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Abstract In this paper, a new kind of multigrid method is proposed for the ground state
solution of Bose-Einstein condensates based on Newton iteration scheme. Instead of treating
eigenvalue λ and eigenvector u separately, we regard the eigenpair (λ ,u) as one element in
the composite space R×H1

0 (Ω) and then Newton iteration step is adopted for the nonlinear
problem. Thus in this multigrid scheme, the main computation is to solve a linear discrete
boundary value problem in every refined space, which can improve the overall efficiency for
the simulation of Bose-Einstein condensations.
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1 Introduction

A Bose-Einstein condensate (BEC) is a state of a dilute gas of bosons cooled to temperature
very close to absolute zero [4,21]. Under such condition, a large fraction of bosons will
occupy the lowest quantum state, at which point, macroscopic quantum becomes apparent
[20]. BEC was first proposed by A. Einstein who generalized a work of S. N. Bose on the
quantum statistics for photons [10] to a gas of non-interacting bosons [22,23]. Then Gross-
Pitaevskii (GP) theory was developed by Gross [24] and Pitaevskii [27] independently in
1960s to describe the dynamics of a BEC [28]. Since the first experimental observation of
BEC in 1995, much attention has been paid to the Gross-Pitaevskii equation (GPE) [17,26].

It is known that the wave function ψ of a sufficiently dilute condensate, in the presence
of an external potential W̃, satisfies the following GPE(

− h̄2

2m
∆ +W̃ +

4π h̄2aN
m

|ψ|2
)

ψ = µψ , (1)

where µ is the chemical potential and N is the number of atoms in the condensate. 4π h̄2a/m
represents the effective two-body interaction, where h̄ is the Plank constant, a is the scat-
tering length (positive for repulsive interaction and negative for attractive interaction) and
m is the particle mass. In this paper, we assume the external potential W̃ (x) is measurable,
locally bounded and tends to infinity as |x| → ∞ in the sense that

inf
|x|≥r

W̃ (x)→ ∞ as r → ∞.

Then the wave function ψ must vanish exponentially fast as |x| → ∞. Furthermore, (1) can
be written as (

−∆ +
2m
h̄2 W̃ +8πaN|ψ|2

)
ψ =

2mµ
h̄2 ψ. (2)

Hence in this paper, we are concerned with the smallest eigenpair for the following non-
dimensionalized GPE problem:

−∆u+Wu+ζ |u|2u = λu, in Ω ,
u = 0, on ∂Ω ,∫

Ω |u|2dΩ = 1,
(3)

where Ω ⊂Rd (d = 1,2,3) denotes the computing domain which has the cone property [1],
ζ is some positive constant and W (x) = γ1x2

1 + · · ·+ γdx2
d ≥ 0 with γ1, · · · ,γd > 0 [13,32].

In the past decades, there have existed many papers discussing the numerical methods
for the time-dependent GPEs and time-independent GPEs. Please refer to [2–5,11–13,15,
16] and papers cited therein. Especially, in [18,32], the convergence and the priori error
estimates of the finite element method for GPEs have been proved, which will be used later
in this paper.

Solving such kind of nonlinear eigenvalue problem is an important but difficult problem
in science and engineering computation. As is known to us all that the multigrid method pro-
vides an optimal complexity algorithm to solve discrete boundary value problems [8,14,25,
29–31]. The aim of this paper is to propose a multigrid scheme for GPEs based on Newton
iteration method. More precisely, GPE is regarded as a nonlinear problem in the composite
space R×H1

0 (Ω) and then Newton iteration is adopted to derive a linearized boundary value
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problem. Thus, we just need to solve a linear problem with finite element method in every
refined space. With this multigrid scheme, solving GPE problem will not be more difficult
than solving the corresponding boundary value problem. Besides, the convergence rate and
computational work of this method are also analyzed in this paper.

An outline of the paper goes as follows. In Section 2, we introduce the finite element
method and corresponding error estimates for the ground state solution of BEC, i.e. non-
dimensionalized GPE. A Newton iteration method for GPE is presented in Section 3. In
Section 4, we propose a type of multigrid algorithm for GPE based on Newton iteration
method. Section 5 is devoted to estimating the computational work of the multigrid method
designed in Section 4. Two numerical examples are presented in Section 6 to validate the
theoretical analysis. Finally, some concluding remarks are given in the last section.

