PROOFS OF SOME CONJECTURES ON THE RECIPROCALS OF
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ABSTRACT. Recently, Lin and Wang introduced two special partition functions RG1(n)
and RG2(n), the generating functions of which are the reciprocals of two identities due to
Ramanujan and Gordon. They established several congruences modulo 5 and 7 for RG1(n)
and RG(n) and posed four conjectures on congruences modulo 25 for RG;(n) and RGa(n)
at the end of their paper. In this paper, we confirm the four conjectures given by Lin and
Wang by using Ramanujan’s modular equation of fifth degree. Moreover, we also obtain
new congruences modulo 25 for RG1(n) and RG2(n) based on Newman’s identities. For
example, we deduce that for any n > 0,

RG (23375n(3n +1)

( +974) _ e (23375n;3n+5)

+ 24349) =0 (mod 25).

1. INTRODUCTION

Recall that the well-known Jacobi triple product identity [2, p. 21, Theorem 2.8] is

> " = (0200~ 0/ 2 D)@ P 2 A0, (1.1)

n=—0oo

where here and throughout this paper, we use the following customary g-series notation:

o0

(@; @)oo = [ J(1 = ag™,

n=0
(al, a2, ..., 0n; q)oo = (al, Q)OO(GQ; Q)oo e (an; Q)oo IQ| <L

The following three product-to-sum identities follow immediately from (1.1):

D (1) IR =(g; q) (1.2)
> 2. 2\b
DO R AL v Y, (1.3)
= (¢ 03 (a* ¢*)2
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- n(n+1)/2 _<q27q2)go
S gtz A (1.4
— (¢; @)oo

Now, the identity (1.2) is known as Euler’s pentagonal number theorem |2, p. 11, Corollary
1.7]. The following famous identity is called Jacobi’s identity:

o0

> (=D)"@n+ 1)g IR = (g )% (1.5)

which can also be derived from (1.1). For more details, see |4, p. 14].
The following two nice product-to-sum identities were independently discovered by Ra-
manujan |21, Eq. (65)] and Gordon [9]:

o 5
n(3n+1)/2 __ (q7 q)oo
- n(3n (4395 (0% )5
> Bn+ 1)t = TN (1.7)

which are called Ramanujan-Gordon identities.
The reciprocals of three classical theta functions S°°° __ (—1)ng"G3n+D/2 5~ (_q)ngn*

and ZZOZO(—Q)"("“)/ 2 are the generating functions of ordinary partitions, overpartitions,
and partitions without repeated odd parts, respectively, which are three of the most im-
portant types of partitions. Many congruences for the three types of partition function-
s have been established; see for example |1, 0,8, 13,15, 18,20, 23-27]. The reciprocal of
S o(=1)"(2n + 1)¢""+D/2 is the generating function for p_z(n) which enumerates the
number of partitions of n in three colors. Hirschhorn [11] proved four families of congru-
ences modulo powers of 3 for p_3(n), Boylan [5] and Lin [16] proved a congruence modulo
11 for p_3(n). Recently, Lin and Wang [17] defined two partition functions RG;(n) and
RGs(n), the generating functions of which are the reciprocals of >°°0 _ (6n + 1)g"®n+1)/2

and Y% (3n + 1)¢"®"+2) | respectively. Hence, the generating functions of RG;(n) and
RG5(n) are

> Ga(n)g =L, (19
- w (%)
I TR CCTOrR (19)

The partition function RG1(n) denotes the number of overpartition triples without over-
lined parts in the last component of n, while RG5(n) denotes the number of triples of
partitions without repeated odd parts and with only even parts in the last component of
n. Lin and Wang [17] also discovered several congruences modulo 5 and 7 for RG;(n)
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and RG5(n). At the end of their paper, Lin and Wang [17] presented four conjectures on
congruences modulo 25 for RG;(n) and RGy(n).

The aim of this paper is to confirm the four conjectures on congruences modulo 25 for
two special partition functions RG(n) and RGy(n) and establish new congruences modulo
25 for RG1(n) and RGs(n) by using Newman’s identities. The main results of this paper
can be stated as follows.

