THE ROGERS-RAMANUJAN CONTINUED FRACTION AND
RELATED ETA-QUOTIENT REPRESENTATIONS

SHANE CHERN AND DAZHAO TANG

ABSTRACT. We construct eta-quotient representations of two families of g-series involving
the Rogers—Ramanujan continued fraction by establishing related recurrence relations.
We also display how these eta-quotient representations could be utilized to dissect certain
g-series identities.

1. INTRODUCTION

Throughout, we adopt the customary g-series notation:

n—1

(Aiq)n =[]0 - Ad"),

(4;q)ee := [ J(1 = AdY)

k=0

and

(fh,Aaw-.,An,q> (A5 9)oo(A2; Qoo (Ani @)oo
Bl’BQ""’Bm7 00 (317Q)00(B2aQ)oo(Bm7Q)oo

The Rogers—-Ramanujan continued fraction was discovered by Rogers [16], independently
by Ramanujan [1], and also independently by Schur [18]. In the literature (see, for example,
[1,6,10]), it often refers to the generalized continued fraction

q1/5 q q2 q3

I T I S I
but in this paper we will drop off the factor of ¢'/5. That is, we define

1 q ¢ ¢
R(q) :

TAATH T+ T A
It is known (see |12, p. 145]) that R(q) can be represented as an infinite product:

4
q,q 5
R(q) = : .
(Q) (qQ,q3 q )
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In the past, modular equations for the Rogers-Ramanujan continued fraction have been
studied extensively by many mathematicians, including Rogers and Ramanujan themselves
[2,14,15,17,21]. For example, [12, Equation (40.1.10)] states that

(R(¢*) — R(¢)*) (1 + qR(a)R(¢*)?) = 2qR(q) R(¢*)*
and |12, Equation (40.1.12)] states that
(R(¢*) — R(¢)’) (1 + ¢*R(¢)R(¢*)°) = 3¢R(q)*R(¢")*. (1.1)
Recall that the Dedekind eta-function is defined by
n(4) = 4%1(¢: 9o

In this paper, we will have an investigation on eta-quotient representations of two families
of g-series involving the Rogers—Ramanujan continued fraction by establishing the following
recurrence relations. First, for o € Z>o and 3 € Z, we define

1
P =
(04, 5) qaR(q)awﬁR(qz)zmﬁ
Theorem 1.1. Let

+(=1)*q* R(q)* R(g*)* 7. (1.2)

_ ) (05 )o@ )5
n(a)n(a'®)? (4 9)o (4% 4'°)3,

Then the following recurrence relations hold,

Pla, B +1) = 4K P(a, B) + Pla, B — 1) (1.3)
and

Pla+2,8) = KP(a+1,6) + P(a, §). (14)

We also have initial values,
P(0,0) =2, (1.5)
P(0,1) =4K (1.6)
P(1,0) = K, (1.7)
P(1,-1)=4K ' -2+ K. (1.8)

Next, for o € Z>( and § € Z, we define

; + (1°qRgP ™ R(g"). (19)

Qlex, ) = ¢“R(q)***+¥ R(q*)*~°
Theorem 1.2. Let
Po(@)” _ e (0050 ¢
n(q®)*n(q'®)? (@°4°)2. (g% ¢*0)2,
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and

M@)o (05005 )5
n(q)n(q'*)® (43 D)oo (4% 4")%
Then the following recurrence relations hold,

Qla, B+1) = (24+9T77)Q(a, B) — Q(a, B — 1) (1.10)
and
1 9 ., 1 3

Qla+2,6) = (_ZS + Z_lT b+ Z_lT + 5) Qla+1,8)+ Qa, B). (1.11)

We also have initial values,
Q(0,0) = 2, 1.12)
Q(0,1) =2+971, (1.13)
Q(1,0) = —%S+%T—1+3T+g, (1.14)
Q(1,—1) = —is+%T1+iT—g. (1.15)

Remark 1.3. Some of the initial values in Theorems 1.1 and 1.2 were already known in
the literature. For example, to derive dissection identities of (—¢; ¢)~, Baruah and Begum
[1, Equations (1.19)—(1.21)] proved (1.6)—(1.8). Also, (1.13) is due to Gugg [, Theorem
5.1 (iv)]. However, the two complicated identities (1.14) and (1.15) appear to be novel.

