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Abstract

In this paper, the distribution dependent stochastic differential equation in a sep-
arable Hilbert space with a Dini continuous drift is investigated. The existence and
uniqueness of weak and strong solutions are obtained. Moreover, some regularity re-
sults as well as gradient estimates and Wang’s log-Harnack inequality are derived for
the associated semigroup. In addition, Wang’s Harnack inequality with power and
shift Harnack inequality are also proved when the noise is additive. All of the results
extend the ones in the distribution independent situation.
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1 Introduction

The distribution dependent stochastic differential equations (SDEs for short), also named
McKean-Vlasov SDEs due to pioneering work [18, 25], can be described as the weak limit
of N -particle interaction systems formed by N equations forced by independent Brownian
motions. The subject has been extensively explored and it is still under investigation (see
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[2, 3, 9, 10, 12, 13, 14, 18, 25, 32] and references within). When the drifts are singular, there
are a great number of results on the well-posedness , for instance, [4, 5, 6, 8, 15, 19, 23] and
references therein. In [4, 5, 6], the existence of weak solutions in the additive noise case is
shown by Girsanov’s transform together with Schauder’s fixed point theorem. However, this
method does not work when the diffusion coefficients depend on distribution. The results
in [8] are extended by the first author and his coauthor in [15], where the diffusion term
is allowed to be distribution dependent. The pathwise uniqueness is proved by utilizing
Zvonkin’s transform [34] in [15, 19, 23], see references therein for distribution independent
SDEs. The main idea of Zvonkin’s transform is to remove the singular drifts, and it mainly
depends on the regularity of a backward Kolmogrov equation with singular coefficients. In
the infinite dimensional and distribution independent case, the author in [31] investigates the
existence and uniqueness of solutions and log-Harnack inequality for semi-linear stochastic
partial differential equations (SPDEs) with Dini continuous drifts by Zvonkin’s transform.
For distribution dependent semi-linear SPDEs, when the drift term satisfies the Lipschitz
condition, the existence and uniqueness of the solution are obtained in [1]. Very recently,
in [13] Heinemann studied the distribution dependent stochastic differential delay equations
(DDSDDEs) in the variational framework. If the coefficients fulfill certain monotonicity
assumptions, the DDSDDEs have unique strong solutions.

The present paper attempts to extend the results in [31] to the distribution dependent
case. Meanwhile, Wang’s Harnack inequality and shift Harnack inequality are also consid-
ered in special situations. In order to obtain the existence of weak solutions under a weak
condition, the compactness method [11, chapter 8] as well as Skorohod representation and
martingale representation theorem will be employed. It is crucial to construct a family of
compact operators to deal with the stochastic convolution. Moreover, Zvonkin’s transform
combined with fixed point theorem can be used to investigate the strong well-posedness.

Using the method of coupling by change of measure, Wang’s Harnack inequality, log-
Harnack inequality and shift-Harnack inequality, introduced by F.-Y Wang in [26], [24] and
[28] respectively, have been established and applied to various SDEs and SPDEs driven by
Gaussian noises, see [17, 22, 24, 28, 29, 30, 33] and references therein. Different from the
finite dimensional case [15, Theorem 2.5], due to the existence of a non-Lipschitzian term
Au after Zvonkin’s transform in Lemma 3.3 below, the coupling by change of measure, for
instance in [29, Chapter 3], does not work even in the distribution independent case with
multiplicative noise. To overcome this difficulty, [31] adopted the gradient-gradient estimate
for Markovian semigroups to derive the log-Harnack inequality according to [29, Chapter 1].
However, this method is unavailable in the distribution dependent case since the solution is
not a Markov process. Fortunately, we may employ the existed log-Harnack inequality in
[31] and Girsanov’s transform to obtain the desired log-Harnack inequality. The main idea
is to derive the estimate of the relative entropy between two solutions with different initial
distributions. To this end, we rewrite one of the two solutions by Girsanov’s transform to be
a new one with the same coefficients with another one, and then the log-Harnack inequality
in [31] can be used. It seems that this method is an effective way to deal with the distribution
dependent SDEs and SPDEs. As for the Harnack inequality and shift Harnack inequality,
we adopt coupling by change of measure instead of Zvonkin’s transform in the additive noise
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case.
Let (H, 〈, 〉, | · |) and (H̄, 〈, 〉H̄, | · |H̄) be two separable Hilbert spaces, and W = (Wt)t≥0

be a cylindrical Brownian motion on H̄ with respect to a complete filtered probability space
(Ω,F , {Ft}t≥0,P). More precisely, Wt =

∑∞
n=1 B

n
t ēn for a sequence of independent one di-

mensional Brownian motions {Bn
t }n≥1 with respect to (Ω,F , {Ft}t≥0,P) and an orthonormal

basis {ēn}n≥1 on H̄.
Let P be the collection of all probability measures on H equipped with the weak topology.

For µ ∈P, if µ(| · |p) :=
∫
H |x|

pµ(dx) <∞ for some p ≥ 1, we write µ ∈Pp. For p ≥ 1 and
µ, µ̄ ∈Pp, the Wp-Wasserstein distance between µ and µ̄ is defined by

Wp(µ, µ̄) = inf
π∈C(µ,µ̄)

(∫
H×H
|x− y|pπ(dx, dy)

) 1
p
,

where C(µ, µ̄) stands for the set of all couplings of µ and µ̄. For a random variable ξ, its law
is written by Lξ, and write Lξ|P as the distribution of ξ under P.

Consider the following semi-linear distribution dependent SPDEs on H:

E1E1 (1.1) dXt = {AXt + bt(Xt,LXt)}dt+Qt(Xt,LXt)dWt,

where (A,D(A)) is a negative definite self-adjoint operator on H, b : [0,∞)×H×P → H is
measurable and locally bounded (i.e. bounded on bounded sets), and Q : [0,∞)×H×P →
L (H̄;H) is measurable, where L (H̄;H) is the space of bounded linear operators from H̄ to
H. Let ‖ ·‖ and ‖ ·‖HS denote the operator norm and the Hilbert-Schmidt norm respectively.

To characterize the singularity of b with respect to the second variable, set

D =
{
φ : [0,+∞)→ [0,+∞)|φ2 is concave and φ is increasing with

∫ 1

0

φ(s)

s
ds <∞

}
.

Throughout this paper, we assume that there exists an increasing function K : (0,∞) →
(0,∞) such that A, b and Q satisfy the following conditions.

(a1) For some ε ∈ (0, 1), (−A)ε−1 is of trace class. That is,
∑∞

n=1 λ
ε−1
n < ∞ for 0 < λ1 ≤

λ2 ≤ · · · being all eigenvalues of −A counting multiplicities with −Aei = λiei, i ≥ 1
for an orthonormal basis {ei}i≥1 of H.

