining the inequalities (2.4) and (2.8) we obtain that

(r − 1)(r − 2)

s− 2
ns−2 − (r − 1)(r − 2)

2
ns−3 ≤ sns−3

(
r − 2

s− 2
n+ (t+ 1)s(|Y | − 1)

)
. (2.9)

By simplifying, we arrive at

(r − 1− s)n ≤ (r − 1)(s− 2)

2
+
s2(s− 2)(t+ 1)(|Y | − 1)

r − 2
.
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Since |Y | = r − |X| ≤ r − 2 and t+ 1 ≤ k, it follow that

(r − 1− s)n ≤ (r − 1)(s− 2)

2
+ s2(s− 2)k.

Since n ≥ s3k + sr when s ≤ r − 2, it leads to a contradiction for s ≤ r − 2.

For r = s + 1, we shall give a slightly better upper bound on |L(X)| as follows. Let

X = {x1, . . . , xk−1−t}, X0 = ∅ and Xi = {x1, . . . , xi} for i = 1, 2, . . . , k − 1− t. Note that

|Γ(X)| =
|X|∑
i=1

|LH\Xi−1
(xi)|.

Now, it is easy to see that

LH\X1
(x2) ≤

(
s− 1

s− 1

)
ns−1 + (n− 1)

(
s− 1

s− 2

)
ns−2 = sns−1 − (s− 1)ns−2.

For i 6= 2, we use the trivial inequality |LH\Xi−1
(xi)| ≤ sns−1. Since |X| ≥ 2 (because

|X| = k − 1− t and in Case 2 we assume that t ≤ k − 3), it follows that

|Γ(X)| =
|X|∑
i=1

|LH\Xi−1
(xi)| ≤ |X|sns−1 − (s− 1)ns−2.

Then, by the inequality (2.6), we obtain an upper bound on Γ(T0) as follows:

|Γ(T0)| = |Γ(X)|+ |ΓH\X(Y )|

≤ |X|sns−1 − (s− 1)ns−2 + st

(
r − 3

s− 3

)
ns−3

(
r − 2

s− 2
n+ (t+ 1)s(|Y | − 1)

)
= |X|sns−1 − (s− 1)ns−2 + st(s− 2)ns−3

(
s− 1

s− 2
n+ (t+ 1)s(|Y | − 1)

)
. (2.10)

By combining the inequalities (2.1) and (2.10) and using Claim 3, we have

ts
(
ns−1 − (n− 1)s−1

)
≤ st(s− 2)ns−3

(
s− 1

s− 2
n+ (t+ 1)s(|Y | − 1)

)
− (s− 1)ns−2.

(2.11)

By simplifying, we obtain that

ts
(
ns−1 − (n− 1)s−1

)
≤ (st(s− 1)− s+ 1)ns−2 + s2(s− 2)t(t+ 1)(|Y | − 1)ns−3. (2.12)

By combining the inequalities (2.4) and (2.12), we arrive at

(s− 1)n ≤ s(s− 1)(s− 2)t

2
+ s2(s− 2)t(t+ 1)(|Y | − 1).

Since |Y | = s+ 1− |X| ≤ s− 1 and t+ 1 ≤ k, it follows that

n ≤ s(s− 2)

2
t+ s2t(t+ 1)(|Y | − 1) · s− 2

s− 1
≤ s2

2
k + s2(s− 2)k2 ≤ s3k2,

which contradicts the fact that n ≥ s3k2 + sr for s = r − 1.

Thus, we complete the proof of Lemma 2.3.
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In the following proof of Theorem 1.3, we shall use Theorem 1.1 and Lemma 2.3 as

base cases.