As a by-product of Theorem 1.2, we obtain the following modular equation involving S
and T

Theorem 1.4. We have
81 4 144T + 4672 — 16T 4+ T* — 18ST — 2ST? + S*T* = 0. (1.16)

Finally, we remark that by (1.5) and (1.6) together with the recurrence relation (1.3),
it is possible to represent P(0, /) in terms of K for each § € Z. We also have similar
representations of P(1,5) for each 5 € Z. Further, the recurrence relation (1.4) reveals
that for each @ > 2 and 8 € Z, we have P(«,3) € Z|K, K~']. In Table 1, we list the
representations of P(a, 3) in terms of K with 0 < a <2 and -3 < g < 3.

Similar arguments can be applied as well to Q(a, ) to show that for each a € Z>( and
BE€Z,Q(a,B) € Q[S, T, T . Since such eta-quotient representations of Q(c, 3) are much
lengthier, we will not list them concretely like Table 1.

Let H* := HU QU {ico} where H is the upper half complex plane. For any positive
integer N, let I'o(/V) be the Hecke congruence subgroup of level N defined by

To(N) := {(ﬁ Z) €SLy(Z): c=0 (mod N)}.



4 S. CHERN AND D. TANG

TABLE 1. Representations of P(a, ) in Z[K, K™!]

“ 0 1
B
-3 —64K 3 — 12K | 64K 3 — 32K 2 420K ' -6+ K
-2 16K~2+2 16K 24+8K ' -4+ K
-1 —4K1 4K ' -2+ K
0 2 K
1 4K1 4K P42+ K
2 16K72+2 16K 2+8K ' +4+ K
3 64K 3+ 12K1 | 64K 3+ 32K 2+ 20K ' +6+ K
@ P
B
-3 —64K 3 4+ 64K 2 — 44K ' 4+ 20 — 6K + K?
-2 16K72 - 16K '+10 — 4K + K?
—1 4K ' 44 —-2K + K?
0 2+ K*?
1 4K+ 442K + K?
2 16K2+ 16K ' +10+ 4K + K?
3 64K 3 + 64K 2+ 44K + 20+ 6K + K?

Let Ko(N) denote the field of meromorphic functions on the compact Riemann surface
Fo(N)\H*. A result of Newman [13] indicates that K is in K((10), and S and T" are both
in Ky(15). Thus, we have the following results.

Corollary 1.5. For any o € Zsq and 3 € Z, P(«, 8) € Z|K, K] and therefore P(«a, B) €
Ko(10).

Corollary 1.6. For any o € Zso and B € Z, Q(a,B) € Q[S,T,T7'| and therefore
Q(a76> S K0(15)
2. PROOFS

2.1. Proofs of the recurrences. We shall prove the following identities, from which the
recurrences (1.3), (1.4), (1.10) and (1.11) follow as immediate consequences.

P(a, B)P(0,1) = P(a, B+ 1) — P(a, B — 1), (2.1)
P(a+1,8)P(1,0) = P(a +2,8) — P(a, B),
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Qa, 8)Q(0,1) = Q(a, B+ 1) + Q(a, B — 1) (2.3)
and
Qla+1,8)Q(1,0) = Qa+2, 8) — Qla, B). (2.4)
Proof of (2.1) and (2.2). It follows from (1.2) that
P(a, B)P(0,1)

~ (s + 0w ra) (G

_ 1 (92) _(_1\o+B a+28
o (qaR(q)a”ﬁR( 2)20-8 R(q)? (-1) g R(q) - R(q ) R(¢?)