(a2) The operator Q : [0,∞) × H ×P → L (H̄;H)) is continuous and for each t ≥ 0 and
µ ∈P, and Qt(·, µ) is in C2(H; L (H̄;H)) such that

sup
(t,x,µ)∈[0,T ]×H×P

(
‖Qt(x, µ)‖+ ‖∇Qt(x, µ)‖+ ‖∇2Qt(x, µ)‖

)
≤ K(T ), T > 0,

here ∇ and ∇2 stand for the first and second ordered gradient operator with respect
to the space component respectively. Meanwhile, (QtQ

∗
t )(x, µ) is invertible for each

(t, x, µ) ∈ [0,∞)×H×P with

sup
(t,x,µ)∈[0,T ]×H×P

‖(QtQ
∗
t )(x, µ)−1‖ ≤ K(T ), T > 0.
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Moreover, for any x ∈ H, t ≥ 0 and µ ∈P2, it holds

1.31.3 (1.2) lim
n→∞

‖Qt(x, µ)−Qt(πnx, µ)‖2
HS = 0,

where πn is the orthonormal projection from H to span{e1, e2, · · · , en}. In addition,
for any T > 0, it holds

sup
(t,x)∈[0,T ]×H

‖Qt(x, µ)−Qt(x, ν)‖2
HS ≤ K(T )W2(µ, ν)2, µ, ν ∈P2.redred (1.3)

(a3) For any t ∈ [0, T ], bt is continuous in H×P. sup(x,µ)∈H×P |bt(x, µ)| is locally bounded
in t, and there exists φ ∈ D such that

1.21.2 (1.4) |bt(x, µ)− bt(y, ν)| ≤ φ(|x− y|) +K(t)W2(µ, ν), t ≥ 0, x, y ∈ H, µ, ν ∈P2.

Din Remark 1.1. Recall that a non-negative increasing function φ on [0,∞) is called a Dini

function if
∫ 1

0
φ(s)
s

ds < ∞. So, (1.4) can be regarded as a Dini continuity condition in the
space variable on the drift. Typical examples of φ ∈ D include φ(s) = sα for α ∈ (0, 1

2
) and

φ(s) := K
log1+δ(c+s−1)

for constants K, δ > 0 and c large enough such that φ2 is concave.

Definition 1.1. A continuous Ft-adapted process {Xt}t≥0 is called a mild solution to Equ.
(1.1), if P-a.s

MilMil (1.5) Xt = eAtX0 +

∫ t

0

eA(t−s)bs(Xs,LXs)ds+

∫ t

0

eA(t−s)Qs(Xs,LXs)dWs, t ≥ 0.

Moreover, if E|Xt|2 <∞ for any t ≥ 0, then the solution is said in P2. Equ. (1.1) is called
strongly well-posed in P2, if for any F0-measurable random variable X0 with LX0 ∈ P2,
there exists a unique mild solution in P2.

(1) A couple (X̃t, W̃t)t≥0 is called a weak solution to Equ. (1.1), if W̃ is a cylindrical
Brownian motion with respect to a complete filtered probability space (Ω̃, {F̃t}t≥0, P̃), and
(1.5) holds for (X̃t, W̃t)t≥0 in place of (Xt,Wt)t≥0. Moreover, if LX̃t

|P̃ ∈ P2, the weak
solution is called in P2.

(2) Equ.(1.1) is said to have weak uniqueness in P2, if any two weak solutions in P2

of (1.1) from common initial distribution are equal in law. Furthermore, we call weak well-
posedness in P2 for Equ.(1.1) holds, if it has a weak solution from any initial distribution
and has weak uniqueness in P2.

Some notations are listed which are necessary to state subsequent results and their proofs.

• Let L2(Ω → H; F0) be the class of all random variables ξ which are F0-measurable
and have finite second moment. Denote by C([0, T ];H) and C([0, T ]; P2) the spaces
consisted of all continuous functions from [0, T ] to H and P2 respectively. Let Bb(H)
be the class of all bounded measurable functions on H and Lp([0, T ];H) be the space
of the H-valued functions defined on [0, T ] with finite p-th moment.
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• For two Banach spaces E1 and E2 and i = 1, 2, Ci(E1;E2)(Ci
b(E1;E2)) denotes the

collection of all functions from E1 to E2 with continuous ( and bounded) Fréchet’s
derivatives up to order i.

• For a real-valued or H-valued function f defined on [0, T ]×H, let

‖f‖T,∞ = sup
t∈[0,T ],x∈H

|f(t, x)|.

Similarly, if f is an operator-valued map defined on [0, T ]×H, let

‖f‖T,∞ = sup
t∈[0,T ],x∈H

‖f(t, x)‖.

• The letter C with or without indices will denote an unimportant constant, whose values
may change from one appearance to another.

This manuscript is organized as follows. In Section 2, we state the main results, including ex-
istence and uniqueness of solutions, Wang’s Harnack inequality and shift Harnack inequality.
Section 3 devotes to proving the existence and uniqueness of solutions through the compact
method and Zvonkin’s transform. Using the coupling by change of measure, the proofs of
Wang’s Harnack inequality and shift Harnack inequality will be given in Section 4.

2 Main results

The first result is concerning to the weak existence under a more general frame, where the
coefficients are only assumed to be bounded and continuous. From now on, let T stand for
any fixed time.

ws Theorem 2.1. Assume (a1). If sup(x,µ)∈H×P(|bt(x, µ)|+‖Qt(x, µ)‖) is locally bounded with
respect to t and bt, Qt are continuous in H ×P for each t ≥ 0. Then for any fixed T > 0,
and µ0 ∈P, Equ. (1.1) has a weak solution up to time T with initial distribution µ0.

The next result ensures the well-posedness of (1.1) with the continuity of solutions in
initial values.

T2.1 Theorem 2.2. Assume (a1)-(a3). Then the following assertions hold.

(1) (1.1) has weak well-posedness in P2. Let P ∗t µ0 be the unique distribution of the weak
solution at time t ≥ 0 with initial distribution µ0. There exists a constant C(T ) > 0
such that ∫ T

0

W2(P ∗t µ0, P
∗
t ν0)2dt ≤ C(T )W2(µ0, ν0)2, µ0, ν0 ∈P2.PtaPta (2.1)
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(2) The strong well-posedness in P2 holds for (1.1). Moreover, there exists an increasing
function C : [0,∞) → [0,∞) such that for any two solutions Xt and Yt to (1.1), it
holds ∫ T

0

E|Xs − Ys|2ds ≤ C(T )E|X0 − Y0|2, T ≥ 0.X-YX-Y (2.2)

For any µ ∈P2 and any f ∈ Bb(H), define

Ptf(µ) = (P ∗t µ)(f) :=

∫
H
fdP ∗t µ, t ≥ 0.

For a measurable space (E, E), let P(E) denote the family of all probability measures
on (E, E). For µ, ν ∈P(E), the relative entropy Ent(ν|µ) is defined by

Ent(ν|µ) :=

{∫
(log dν

dµ
) dν, if ν is absolutely continuous with respect to µ,

∞, otherwise;

and the total variational distance ‖µ− ν‖TV is defined by

‖µ− ν‖TV := sup
A∈E
|µ(A)− ν(A)|.

By Pinsker’s inequality (see [21]),

ETXETX (2.3) ‖µ− ν‖2
TV ≤

1

2
Ent(ν|µ), µ, ν ∈P(E).

Next, we consider Wang’s log-Harnack inequality and Harnack inequality for the nonlinear
semigroup P ∗t .

THar Theorem 2.3. Assume (a1)-(a3) and that Qt(x, µ) does not depend on µ. Then the fol-
lowing assertions hold.