Theorem 1.1. For any n > 0,

RG1(125n+74) =0 (mod 25), (1.10)

RG1(125n +124) =0 (mod 25), (1.11)

RG1(625n +599) = 0 (mod 25), (1.12)

RG5(125n+92) =0 (mod 25), (1.13)

RG,(125n+117) =0 (mod 25), (1.14)

RG5(625n 4+ 417) =0  (mod 25). (1.15)

The congruences (1.10), (1.11), (1.13) and (1.14) were conjectured by Lin and Wang [17].

Based on some identities due to Newman [19], we can get the following two theorems.

Theorem 1.2. Let ¢i(n) be defined by

N . ()N
c1(n)q" = I (1.16)

n=0
Suppose that a is a nonnegative integer such that ¢i(a) =0 (mod 5). Suppose further that
24a+19 =], fillj_, g;" with each aj > 2 is the prime factorization of 24a+19. Then
for anyn >1,
2375n* + 1

RG4 (125an2 + 51

) =0 (mod 25), (1.17)

where ged (n, 61—, g;‘j> =1.

Example. It is easy to check that ¢;(7) = 0 (mod 5). Therefore, if we set a = 7 in
(1.17), we deduce that for any n > 0,

2 1 2
RG, ( 3375";3” D, 974) = RG, ( 3375"5’” 5 24349) =0 (mod 25).
Theorem 1.3. Let c3(n) be defined by

co(n)q" = 55 (1.18)
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Suppose that a is a nonnegative integer such that co(a) =0 (mod 5). Suppose further that

24a+8 = HZ 1T H;n 1 fﬂ with each B; > 2 is the prime factorization of 24a+8. Then for
anyn > 1,

125n2 + 1

RG, <125cm2 + 3

) =0 (mod 25), (1.19)

where ged (n 6T, s ) =1.

Example. One can verify that c2(1) = 0 (mod 5). Thus, taking a = 1 in (1.19), one
sees that for any n > 0,

RG5 (2000n(3n + 1) + 167) = RG, (2000n(3n + 5) + 4167) = 0 (mod 25).

2. PRELIMINARIES

In this section, we collect some necessary definitions and lemmas which are needed to
prove the main results of this paper.

Lemma 2.1. The following 5-dissection formulas are true:

25. 25 L . 9p 5
(4 Doo = (07707 ) o <R(q5) q—q R(q )) (2.1)
and
L (@®¢®)5 (1 q 2¢* 3¢3
@D (@0 (R4<q5> "B R R
+5¢" —3¢°R(¢°) + 2¢°R*(¢°) — ¢"R*(¢°) + q8R4(q5)> : (2:2)
where
Rig) = & 0")oo (0% 4" )oo

(0% 6°)o (0% ¢°) oo
The identity (2.1) was given by Ramanujan |22, p. 212|. Hirschhorn [10] gave a simple

proof of (2.2) by using Jacobi’s triple product identity.
Throughout this paper, for any positive integer k, define

o n 1
nzzop_k<n)q (gl

Lemma 2.2. We have

Zp s(5n + 2)q 9(‘& Z>Z (mod 25) (2.3)
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and

(4% ¢°)%,
12

gn (mod 29) (2.4)

> ps(Bn+4)g" =15
n=0

Proof. For a formal power series Y > s(n)q", define an operator Us as

Us ( Z s(n)q") = Z s(5n)q".

The following identities were given by Hirschhorn and Hunt [12]:
Us(n) = -1, Us(n*) = -1, Us(n’) =5, Us(n')=-5, (2.5)
where
(@9
2(4%; 4*) o
Furthermore, from Ramanujan’s modular equation of fifth degree, we have

(0% 4°)5,

5 4 3 2
n’ = —=bn* — 15n° — 26m° — 25n + P N (2.6)
It follows from (2.6) that for any integer k,
6
45 q)00
Us(n"") = =5U5(n*™*) — 1505 (n***) — 2505 (") — 25U5(n'**) + q((qg,.—q)s,)(sUB(n’“)-
T
Obviously,
Us(n°) = 1. (2.8)
By (2.5), (2.7), (2.8) and iterative method, we get
5. ,5\18 5. 5)12 (qS.q5)6
™) (4;9)%8 (4;9)%2 (4 9)5 (29)
and
- (4% ¢°)% 5 (0% 4°)30 (0% ¢°)%
Us(n%) =48828125¢% 2222 4 11718750¢° ~——=2 + 984375¢* =+ £
) T TTE UTE
5. .5\18 5. ,5\12
+ 32500¢ GO + 315¢ TR (2.10)