(
_ 1 R(q)* _(_1\a+B, .« a+28 20— ,BR(Q2)
(qaR<q>a+2ﬂR<q> R CYTCR@TTR) )

1 X ) ) °
) ( R Rgpeer T DT R R) wm)

1 ) a s e
_(qo‘R(q)o""Q(B_l)R(qz)%‘—(ﬁ—l) + (—1) +(8 l)q R(q) +2(8 I)R(qz)z (B 1))
= P(,8+1) — P(a, B~ 1),

from which we arrive at (2.1). Also, (2.2) follows by a similar argument. O

Proof of (2.3) and (2.4). It follows from (1.9) that

Q(a, $)Q(0, 1)
~ (s + O RERC) (5 + )
B (q R(q)miﬁR(qi‘*) X ZE;Q + (=)' R(g)* ™ R(g")" ﬁg&)
' (qamq)wiﬁmqf")aﬁ 28)) + (=1)°a" R(a)* ¥ R(g")™ Bgé—f]))
B ( *R(g)2+3( 5+11>R(q3)a</3+1> T (—1>aqaR(q)m”’(ﬁ“)R(q3)a—<ﬂ+1>)
+< o R(q)2o 30 1)R(q3)a—<5—1> 1 (—1)%g® R(q)2+306- 1)R(q3)0‘(51))

=Qa, f+1) +Q(a, - 1).

This therefore proves (2.3). Likewise, one may derive (2.4) by the same procedure. 0
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2.2. Proofs of (1.14) and (1.15). As we have commented in Remark 1.3, the only (and
true) difficulty at this place is proving (1.14) and (1.15). Let us begin with an interesting
relation between Q(1,0) and Q(1,—1).

Lemma 2.1. We have

Q(1,0) — Q(1, 1) = 3. (2.5)
Proof. Notice that
I o 3| [ Rl qR()?
Q(LO)_(QO’_l)_'(qRGﬁ2ROP) ‘ﬂ“Q)fKQ)> <qRus Rla) )
_ (R(¢*) - R(¢)°) (1 + ¢ R(9) R(a*)°)
qR(q)*R(¢*)?
Thanks to the modular equation(1.1), we arrive at (2.5). O

Lemma 2.1 implies that if one of (1.14) and (1.15) is proved, then the other follows
automatically.

Now recall that Ky(N) is the field of meromorphic functions on the compact Riemann
surface I'o(N)\H*. Further, for f(7) € Ko(N) with Fourier expansion

o0

f(T) = Z anqn7
we define the U-operator by
%]

Then a standard result |3, pp. 80-82] states that for any positive integer N, if f € Ky(5N),
we have U(f) € Ko(N).

For notational convenience, let us write
E(q) = (¢; @)
Our proof of (1.14) relies on a surprisingly neat 5-dissection identity as follows.

Lemma 2.2. We have

E@)?) _ E@)’E(@)?
U(ﬂ@)‘E@%wﬂ' 27
Proof. Tt follows from Newman [13] that
A E@PEW@S e s

E(q)*E(q")
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and
5 E(¢*)*E(¢™)
E(q)E(q™)
If we compare the Fourier expansions of
E 3 3E 5\3 E 3 2E 25
-1 (q :Z ((.115)3 and U q—5 (q ) (35 2) 7
E(q)*E(¢") E(q)E(q™)
which are both in Ky(15), it can be observed that
vl g E(@)?E(@®?) _ 1 E@)PE@)
E(q)E(q™) E(q)E(q")*
from which (2.7) follows. O

€ Ko(75).