Proof of Theorem 1.3. Notice that Lemma 2.1 implies the theorem for s = r. So we are

left with the case s ≤ r − 1. We prove by induction on (s,
∑r

i=2(ni − n1)). The base case

of s = 2 is verified for all r and n1 ≤ n2 ≤ · · · ≤ nr by Theorem 1.1. For every s ≥ 3,

the base case of
∑r

i=2(ni − n1) = 0 is verified for all r by Lemma 2.3. Suppose now that∑r
i=2(ni−n1) > 0. Assume that for all r, the theorem holds for all pairs (s′,

∑r
i=2(n′i−n′1))

such that s′ < s or s′ = s together with
∑r

i=2(n′i − n′1) <
∑r

i=2(ni − n1). There exists an

i ∈ [2, r] such that ni > ni−1. Without loss of generality, assume that i = r. Let H be a

kK
(s)
s -free subgraph of K

(s)
n1,...,nr . By Lemma 2.2 we may assume that H is stable. Let Vr

be the vertex set with cardinality nr and

Vr = {ar,1, ar,2, . . . , ar,nr}.

Let H ′ = H \ {ar,nr} and

H(ar,nr) = {S ⊂ V : S ∪ {ar,nr} ∈ E(H)}.

Clearly, H(ar,nr) is an (r−1)-partite (s−1)-graph with parts of sizes n1, n2, . . . , nr−1. We

claim that ν(H(ar,nr)) ≤ k − 1. Otherwise, suppose M = {e1, e2, . . . , ek} is a matching of

size k in H(ar,nr). Since H is stable and nr > k, {e1 ∪ {ar,1}, e2 ∪ {ar,2}, . . . , ek ∪ {ar,k}}
forms a matching of size k, which contradicts the fact that H is kK

(s)
s -free. Since H ′ is

kK
(s)
s -free, by the induction hypothesis on

∑r
i=2(ni − n1), we have

e(H ′) ≤ f (s)
k (n2 . . . , nr−1, nr − 1).

Since H(ar,nr) is a kK
(s−1)
s−1 -free (r− 1)-partite (s− 1)-graph, n1 ≥ s3k+ sr ≥ (s− 1)3k+

(s − 1)(r − 1) for (s − 1) ≤ (r − 1) − 2 and n1 ≥ s3k2 + sr ≥ (s − 1)3k2 + (s − 1)(r − 1)

for (s− 1) = (r − 1)− 1, by the induction hypothesis on s, we have

e(H(ar,nr)) ≤ f (s−1)
k (n2 . . . , nr−1).

Thus,

e(H) = e(H ′) + e(H(ar,nr))

≤ f (s)
k (n2, . . . , nr−1, nr − 1) + f

(s−1)
k (n2, . . . , nr−1)

= f
(s)
k (n2 . . . , nr−1, nr),

which completes the proof.

3 Turán number of kK
(s)
r in r-partite s-graphs

In this section, we generalize the result of [6] to s-graphs by using a probabilistic argument.

The following lemma will be useful for us.
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Lemma 3.1. Assume that b > 0, w1 ≥ w2 ≥ · · · ≥ wN > 0 and let (P ) be a linear

programming model as follows:

max z =
N∑
i=1

xi

s.t.
N∑
i=1

w−1
i xi ≤ b,

0 ≤ xi ≤ wi, i = 1, 2, . . . , N.

Let M be the integral part of b and a = wM+1(b −M). Then
∑M

i=1wi + a is the optimal

value of (P ).

Proof. Suppose to the contrary that there exists a feasible solution y = (y1, y2, . . . , yN ) to

(P ) such that
N∑
i=1

yi >

M∑
i=1

wi + a.

Since y is a feasible solution, it follows that

N∑
i=1

w−1
i yi ≤ b = M + w−1

M+1a =

M∑
i=1

w−1
i wi + w−1

M+1a.

Then, since wi ≥ wj for any i < j, we have

M∑
i=1

w−1
i (wi − yi) ≥

N∑
i=M+1

w−1
i yi − w−1

M+1a ≥ w
−1
M+1

(
N∑

i=M+1

yi − a

)
> w−1

M+1

M∑
i=1

(wi − yi).