(1) There exists an increasing function C : [0,∞) → (0,∞) such that for any T > 0, the
log-Harnack inequality

PT log f(ν0) ≤ logPTf(µ0) +
C(T )

T ∧ 1
W2(µ0, ν0)2, µ0, ν0 ∈P2

holds for strictly positive function f ∈ Bb(H). Consequently, we have

2‖P ∗Tµ0 − P ∗Tν0‖2
TV ≤ Ent(P ∗Tµ0|P ∗Tν0) ≤ C(T )

T ∧ 1
W2(µ0, ν0)2.pkepke (2.4)

(2) If Qt(x, µ) does not depend on (x, µ), the Harnack inequality with power p > 1 holds
for non-negative f ∈ Bb(H) and any T > 0, i.e.

2.62.6 (2.5) (PTf(µ0))p ≤ PTf
p(ν0)

(
E exp

{
p

2(p− 1)2
Φ(T )

})p−1

, µ0, ν0 ∈P2,
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where

(2.6) Φ(T ) = K(T )

(
4Tφ2 (|X0 − Y0|) + C(T )W2(µ0, ν0)2 + 2

|X0 − Y0|2

T

)
,

with LX0 = µ0 and LY0 = ν0. Consequently, P ∗Tµ0 is equivalent to P ∗Tν0 and it holds

ap1ap1 (2.7) PT

{(
dP ∗Tµ0

dP ∗Tν0

) 1
p−1

}
(µ0) ≤ E exp

{
p

2(p− 1)2
Φ(T )

}
.

The next assertion characterizes the shift Harnack inequality for P ∗t .

TsHar Theorem 2.4. Assume (a1)-(a3). If Qt(x, µ) does not depend on x, then for any T > 0,
µ0 ∈P2, y ∈ H and non-negative f ∈ Bb(H), we have

PT log f(µ0) ≤ log(PTf(eATy + ·))(µ0) +K(T )

(
Tφ2(|y|) +

|y|2

T

)
, f ≥ 1,

and

(PTf(µ0))p ≤PT (fp(eATy + ·))(µ0) exp

[
p

(p− 1)
K(T )

(
Tφ2(|y|) +

|y|2

T

)]
.

As an immediate result of Theorem 2.4 from [29, Theorem 1.4.4], we have

densitys Corollary 2.5. Under the conditions of Theorem 2.4, for each y ∈ H and µ0 ∈ P2, P ∗Tµ0

is equivalent to (P ∗Tµ0)(· − eATy). Moreover, for any p > 1, it holds

PT

{(
dP ∗Tµ0

d[(P ∗Tµ0)(· − eATy)]

) 1
p

}
(µ0) ≤ exp

[
1

(p− 1)
K(T )

(
Tφ2(|y|) +

|y|2

T

)]
.

3 Existence and Uniqueness

In this section, we investigate the existence and uniqueness of solutions to Equ.(1.1). Firstly,
we will use the compactness method in the proof of [11, Theorem 8.1] to complete the proof
of Theorem 2.1. Next, the strong uniqueness will be shown by the Zvonkin’s transform which
depends on distribution under (a1)-(a3). Finally, the proof of Theorem 2.2 can be finished
by the modified Yamada-Watanabe principle [16, Lemma 2.1].

3.1 Proof of Theorem 2.1

For the sake of reader’s convenience, let us recall a result on the compact operators introduced
in [11, Proposition 8.4].
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CO Lemma 3.1. Let {S(t)}t>0 be a family of compact operators on H. Then for any p, α sat-
isfying 0 < 1

p
< α ≤ 1, the operator Gα defined by

Gαf(t) =

∫ t

0

(t− s)α−1S(t− s)f(s)ds, t ∈ [0, T ],(3.1)

is compact from Lp([0, T ],H) into C([0, T ],H).

Now, we are in the position to prove Theorem 2.1.

Proof of Theorem 2.1. The proof is divided into three steps.
Step 1. For each n ≥ 1, let ηn(s) = b s

T/n
cT
n
, where b·c stands for the integer part. Let

X0 be an F0-measurable random variable with LX0 = µ0. For t ∈ [0, T ], define

Xn
t = eAtX0 +

∫ t

0

eA(t−s)bs(X
n
ηn(s),LXn

ηn(s)
)ds+

∫ t

0

eA(t−s)Qs(X
n
ηn(s),LXn

ηn(s)
)dWs.fia’fia’ (3.2)

Due to (a1), we have∫ t

0

r−ε‖eAr‖2
HSdr =

+∞∑
i=1

∫ t

0

r−εe−2λirdr ≤ 2ε−1Γ(1− ε)
+∞∑
i=1

λε−1
i <∞,RHSRHS (3.3)

where Γ stands for Gamma-function. This, together with the condition that b and Q are
bounded on [0, T ], implies that Xn

t in (3.2) is well-defined. Moreover, Xn has a continuous
version (see [11, Theorem 5.9]).

Step 2. In this step, we aim to prove that {LXn}n≥1 is tight in the space of probability
measures on C([0, T ];H). Let Gα be as in (3.1) with eAt in place of S(t). By (3.1), (3.3) and
stochastic Fubini theorem, we have∫ t

0

eA(t−s)Qs(X
n
ηn(s),LXn

ηn(s)
)dWs =

sin επ
2

π
G ε

2
Yn(t), t ∈ [0, T ],

where

Yn(t) =

∫ t

0

(t− s)−
ε
2 eA(t−s)Qs(X

n
ηn(s),LXn

ηn(s)
)dWs.

Define G̃ : H→ C([0, T ];H) as

[G̃(x)](t) = eAtx, x ∈ H, t ∈ [0, T ].

It is not difficult to see that G̃ is a compact operator. Then Xn
t can be reformulated as

Xn
t = [G̃(X0)](t) +G1

(
b·(X

n
ηn(·),LXn

ηn(·)
)
)

(t) +
sin επ

2

π
G ε

2
Yn(t), t ∈ [0, T ].(3.4)

Note that for p > 2
ε

and each n ≥ 1, it is clear that

E
∫ T

0

|Yn(t)|pdt ≤ Cp

∫ T

0

E
(∫ t

0

(t− s)−ε‖eA(t−s)Qs(X
n
ηn(s),LXn

ηn(s)
)‖2

HSds

) p
2

dt
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≤ CpT sup
t∈[0,T ]

sup
(x,µ)∈H×P

‖Qt(x, µ)‖p
(∫ T

0

r−ε‖eAr‖2
HSdr

) p
2

=: cp <∞, ∀n ≥ 1,

where Cp is a constant only depending on p, T and its value can change from line to line.
Hence, we obtain

P(|X0| > r)→ 0, r → +∞,

P
(∫ T

0

|Yn(s)|pds > rp
)
≤ 1

rp
E
∫ T

0

|Yn(s)|pds ≤ cp
rp
→ 0, r → +∞,

and

P
(∫ T

0

|bs(Xn
ηn(s),LXn

ηn(s)
)|pds > rp

)
≤
Cp sup

t∈[0,T ]

sup
(x,µ)∈H×P

|bt(x, µ)|pT

rp
→ 0, r → +∞.

Therefore, for each δ > 0 small enough, there exists rδ > 0 such that

P

(
|X0| ≤ rδ,

(∫ T

0

|Yn(s)|pds
) 1

p

≤ rδ,

(∫ T

0

|bs(Xn
ηn(s),LXn

ηn(s)
)|pds

) 1
p

≤ rδ

)
≥ 1− δ.