Now we are in the position of proving (1.14). Recall that the 5-dissection formulas for
E(q) and 1/E(q) (see |12, Equations (8.1.1) and (8.4.4)]) read respectively as follows,

Bla) = B gy — 1 - R (2.
and
1%@::2g52(Régr+3éa3+}£;y4_éiy+5f
“3PR) + WRAP - CREPEPRE) ). (29)
Therefore,
E(¢*)? _ E(¢®)°E(¢")”
E(q) E(qg®)S

1 q 2¢° 3¢° 4 o 5p(b
ey A AR+ R )
+2¢°R(¢°)* = ¢'R(¢°)* + qSR(?f’)“) (—Réw) —q’
from which we extract
g B _ @) E(”) ( 1
E(q) E(q)° *R(q)*R(q*)

S+ PR
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Thus,
E(q3)3E(q5)2 _ q2E(q5)5E<q15)2 B B B B
BRG] E@ (Q(2,0) —4Q(1,0) — 3Q(1, —1) + 2Q(0,1) — 5),
that is,

S =Q(2,0) —4Q(1,0) — 3Q(1,—1) +2Q(0,1) — 5.
It follows from (2.4) and (1.12) that
Q(2,0) = Q(1,0)* + Q(0,0) = Q(1,0)* + 2
and from (2.4) and (2.12) that
Q(L,-1)Q(1,0) = Q(2,-1) —Q(0,~1) = 9T ' — 4+ T.
Also, (2.5) states that
Q(1,0) —Q(1,-1) =3.
Therefore,
S =(Q(1,0)* +2) —4Q(1,0) — 3Q(1,-1) +2Q(0,1) — 5

= Q(1,0)(Q(1, —1) +3) —4Q(1,0) — 3(Q(1,0) — 3) +2Q(0,1) — 3

= —4Q(1,0) + Q(1,0)Q(1, —1) + 2Q(0,1) + 6

= —4Q(1,0) + (-9T7' —4+T) +2(2+977") +6

= —4Q(1,0) + 9T ' + 6 + T,
from which (1.14) follows. Further, (1.15) follows from (1.14) and (2.5).

2.3. Proof of Theorem 1.4. It follows from (1.12), (1.13) and the recurrence relation
(1.10) that

Q(0,—1) = (2+ 9771 Q(0,0) — Q(0,1)

=2+977. (2.10)
Therefore, by (1.11), (1.15) and (2.10), we have
1 9 1 3
2, 1) =(--S+-T'+-T+=> 1,-1 —1
Q2 1) = (~35+ 577+ 47+ ) Q0. ~1)+ Q0.1
1, 9. 1 3\( 1, 9 ., 1_ 3 .
_( R +4T+2>< ST T 2)+(2+9T ). (2.11)
On the other hand, Gugg |11, Theorem 5.1 (v)] proved that
Q(2,-1)=-2+T. (2.12)

We therefore arrive at Theorem 1.4 by equating (2.11) and (2.12).
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3. APPLICATIONS

In this section, we will explain how to take advantage of the eta-quotientrepresentations
of P(«, ) and Q(«, 8) to prove g-series identities and congruences.

First, applications of Theorem 1.1 were extensively used in several recent work. For
example, in [9], the authors used Theorem 1.1 to give an elementary proof of congruences
modulo 25 for broken k-diamond partitions that were first discovered in |19, Theorem 2].
Also, by Theorem 1.1, the second author [20] derived several congruences modulo 25 for the
5 dots bracelet partition function. Further, the first author and Hirschhorn [%] utilized the
eta-quotient representations of P(a, ) to establish an elementary proof of an infinite family
of congruences modulo powers of 5 for partitions into distinct parts. A similar treatment
was used for 1-shell totally symmetric plane partitions [7]. The interested reader may refer
to |7, Section 2.1] for a detailed account of such applications.

For applications of the eta-quotient representations of Q(«, 3), we prove the following
g-series identity as an illustration.

Theorem 3.1. Let the U-operator be as in (2.6). Then,

U quE(qz”)g _5, E(¢*)'E(¢*)" 5 E(¢*)°E(¢°)*
E(q)? ] 47 E@YE(@@®)?° 47 E(q°E(¢"P)?
5 Elq q° 495 ,E(¢*)*E(¢°)*E(q
L3 E@VEGY 495 G E@PECPEGY g
2" E) 4 E(q)®
In [22], Zhang and Shi showed that if we expand the sixth order mock theta function
> 3n2+3n+1

B(q) = ) 3q 2. Zpﬂ

n=0 (CZaq )n+1(q 7q n+1
then

im(i’m +1)¢" = E(q3)23

from which Zhang and Shi deduced that
pg(l5m+7) =0 (mod 5). (3.2)
One shall see that (3.1) is a strengthening of (3.2).