On the other hand, since

M∑
i=1

w−1
i (wi − yi) ≤ w−1

M

M∑
i=1

(wi − yi),

we arrived at w−1
M > w−1

M+1, a contradiction. Thus, the lemma holds.

Let H be an r-partite s-graph on vertex classes V1, V2, . . . , Vr. For any A ⊂ [r], we

shall write ∪i∈AVi as VA for short. Denote by E(VA) the edge set of the induced subgraph

H[VA] and e(VA) the cardinality of E(VA).

Proof of Theorem 1.4. Suppose H ⊆ K
(s)
n1,...,nr does not contain any copy of kK

(s)
r .

Choose an r-tuple (x1, x2, . . . , xr) from V1 × V2 × · · · × Vr uniformly at random. Let

T = {x1, x2, . . . , xr} and X(T ) be the number of edges in H[T ]. Then

E(X(T )) =
∑

S∈E(H)

Pr(S ⊂ T ) =
∑

A:A⊂[r]
|A|=s

∑
S∈E(VA)

1

nA
=

∑
A:A⊂[r]
|A|=s

e(VA)

nA
. (3.1)

On the other hand, let m be the number of copies of K
(s)
r in H. Define an r-partite

r-graph H∗ on the same vertex classes V1, V2, . . . , Vr. An r-element set S forms an edge

in H∗ if and only if H[S] is a copy of K
(s)
r . Since H is kK

(s)
r -free, it follows that the

matching number of H∗ is at most k− 1. Moreover, the number of edges in H∗ is exactly
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m. Then, by Lemma 2.1, we have m ≤ (k− 1)n2 · · ·nr. Let AT be the event that H[T ] is

a copy of K
(s)
r . Clearly, we have

Pr(AT ) =
m

n1n1 · · ·nr
≤ k − 1

n1
.

Thus,

E(X(T )) = E(X(T )|AT )Pr(AT ) + E(X(T )|AT )Pr(AT )

≤
(
r

s

)
Pr(AT ) +

((
r

s

)
− 1

)
(1− Pr(AT ))

=

(
r

s

)
− 1 + Pr(AT )

≤
(
r

s

)
− 1 +

k − 1

n1
. (3.2)

Putting (3.1) and (3.2) together, we obtain that∑
A:A⊂[r]
|A|=s

e(VA)
1

nA
≤
(
r

s

)
− 1 +

k − 1

n1
. (3.3)

We consider the linear programming model (P1) as follows:

max z =
∑

A:A⊂[r]
|A|=s

xA

s.t.
∑

A:A⊂[r]
|A|=s

n−1
A xA ≤

(
r

s

)
− 1 +

k − 1

n1
,

0 ≤ xA ≤ nA, A ∈
(

[r]

s

)
.

Applying Lemma 3.1 by setting N =
(
r
s

)
, b =

(
r
s

)
− 1 + k−1

n1
and wi be the i-th largest

value in {nA : A ∈
(

[r]
s

)
} for each i ∈ 1, 2, . . . ,

(
r
s

)
in (P), we have M = bbc =

(
r
s

)
− 1. Since

n[s] ≤ nA for all A ∈
(

[r]
s

)
, it follows that

a = wM+1(b−M) = n[s] ·
k − 1

n1
= (k − 1)n[2,s].

Thus, the optimal value of (P1) is

M∑
i=1

wi + a =
∑

A:A⊂[r]
|A|=s,A 6=[s]

nA + (k − 1)n[2,s] = g
(s)
k (n1, n2, . . . , nr).

Let y be a vector indexed by the s-element subset A of [r] with yA = e(VA). Since

e(VA) ≤ nA and the inequality (3.3) holds, it follows that y is a feasible solution to (P1).

Therefore, we have

e(H) =
∑

A:A⊂[r]
|A|=s

e(VA) =
∑

A:A⊂[r]
|A|=s

yA ≤ g(s)
k (n1, n2, . . . , nr).

