
1

SAIoT: Scalable Anomaly-aware Services
Composition in CloudIoT Environments

Mohammadreza Razian, Mohammad Fathian, Huaming Wu, Member, IEEE, Ahmad Akbari,
and Rajkumar Buyya, Fellow, IEEE

Abstract—Among the novel IT paradigms, Cloud Computing
and the Internet of Things (CloudIoT) are two complementary
areas designed to support the creation of smart cities and
application services. The CloudIoT not only presents ubiquitous
services through IoT nodes, but it also provides virtually unlim-
ited resources through services composition. Services composition
problem aims to find a set of services among functionally equiv-
alent services with different Quality of Service (QoS) concerning
users’ constraints. To this aim, previous studies calculate QoS
values through service logs without considering the presence of
anomalies in the existing QoS values; however, the dynamicity of
distributed service environments and communication networks
in CloudIoT environments cause anomalies in the QoS values.
Therefore, existing approaches fail to model QoS values accu-
rately which leads to Service Level Agreement (SLA) violation
and penalties for service broker. To address this challenge, we
propose a scalable anomaly-aware approach (SAIoT) including
two main components: the first component models QoS values
based on a machine learning anomaly detection technique, to
remove the existing abnormal QoS records, and the second
component finds a near-optimal composition by using an effective
and efficient meta-heuristic algorithm. The experimental results
based on real-world datasets show that our approach achieves
30.64% of the average improvement in QoS value of a composite
plan with equal or even less price compared to the previous
works such as information theory-based and advertised QoS-
based methods.

Index Terms—IoT, Anomaly Detection, Cloud Computing,
Services Composition, Scalability, Optimization

I. INTRODUCTION

THE convergence of the Internet of Things (IoT), Cloud,
and data analytics has created a great opportunity for

software vendors and system integrators to develop more
value-added composite plans. Although Cloud services are
able to provide users with virtually unlimited resources, they
are limited in scope. On the other hand, IoT devices are limited
in computing resources such as storage and processing [1],
while they are pervasive in scope, i.e., they are distributed in
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many locations (in the vicinity of end-users). Consequently,
in the novel IT paradigm, Cloud computing and IoT play a
complementary role, which is referred to as CloudIoT [2].

Recently, the Microservices architecture (MSA), a variant
of the traditional service-oriented architecture, has become
more popular than other software architectures through the
composition of fine-grained and loosely-coupled CloudIoT
services [3], [4]. In MSA, every single service is recognized
by its function and quality of service (QoS) attributes. The
QoS attributes describe the characteristics of a given service
in terms of availability, reputation, response time, etc. Because
a service is limited to a single function, an isolated service
cannot perform the entire workflow; therefore, the service
composition problem (SCP) is raised. The SCP aims to find
a set of services among functionally equivalent CloudIoT
services but different in Quality of Service (QoS), concerning
users’ constraints/preferences and objective(s).

Many researchers have addressed the QoS-aware service
composition problem [5]–[8]. However, there are three major
limitations associated with the current approaches. First, most
of the previous works model QoS values by using the service
provider’s advertised QoS values. In addition, they assume that
the advertised QoS values remain constant over time. However,
due to the inherent dynamicity of distributed services, the
QoS values may not rely on predefined constant values and
change in the real-world environments; therefore, modeling
QoS attributes of services based on provider’ advertised values
results in inaccurate composition and SLA (Service Level
Agreement) violation. For example, Unmanned Aerial Vehi-
cle (UAV) swarms are latency-critical and QoS-aware since
they have to make real-time decisions to avoid collisions
and obstacles [9], [10]. Second, current service composition
approaches directly calculate QoS values through service
logs and ignore the presence of anomalies in the historical
QoS records [11]–[14]. Clearly, these approaches will fail
in modeling QoS attributes of CloudIoT scenarios, where
the factors like intermittent connections and sporadic access
[15] cause anomalies in performance indicators of distributed
services [16]. Third, the majority of previous studies have
been devoted to service composition where services deployed
in static repositories (data centers). However, CloudIoT envi-
ronments are highly dynamic and change continuously due to
joining/leaving new/deprecated services [17], which require an
adaptive data structure and composition algorithm to manage
candidate services.