It is easy to check that

) = U (02T ) o) 3 peaton+ 2 (211)
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and

Us(r™®) = Uy @%) — RSP A, (212)

With the help of (2.9)—(2.12), we obtain (2.3) and (2.4).

n=0

Lemma 2.3. We have
S poa(on + 2)g" = 150 LD | o0 0) (0% Dol 4

+9 mod 25).
@ P )0 (mod 25)
(2.13)
Proof. Tt follows from |3, p. 262, Entry 10 (iv)| that
(@d)s _ (i0)% (6 Dx(a"q")5 (2.14)
(@*a*)%  (¢"4¢")% (6% 4%) oo (4% ¢°) oo
Based on (2.14),
(0% _ (695 ( (@) (4" a")% )
(¢* %)% (6% ¢*)3% \ (6 0)5(d" ") (4 0)3.(0% ¢*) o (6% ¢°) oo
= —4q . . .
(4:9)3. (% ¢*)3. (4" ¢"0)2, (40007 0%)oe (6% 0%)5%
On the other hand, from [3, p. 262, Entry 10(v)],
()5 _ (@50l i) | (00 ) (2.16)
(0% (G9D=(d%¢)e (%)%
which yields
L ( (*:¢")% (4% 4°)% ) (2.17)
(@ d*)% e \(©05%(@"% )% (69)(d?¢%)3(¢"5¢")%
By the binomial theorem,
(¢:9)% = (¢°;¢°)oe  (mod 5). (2.18)
Substituting (2.17) into (2.15) and employing (2.18) yields
(93 _ (2% ¢°)5 _ (2% ¢°)
(@)% (@ 05(@%¢)3(@ %)% (690%(4"% ")
2. ,2)\2 5. .,5\4 5. .5
(G0 )s (@50 (mod 25) (2.19)

(%@ q0)3  (4:9)3.(¢'% ¢"%)
Therefore,
(4 )2 (0% @) oo (d; ¢**)2

(q27 q2)10 = (q57 q5>00<q10; qlo)go
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(6% 0°)2(¢° )5 (4% ¢°) oo ’
. (5(%@ (4% q'0)3, 4(qwz) (qm;qlo)oo>
(% q*)2%(q°;q

(7; 0)5. (¢ ¢*°

10

°)S (¢°;4°)3,
5 116 n (mod 25).  (2.20)

from which we have

(¢ 0)5(% ) (6" 4 )% (%5 0)% _ |, ((q 16%)%(@% 4°)% (q5;q5)§o> (mod 25).

(g% ¢*)% (0% (4 0)2.("% ¢  (19)5%
(2.21)
By (2.16) and (2.18),
(0050 )5 (@34°)5% _ (G D)la3a)5
(6 0)5%(a"% )% (9% (4% ¢*)% (mod 5). (222)
Combining (2.21) and (2.22), we get

(@°:0°)% _ (69)5(a a°) (g 4")%

10 D= T 05

(¢:90)8% (g% ¢*)0 (4% ¢%)%
which yields
(@°50°)3, (@050 @) so(a™: ¢"0)2, (4 @)oo (q"%; ¢35,

9 (mod 25).  (2.23)

=9 + 15¢q
(¢;9)% (% ¢*)1 (4% ¢%)%

The congruence (2.13) follows from (2.3) and (2.23). This completes the proof of Lemma
2.3.

Lemma 2.4. We have

o0 5..5\2 (,10. 10\2
;c(5n L) = 15(6]((71;(](1;;82; qg) gzm (mod 25), (2.24)
where
i c(n)q" = ! . (2.25)
—~ (¢; 9)3 (4% %)
Lemma 2.4 was proved by Chern and Tang |7].
3. PROOF OF THEOREM 1.1
We first prove (1.10)—(1.12).
We can rewrite (2.14) as
Lo @%es (4" 4")5% ' (3.1)