This leads to LXn(Kδ) ≥ 1− δ, n ≥ 1, where

Kδ :=

{
G̃x+G1f +

sin επ
2

π
G ε

2
g : |x| ≤ rδ,

(∫ T

0

|f(s)|pds
) 1

p

≤ rδ,

(∫ T

0

|g(s)|pds
) 1

p

≤ rδ

}

is compact in C([0, T ];H) by Lemma 3.1. So {LXn}n≥1 is tight.
Step 3. Due to the tightness of {LXn}n≥1, there exists a weakly convergent subsequence

still denoted by {LXn}n≥1. By the Skorohod representation theorem [11, Theorem 2.4],
there exists a probability space (Ω̃, F̃ , P̃) and C([0, T ];H)-valued stochastic processes X̃n,
X̃ such that LXn|P = LX̃n|P̃, and P̃-a.s. X̃n converges in C([0, T ];H) to X̃ as n → ∞,
which implies that for any t ∈ [0, T ], LX̃n

t
|P̃ weakly converges to LX̃t

|P̃. On the other hand,

it follows from (3.2) that

(−A)−1Xn
t =eAt(−A)−1X0 +

∫ t

0

eA(t−s)(−A)−1bs(X
n
ηn(s),LXn

ηn(s)
)dsfia’’fia’’ (3.5)

+

∫ t

0

eA(t−s)(−A)−1Qs(X
n
ηn(s),LXn

ηn(s)
)dWs, t ∈ [0, T ].

In view of [7, Lemma 3.5], (3.5) implies

(−A)−1Xn
t =(−A)−1X0 +

∫ t

0

(−Xn
s )ds+

∫ t

0

(−A)−1bs(X
n
ηn(s),LXn

ηn(s)
)dsfi’fi’ (3.6)

+

∫ t

0

(−A)−1Qs(X
n
ηn(s),LXn

ηn(s)
)dWs.
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Let

Nn
t := (−A)−1Xn

t − (−A)−1X0 +

∫ t

0

Xn
s ds−

∫ t

0

(−A)−1bs(X
n
ηn(s),LXn

ηn(s)
)ds, t ∈ [0, T ],

and Ñn be defined in the same way with Xn replaced by X̃n. It is clear that {Nn
t }t∈[0,T ] is

a martingale with respect to the filtration F n
t = σ{Xn

s , s ≤ t}. Thanks to LXn|P = LX̃n|P̃
and the boundedness of Q and b, it is not difficult to prove that {Ñn

t }t∈[0,T ] is a martingale

with respect to the filtration F̃ n
t = σ{X̃n

s , s ≤ t} and the quadratic variation process is

〈Ñn〉t =

∫ t

0

(
(−A)−1Qs(X̃

n
ηn(s),LX̃n

ηn(s)
)
)(

(−A)−1Qs(X̃
n
ηn(s),LX̃n

ηn(s)
)
)∗

ds, t ∈ [0, T ],

where ∗ stands for the adjoint operator. Noting that

|X̃n
ηn(s) − X̃s| ≤ |X̃n

ηn(s) − X̃ηn(s)|+ |X̃ηn(s) − X̃s| ≤ sup
s∈[0,T ]

|X̃n
s − X̃s|+ |X̃ηn(s) − X̃s|,

we conclude that P̃-a.s. X̃n
ηn(s) converges to X̃s as n goes to infinity. This combined with the

continuity of bt, Qt implies that the process

Ñt := (−A)−1X̃t − (−A)−1X̃0 +

∫ t

0

X̃sds−
∫ t

0

(−A)−1bs(X̃s,LX̃s
)ds, t ∈ [0, T ]

is a martingale with respect to the filtration F̃t = σ{X̃s, s ≤ t} and the quadratic variation
process is

〈Ñ〉t =

∫ t

0

(
(−A)−1Qs(X̃s,LX̃s

)
)(

(−A)−1Qs(X̃s,LX̃s
)
)∗

ds, t ∈ [0, T ].

By the martingale representation theorem [11, Theorem 8.2], there exists a complete filtered

probability space ( ˜̃Ω,
˜̃F , { ˜̃Ft}, ˜̃P), a cylindrical Brownian motion ˜̃W such that LX̃s

|P̃ =
LX̃s
|˜̃P and

(−A)−1X̃t =(−A)−1X̃0 +

∫ t

0

(−X̃s)ds+

∫ t

0

(−A)−1bs(X̃s,LX̃s
|˜̃P)dsff (3.7)

+

∫ t

0

(−A)−1Qs(X̃s,LX̃s
|˜̃P)d ˜̃Ws, t ∈ [0, T ].

Again by [7, Lemma 3.5], (3.7) yields

(−A)−1X̃t =eAt(−A)−1X̃0 +

∫ t

0

(−A)−1eA(t−s)bs(X̃s,LX̃s
|˜̃P)ds

+

∫ t

0

(−A)−1eA(t−s)Qs(X̃s,LX̃s
|˜̃P)d ˜̃Ws, t ∈ [0, T ],

which derives

X̃t = eAtX̃0 +

∫ t

0

eA(t−s)bs(X̃s,LX̃s
|˜̃P)ds+

∫ t

0

eA(t−s)Qs(X̃s,LX̃s
|˜̃P)d ˜̃Ws, t ∈ [0, T ].figfig (3.8)

Thus, (X̃t,
˜̃Wt)t∈[0,T ] is a weak solution of (1.1) with initial distribution µ0.
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3.2 Proof of Theorem 2.2

In this part, the Zvonkin transform is used to obtain the strong uniqueness. Since Itô’s
formula for (1.1) is unavailable, we shall use finite dimensional approximation such that
the formula can be applied. To this end, for λ > 0, µ ∈ C([0, T ],P2) and n ≥ 1, let
Hn = span{e1, · · · , en} and define

bµ,nt = πnbt(·, µt) ◦ πn, Qµ,n
t = πnQt(·, µt) ◦ πn, An = A ◦ πn.

Let Zn
s,t(z) solve

E-A-nE-A-n (3.9) dZn
t = AnZ

n
t dt+Qµ,n

t (Zn
t )dWt

with Zn
s,s(z) = z ∈ Hn and P µ,n

s,t be the associated semigroup. That is,

P µ,n
s,t f(x) = Ef(Zn

s,t(x)), x ∈ Hn, f ∈ Bb(Hn), t ≥ s ≥ 0.

Consider

unun (3.10) uns =

∫ T

s

e−λ(t−s)P µ,n
s,t (∇bµ,nt

unt + bµ,nt )dt, s ∈ [0, T ].

Due to [31, Lemma 2.3, Proposition 2.5], we have

L-PDE Lemma 3.2. Assume (a1)-(a3). Let T > 0 be fixed. Then there exists a constant λ0 > 0
independent of n and µ ∈ C([0, T ]; P2) such that for any λ ≥ λ0, (3.10) has a unique
solution uλ,µ,n which belongs to C1([0, T ];C2

b (Hn;Hn)) with

g1’g1’ (3.11) ‖uλ,µ,n‖T,∞ + ‖∇uλ,µ,n‖T,∞ +
∥∥∇2uλ,µ,n

∥∥
T,∞ ≤

1

5
, n ≥ 1.

Let Θλ,µ,n(x) = x + uλ,µ,n(x), x ∈ Hn. Then we have the regularization of the finite
dimensional approximation as follows.

L3.2 Lemma 3.3. Assume (a1)-(a3). For any T > 0, there exists a constant λ(T ) ≥ λ0 such
that for any ζ ∈ C([0, T ]; P2) and adapted continuous process (Xt)t∈[0,T ] on H with P-a.s.