2 Finite element method for Gross-Pitaevskii equation

This section is devoted to introducing some notation and the finite element method for GPE
problem. The letter C (with or without subscripts) denotes a generic positive constant which
may be different at its different occurrences. For convenience, the symbols ., & and ≈ will
be used in this paper to denote x1 ≤C1y1, x2 ≥ c2y2 and c3x3 ≤ y3 ≤C3x3 for some constants
C1,c2,c3, C3 that are independent of mesh sizes (see, e.g., [30]). We shall use the standard
notation for Sobolev spaces W s,p(Ω) and their associated norms ∥ · ∥s,p,Ω and seminorms
| · |s,p,Ω (see, e.g., [1]). For p = 2, we denote Hs(Ω) = W s,2(Ω), H1

0 (Ω) = {v ∈ H1(Ω) :
v|∂Ω = 0}, where v|∂Ω = 0 is in the sense of trace and ∥ · ∥s,Ω = ∥ · ∥s,2,Ω . In this paper, we
use ∥ · ∥s to denote ∥ · ∥s,Ω for simplicity.

For the aim of finite element discretization, the corresponding weak form for (3) can be
described as follows: Find (λ ,u) ∈ R×V such that b(u,u) = 1 and

a(u,v) = λb(u,v), ∀v ∈V, (4)

where V = H1
0 (Ω) and

a(u,v) =
∫

Ω

(
∇u ·∇v+Wuv+ζ |u|2uv

)
dΩ , b(u,v) =

∫
Ω

uvdΩ .

We also introduce the linearized form a′(u;v,w) by

a′(u;v,w) =
∫

Ω

(
∇v ·∇w+Wvw+3ζ |u|2vw

)
dΩ , ∀v,w ∈V. (5)

Here and hereafter in this paper, we only consider the smallest eigenvalue and the corre-
sponding eigenfunction of the problem (4). For GPE problem, we can find the following
estimates from [18].

Lemma 1 There exist positive constants M, CL and CU such that for all v ∈ H1
0 (Ω),

0 ≤ (∇v,∇v)+(Wv+ζ |u|2v,v)−λ (v,v)≤ M∥v∥2
1 (6)

and

CL∥v∥2
1 ≤ a′(u;v,v)−λ (v,v)≤CU∥v∥2

1. (7)
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Now, let us define the finite element method [9,19] for the problem (4). First we generate
a shape-regular decomposition of the computing domain Ω ⊂ Rd and the diameter of a cell
K ∈ Th is denoted by hK . The mesh diameter h describes the maximum diameter of all cells
K ∈ Th. Based on the mesh Th, we construct the linear finite element space denoted by
Vh ⊂V . We assume that Vh ⊂V satisfies the following assumption:

lim
h→0

inf
v∈Vh

∥w− v∥1 = 0, ∀w ∈V. (8)

The standard finite element method for (4) is to solve the following eigenvalue problem:
Find (λh,uh) ∈ R×Vh such that b(uh,uh) = 1 and

a(uh,vh) = λhb(uh,vh), ∀vh ∈Vh. (9)

Then we define
δh(u) := inf

vh∈Vh
∥u− vh∥1. (10)

The error estimates of the finite element method for (4) are presented in the following
lemma which can be found in [18,32].

Lemma 2 ([18, Theorem 1]) There exists h0 > 0, such that for all 0 < h < h0, the smallest
eigenpair approximation (λh,uh) of (9) has the following error estimates

∥u−uh∥1 . δh(u), (11)

∥u−uh∥0 . ηa(Vh)∥u−uh∥1 . ηa(Vh)δh(u), (12)

|λ −λh| . ∥u−uh∥2
1 +∥u−uh∥0 . ηa(Vh)δh(u), (13)

where ηa(Vh) is defined as follows

ηa(Vh) = ∥u−uh∥1 + sup
f∈L2(Ω),∥ f∥0=1

inf
vh∈Vh

∥T f − vh∥1 (14)

with the operator T being defined as follows: Find T f ∈ u⊥ such that
a′(u;T f ,v)− (λ (T f ),v) = ( f ,v), ∀v ∈ u⊥,

and u⊥ =
{

v ∈V :
∫

Ω uvdΩ = 0
}

.

3 Newton iteration method for Gross-Pitaevskii equation

In this section, Newton iteration method is introduced to solve the GPE problem in a com-
posite space defined as follows:

Denote the space R×H1
0 (Ω) by X and R×H−1(Ω) by X∗ with the norm

∥(γ ,w)∥X = |γ|+∥w∥1 and ∥(γ ,w)∥0 = |γ |+∥w∥0, ∀(γ ,w) ∈ X .