Thus, the theorem follows.
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4 The number of s-cliques in r-partite graphs

In this section, we first determine ex(Kn1,...,nr ,Ks, kKr) for the case n1 ≤ n2 ≤ n3 = n4 =

· · · = nr. Then, by utilizing a result on rainbow matchings, we determine ex(Kn1,...,nr ,Ks, kKr)

for all n1, . . . , nr with n4 ≥ rr(k − 1)k2r−2.

For an r-partite graph G on vertex classes V1, V2, . . . , Vr, we use Ks(G) to denote the

family of s-element subsets of V (G) that form s-cliques in G and for u ∈ V (G) we use

Ks(u,G) to denote the family of s-element subsets in Ks(G) that contain u. For any

A ⊂ [r], we also use Ks(VA) to denote Ks(G[VA]). Let ks(G), ks(u,G) and ks(VA) be the

cardinalities of Ks(G), Ks(u,G) and Ks(VA), respectively.

Proof of Theorem 1.5. Let V1, V2, . . . , Vr be the vertex classes such that |Vi| = ni for each

i = 1, 2, . . . , r and n4 = . . . = nr = n3. Suppose G ⊆ K(V1, V2, . . . , Vr) does not contain

any copy of kKr. Choose an r-tuple (x1, x2, . . . , xr) from V1 × V2 × · · · × Vr uniformly at

random. Let T = {x1, x2, . . . , xr} and X(T ) be the number of copies of Ks in G[T ]. Then,

E(X(T )) =
∑

S∈Ks(G)

Pr(S ⊂ T ) =
∑

A:A⊂[r]
|A|=s

∑
S∈Ks(VA)

1

nA
=

∑
A:A⊂[r]
|A|=s

ks(VA)

nA
. (4.1)

On the other hand, let m be the number of copies of Kr in G. By a similar argument

as in the proof of Theorem 1.4, we have m ≤ (k − 1)n2n
r−2
3 . If s = r, then the theorem

holds already (because h
(r)
k (n1, n2, . . . , nr) = (k− 1)n2 . . . nr), so we are left with the case

s ≤ r − 1. Let AT be the event that H[T ] is a copy of Kr. Clearly, we have

Pr(AT ) ≤ k − 1

n1
.

Since there are
(
r
s

)
s-cliques in Kr and at most

(
r
s

)
−
(
r−2
s−2

)
s-cliques in a graph on r vertices

that is not a complete graph, it follows that

E(X(T )) = E(X(T )|AT )Pr(AT ) + E(X(T )|AT )Pr(AT )

≤
(
r

s

)
Pr(AT ) +

((
r

s

)
−
(
r − 2

s− 2

))
(1− Pr(AT ))

=

(
r

s

)
−
(
r − 2

s− 2

)
+

(
r − 2

s− 2

)
Pr(AT )

≤
(
r

s

)
−
(
r − 2

s− 2

)
+
k − 1

n1

(
r − 2

s− 2

)
. (4.2)

Combining (4.1) and (4.2), we have∑
A:A⊂[r]
|A|=s

ks(VA)
1

nA
≤
(
r

s

)
−
(
r − 2

s− 2

)
+
k − 1

n1

(
r − 2

s− 2

)
. (4.3)

We consider the linear programming model (P2) as follows:

max z =
∑

A:A⊂[r]
|A|=s

xA

s.t.
∑

A:A⊂[r]
|A|=s

n−1
A xA ≤

(
r

s

)
−
(
r − 2

s− 2

)
+
k − 1

n1

(
r − 2

s− 2

)
,

0 ≤ xA ≤ nA, A ∈
(

[r]

s

)
.
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Apply Lemma 3.1 by setting N =
(
r
s