Xt = eAtX0 +

∫ t

0

eA(t−s)bs(Xs, ζs)ds+

∫ t

0

eA(t−s)Qs(Xs, ζs)dWs, t ∈ [0, T ],3.33.3 (3.12)

and any λ ≥ λ(T ), n ≥ 1, Xn
t := πnXt satisfies

Θλ,µ,n
t (Xn

t ) = eAtΘλ,µ,n
0 (Xn

0 ) +

∫ t

0

eA(t−s)∇Θλ,µ,n
s (Xn

s )πnQs(Xs, ζs)dWs

+

∫ t

0

(λ− A)eA(t−s)uλ,µ,ns (Xn
s )ds

+

∫ t

0

eA(t−s)∇Θλ,µ,n
s (Xn

s )πn[bs(Xs, ζs)− bs(Xn
s , µs)]ds

+
1

2

∫ t

0

eA(t−s)tr{[(QsQ
∗
s)(Xs, ζs)− (QsQ

∗
s)(X

n
s , µs)]∇2uλ,µ,ns (Xn

s )}ds, t ∈ [0, T ],

3.43.4 (3.13)
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where

eA(t−s)tr{[(QsQ
∗
s)(Xs, ζs)− 〈QsQ

∗
s)(X

n
s , µs)]∇2uλ,µ,ns (Xn

s )}

:=
n∑
i=1

(
e−λi(t−s)tr{[(QsQ

∗
s)(Xs, ζs)− (QsQ

∗
s)(X

n
s , µs)]∇2〈uλ,µ,ns (Xn

s ), ei〉}
)
ei.

Proof. The proof mainly follows the idea of [31, Proposition 2.5]. However, due to the
distribution dependence of b and Q, some additional terms will appear to the calculations.

For simplicity, let bµt = bt(·, µt) and Qµ
t = Qt(·, µt). For any second-order differential

function F on Hn, let Lµ,nt be defined as

Lµ,nt F (z) = 〈Az,∇F (z)〉+
1

2

n∑
i,j=1

〈(Qµ
t (Qµ

t )∗)(z)ei, ej〉∇ei∇ejF (z), z ∈ Hn.gengen (3.14)

This together with [31, (2.6)], dominated convergence theorem and uλ,µ,n = πnu
λ,µ,n ◦ πn

implies

∂su
λ,µ,n
s (z) = [(λ− Lµ,ns )uλ,µ,ns ](z)− [∇bµ,ns uλ,µ,ns + bµ,ns ](z), z ∈ Hn.putput (3.15)

Since Xn
s = πnXs solves the following equation

dXn
s = AXn

s ds+ πnbs(Xs, ζs)ds+ πnQs(Xs, ζs)dWs, s ∈ [0, T ],XnXn (3.16)

Itô’s formula, (3.15), uλ,µ,ns = πnu
λ,µ,n
s ◦ πn and [∇bµ,ns uλ,µ,ns ] ◦ πn = [∇bµsu

λ,µ,n
s ] ◦ πn lead to

duλ,µ,ns (Xn
s ) =〈∇uλ,µ,ns (Xn

s ), Qs(Xs, ζs)dWs〉+ ∂su
λ,µ,n
s (Xn

s )ds

+ 〈∇uλ,µ,ns (Xn
s ), bs(Xs, ζs)〉ds+ 〈AXn

s ,∇uλ,µ,ns (Xn
s )〉ds

+
1

2

n∑
i,j=1

〈(QsQ
∗
s)(Xs, ζs)ei, ej〉∇ei∇eju

λ,µ,n
s (Xn

s )ds

=〈∇uλ,µ,ns (Xn
s ), Qs(Xs, ζs)dWs〉+ λuλ,µ,ns (Xn

s )ds− [Lµ,ns uλ,µ,ns ](Xn
s )ds

− [∇bµ,ns uλ,µ,ns + bµ,ns ](Xn
s )ds+ 〈∇uλ,µ,ns (Xn

s ), bs(Xs, ζs)〉ds

+ 〈AXn
s ,∇uλ,µ,ns (Xn

s )〉ds+
1

2

n∑
i,j=1

〈(QsQ
∗
s)(Xs, ζs)ei, ej〉∇ei∇eju

λ,µ,n
s (Xn

s )ds

=〈∇uλ,µ,ns (Xn
s ), Qs(Xs, ζs)dWs〉+ λuλ,µ,ns (Xn

s )ds

+ 〈∇uλ,µ,ns (Xn
s ), bs(Xs, ζs)− bµs (Xn

s )〉ds− πnbµs (Xn
s )ds

+
1

2

n∑
i,j=1

〈[(QsQ
∗
s)(Xs, ζs)−Qµ

s (Qµ
s )∗(Xn

s )]ei, ej〉∇ei∇eju
λ,µ,n
s (Xn

s )ds.

This together with (3.16) and uλ,µ,ns = πnu
λ,µ,n
s ◦ πn yields

d[uλ,µ,ns (Xn
s ) +Xn

s ]
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=A[Xn
s + uλ,µ,ns (Xn

s )]ds+ (λ− A)uλ,µ,ns (Xn
s )ds

+ 〈∇uλ,µ,ns (Xn
s ), Qs(Xs, ζs)dWs〉+ πnQs(Xs, ζs)dWs

+ 〈∇uλ,µ,ns (Xn
s ), bs(Xs, ζs)− bµs (Xn

s )〉ds+ [πnbs(Xs,LXs)− πnbµs (Xn
s )]ds

+
1

2

n∑
i,j=1

〈[(QsQ
∗
s)(Xs, ζs)− (Qµ

s (Qµ
s )∗)(Xn

s )]ei, ej〉∇ei∇eju
λ,µ,n
s (Xn

s )ds.

Thus, we get

uλ,µ,nt (Xn
t ) +Xn

t

=eAt[uλ,µ,n0 (Xn
0 ) +Xn

0 ] +

∫ t

0

eA(t−s)(λ− A)uλ,µ,ns (Xn
s )ds

+

∫ t

0

eA(t−s)〈∇uλ,µ,ns (Xn
s ) + I, πnQs(Xs, ζs)dWs〉

+

∫ t

0

eA(t−s)〈∇uλ,µ,ns (Xn
s ) + I, πnbs(Xs, ζs)− πnbµs (Xn

s )〉dsfifi (3.17)

+
1

2

∫ t

0

eA(t−s)
n∑

i,j=1

〈(QsQ
∗
s)(Xs, ζs)− (Qµ

s (Qµ
s )∗)(Xn

s )ei, ej〉∇ei∇eju
λ,µ,n
s (Xn

s )ds.

The proof is finished.

mor Remark 3.4. The conditions in Lemma 3.3 are stronger than those required in [31, Propo-
sition 2.5], where (a3”) cannot ensure the existence of ∇2uλ,µ,n in (3.13), which does not
appear in the distribution independent setting. Moreover, different from the proof of [31,
Proposition 2.5 ], we do not take limit in (3.13) with respect to n in order to avoid calculat-
ing limn→∞∇2uλ,µ,ns (Xn

s ). However, the present formula is enough for us to prove the strong
uniqueness by (3.13), see the proof of Theorem 2.2(2) below for more details.