()t (%)% (%)% (43 0)2.(0% 42) oo (4% 4°)5
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In view of (1.8) and (3.1),
iRGl(n)q" (9" < (%05 (4" ¢")% )
ot (D)oo \(0*6*)%(* ) (4:0)2%(¢% ¢%)e (0% )5
_ (@%ed")% SO ) (074705
@@ )% (60RO
_ (%% (4% )0 (@' ¢")%
(4 0o (0% 4°)5% (4% ¢°)3%

0. ,10\5
X( (¢ ¢')2, y 3(612,621 )00555)
(@ ¢*)% (a5 q°)4, (05 0)3. (4% ¢?)oo(0®; ¢°) %
_ (qlo; ql(])ZO q (qlo; qlo)Zo + 16q2 (qlo; ql(])(l)g
(45 @)oo (05 ¢°)4 (4% 4)so (a5 4°)% (4 0)3.(¢% ¢°) 2

If we substitute (2.2) into (3 2) and extract those terms that involve only the powers ¢°"™,
then divide both sides by ¢* and replace ¢® by ¢, we deduce that

(3.2)

(% 4%)%. (0% 4°)5, (4% 4%)s0 ("% "),
nZORGl (5n + 4)¢" =5 @00 + 20q 0%

[e.e]

+16 Zp 5(5n +2)q (3.3)

Thanks to (2.13), (2.18) and (3.3),

e . 2. 2 10. ,10\5
ZRG1(5n+4)q" = ((] q ) (C] q ) + 2Oq(Q7 Q)M(Q(ég ;;x;gq 1 q )oo
n=0 ’ o]

+16(q2;q2)é2 15, @ 7)o (4'%5 403, +9(q; 7). (6% °) oo (% 1) %
. 10 q 2. 4,219 2. 42110
(7 9)%0 (% a*)% (¢% q*)

=5(0% ¢°)2 (0% ¢°)% +19<5Q)(q7(5)ooq -

N 10q(q; Qoo (0% 4% oo (0" ¢"0)3,
(@ @)%
Substituting (2.1) into (3.4), picking out the terms involving ¢°"*
replacing ¢° by ¢, we arrive at

(mod 25). (3.4)

, then dividing by ¢* and

[e'¢) 10. ,10
ZRG1(25N +24)¢" = — 5(q; q)g(qlo;q10)2 4 10((1 7°)% (q<qqq)) (05070
n=0 )
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+19(4; 0)oo (073 6°)2% Y p(5n + 4)g"
n=0

(0% 0*)2%(0°; 4°) oo (a3 ¢™)

(q;9)?

o0

=—5(q;9)*(¢";¢"%)* + 10

(0% 6°)2.(4°: 4°)%

()"

=5(¢;9)*(¢"; ¢")* + 10

+ 10

(0% %)% (0% ¢°)%

(mod 25). (by (2.18))

G
(3.5)
Hirschhorn and Sellers [14] proved the following congruence:
(9% =(a", 4", ¢ ¢%)0 +24(¢°, ¢°, 4% ¢*")e (mod 5). (3.6)
From [3, p. 49, Corollary (ii)],
—(C(]; ij“ =(=¢",—4",¢%:¢®)00 + 4(—=0", —0*, 47 ¢7) e + ¢° Egzz ZEZE (3.7)

By virtue of (3.5)—(3.7), we obtain (1.10) and (1.11).

Furthermore, substituting (3.6) and (3.7) into (3.5), extracting those terms that involve
only the powers ¢°"*3, then dividing both sides by ¢3, replacing ¢° by ¢ and employing
(2.18), we find that

S (4 9)5(¢"% ¢"°) (4" ¢")?
RG1(125n +99)¢" = 10 = < =10————= (mod 25). 3.8
nzzo ! ) (4% ¢°)oo (45 @)oo ( ) (3.8)
Combining (2.2) and (3.8), we arrive at (1.12).
Now, we proceed to prove (1.13)—(1.15).
Replacing ¢ by —¢ in (1.9) and utilizing
(4% 4*)%
—;—q)oc = ; 3.9
(=4~ (43 @)oo (4% ¢*) oo (3.9)
we arrive at
S (q:9)?
—1)"RG5(n)q" = ——=>=. 3.10
Define
00 2. 2\2 (5. 54