)
, b =

(
r
s

)
−
(
r−2
s−2

)
+ k−1

n1

(
r−2
s−2

)
and wi be the i-th

largest value in {nA : A ∈
(

[r]
s

)
} for each i ∈ 1, 2, . . . ,

(
r
s

)
in (P). Note that nA = ns3 for

A ∈
(

[3,r]
s

)
, nA = n2n

s−1
3 for A ∈

(
[2,r]
s

)
and 2 ∈ A, nA = n1n

s−1
3 for A ∈

(
[r]\{2}
s

)
and 1 ∈ A,

nA = n1n2n
s−2
3 for A ∈

(
[r]
s

)
and {1, 2} ⊂ A. Since ns3 ≥ n2n

s−1
3 ≥ n1n

s−1
3 ≥ n1n2n

s−2
3

and (
r − 2

s

)
+

(
r − 2

s− 1

)
+

(
r − 2

s− 1

)
=

(
r − 1

s

)
+

(
r − 2

s− 1

)
=

(
r

s

)
−
(
r − 2

s− 2

)
,

it follows that wi = n1n2n
s−2
3 for i ≥

(
r
s

)
−
(
r−2
s−2

)
+ 1. Since M = bbc ≥

(
r
s

)
−
(
r−2
s−2

)
, we

have wM+1 = n1n2n
s−2
3 . Thus, the optimal value of (P2) is

M∑
i=1

wi + a =

(rs)−(r−2
s−2)∑

i=1

wi +

M∑
i=(rs)−(r−2

s−2)+1

wi + wM+1(b−M)

=
∑

A:A⊂[r]
|A|=s,{1,2}6⊂A

nA +

M∑
i=(rs)−(r−2

s−2)+1

wM+1 + (b−M)wM+1

=
∑

A:A⊂[r]
|A|=s,{1,2}6⊂A

nA +

(
M −

(
r

s

)
−
(
r − 2

s− 2

)
+ b−M

)
n1n2n

s−2
3

=
∑

A:A⊂[r]
|A|=s,{1,2}6⊂A

nA +
k − 1

n1

(
r − 2

s− 2

)
n1n2n

s−2
3

=
∑

A:A⊂[r]
|A|=s,{1,2}6⊂A

nA +
∑

A:A⊂[3,r]
|A|=s−2

(k − 1)n2nA

=h
(s)
k (n1, n2, n3, . . . , n3︸ ︷︷ ︸

r−2

).

Let y be a vector indexed by s-element subset A of [r] with yA = ks(VA). Since

ks(VA) ≤ nA and the inequality (4.3) holds, it follows that y is a feasible solution to (P2).

Therefore, we obtain that

ks(G) =
∑

A:A⊂[r]
|A|=s

ks(VA) ≤ h(s)
k (n1, n2, n3, . . . , n3︸ ︷︷ ︸

r−2

).

Thus, the theorem holds.

Let f, k ≥ 1 be integers. A k-matching is a matching of size k. Given a coloring

c : E(G) → [f ] of the edges of an r-graph G, we call a matching M ⊂ E(G) a rainbow

matching if all its edges have distinct colors. An (f, k)-colored r-graph G = (V,E) is

an r-uniform multi-hypergraph whose edges are colored in f colors such that every color

class contains a k-matching. Denote by f(r, k) the largest number f of colors such that

there exists an (f, k)-colored r-partite r-graph without a rainbow k-matching. Recently,

Glebov, Sudakov and Szabó [13] gave an upper bound on f(r, k).

Theorem 4.1. [13] For arbitrary integers r, k ≥ 2, f(r, k) < (r + 1)r+1(k − 1)k2r.
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Now we consider the maximum number of copies of Ks in a kKr-free r-partite graph

for n3 ≤ n4 ≤ · · · ≤ nr.

Proof of Theorem 1.6. Let r ≥ 4, n1, n2 and n3 be fixed integers. The proof is by induction

on (s,
∑r

i=4(ni − n3)). The base case of s = 2 is verified for all r and n1 ≤ n2 ≤ · · · ≤ nr
by Theorem 1.2. For every s ≥ 3, the base case of n1 ≤ n2 ≤ n3 = n4 = · · · = nr is

verified for all r by Theorem 1.5. Assume that for all r, the theorem holds for all pairs

(s′,
∑r

i=4(n′i−n′3)) such that s′ < s or s′ = s together with
∑r

i=4(n′i−n′3) <
∑r

i=4(ni−n3).