These limitations pose two interesting challenges. First,
to achieve an accurate composition, anomalies in historical
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QoS records should be detected and removed before QoS
modeling. Detection of anomalies helps the system models
and calculates QoS values more accurately. In our proposed
approach, we constructed a data analytic model by using
Isolation Forest (iForest) algorithm to detect and remove the
abnormal historical records before the calculation of QoS
values. Second, an effective and efficient algorithm needs to
be developed in order to not only manage the changes in
candidate services in a timely manner but also select services
for a given workflow (near-)optimally. To this aim, we propose
the SAIoT architecture, a Scalable Anomaly-aware Services
Composition in CloudIoT environment to provide a high-
quality composite plan with minimum cost (price) satisfying
user’s constraints. To the best of our knowledge, this is the first
effort to apply the anomaly detection in services composition.
Numerical results obtained by experiments based on real-world
datasets demonstrate that the proposed architecture improves
the aggregated quality of service by almost 30.64%. The key
contributions of this paper are summarized as follows:

1) A data analytic model to find anomalies in historical QoS
records to provide a more precise QoS modeling.

2) A mathematical formulation for the CloudIoT services
composition problem so that both the objective functions
and cost measurements are clearly defined.

3) An adaptive structure to model a given workflow and
candidate services dynamically and efficiently.

4) A fast optimization algorithm that selects CloudIoT ser-
vices among a large number of candidate services to
minimize the cost.

5) Real-world datasets are taken into account to validate
that the proposed algorithm is efficient enough to find
a (near)-optimal composite plan in a reasonable amount
of time.

The rest of the paper is structured as follows: Section II
reviews the related work along with the conclusion on the
limitations of previous studies. Section III introduces and
formulates the services composition problem for CloudIoT
application. In Section IV, we demonstrate our proposed
SAIoT architecture as well as adopted algorithms and anomaly
detection technique. The performance evaluation of the pro-
posed approach in comparison with existing approaches has
been included in Section V. Finally, conclusion and future
work are presented in Section VI.

II. RELATED WORK

In order to achieve an end to end optimal QoS-aware ser-
vices composition, [18]–[22] utilize integer programming and
mixed-integer programming to solve the global optimization
problem under the assumption that the QoS values remain
constant over time. As an example, Ardagna and Pernici [20]
consider a range (min-max) values for some of QoS attributes.
Services with QoS values fell into μ±3σ are kept for entering
into the service selection phase. Although this approach can
overtake the problem of considering a constant value for QoS
attributes, it still faced with the problem of constant range.
Wada et al. [23], introduced a multi-objective approach based
on a genetic algorithm to find heuristically Pareto solutions. To

tackle the multi-cloud scenario, Yu et al. [24] applied the Ant
Colony algorithm to find the minimum number of clouds in a
multi-cloud environment. Jian et al. [25] targeted QoS-based
service scheduling in the edge cloud computing environment
to reduce the total execution time using a modified version of
Birds Swarm optimization algorithm. Although it is important
to find a composite plan in an acceptable time, falling into the
local optimum solutions is the main concern for the validity
of meta-heuristic algorithms. All these studies depend on the
advertised QoS values. However, practically the providers’
advertised QoS values may not reflect the real-world QoS
values. In other words, unlike traditional web and cloud
services composition, in the CloudIoT environments, services
are distributed across the real-world intelligent nodes and
therefore, the QoS values may change during time.