(45 0)% (5 4'0)%,
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and
- w0
;b(mq = 0@ ) (312
Combining (2.19) and (3.10)~(3.12) yields
(—1)"RGa(n) = a(n) +b(n) (mod 25). (3.13)
In view of (2.16) and (3.11),
< " (4% ¢°)% (0% ¢*) (q 3 | (%4
=0 A= (% )3 (¢"% ¢")% ((q, D@ 0)c 1 (q5;q5)io)
B (4% ¢°)% (0% 4°)5(d"; 4" o
D@ @O T (PR

5(q 0*)ae (4 0)oo (0’5 %)%,
(9t (¢%¢)%

(6D 4 ((q 1020 (4% 4°)2% +q(q 105
(4% ¢'0)3, (45 0) (4% ¢'°) o (4% ¢°)%

% ¢3¢ ¢°)10 (q
(¢*0; ¢'0)8

+5¢(¢% ¢*)2. (s )%

>+5q(q )o@ )%

5!

+ 5‘1(%6(1;?3;;;3]2005 +54(¢%6%)%(¢% ¢")%,  (mod 25).
(3.14)

Substituting (2.1) and (3.6) into (3.14), then picking out the terms involving ¢°"*2, then
dividing by ¢? and replacing ¢° by ¢, we have

N (30260 )% (00)3(0% )
a(bn +2)q" = -5 =
~ ( ) (4% %)% (4% 6*)oo
5. 512
515% (mod 25). (by (2.18)) (3.15)
It follows from (2.2) and (3.15) that for any n > 0
a(25n+17) =0 (mod 25). (3.16)
It follows from (3.12) that
> b(Bn+2)q" = 4—(q2_ 2 > ps(5n+2)g"  (mod 25). (3.17)
Y o n=0
Substituting (2.3) into (3.17) yields
oo 5. 5)3
> b(5n +2)¢" =14 @50 (104 25) (3.18)

(¢ 0)3.(0% ¢*) oo
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By (3.1),

1 1 ( (%)% ., (4" 4")% )
= q
(05% (692 \(¢%¢*)% (%)L (05 0)3.(0%5 ¢*) oo (0°; ¢°)3
which yields
(¢, 1 (¢°;¢°)% 1 (%)%

(G 0%(@% P a(@02(@ %@ %)% 0 (@%@ %5d0)%

and

(4% 4% 6 (4% )% 6 ()% (mod 25). (3.19)
(69)5%(@% P 0(6 0% (0% )% (0% 0% q(q;9)5%(¢"%¢"0)3,
It follows from (3.18) and (3.19) that
o 9 5. .5\4 9 5. ,5\8
Zb(5n+2)q”5— (q 4 )oo _ (q 4 )oo (mod 25)’
n=0

7 (9% (0% ¢°)5(a"% ¢35 q(3:9)5%(¢"% ¢")3
which implies
ib(% +17)":9Mi (5 +4)"—9Mi (5n + 4)q" d 25)
n =9 oy c(5n 4 4)q pEa p-s(5n +4)¢"  (mo :

— (7% ¢%)3% = (7% %)% =
(3.20)

where ¢(n) is defined by (2.25).
Based on (2.4), (2.24) and (3.20),
5

)50 a5 (45
(6% )L, (@04 (a% ¢%)3,

S b(25n + 17)¢" _1pl
n=0
2. 2\3 (5. 5\2 (4% 6*)
=10(q%¢7)2(¢°;¢°) % — 10(q;q)wm (mod 25). (3.21)

I

It follows from (2.1), (3.6) and (3.21) that for any n >0
b(125n + 92) = b(125n + 117) =0 (mod 25). (3.22)
The congruences (1.13) and (1.14) follow from (3.13), (3.16) and (3.22).

Furthermore, if we substitute (2.1) and (3.6) into (3.21) and pick out the terms involving

¢°"*1, then divide by ¢ and replace ¢° by ¢, we deduce that

S 0@ )%
> b(125n +42)¢" = 10,2 (mod 25). (3.23)
—~ (% ¢*)o
By (2.2) and (3.23),
b(625n +417) =0 (mod 25). (3.24)

With the aid of (3.13), (3.16) and (3.24), we obtain (1.15). This finishes the proof of
Theorem 1.1.



12 M. BIAN, D. TANG, E. X. W. XIA, AND F. GANG

4. PROOFS OF THEOREMS 1.2 AND 1.3

We need to the following two lemmas.