Similarly, the corresponding finite element space R×Vh is denoted by Xh.
For any (γ,w), (µ,v) ∈ X , we define a nonlinear operator G : X → X∗ as follows

⟨G (γ,w),(µ,v)⟩ = (∇w,∇v)+(Ww+ζ |w|2w− γw,v)

+
1
2

µ
(
1−

∫
Ω

w2dΩ
)
. (15)
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Since we request ∥u∥2
0 = 1, (4) can be rewritten as: Find (λ ,u) ∈ X such that

⟨G (λ ,u),(µ,v)⟩= 0, ∀(µ,v) ∈ X . (16)

Then, the discrete form (9) can be rewritten as: Find (λh,uh) ∈ Xh such that

⟨G (λh,uh),(µh,vh)⟩= 0, ∀(µh,vh) ∈ Xh. (17)

The Fréchet derivation of G at (λ ,u), G ′(λ ,u) : X → X∗, is a bounded linear operator given
by

⟨G ′(λ ,u)(γ,w),(µ,v)⟩ = (∇w,∇v)+((W +3ζ u2 −λ )w,v)
− γ(u,v)−µ(u,w)

= a′(u;w,v)−λ (w,v)− γ(u,v)−µ(u,w)

= â(λ ,u;w,v)+ b̂(u;v,γ)+ b̂(u;w,µ), (18)

where
â(λ ,u;w,v) = a′(u;w,v)−λ (w,v), b̂(u;v,µ) =−µ(u,v).

Assume we have an initial eigenpair approximation (λ ′
,u

′
) on the finite element space Xh,

Newton iteration method for GPE is defined as follows to get a better eigenpair approxima-
tion (λ ′′

,u
′′
) ∈ Xh:

⟨G ′(λ
′
,u

′
)(λ

′′ −λ
′
,u

′′ −u
′
),(µ,v)⟩=−⟨G (λ

′
,u

′
),(µ,v)⟩, ∀(µ,v) ∈ Xh. (19)

From (15) and (18), (19) can be rewritten as the following mixed boundary value problem:
Find (λ ′′

,u
′′
) ∈ Xh such that{

â(λ ′
,u

′
;u

′′
,v)+ b̂(u

′
;v,λ ′′

) = (2ζ (u′
)3 −λ ′

u
′
,v), ∀v ∈Vh,

b̂(u
′
;u

′′
,µ) =−µ/2−µ(u′

,u
′
)/2, ∀µ ∈ R.

(20)

The isomorphism property of G ′ is analyzed in the following theorem which also guar-
antees the well-posedness of the above mixed problem.

Theorem 1 If the mesh size h is sufficiently small, then for the linearized operator G ′ pre-
sented in (18), we have

sup
(µ,v)∈X

⟨G ′(λ ,u)(γ,w),(µ,v)⟩
∥(µ,v)∥X

& ∥(γ,w)∥X , ∀(γ ,w) ∈ X , (21)

and

sup
(µ,v)∈Xh

⟨G ′(λ ,u)(γ ,w),(µ,v)⟩
∥(µ,v)∥X

& ∥(γ ,w)∥X , ∀(γ,w) ∈ Xh. (22)

For any (λ̂ , û) ∈ X such that ∥(λ̂ −λ , û−u)∥X is small enough, there holds

sup
(µ,v)∈Xh

⟨G ′(λ̂ , û)(γ ,w),(µ,v)⟩
∥(µ,v)∥X

& ∥(γ ,w)∥X , ∀(γ,w) ∈ Xh. (23)
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Proof For the first estimate (21), we just need to prove that the equation

G ′(λ ,u)(γ ,w) = (τ, f ) (24)

is uniquely solvable in X for any (τ, f )∈ X∗. From (18), we obtain that (24) can be rewritten
as {

â(λ ,u;w,v)+ b̂(u;v,γ) = ( f ,v), ∀v ∈V,
b̂(u;w,µ) = µτ , ∀µ ∈ R.

For this saddle problem, the solvable condition is ([7, Theorem 1.1], II):
Firstly, the following variational problem

â(λ ,u;w,v) = ( f ,v), ∀v ∈V0 (25)

is uniquely solvable with V0 := {v ∈V : b̂(u;v,µ) = 0, ∀µ ∈ R}.
Secondly, b̂(u; ·, ·) satisfies the inf-sup condition

inf
µ∈R

sup
v∈V

b̂(u;v,µ)
∥v∥1|µ|

≥ kb (26)

for some constant kb > 0.
The well-posedness of (25) can be derived from (7) directly.
For the second condition (26), take v =−µu. Since ∥u∥0 = 1, there holds

inf
µ∈R

sup
v∈V

b̂(u;v,µ)
∥v∥1|µ|

≥ inf
µ∈R

µ2(u,u)
∥u∥1|µ|2

=
1

∥u∥1
=: kb.