Proof of Theorem 2.2. Thanks to Theorem 2.1 and the modified Yamada-Watanabe princi-
ple [16, Lemma 2.1], it suffices to prove the uniqueness of (1.1) and (2.2). According to [31,
Theorem 1.1], for any µ ∈ C([0, T ]; P2) and X0 ∈ L2(Ω→ H; F0), the following equation

dXt = {AXt + bt(Xt, µt)}dt+Qt(Xt, µt)dWtDDDD (3.18)

has a unique mild solution Xt. Let ν ∈ C([0, T ]; P2) and Y0 ∈ L2(Ω → H; F0) and Yt

solve (3.18) with (µ,X0) replaced by (ν, Y0). Moreover, let Φ
LX0
t (µ) and Φ

LY0
t (ν) be the

distribution of Xt and Yt respectively. Set Xn
t = πnXt and Y n

t = πnYt.
Let λ be large enough such that the assertions in Lemma 3.3 and Lemma 3.2 hold. By
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(3.13), we have P-a.s.

Θλ,µ,n
t (Xn

t )−Θλ,µ,n
t (Y n

t )

=eAt
(

Θλ,µ,n
0 (Xn

0 )−Θλ,µ,n
0 (Y n

0 )
)

+

∫ t

0

eA(t−s)[∇Θλ,µ,n
s (Xn

s )πnQs(Xs, µs)−∇Θλ,µ,n
s (Y n

s )πnQs(Ys, νs)]dWs

+

∫ t

0

(λ− A)eA(t−s)[uλ,µ,ns (Xn
s )− uλ,µ,ns (Y n

s )]ds

+

∫ t

0

eA(t−s)∇Θλ,µ,n
s (Xn

s )πn[bs(Xs, µs)− bs(Xn
s , µs)]ds

+
1

2

∫ t

0

eA(t−s)tr{[(QsQ
∗
s)(Xs, µs)− (QsQ

∗
s)(X

n
s , µs)]∇2uλ,µ,ns (Xn

s )}ds

−
∫ t

0

eA(t−s)∇Θλ,µ,n
s (Y n

s )πn[bs(Ys, νs)− bs(Y n
s , µs)]ds

− 1

2

∫ t

0

eA(t−s)tr{[(QsQ
∗
s)(Ys, νs)− (QsQ

∗
s)(Y

n
s , µs)]∇2uλ,µ,ns (Y n

s )}ds, t ∈ [0, T ].

3.63.6 (3.19)

By the same argument as in [31, (3.7)] and Fatou’s lemma, it is routine to obtain

E lim inf
n→∞

∫ l

0

e−2λt

∣∣∣∣∫ t

0

(λ− A)eA(t−s)(uλ,µ,ns (Xn
s )− uλ,µ,ns (Y n

s ))ds

∣∣∣∣2 dt

≤ lim inf
n→∞

E
∫ l

0

e−2λt

∣∣∣∣∫ t

0

(λ− A)eA(t−s)(uλ,µ,ns (Xn
s )− uλ,µ,ns (Y n

s ))ds

∣∣∣∣2 dt

≤ 1

4

∫ l

0

e−2λtE|Xt − Yt|2dt, l ∈ [0, T ].

Due to (a2), Fatou’s lemma and Lemma 3.2, there exists some function ε(λ) ↓ 0 as λ ↑ ∞
such that

E lim inf
n→∞

∫ l

0

e−2λt

∣∣∣∣∫ t

0

eA(t−s)[∇Θλ,µ,n
s (Xn

s )πnQs(Xs, µs)−∇Θλ,µ,n
s (Y n

s )πnQs(Ys, νs)]dWs

∣∣∣∣2 dt

≤ lim inf
n→∞

∫ l

0

e−2λtE
∣∣∣∣∫ t

0

eA(t−s)[∇Θλ,µ,n
s (Xn

s )Qs(Xs, µs)−∇Θλ,µ,n
s (Y n

s )Qs(Ys, νs)]dWs

∣∣∣∣2 dt

≤ ε(λ)

∫ l

0

e−2λsE|Xs − Ys|2ds+ ε(λ)

∫ l

0

e−2λsW2(µs, νs)
2ds, l ∈ [0, T ].

Furthermore, it follows from (a2)-(a3), Lemma 3.2 and dominated convergence theorem
that

E lim inf
n→∞

∫ l

0

e−2λt

∣∣∣∣∫ t

0

eA(t−s)∇Θλ,µ,n
s (Y n

s )πn[bs(Ys, νs)− bs(Y n
s , µs)]ds

∣∣∣∣2 dt
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≤ ε̃(λ)

∫ l

0

e−2λsW2(µs, νs)
2ds+ cE lim

n→∞

∫ l

0

|bs(Ys, µs)− bs(Y n
s , µs)|

2 ds

= ε̃(λ)

∫ l

0

e−2λsW2(µs, νs)
2ds, l ∈ [0, T ],

and

E lim inf
n→∞

∫ l

0

e−2λt

∣∣∣∣∫ t

0

eA(t−s)tr{[(QsQ
∗
s)(Ys, νs)− (QsQ

∗
s)(Y

n
s , µs)]∇2uλ,µ,ns (Y n

s )}ds
∣∣∣∣2 dt

≤E
∫ l

0

e−2λt

∫ t

0

‖eA(t−s)‖2
HS |tr[(QsQ

∗
s)(Ys, νs)− (QsQ

∗
s)(Ys, µs)]|

2 dsdt

+ E lim inf
n→∞

∫ l

0

e−2λt

∫ t

0

‖eA(t−s)‖2
HS |tr[(QsQ

∗
s)(Ys, µs)− (QsQ

∗
s)(Y

n
s , µs)]|

2 dsdt

≤2K(T )2E
∫ l

0

e−2λt

∫ t

0

‖eA(t−s)‖2
HS ‖Qs(Ys, νs)−Qs(Ys, µs)‖2

HS dsdt

+ 2K(T )2E lim inf
n→∞

∫ l

0

e−2λtE
∫ t

0

‖eA(t−s)‖2
HS ‖Qs(Ys, µs)−Qs(Y

n
s , µs)‖

2
HS dsdt

≤2K(T )3

∫ l

0

e−2λt

∫ t

0

‖eA(t−s)‖2
HSW2(µs, νs)

2dsdt

+ 2K(T )2E lim inf
n→∞

∫ l

0

e−2λt

∫ t

0

‖eA(t−s)‖2
HS ‖Qs(Ys, µs)−Qs(Y

n
s , µs)‖

2
HS dsdt

≤2K(T )3

∫ l

0

e−2λsW2(µs, νs)
2ds

∫ l

s

e−2λ(t−s)‖eA(t−s)‖2
HSdt

+ 2K(T )2E lim inf
n→∞

∫ l

0

‖Qs(Ys, µs)−Qs(Y
n
s , µs)‖

2
HS ds

∫ l

s

e−2λ(t−s)‖eA(t−s)‖2
HSdt

≤ε̃(λ)

∫ l

0

e−2λsW2(µs, νs)
2ds+ cE lim

n→∞

∫ l

0

‖Qs(Ys, µs)−Qs(Y
n
s , µs)‖

2
HS ds

=ε̃(λ)

∫ l

0

e−2λsW2(µs, νs)
2ds, l ∈ [0, T ]

for some ε̃(λ) ↓ 0 as λ ↑ ∞, where we use (1.2) in the last display. Similarly, dominated
convergence theorem, (a3), Lemma 3.2 and (1.2) lead to