Lemma 4.1. Let ¢i1(n) be defined by (1.16) and suppose that a is a nonnegative integer

such that ¢i(a) =0 (mod 5). Suppose further that 24a +19 = [[;_, fi[[;—, g5 with each
a; > 2 is the prime factorization of 24a +19. Then for any n > 1,
19(n% -1
1 <an2 + %) =0 (mod 5), (4.1)

where ged (n, 61—, g;‘j> =1.
Proof. We prove Lemma 4.1 by induction on the total number of prime factors of n. Let
c1(n) be defined by (1.16). If n = 1 (n has no prime factors), then (4.1) states ¢1(a) = 0

(mod 5), which is true by hypothesis. Let p > 5 be a prime. The Legendre symbol (%)
is defined by

L

1, if a is a quadratic residue modulo p and p 1 a,

(g> = 0, if p|a,
b/ _

1, if a is a nonquadratic residue modulo p.
Newman [19] proved that for any n > 0,
19 2 1 n — 19(p—1)
¢ (an + (pT>> = x(n)ei(n) = p'es (TM ) (4.2)

where

_1(p*-1)
x(n) =p'd —p* ntl- T :
p L

and d is a constant.
To obtain (4.1), we also need to prove that y(n) is an integer. Taking n = 0 in (4.2) and

19(p% 1)

using the facts that ¢ <_ 24 ) =0 and ¢;(0) = 1, we have

0 - (=10 »

Setting n = 0 in (4.3) and utilizing (4.4), we deduce that

19 2 1 1 _ 7(P2*1)
p'd=c Ll +p? [ ——2— ] . (4.5)
24 P .
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Substituting (4.5) into (4.3) yields

19(p? — 1 1 He=l 2 +1— 1=l
x(n) =c1 (—( 51 >> +p’ (—12 —p’ 12 : (4.6)
p L p L

Suppose further that 24a +19 = [[;_, fi[[;_, g;’ with each o; > 2 is the prime factor-

ization of 24a + 19. Let p; > 5 be a prime with ged <p17 H?:l gjc.“f> = 1. Replacing (n,p)

by (a,p;) in (4.2) and employing the hypothesis that ¢;(a) = 0 (mod 5) and the fact that
X(a) is an integer, we find that

19(p2 — 1 a— 19(p3—1)
¢ (ap? + L) =-pc <—224 (mod 5). (4.7)

24 D3

Note that
2 u v (o1
e _2da+19-19p7 Tl fillim, 95" — 1901

p? 24p? B 24p?

is not an integer since ged (pl, H§:1 g;‘j> = 1. Therefore,

a— 19(p?—1)
| —=2—| =0 (4.8)
' i

It follows from (4.7) and (4.8) that
19(p? — 1
¢ (ap% + %) =0 (mod 5).

Therefore, (4.1) holds when n = p; (n has only one prime factor). Suppose that (4.1) is true
for all integers with not more than k£ prime factors. In order to prove Theorem 1.2, it suffices
to prove that (4.1) is true when n has k+1 prime factors. We write n as n = p1ps - - - PePri1
with 5 <py <py < -+ < prp < pry1 and ged <P1 © Dk—1PkPk+1, H§:1 g?j) =1

By hypothesis, (4.1) is true for all integers with not more than k prime factors. Therefore,

19 p2p2...p2_ -1
1 (ap%pg P+ (pips 24 Sk =0 (mod 5) (4.9)
and
19(pip3 -+ piipk — 1)
o1 <apfp§---pi_1pﬁ+ By =0 (mod 5). (4.10)

19(pips--py_ Ph—

Replacing n by ap?p3 - --p?_,ps + i D and replacing p by pgy1 in (4.2), then
19(p3p3 Py PR —1)
24

utilizing (4.10) and the fact that x (apfp% Pk pE+ ) is an integer, we

deduce that

19(pTp3 - - - Ph_1DiPipyr — 1))

2 2 2 2 2
1 <ap1p2 o Pr—1PkPr+1 + Y
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19(p3p3---pi_1PE—Priy)

a2 -2 2 L
=~ Piti1 LR R 5 = (mod 5). (4.11)
D41

Now, we break our proof into two cases: pry1 = pr and prr1 > pr. If pra1 = pi, in view of
(4.9), we can rewrite (4.11) as