Suppose G ⊆ Kn1,...,nr does not contain a copy of kKr. Since
∑r

i=4(ni − n3) > 0,

there exists an i ∈ [4, r] such that ni > ni−1. Without loss of generality, assume that

i = r. For u ∈ Vr, let G(u) denote the (r− 1)-partite graph on vertex classes V1, . . . , Vr−1,

and a pair {vi, vj} forms an edge in G(u) if and only if {u, vi}, {u, vj} and {vi, vj} are all

edges in G. If there is a vertex u ∈ Vr such that G(u) is kKr−1-free, then by induction on

s, we have ks(u,G) = ks−1(G(u)) ≤ h
(s−1)
k (n1, n2, . . . , nr−1). Moreover, by induction on∑r

i=4(ni − n3), we obtain that ks(G \ {u}) ≤ h(s)
k (n1, n2, . . . , nr−1, nr − 1). Therefore,

ks(G) = ks(G \ {u}) + ks(u,G)

≤ h
(s)
k (n1, n2, . . . , nr−1, nr − 1) + h

(s−1)
k (n1, n2, . . . , nr−1)

= h
(s)
k (n1, n2, . . . , nr−1, nr).

Otherwise, suppose that for all u ∈ Vr, there are at least k vertex-disjoint copies of

Kr−1 in G(u). Since G is kKr-free, we have k ≥ 2. Let H be an (r − 1)-partite (r − 1)-

uniform multi-hypergraph on vertex classes V1, . . . , Vr−1. For any u ∈ Vr, if {u1, . . . , ur−1}
forms a copy of Kr−1 in G(u), let {u1, . . . , ur−1} be an edge in H with color u. Then H is

(nr, k)-colored. Since nr ≥ n4 ≥ rr(k − 1)k2r−2 > f(r − 1, k), by Theorem 4.1, there is a

rainbow k-matching {ei1 , . . . , eik} in H. Thus, there are k vertices {ui1 , . . . , uik} ⊂ Vr such

that {ei1 ∪ {ui1}, . . . , eik ∪ {uik}} forms a kKr in G, a contradiction. Thus, we complete

the proof.
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A A proof of Theorem 1.1.

Lemma A.1. For n1 ≤ n2 ≤ n3 and k ≤ n1,

ex(Kn1,n2,n3 , kK2) = (k − 1)(n2 + n3).
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Proof. First, we prove the lemma for n1 = n2 = n3 = n by induction on k. Clearly, the

lemma holds trivially for k = 1. We assume that the result holds for all k′ with k′ < k ≤ n.

Suppose G is a kK2-free 3-partite graph with vertex set V = X ∪ Y ∪ Z and let

X = {x1, . . . , xn}, Y = {y1, . . . , yn} and Z = {z1, . . . , zn}.

Define a partial order ≺ on X ∪ Y ∪ Z such that

x1 ≺ · · · ≺ xn, y1 ≺ · · · ≺ yn, z1 ≺ · · · ≺ zn,

and vertices from different parts are incomparable. Assume that G has maximal number

of edges. Thus, ν(G) = k−1. By Lemma 2.2, we may further assume that G is stable. Let

T0 = {x1, y1, z1} and G′ = G \ T0. Furthermore, let ν(G′) = t and let M ′ = {e1, . . . , et}
be a largest matching in G′. If G[T0] is not a triangle, since G is stable, there exist two

vertex sets Vi, Vj ∈ {X,Y, Z} such that G[Vi∪Vj ] is empty. It follows that G is a bipartite

graph. Then by Lemma 2.1 with r = 2, we conclude that e(G) ≤ 2(k−1)n and the lemma

holds. If G[T0] is a triangle, then we have k − 4 ≤ ν(G′) ≤ k − 2, where ν(G′) ≤ k − 2

follows from G[T0] being non-empty, and ν(G′) ≥ k−4 follows from there being only three

vertices in T0 and from ν(G) = k − 1. The proof splits into three cases according to the

value of ν(G′).