This completes the proof of (21).
From (7), we can define a project operator Ph : V →Vh by

â(λ ,u;w,v−Phv) = 0, ∀w ∈Vh, v ∈V. (27)

There apparently holds

∥Phv∥1 . ∥v∥1, ∀v ∈V. (28)

From the Aubin-Nitsche lemma, we have

∥v−Phv∥0 . ηa(Vh)∥v∥1, ∀v ∈V. (29)

So for any (γ,w) ∈ Xh, form (21) and (29), the following estimates hold

∥(γ ,w)∥X . sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,v)⟩
∥(µ,v)∥X

= sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,Phv)⟩+ ⟨G ′(λ ,u)(γ,w),(0,v−Phv)⟩
∥(µ,v)∥X

= sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,Phv)⟩− γ(u,v−Phv)
∥(µ,v)∥X

. sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,Phv)⟩+ |γ |∥u∥0∥v−Phv∥0

∥(µ,v)∥X

. sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,Phv)⟩+ |γ |ηa(Vh)∥u∥0∥v∥1

∥(µ,v)∥X

. sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,Phv)⟩
∥(µ,v)∥X

+ηa(Vh)∥(γ,w)∥X . (30)
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When the mesh size h is small enough, combing (28) and (30) leads to

∥(γ,w)∥X . sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,Phv)⟩
∥(µ,v)∥X

. sup
(µ ,v)∈X

⟨G ′(λ ,u)(γ ,w),(µ,Phv)⟩
∥(µ,Phv)∥X

. sup
(µ ,v)∈Xh

⟨G ′(λ ,u)(γ,w),(µ,v)⟩
∥(µ,v)∥X

.

Then we get the desired conclusion (22).
For the last inequality (23), we assume there exists a sufficiently small constant ε such

that ∥(λ̂ −λ , û−u)∥X ≤ ε . Then for any (γ ,w) ∈ Xh

∥(γ ,w)∥X . sup
(µ,v)∈Xh

⟨G ′(λ ,u)(γ ,w),(µ,v)⟩
∥(µ,v)∥X

. sup
(µ,v)∈Xh

⟨G ′(λ̂ , û)(γ ,w),(µ,v)⟩+ ε∥(γ ,w)∥X∥(µ,v)∥X

∥(µ,v)∥X
.

The desired result (23) then easily follows if ε is sufficiently small.

Applying Newton iteration method to GPE leads to a linearized problem, the corre-
sponding residual estimate can be derived from the following theorem.

Theorem 2 For the nonlinear operator G and any (µh,vh),(µ,v) ∈ X, we have

⟨G (µh,vh),(σ ,η)⟩ = ⟨G (µ,v),(σ ,η)⟩+ ⟨G ′(µ,v)(µh −µ,vh − v),(σ ,η)⟩
+ R

(
(µ,v),(µh,vh),(σ ,η)

)
, ∀(σ ,η) ∈ X (31)

with R
(
(µ,v),(µh,vh),(σ ,η)

)
being the residual which can be estimated as follows:∣∣R((µ,v),(µh,vh),(σ ,η)
)∣∣. ∥(µ −µh,v− vh)∥X∥(µ −µh,v− vh)∥0∥(σ ,η)∥X .

Proof Define

φ(t) = ⟨G ((µ,v)+ t(µh −µ,vh − v)),(σ ,η)⟩. (32)

Then the derivative of φ with respect to t can be derived trivially as follows

φ ′(t) = (∇(vh − v),∇η)+(W (vh − v),η)+3
(
ζ (v+ t(vh − v))2(vh − v),η

)
− (µh −µ)(v+ t(vh − v),η)− (µ + t(µh −µ))(vh − v,η)

− σ(v+ t(vh − v),vh − v)

= ⟨G ′((µ,v)+ t(µh −µ,vh − v))(µh −µ,vh − v),(σ ,η)⟩

and

φ ′′(t) = −2(µh −µ)(vh − v,η)−σ(vh − v,vh − v)

+ 6(ζ (v+ t(vh − v))(vh − v)2,η). (33)

Denote ξ = v+ t(vh − v) and from the imbedding theorem, we have

∥ξ∥0,6 . ∥ξ∥1 . ∥v∥1 +∥vh∥1.
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For the last term of (33),

|(ξ (vh − v)2,η)| .
∫

Ω
|ξ |(vh − v)2|η |dx

. ∥ξ∥0,6∥vh − v∥0∥vh − v∥0,6∥η∥0,6

. ∥ξ∥1∥vh − v∥1∥vh − v∥0∥η∥1. (34)

Thus, (31) can be derived from the following Taylor expansion

φ(1) = φ(0)+φ ′(0)+
∫ 1

0
φ ′′(t)(1− t)dt. (35)

Due to (33)-(35), the residual R satisfies∣∣R((µ,v),(µh,vh),(σ ,η)
)∣∣. ∥(µ −µh,v− vh)∥X∥(µ −µh,v− vh)∥0∥(σ ,η)∥X .