19(pips - - - Ph_ 1Dl — 1))
24

o (i tstotin+

19 p2p2...p2_ —1
= —prac (“P?pg---pi_ﬁ R R N CRE)

24
If ppy1 > pr, then pr1 & {p1,p2,...,pr}- It should be note that

19(17%17%'”7’%— 17’% *pi-o-l)

apipy - PiiPi + 5 _ (240 + 19)pips - - pi_ypi — 19051
P 24pi.
_p%p% e pioani [, £ Hj’:l gyo‘éj — 19p%11
24]9%“

is not an integer since ged (pk_H’ H?:l g;?J) = 1. Thus,

19(19%193"'1’%— 1pi 7pi+1)

2,2 2 2
o (aplp2 Pe—1Pi + 24 ) =0. (4.13)

piﬂ
Combining (4.11), (4.12) and (4.13) yields

19(pip3 - - PhoaPiPies — 1)
¢ (ap?p%--- Pr PPy + ——— ’; 41 bkl =0 (mod 5). (4.14)

Therefore, for any case, (4.1) is true when n = pypy - - pgprr1. Lemma 4.1 is proved by
induction.

Using Newman’s identity on cg(n) given by Newman [19] and the same method for
proving Lemma 4.1, we can prove the following lemma. Since the process is similarly, we
omit the details.

Lemma 4.2. Let co(n) be defined by (1.18) and suppose that a is a nonnegative integer
such that cy(a) = 0 (mod 5). Suppose further that 24a + 8 = []l_, s | sfj with each
B; > 2 is the prime factorization of 24a + 8. Then for anyn > 1,

co | an® +

) =0 (mod5), (4.15)

where ged (n, 6]] sﬁj) =1.

Jj=1°3
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To conclude this section, we present the proofs of Theorems 1.2 and 1.3.
By (2.18) and (3.8),

N 2. ,2\10
> " RG1(125n + 99)" = 1085 )

(mod 25). (4.16)
— (¢; @)os
In view of (1.16) and (4.16),
RG1(125n 4+ 99) = 10c1(n) (mod 25). (4.17)
The congruence (1.17) follows from (4.1) and (4.17).
It follows from (2.18) and (3.23) that
- SN U
> b(125n +42)¢" = 10—~ (mod 25). (4.18)
— (% ¢*)o
In view of (3.13), (3.16) and (4.18),
() 01 (GO
> (—1)"RG5(125n + 42)q" = 10W (mod 25). (4.19)
n=0 9 oo

The congruences (1.18) and (4.19) imply that for any n > 0,
(—=1)"RG2(125n 4 42) = 10ce(n) (mod 25). (4.20)
Combining (4.15) and (4.20), we arrive at (1.19). This completes the proof.

Acknowledgments. Min Bian, Ernest X. W. Xia and Fanggang Xue were support-
ed by the National Natural Science Foundation of China (No. 11571143) and the Na-
ture Funds for Distinguished Young Scientists of Jiangsu Province (No. BK20180044).
Dazhao Tang was supported by the Fundamental Research Funds for the Central Uni-
versities (No. 2018CDXYST0024) and the Postdoctoral Science Foundation of China (No.
2019M661005). All authors would like to acknowledge the helpful comments and sugges-
tions made by the referee.

REFERENCES

[1] S. Ahlgren and M. Boylan, Arithmetic properties of the partition function, Invent. Math. 153 (2003),
487-502. 2

[2] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976; reissued: Cambridge
University Press, Cambridge, 1998. 1, 2

[3] B. C. Berndt, Ramanugjan’s Notebooks, Part III, Springer, New York, 1991. 6, 9

[4] B. C. Berndt, Number Theory in the Spirit of Ramanujan, American Mathematical Society, Provi-
dence, RI, 2006. 2

[5] M. Boylan, Exceptional congruences for powers of the partition functions. Acta Arith. 111 (2004)
187-203. 2

[6] W. Y. C. Chen and E. X. W. Xia, Proof of a conjecture of Hirschhorn and Sellers on overpartitions,
Acta Arith. 163 (2014) 59-69. 2



16
7]
8]

[9]
[10]

[11]
[12]

13]
14]
15]
16]
17]
18]
19]

[20]
[21]

22]

[23]
[24]

[25]
[26]