Case 1. ν(G′) = k−2. For every edge {ui, vi} ∈M ′, it is easy to see that the number

of edges between {ui, vi} and T0 is at most 4 since G is a 3-partite graph. Thus, there are

at most 4(k− 2) edge between ∪e∈M ′e and T0. If |Γ(T0)| > 4(k− 2) + 3, then we will find

an edge between T0 and V (G′) \ (∪e∈M ′e). Without loss of generality, assume {x1, u} is

such an edge. Then M ′ ∪ {{x1, u}, {y1, z1}} forms a matching of size k, which contradicts

the fact that G is kK2-free. If |Γ(T0)| ≤ 4(k − 2) + 3, then by the induction hypothesis,

we have

e(G) = |Γ(T0)|+ e(G′)

≤ 4(k − 2) + 3 + 2(k − 2)(n− 1)

= 2(k − 1)n− 2n+ 2k − 1

≤ 2(k − 1)n.

Case 2. ν(G′) = k − 3. If |Γ(T0)| ≤ 4n+ 2(k − 3), then by the induction hypothesis,

we have

e(G) = |Γ(T0)|+ e(G′) ≤ 4n+ 2(k − 3) + 2(k − 3)(n− 1) = 2(k − 1)n.

Thus, the lemma holds. If |Γ(T0)| > 4n + 2(k − 3), let G′′ = G′ \ (∪e∈M ′e) and consider

the edges between T0 and V (G′′). Since there are at most 4(k − 3) edges between T0 and

(∪e∈M ′e), the number of edges between T0 and V (G′′) is at least 4n+ 2(k− 3) + 1− 4(k−
3) − 3 = 4n − 2k + 4. For any u ∈ V (G) and S ⊂ V (G), let d(u, S) be the number of

neighbors of u in S. Then, it follows that

d(x1, V (G′′)) + d(y1, V (G′′)) + d(z1, V (G′′)) ≥ 4n− 2k + 4.

Since (Y ∪ Z) \ (∪M ′) \ T0 has at most 2(n − 1) − (k − 3) = 2n − k + 1 vertices, we

have d(x1, V (G′′)) ≤ 2n− k+ 1. Similarly, d(y1, V (G′′)) ≤ 2n− k+ 1 and d(z1, V (G′′)) ≤
2n−k+1. Therefore, for any v ∈ {x1, y1, z1}, d(v, V (G′′)) ≥ 4n−2k+4−2(2n−k+1) = 2.
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It follows from Hall’s theorem that there exist three disjoint edges {x1, u1}, {y1, u2} and

{z1, u3} with u1, u2, u3 ∈ V (G′′). These edges together with edges in M ′ form a matching

of size k, which contradicts the fact that G is kK2-free.

Case 3. ν(G′) = k − 4. Since |Γ(T0)| < 6n, by the induction hypothesis, we have

e(G) = |Γ(T0)|+ e(G′) ≤ 6n+ 2(k − 4)(n− 1) ≤ 2(k − 1)n.

Thus, the lemma holds for n1 = n2 = n3 = n.

At last, we prove the lemma for the general case n1 ≤ n2 ≤ n3 by induction on

n2 + n3 − 2n1. Since we’ve already proven the base case n2 + n3 − 2n1 = 0, now assume

that n2 + n3 − 2n1 > 0. There exists i = 2 or 3 such that ni > ni−1. Without loss of

generality, assume that i = 3. If there exists v ∈ Z such that d(v) ≤ k − 1, we have

e(G) = d(v) + e(G \ v)

≤ k − 1 + (k − 1)(n2 + n3 − 1)

= (k − 1)(n2 + n3).