Then we complete the proof.

4 Multigrid algorithm based on Newton iteration method

In this section, we propose a multigrid scheme based on Newton iteration method. In this
algorithm, we only need to solve a linearized mixed problem on each refined finite element
space.

4.1 One Newton iteration step

In order to design the multigrid method, we first introduce an one Newton iteration step in
this subsection. Assume we have obtained an eigenpair approximation (λ hk ,uhk) ∈R×Vhk ,
a type of iteration step will be introduced to derive an eigenpair (λ hk+1 ,uhk+1) ∈ R×Vhk+1
with a better accuracy. In this paper, we denote by (λhk ,uhk) the standard finite element
solution of (4).

Algorithm 1: One Newton Iteration Step
1. Define the linearized mixed variational equation on the finite element space Xhk+1 as follows:

Find (λ̂ hk+1 , ûhk+1 ) ∈ Xhk+1 such that for all (µ,vhk+1 ) ∈ Xhk+1{
â(λ hk ,uhk ; ûhk+1 ,vhk+1 )+ b̂(uhk ;vhk+1 , λ̂

hk+1 ) = ( f ,vhk+1 ),

b̂(uhk ; ûhk+1 ,µ) = (g,µ),
(36)

where f = 2ζ (uhk )3 −λ hk uhk , g =−(1+(uhk ,uhk ))/2.
2. Solve equation (36) to obtain an eigenpair approximation (λ hk+1 ,uhk+1 ) satisfying

∥(λ hk+1 − λ̂ hk+1 ,uhk+1 − ûhk+1 )∥X . ηa(Vhk+1 )δhk+1 (u).

In order to simplify the notation and summarize the above two steps, we define

(λ hk+1 ,uhk+1 ) = Newton−Iteration−Step(λ hk ,uhk ,Vhk+1 ).
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Theorem 3 After implementing Algorithm 1, the resultant eigenpair approximation (λ hk+1 ,uhk+1)
has the following error estimate

∥(λ hk+1 −λhk+1 ,u
hk+1 −uhk+1)∥X

. ηa(Vhk+1)δhk+1(u)+δhk(u)∥(λhk −λ hk ,uhk −uhk)∥X

+ ∥(λhk −λ hk ,uhk −uhk)∥X∥(λhk −λ hk ,uhk −uhk)∥0. (37)

Proof For the standard finite element solution (λhk+1 ,uhk+1), we have

⟨G (λhk+1 ,uhk+1),(µ,vhk+1)⟩= 0, ∀(µ,vhk+1) ∈ Xhk+1 . (38)

Together with (31) and (36) in Algorithm 1, there holds

⟨G ′(λ hk ,uhk)(λhk+1 − λ̂ hk+1 ,uhk+1 − ûhk+1),(µ,vhk+1)⟩

= ⟨G (λ hk ,uhk),(µ,vhk+1)⟩

+ ⟨G ′(λ hk ,uhk)(λhk+1 −λ hk ,uhk+1 −uhk),(µ,vhk+1)⟩

= ⟨G (λ hk ,uhk),(µ,vhk+1)⟩−⟨G (λhk+1 ,uhk+1),(µ,vhk+1)⟩

+ ⟨G ′(λ hk ,uhk)(λhk+1 −λ hk ,uhk+1 −uhk),(µ,vhk+1)⟩

= −R
(
(λ hk ,uhk),(λhk+1 ,uhk+1),(µ,vhk+1)

)
. (39)

Using (23), Theorem 2 and (39), we derive

∥(λhk+1 − λ̂ hk+1 ,uhk+1 − ûhk+1)∥X

. ∥(λhk+1 −λ hk ,uhk+1 −uhk)∥X∥(λhk+1 −λ hk ,uhk+1 −uhk)∥0

.
(
∥(λhk+1 −λhk ,uhk+1 −uhk)∥X +∥(λhk −λ hk ,uhk −uhk)∥X

)(
∥(λhk+1 −λhk ,uhk+1 −uhk)∥0 +∥(λhk −λ hk ,uhk −uhk)∥0

)
. ηa(Vhk)δ

2
hk
(u)+δhk(u)∥(λhk −λ hk ,uhk −uhk)∥X

+ ∥(λhk −λ hk ,uhk −uhk)∥X∥(λhk −λ hk ,uhk −uhk)∥0. (40)