[27]

M. BIAN, D. TANG, E. X. W. XIA, AND F. GANG

S. Chern and D. Tang, Elementary proof of congruences modulo 25 for broken k-diamond partitions,
arXiv:1807.01890v1, (2018). 7

D. Q. J. Dou and B. L. S. Lin, New Ramanujan type congruences modulo 5 for overpartitions, Ra-
manugan J. 44 (2017) 401-410. 2

B. Gordon, Some identities in combinatorial analysis, Quart. J. Math. 12 (1961) 285-290. 2

M. D. Hirschhorn, Ramanujan’s “most beautiful identity”, Amer. Math. Monthly 118 (2011) 839-845.
4

M. D. Hirschhorn, Partitions in 3 colours, Ramanujan J. 45 (2018) 399-411. 2

M. D. Hirschhorn and D. C. Hunt, A simple proof of the Ramanujan conjecture for powers of 5, J.
Reine Angew. Math. 326 (1981) 1-17. 5

M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of partitions with odd parts distinct, Ra-
manugan J. 22 (2010) 273-284. 2

M. D. Hirschhorn and J. A. Sellers, Arithmetic properties of 1-shell totally symmetric plane partitions,
Bull. Aust. Math. Soc. 89 (2014) 473-478. 9

X. Huang and O. X. M. Yao, Proof of a conjecture on congruence modulo 243 for overpartitions,
Period. Math. Hung. 79 (2019) 227-235. 2

B. L. S. Lin, Ramanujan-style proof of p_5(11n+7) =0 (mod 11), Ramanujan J. 42 (2017) 223-231.
2

B. L. S. Lin and A. Y. Z. Wang, Congruences for the reciprocals of the Ramanujan-Gordon idenities,
Collog. Math. 154 (2018) 137-148. 2, 3

K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math. 286 (2004), 263—
267. 2

M. Newman, Modular forms whose coefficients possess multiplicative properties, II, Ann. Math. 75
(1962) 242-250. 3, 12, 14

K. Ono, Distribution of the partition function modulo m, Ann. Math. 151 (2000) 293-307. 2

S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916) 159-184.
2

S. Ramanujan, Collected Papers, G.H. Hardy, P.V. Seshu Aiyar, B.M.Wilson, eds., AMS Chelsea,
Providence, RI, 2000. 4

E. X. W. Xia, Congruences modulo 9 and 27 for overpartitions, Ramanugjan J. 42 (2017) 301-323. 2
E. X. W. Xia, Congruences modulo 5 for the number of spin characters of the double covers of the
symmetric and alternating groups. Acta Arith. 187 (2019) 255-269. 2

E. X. W. Xia and Y. Zhang, Proofs of some conjectures of Sun on the relations between sums of
squares and sums of triangular numbers. Int. J. Number Theory 15 (2019) 189-212. 2

F. Xue and O. X. M. Yao, Explicit congruencesmodulo 2048 for overpartitions. Ramanujan J. To
appear. https://doi.org/10.1007/s11139-019-00204-6. 2

0. X. M. Yao, Congruences modulo 64 and 1024 for overpartitions, Ramanugjan J. 46 (2018) 1-18. 2



PROOFS OF SOME CONJECTURES 17

(Min Bian) DEPARTMENT OF MATHEMATICS, JIANGSU UNIVERSITY, ZHENJIANG, JIANGSU, 212013,
P.R. CHINA
E-mail address: bianminjs@163.com

(Dazhao Tang) CENTER FOR APPLIED MATHEMATICS, TIANJIN UNIVERSITY, TIANJIN 300072, P.R.
CHINA
E-mail address: dazhaotang@sina.com

(Ernest X. W. Xia) DEPARTMENT OF MATHEMATICS, JIANGSU UNIVERSITY, ZHENJIANG, JIANGSU,
212013, P.R. CHINA
E-mail address: ernestxwxia@163.com

(Fanggang Xue) DEPARTMENT OF MATHEMATICS, JIANGSU UNIVERSITY, ZHENJIANG, JIANGSU, 212013,
P.R. CHINA
E-mail address: x£g950118@126. com



	1. Introduction 
	2. Preliminaries
	3. Proof of Theorem 1.1
	4. Proofs of Theorems 1.2 and 1.3
	References