E lim inf
n→∞

∫ l

0

e−2λt

∣∣∣∣∫ t

0

eA(t−s)∇Θλ,µ,n
s (Xn

s )πn[bs(Xs, µs)− bs(Xn
s , µs)]ds

∣∣∣∣2 dt = 0,

and

E lim inf
n→∞

∫ l

0

e−2λt

∣∣∣∣∫ t

0

eA(t−s)tr{[(QsQ
∗
s)(Xs, µs)− (QsQ

∗
s)(X

n
s , µs)]∇2uλ,µ,ns (Xn

s )}ds
∣∣∣∣2 dt = 0.
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Finally, by the monotone convergence theorem and Lemma 3.2, we arrive at

E lim inf
n→∞

∫ l

0

e−2λt
∣∣∣Θλ,µ,n

t (Xn
t )−Θλ,µ,n

t (Y n
t )
∣∣∣2 dt

≥ 16

25
E lim
n→∞

∫ l

0

e−2λt |Xn
t − Y n

t |
2 dt =

16

25
E
∫ l

0

e−2λt |Xt − Yt|2 dt.

Combining all the estimates above, for λ large enough, we have

∫ l

0

e−2λsE|Xs − Ys|2ds ≤ 1

2

∫ l

0

e−2λsW2(µs, νs)
2ds+ c(T )E|X0 − Y0|2, l ∈ [0, T ].gaga (3.20)

This combined with W2(Φ
LX0
s (µ),Φ

LY0
s (ν))2 ≤ E|Xs − Ys|2 implies for λ large enough, it

holds ∫ T

0

e−2λsW2(Φ
LX0
s (µ),Φ

LY0
s (ν))2ds ≤ 1

2

∫ T

0

e−2λsW2(µs, νs)
2ds+ c(T )E|X0 − Y0|2.gacgac (3.21)

In particular, we have∫ T

0

e−2λsW2(Φ
LX0
s (µ),Φ

LX0
s (ν))2ds ≤ 1

2

∫ T

0

e−2λsW2(µs, νs)
2ds.ga’ga’ (3.22)

The strong uniqueness of (1.1) follows immediately from (3.22). More precisely, for two
solutions Xt and X̃t to (1.1) with the same initial ξ ∈ L2(Ω→ H; F0), (3.22) yields∫ T

0

e−2λsW2(LXs ,LX̃s
)2ds = 0,

which together with LX· ,LX̃·
∈ C([0, T ]; P2) implies LXs = LX̃s

, s ∈ [0, T ]. Thus, Xt and

X̃t solve the same classical SPDE as in [31, Theorem 1.1], which gives Xt = X̃t, t ∈ [0, T ].
Finally, if Xt and Yt are two solutions to (1.1), (3.20) holds for µs = LXs and νs = LYs .
Again using W2(µs, νs)

2 ≤ E|Xs − Ys|2, we deduce (2.2).

wek Remark 3.5. If Qt(x, µ) does not depend on µ, the weak uniqueness can be ensured in the
case that b is not weakly continuous in the distribution variable, see [16, Theorem 1.1(1)]
and references therein for the condition that b is Lipschitz continuous in distribution variable
under total variational distance. The crucial technique is Girsanov’s transform, which is also
available in infinite dimensional situation.

4 Proof of Theorem 2.3 and Theorem 2.4

The main idea of the proof is to fix the distribution in the coefficients of Equ. (1.1), which
goes back to the classical situation. Then the log-Harnack inequality from different initial
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distribution holds according to [31, (1.7)]. Next, we calculate the relative entropy for two
solutions with different distributions in the coefficients of (1.1) but same initial distribution,
which dominates the total variational distance of these two solutions by Pinsker’s inequality.
Combining the above two parts, the desired log-Harnack inequality follows. As for Wang’s
Harnack inequality and shift Harnack inequality, the coupling by change of measure is used.

4.1 Proof of Theorem 2.3

Proof. (1) According to [29, Theorem 1.4.2(2)], (2.4) follows from log-Harnack inequality
and Pinsker’s inequality. (2.7) is a direct conclusion of Wang’s Harnack inequality, see [29,
Theorem 1.4.2(1)]. So we only need to prove log-Harnack inequality and Wang’s Harnack
inequality.

Let µt = P ∗t µ0 and νt = P ∗t ν0. Let Xt be the solution to SPDEs

EC0EC0 (4.1) dXt = AXtdt+ bt(Xt, µt)dt+Qt(Xt)dWt

with LX0 = µ0. Define

γs = Q∗s(QsQ
∗
s)
−1(Xs)[bs(Xs, µs)− bs(Xs, νs)], W̄t = Wt +

∫ t

0

γsds,

and

RT = exp

{
−
∫ T

0

〈γs, dWs〉 −
1

2

∫ T

0

|γs|2ds

}
.

By (a2)-(a3) and (2.1), Girsanov’s theorem yields that {W̄s}s∈[0,T ] is a cylindrical Brownian
motion under QT = RTP. Moreover, from (1.4), (a2) and (2.1), it is clear that

logER2
T = logE exp

{
−
∫ T

0

2〈γs, dWs〉 −
∫ T

0

|γs|2ds

}
RTRT (4.2)

≤ C(T )

∫ T

0

W2(µs, νs)
2ds ≤ C(T )W2(µ0, ν0)2.

for some constant C(T ) > 0. Then we have

ECbECb (4.3) dXt = AXtdt+ bt(Xt, νt)dt+Qt(Xt)dW̄t.

Letting µ̄t be the distribution of Xt under QT , we derive

µ̄T (f) = EQT f(XT ) = E(RTf(XT )) = E(E(RT |XT )f(XT )), f ∈ Bb(H).mubmub (4.4)

This implies P-a.s.

dµ̄T
dµT

(XT ) = E(RT |XT ).mucmuc (4.5)
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On the other hand, according to the log-Harnack inequality in [31, (1.7)] and [29, Theorem
1.4.2(2)], there exists a constant C > 0 such that

Ent(P ∗Tν0|µ̄T ) = µ̄T

(
dP ∗Tν0

dµ̄T
log

dP ∗Tν0

dµ̄T

)
≤ C

T ∧ 1
W2(µ0, ν0)2.