Since

∥(λ hk+1 − λ̂ hk+1 ,uhk+1 − ûhk+1)∥X . ηa(Vhk+1)δhk+1(u),

we arrive at

∥(λ hk+1 −λhk+1 ,u
hk+1 −uhk+1)∥X

. ηa(Vhk+1)δhk+1(u)+δhk(u)∥(λhk −λ hk ,uhk −uhk)∥X

+ ∥(λhk −λ hk ,uhk −uhk)∥X∥(λhk −λ hk ,uhk −uhk)∥0.

This completes the proof.
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4.2 Multilevel correction method

In order to do multigrid iteration, we define a sequence of triangulations Thk , in which Thk+1

is produced from Thk via a regular refinement (produce β d congruent elements) such that

hk ≈
1
β

hk−1, (41)

where the constant β denotes the refinement index and larger than 1 (always equals 2). Based
on the mesh sequence, we construct a series of linear finite element spaces satisfying

Vh1 ⊂Vh2 ⊂ ·· · ⊂Vhn ⊂V (42)

and assume the following relations of approximation errors hold

ηa(Vhk)≈
1
β

ηa(Vhk−1), δhk(u)≈
1
β

δhk−1(u), k = 1,2, · · · ,n. (43)

Obviously, the following relationship is also valid

Xh1 ⊂ Xh2 ⊂ ·· · ⊂ Xhn ⊂ X . (44)

The multigrid method based on one Newton iteration step is defined by Algorithm 2.

Algorithm 2: Multigrid Algorithm
1. Construct a series of nested finite element spaces Vh1 ,Vh2 , · · · ,Vhn such that (42) and (43) hold.
2. Solve the GPE on the initial finite element space Xh1 : Find (λh1 ,uh1 ) ∈ Xh1 such that

(∇uh1 ,∇vh1 )+(Wuh1 ,vh1 )+(ζ (uh1 )
3,vh1 ) = λh1 (uh1 ,vh1 ), ∀v ∈Vh1 .

Using iteration method to solve this nonlinear eigenvalue problem and obtain (λ h1 ,uh1 ) ∈ Xh1 with
error estimate ∥(λh1 −λ h1 ,uh1 −uh1 )∥X . ηa(Vh1 )δh1 (u).

3. Do k = 1, · · · ,n−1
Obtain a new eigenpair approximation (λ hk+1 ,uhk+1 ) by a Newton iteration step

(λ hk+1 ,uhk+1 ) = Newton−Iteration−Step(λ hk ,uhk ,Vhk+1 ).

End Do.

Theorem 4 Assume the initial mesh size h1 is sufficiently small, after implementing Algo-
rithm 2, the resultant eigenpair approximation (λ hn ,uhn) has the following error estimate

∥(λhn −λ hn ,uhn −uhn)∥X . ηa(Vhn)δhn(u). (45)

Proof We use mathematical induction to give the proof. At first, from the second step of
Algorithm 2, we know that (45) holds for the initial finite element space Xh1 . Then, assume
that (45) is true for the space Vhn−1 , i.e.

∥(λhn−1 −λ hn−1 ,uhn−1 −uhn−1)∥X . ηa(Vhn−1)δhn−1(u).
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Now, we consider the error estimates in the space Vhn . Using Theorem 3 and our assumption,
we have

∥(λhn −λ hn ,uhn −uhn)∥X

. ηa(Vhn)δhn(u)+δhn−1(u)∥(λhn−1 −λ hn−1 ,uhn−1 −uhn−1)∥X

+ ∥(λhn−1 −λ hn−1 ,uhn−1 −uhn−1)∥X∥(λhn−1 −λ hn−1 ,uhn−1 −uhn−1)∥0

. ηa(Vhn)δhn(u),

which means that (45) is also valid for the space Vhn . Then, we complete the proof.

At last, we give the error estimates for the final eigenpair approximation (λ hn ,uhn) which
is obtained by Algorithm 2.