If d(v) ≥ k for every v ∈ Z, since |Z| ≥ k, it is easy greedily to find a matching of size k,

a contradiction. Thus, we complete the proof.

Proof of Theorem 1.1. The cases r = 2 and r = 3 follow from Lemmas 2.1 and A.1,

respectively. Thus, we are left with the case r ≥ 4 which we prove by induction on

k. Clearly, the result holds for k = 1. Assume that the result holds for all k′ < k. Let

G ⊆ Kn1,...,nr be a kK2-free graph with the maximum number of edges. Thus, ν(G) = k−1.

Denote by Xi the set of vertices in Vi with degree at least 2k − 1 and put xi = |Xi| for

i = 1, . . . , r. Let n = n1 + · · ·nr and x = x1 + · · ·+ xr. Now we divide the proof into two

cases according to the value of x.

Case 1. x ≥ 1. Let X =
⋃r
i=1Xi and G′ = G \ X. Since d(u) ≥ 2k − 1 for each

u ∈ X, it is easy to see that x ≤ k− 1 and ν(G′) ≤ k− 1− x because otherwise one could

greedily find a matching of size k. Let x̄i = x− xi and ni0 − xi0 = mini∈[r]{ni − xi}. By

the induction hypothesis, we have

e(G) = |Γ(X)|+ e(G′)

≤
∑
i<j

xixj +
r∑
i=1

xi

∑
j 6=i

(nj − xj)

+ (k − 1− x)

(
r∑
i=1

(ni − xi)−min
i∈[r]
{ni − xi}

)

= (k − 1)n− (k − 1)(x+ ni0 − xi0) +
∑
i<j

xixj +

r∑
i=1

xi(ni0 − xi0 − (ni − xi))

≤ (k − 1)n− (k − 1)(ni0 + xi0) +
∑
i<j

xixj

= (k − 1)(n− ni0)− (k − 1)xi0 + xi0xi0 +
∑
i<j

i,j 6=i0

xixj

≤ (k − 1)(n− n1)− x2
i0 +

∑
i<j

i,j 6=i0

xixj

= (k − 1)(n− n1)−
∑
i 6=i0

x2
i −

∑
i<j

i,j 6=i0

xixj

≤ (k − 1)(n2 + · · ·+ nr),
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where the second inequality follows from ni0 −xi0 − (ni−xi) ≤ 0 and the third inequality

follows from ni0 ≥ n1 and xi0 + xi0 = x ≤ k − 1. Thus, the theorem holds.

Case 2. x = 0. Then all the vertices in G have degree at most 2k − 2. Let M =

{{u1, v1}, . . . , {uk−1, vk−1}} be a largest matching of G, A = {u1, . . . , uk−1, v1, . . . , vk−1}
and B = V (G) \ A. Since M is a largest matching, B is an independent set of G.

Let ti be the number of edges between {ui, vi} and B. We claim that ti ≤ 2k − 2.

Otherwise, there exist u, v ∈ B such that both {ui, u} and {vi, v} are edges of G, and

then M ′ \ {{ui, vi}} ∪ {{ui, u}, {vi, v}} forms a matching of size k, a contradiction. Since

d(v) ≤ 2k − 2 for every v ∈ V (G) and dB(ui) + dB(vi) = ti, we have dA(ui) + dA(vi) ≤
4k − 4− ti. Thus, we have

e(G) = e(A,B) + e(A)

=
∑
v∈A

dB(v) +
1

2

∑
v∈A

dA(v)

=
k−1∑
i=1

(dB(ui) + dB(vi)) +
1

2

k−1∑
i=1

(dA(ui) + dA(vi))

≤
k−1∑
i=1

ti +
1

2

k−1∑
i=1

(4k − 4− ti)

=
1

2

k−1∑
i=1

ti +
1

2
(k − 1)(4k − 4)

≤ (k − 1)(3k − 3)

< (k − 1)(n2 + · · ·+ nr),

where the last inequality follows from r ≥ 4 and n1 ≥ k. Thus, we complete the proof.
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