Thus, by Young’s inequality, Jensen’s inequality, (4.2), (4.4) and (4.5), for any f ∈ Bb(H),
one can arrive at

PT log f(ν0)

=µT

(
dµ̄T
dµT

dP ∗Tν0

dµ̄T
log f

)
≤ logPTf(µ0) + µT

(
dµ̄T
dµT

dP ∗Tν0

dµ̄T
log

(
dµ̄T
dµT

dP ∗Tν0

dµ̄T

))
= logPTf(µ0) + µT

(
dµ̄T
dµT

dP ∗Tν0

dµ̄T
log

dµ̄T
dµT

)
+ µT

(
dµ̄T
dµT

dP ∗Tν0

dµ̄T
log

dP ∗Tν0

dµ̄T

)
= logPTf(µ0) + µ̄T

(
dP ∗Tν0

dµ̄T
log

dµ̄T
dµT

)
+ µ̄T

(
dP ∗Tν0

dµ̄T
log

dP ∗Tν0

dµ̄T

)
≤ logPTf(µ0) + log µ̄T

(
dµ̄T
dµT

)
+ 2µ̄T

(
dP ∗Tν0

dµ̄T
log

dP ∗Tν0

dµ̄T

)
≤ logPTf(µ0) + logER2

T + 2µ̄T

(
dP ∗Tν0

dµ̄T
log

dP ∗Tν0

dµ̄T

)
≤ logPTf(µ0) + C(T )W2(µ0, ν0)2 +

C

T ∧ 1
W2(µ0, ν0)2

≤ logPTf(µ0) +
C(T )

T ∧ 1
W2(µ0, ν0)2

for some constant C(T ) > 0.
(2) Recall µt = P ∗t µ0 and νt = P ∗t ν0. Let Xt, Yt solve the equations respectively

dXt = AXtdt+ bt(Xt, µt)dt+QtdWt,

dYt = AYtdt+ bt(Xt, µt)dt+QtdWt + eAt
X0 − Y0

T
dt

EC1EC1 (4.6)

with LX0 = µ0 and LY0 = ν0. Then we have Yt = Xt + eAt (T−t)(Y0−X0)
T

. In particular,
YT = XT . Let

Φ̃(t) = bt(Xt, µt)− bt(Yt, νt) + eAt
X0 − Y0

T
, t ∈ [0, T ],

and

Ms =

∫ s

0

〈Q∗u(QuQ
∗
u)
−1Φ̃(u), dWu〉, s ∈ [0, T ].
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Set

R̃(s) = exp

(
−Ms −

1

2
〈M〉s

)
, s ∈ [0, T ],

and

W̃s = Ws +

∫ s

0

Q∗u(QuQ
∗
u)
−1Φ̃(u)du, s ∈ [0, T ].

In addition, combining (a3) with (2.1), there exists a constant C > 0 such that for any
t ∈ [0, T ],∫ T

0

|Φ̃(t)|2dt ≤
∫ T

0

{
2|bt(Xt, µt)− bt(Yt, νt)|2 + 2

∣∣∣∣eAtX0 − Y0

T

∣∣∣∣2
}

dt

≤
∫ T

0

4φ2

(
T − t
T
|X0 − Y0|

)
dt+

∫ T

0

4K(T )2W2(µt, νt)
2dt+ 2

|X0 − Y0|2

T

≤ 4Tφ2 (|X0 − Y0|) + C(T )W2(µ0, ν0)2 + 2
|X0 − Y0|2

T
.

By Girsanov’s theorem, {W̃s}s∈[0,T ] is a cylindrical Brownian motion under Q̃ = R̃(T )P.
Then the second equation in (4.6) can be rewritten as

E29E29 (4.7) dYt = AYtdt+ bt(Yt, νt)dt+QtdW̃t.

Consider SPDEs

E2’E2’ (4.8) dỸt = AỸtdt+ bt(Ỹt,LỸt
|Q̃)dt+QtdW̃t

with Ỹ0 = Y0, then LY0|P = LY0|Q̃ = LỸ0
|Q̃ = ν0. Thus, by the weak uniqueness, LỸt

|Q̃ = νt,

which implies Ỹt = Yt and LYt |Q̃ = νt.
On the other hand, by Hölder’s inequality, for any p > 1, it holds

PTf(ν0) = EQ̃f(YT ) = EQ̃f(XT ) ≤ (PTf
p(µ0))

1
p{ER̃(T )

p
p−1}

p−1
p .

By the definition of R̃(T ) and (a2), one can obtain

ER̃(T )
p
p−1

≤ E

{
exp

[
− p

p− 1
MT −

1

2

p2

(p− 1)2
〈M〉T

]
× exp

[
1

2

p2

(p− 1)2
− 1

2

p

p− 1
〈M〉T

]}

≤ E

{
E

{
exp

[
− p

p− 1
MT −

1

2

p2

(p− 1)2
〈M〉T

]∣∣∣∣F0

}

× exp

{
p

2(p− 1)2
K(T )

(
4Tφ2 (|X0 − Y0|) + C(T )W2(µ0, ν0)2 + 2

|X0 − Y0|2

T

)}}

≤ E exp

{
p

2(p− 1)2
K(T )

(
4Tφ2 (|X0 − Y0|) + C(T )W2(µ0, ν0)2 + 2

|X0 − Y0|2

T

)}
.

Thus, we derive the Harnack inequalities.
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4.2 Proof of Theorem 2.4

Proof. Recall µt = P ∗t µ0. Let Xt, Yt solve the equations

dXt = AXtdt+ bt(Xt, µt)dt+Qt(µt)dWt, LX0 = µ0,

dYt = AYtdt+ bt(Xt, µt)dt+Qt(µt)dWt + eAt
y

T
dt, Y0 = X0.

EC1sEC1s (4.9)

Then we have Yt = Xt + eAt ty
T

. In particular, YT = XT + eATy. Let

Φ̄(t) = bt(Xt, µt)− bt(Yt, µt) + eAt
y

T
, t ∈ [0, T ].

For any t ∈ [0, T ], set

R̄(t) = exp

[
−
∫ t

0

〈(Q∗u(QuQ
∗
u)
−1)(µu)Φ̄(u), dWu〉 −

1

2

∫ t

0

|(Q∗u(QuQ
∗
u)
−1)(µu)Φ̄(u)|2du

]
,

and

W̄t = Wt +

∫ t

0

(Q∗u(QuQ
∗
u)
−1)(µu)Φ̄(u)du.

There exists a constant C > 0 such that for any t ∈ [0, T ],

|Φ̄(t)| ≤ φ

(∣∣∣∣eAt tyT
∣∣∣∣)+

∣∣∣eAt y
T

∣∣∣ .NN0sNN0s (4.10)

Thus, we have ∫ T

0

|Φ̄(s)|2ds ≤ 2Tφ2(|y|) + 2
|y|2

T
.PhisPhis (4.11)

Girsanov’s theorem implies that {W̄s}s∈[0,T ] is a cylindrical Brownian motion under Q̄T =
R̄(T )P. Then the second equation in (4.9) can be reformulated as

E2sE2s (4.12) dYt = AYtdt+ bt(Yt, µt)dt+Qt(µt)dW̄t, Y0 = X0.

Thus, the distribution of YT under the new probability Q̄T coincides with the one of XT

under P.
On the other hand, by Young’s inequality and Hölder’s inequality respectively, we arrive

at

PT log f(µ0) = EQ̄T log f(YT )

= EQ̄T log f(XT + eATy)

≤ logPTf(·+ eATy)(µ0) + ER̄(T ) log R̄(T ),

and

PTf(µ0) = EQ̄T f(YT )
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= EQ̄T f(XT + eATy) ≤ (PTf
p(·+ eATy))

1
p (µ0){ER̄(T )

p
p−1}

p−1
p .

It is standard to obtain

ER̄(T ) log R̄(T ) = EQ̄T log R̄(T ) =
1

2
EQ̄T

∫ T

0

|(Q∗u(QuQ
∗
u)
−1)(µu)Φ̄(u)|2du,

and by the same argument as in the estimate of ER̃(T )
p
p−1 in Section 4.1, it holds

ER̄(T )
p
p−1 ≤ ess sup

Ω
exp

{
p

2(p− 1)2

∫ T

0

|(Q∗u(QuQ
∗
u)
−1)(µu)Φ̄(u)|2du

}
.

Thus, the shift Harnack inequality follows from (4.11) and (a2).
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