Theorem 5 For Algorithm 2, under the conditions of Thoerem 4, we have

∥u−uhn∥1 . δhn(u), (46)

∥u−uhn∥0 . ηa(Vhn)δhn(u), (47)

|λ −λ hn | . ηa(Vhn)δhn(u). (48)

Proof From Lemma 2 and Theorem 4, we have

∥(λ −λ hn ,u−uhn)∥X

≤ ∥(λ −λhn ,u−uhn)∥X +∥(λhn −λ hn ,uhn −uhn)∥X

. δhn(u),

which means that (46) holds. Similarly, there holds

∥(λ −λ hn ,u−uhn)∥0 . ηa(Vhn)δhn(u).

Then, we get (47) and (48) immediately, and the proof is completed.

Remark 1 For the discrete linear system (36) involved in each level of Algorithm 1, we can
adopt the multigrid method to solve it efficiently (see e.g., [6,29]).

5 Work estimate of multigrid algorithm

In this section, the computational work of Algorithm 2 is presented to show the efficiency
of this multigrid scheme. Denote the dimension of finite element space Vhk by Nk. Then we
have

Nk ≈ β d(k−n)Nn, k = 1,2, · · · ,n.

Theorem 6 Assume the work of GPE problem in the initial finite element space Vh1 is
O(Mh1) and that of the linear boundary value problem in each level Vhk is O(Nk) for
k = 1,2, · · · ,n. Then the work involved in the multigrid method is O(Nn +Mh1). Further-
more, the complexity can be O(Nn) provided Mh1 ≤ Nn.

Proof Denote the work in the k-th finite element space Vhk by Wk and the total work by W .
Then

W =
n

∑
k=1

Wk = O
(
Mh1 +

n

∑
k=2

Nk
)
= O

(
Mh1 +

n

∑
k=2

β d(k−n)Nn
)

= O(Mh1 +Nn).

Then we derive the desired result and W = O(Nn) when Mh1 ≤ Nn.
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6 Numerical results

In this section, three numerical examples are presented to illustrate the efficiency of the
multigrid scheme proposed in this paper. Since the aim here is to show the efficiency of
the proposed scheme, we choose the computing domain as the unit square or cube without
loss of generality. Here, we use the multigrid method to solve the linear system (36). The
distributive Gauss-Seidel (DGS) is adopted as the smoothers [6,14]. The linear problem
(36) is solved by V-cycle multigrid method with two pre-smoothing and post-smoothing
steps. In step 2 of Algorithm 2, we need to solve the nonlinear eigenvalue problem in Vh1 .
The self-consistent method is adopted and package ARPACK is called here for the linear
eigenvalue problems involved in each self-consistent iteration step. In this paper, all schemes
are running on the same machine PowerEdge R720 with the Linux system. The machine is
equipped with Intel Xeon E5-2620 (2.00GHz) CPU with 72G memory.

6.1 Example 1

In the first example, we use Algorithm 2 to solve the following GPE on the unit square: Find
(λ ,u) such that 

−△u+Wu+ζ |u|2u = λu, in Ω ,
u = 0, on ∂Ω ,∫

Ω u2dΩ = 1,
(49)

where Ω = [0,1]2, W = x2
1 + x2

2 and ζ = 1.
Figure 1 shows the initial mesh for (49). The sequence of finite element spaces is con-

structed by linear element on a series of meshes produced by regular refinement with β = 2
(producing β 2 congruent subelements). Since the exact eigenpair is unknown, we choose an
adequately accurate approximation defined on a further refined mesh as the exact solution
for our numerical tests. In order to exhibit the accuracy of the approximate solution derived
by Algorithm 2, we also solve (49) directly by the finite element method for comparison.

The initial mesh for Example 1

Fig. 1 The initial mesh for Example 1.

The corresponding numerical results and the eigenfunction contour are depicted in Fig-
ure 2. From Figure 2, we can find that Algorithm 2 is able to obtain the optimal approxima-
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tions, which is in consistent with Theorem 5. Besides, this figure also shows that Algorithm
2 can achieve the same optimal error estimates as the direct finite element method for (49).
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Fig. 2 Left: The errors of the multigrid method for the ground state solution of GPE, where λh and uh denote
the numerical solutions of Algorithm 2, λ dir

h and udir
h denote the numerical solutions of the direct finite element

method. Right: The contour of the ground state solution of Algorithm 2 for Example 1.

6.2 Example 2

In the second example, we use Algorithm 2 to solve the following GPE on a three dimen-
sional domain: Find (λ ,u) such that

−△u+Wu+ζ |u|2u = λu, in Ω ,
u = 0, on ∂Ω ,∫

Ω u2dΩ = 1,
(50)

where Ω denotes the unit cube [0,1]3, W = x2
1 + x2

2 + x2
3 and ζ = 1.