Proof of Theorem 3.1. Substituting the 5-dissection identities of E(q) and 1/E(q), that is,
(2.8) and (2.9), into E(¢*)®/E(q)?, and applying the U-operator, we have

U<q_2E<q3>3> _ B@)BG

E(q)? E(q)*

where

M=gq" (R(;w) — ¢ - 6163(6115))3
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1 q 2q2 393 4 5 5
X + + + +5¢" — 3¢°R(q
<R<q5>4 RaP T Re? R (@)

2
+2¢°R(¢°)" — "R(¢")* + qSR(qE’)"‘) ~

We expand the products in II and find that U(II) has terms

60q 20q 50¢>

5
u(m) = R@PR(@P  R@PR@? ' R@R@P Rl
60¢°R(q) | 20¢°R(q)*  15¢°R(¢*)* 3
R T R@P | R
_15¢°R(q)° | 20¢'R(q)* 60¢'R(¢°)* i, s
R@? T OR@) | Rg R

+20¢°R(q)R(¢*)* — 60¢° R(q)* R(¢*)* — 5¢°R(q)°R(¢)".

In light of the definition (1.9), grouping the first and last terms gives 5¢3Q(3,0), and
likewise, grouping the second and second last terms gives —60¢3Q(2,0). Thus, we find that

U(ID) = 5¢°(Q(3,0) — 12Q(2,0) + 4Q(2, —1) + 10Q(1,1)
+12Q(1, —1) + 4Q(1, —2) — 3Q(0,2) + 15),
from which we conclude that
U<q2E<q3>3) 5 p @B
E(q)? E(q)*?
+10Q(1,1) 4+ 12Q(1, —1) + 4Q(1, —2) — 3Q(0,2) + 15).
If we apply Theorem 1.2 to write each summand Q(-,-) in terms of S and 7', then

LEW@)?\  5¢° E(°)E(¢")?
U<q E(q? ) ST E(g)® x A(q),

(Q(3,0) — 12Q(2,0) + 4Q(2, —1)

where
A(q) = 729 + 1458T + 78377 4 9273 + 237* — 14T° + T°
—243ST — 1764ST? — 50ST° + 28ST* — 35T
+275%T? — 148%*T3 4 35*T* — S3T3.
Recalling (1.16),
81 + 144T + 46T% — 1673 4+ T* — 18ST — 2ST? + S*T* = 0,
we have,
Alq) = Alg) — (81 + 144T + 46T — 16T° + T* — 18T — 25T° + S°T?)
x (T* 42T + 9 — ST)
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= —15845T? + 32ST> + 16ST* — 16S%T3.
It follows that

3\3 5V10 (1153 1 1
U(q—z E(q’) ) = 5q3E(q ) Blg”) (—%ST_1 + 55 + ZST B 11132) '

E(q)? E(q)" 4
This is exactly (3.1). O
Remark 3.2. In a private communication with Nayandeep Deka Baruah, we were informed
that Baruah, Begum and Das [5] recently derived a handful of dissection identities for
several partition functions. For instance, they showed that
1 5\5 E(aP)10 F(g15)5
Ulg 3y | — gQ)15+Oq <7q)35+q2 3(q6)5
E(q)E(¢®) ) E(q)°E(q") E(q)"E(q?) E(¢*)°E(q°)
E(a5) E(q'5)5 F(q15)10
+4&f—ﬁl%—ﬁ%%-—9&?——1§;L§7
E(q)°E(¢®) E(q)*E(q?)

We remark that these identities could also be shown with the assistance of Theorem 1.2
and (1.16).
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