Figure 3 shows the initial mesh. The sequence of finite element spaces is constructed by
linear element on a series of meshes produced by regular refinement with β = 2 (connecting
the midpoint of each edge). Since the exact solution is also unknown, an adequately accurate
approximation defined on a further refined mesh is chosen as the exact solution to investigate
the convergence behavior. In order to exhibit the accuracy of the approximate solution
derived by Algorithm 2, we also solve (50) directly by the finite element method in the
finest mesh, where the package ARPACK with CG iteration is called.

The numerical results by Algorithm 2 and the direct finite element method are depicted
in Figure 4 (left). These numerical results show that Algorithm 2 is able to obtain the optimal
approximations as the direct finite element method, which is in consistent with Theorem 5.
In order to show the efficiency of Algorithm 2, we compare CPU time (in seconds) between
Algorithm 2 and the direct finite element method in finest mesh. The corresponding results
are presented in Figure 4 (right) and Table 1, which imply the efficiency and linear scale
complexity of Algorithm 2, and agree with Theorem 6. From Table 1, we also find that
Algorithm 2 has higher efficiency than the direct finite element method.
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Fig. 3 The initial mesh for Example 2.
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Fig. 4 Left: The errors of the multigrid method for the ground state solution of GPE, where λh and uh denote
the numerical solutions of Algorithm 2, λ dir

h and udir
h denote the numerical solutions of the direct finite element

method. Right: CPU Time of Algorithm 2 for Example 2.

Table 1 The CPU time of Algorithm 2 and the direct finite element method for Example 2. The symbol “−”
means the computer runs out of memory.

Number of levels Number of degrees of freedom Time of Algorithm 2 Time of direct FEM
1 27 0.0723 0.0723
2 343 0.1035 0.3280
3 3375 0.4989 3.4613
4 29791 2.0394 44.5336
5 250047 15.0021 564.0327
6 2048383 125.7923 14180.5070
7 16581375 1048.6247 −

6.3 Example 3

In the third example, we consider the GPE (50) on the unit domain Ω = [0,1]3 with the coef-
ficient W = x2

1+2x2
2+4x2

3 and ζ = 100. Figure 5 gives the initial mesh for this example. The
numerical results are presented in Figure 6 and Table 2, which also show the convergence
behavior and efficiency of Algorithm 2.
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Fig. 5 The initial mesh for Example 3.
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Fig. 6 Left: The errors of the multigrid method for the ground state solution of GPE, where λh and uh denote
the numerical solutions of Algorithm 2, λ dir

h and udir
h denote the numerical solutions of the direct finite element

method. Right: CPU Time of Algorithm 2 for Example 3.

Table 2 The CPU time of Algorithm 2 and the direct finite element method for Example 3. The symbol “−”
means the computer runs out of memory.

Number of levels Number of degrees of freedom Time of Algorithm 2 Time of direct FEM
1 343 2.0532 2.0532
2 3375 2.3456 19.0372
3 29791 4.5544 236.0440
4 250047 17.0574 3045.7766
5 2048383 129.6357 77990.3764
6 16581375 1035.5986 −

Since larger ζ leads to stronger nonlinearity, the initial mesh in this example is chosen
finer than the second example with ζ = 1. The stronger nonlinearity will also lead more self-
consistent iterations which means solving the nonlinear eigenvalue problem in the initial
mesh needs more CPU time. This fact can be found from Tables 1 and 2. In our multigrid
scheme (Algorithm 2), only one linear problem is required to be solved on each refined
mesh. Thus, even solving nonlinear eigenvalue problem on the coarse mesh needs more
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CPU time for ζ = 100, the total CPU time becomes almost the same as that for ζ = 1 when
the discretization scale is large enough.

7 Concluding remarks

In this paper, we propose a type of multigrid method for GPE problems based on Newton
iteration scheme. Different from the classical nonlinear eigensolver for GPE problems, the
proposed method transforms the nonlinear eigenvalue problem solving to a series of linear
boundary value problem solving and an nonlinear eigenvalue problem solving in the coarsest
finite element space. The high efficiency of linear boundary value problems solving can
improve the overall efficiency of the simulation for BEC. The idea proposed here can also
be extended to other nonlinear eigenvalue problems, such as Kohn-Sham equation, which
always arises from the electronic structure simulation.

As the classical multigrid method, our algorithm runs on a nested mesh sequence. If
some complicated domains are given such that we can not construct a nested mesh sequence,
then we need to use the special prolongation and restriction operators designed for multi-
grid method on non-nested mesh sequence, see e.g. [31]. In this case, our algorithm can
still be performed but the theoretical analysis presented in this paper needs to be done the
corresponding modification.
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