To address the problem of estimation of QoS values, re-
searchers utilized historical QoS records and users’ ranking
(on services) to model the QoS attributes [11]. Wang et
al. [33] incorporate information theory concepts into the
service selection phase. Their proposed approach, first, prunes
the unreliable services which are those with higher Variance
and Entropy. The values of Variance and Entropy come
from historical QoS records. Then, by using a mathemati-
cal optimization method, they find services satisfying users’
preferences. Researchers in [13], [14] applied the K-means
clustering algorithm to speed up the process of service com-
position. However, the efficiency of this method is highly
dependent on the veracity of historical QoS records. Fuzzy
logic based QoS optimization mechanism has also applied in
services composition [26]. Jian et al. [28] utilize historical
records to model QoS attributes using an interval-based fuzzy
ranking approach. Ye et al. [29] estimate the QoS values
using multi-variate time series analysis by using service logs.
Elhabbash et al. [30] propose a time-awareness approach
for dynamic knowledge management in Volunteer Computing
using Chebyshev’s inequality for estimation of distribution.
In addition, recommendation systems have been adopted in
service computing for finding the user’s required service.
Recommender systems try to predict the unknown QoS values
by using other service users’ experiences [27]. White et al. [32]
propose a recommendation-based QoS modeling by using PCC
(Pearson’s correlation coefficient) for finding the similarity
between users/services. Recently, Wang et al. [34] proposed
a novel QoS modeling method based on cultural distance in
cyber-physical-social systems (workflows that interconnect the
resources in physical, cyber, and social worlds in real-time).
Users in a social system can advertise their observations about
a service. To find a QoS value for each service, they calculate
the average of users-advertised QoS values (users’ rating) for
each service.

Table I provides a theoretical comparison of proposed
SAIoT with other QoS-estimation studies. The main crite-
ria used for comparison are: QoS estimation, Real dataset,
Scalable composition, (near-)Optimality, Anomaly detection,
Adaptive structure, and CloudIoT architecture. Considering the
discussed QoS-estimation studies and comparison results in
Table I, we can summarize that: (1) All of these approaches
simply estimate the QoS values over service logs and they
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TABLE I: Related work and comparison to our proposed SAIoT

Parameters Related Work SAIoT

[11] [26] [27] [13] [14] [28] [29] [30] [31] [32] [33] [34]
QoS estimation � � � � � � � � � � � � �
Real dataset � � � � � � � � � � � � �
Scalable composition � � � � � � � � � � � � �
(near-)Optimality � � � � � � � � � � � � �
Anomaly detection � � � � � � � � � � � � �
Adaptive structure � � � � � � � � � � � � �
CloudIoT architecture � � � � � � � � � � � � �

entirely ignore the presence of anomalies [35] in historical
QoS records. (2) All the selection and composition approaches
do not take into account an adaptive structure for candidate
services encoding and use a fixed structure in the QoS mod-
eling and workflow encoding process. However, the adaptive
structure is necessary to support changes in candidate services
pool and workflow. (3) None of previous studies propose a
CloudIoT architecture to cope with dynamicity of service en-
vironments. CloudIoT architecture helps industries to develop
their software using a composition of isolated, independent
and fine-grained IoT services in a dynamic environment.

III. PROBLEM FORMULATION

Here, we propose a formal representation of QoS-aware
services composition problem. This formulation is in high-
level abstraction, without considering a particular application
domain. Furthermore, at the end of this section, we introduce
a motivation scenario which comes from health-care domain
to explicitly present the mechanism of CloudIoT services
composition.

A. Services Composition

The main purpose of service composition is choosing a
set of best fitted atomic services from a variety of candidate
services according to user’ constraint on QoS values. Table II
summaries a brief description of the notations used in this
paper.

a) Workflow: Nowadays, companies and organizations
only implement their primitive business functionalities and
outsource other application services over trusted third parties
[36]. A workflow is a collection of tasks that originated
from a business process such as authentication, payment,
search/recommend a movie/hotel, navigation, etc. The set T =
{t1, t2, · · · , tn} presents a workflow within n tasks, in which
n is a total number of tasks included in the workflow (we
further discuss the workflow in Section III-B). Fig. 1 presents
well-known structures of a workflow including sequence, loop,
selection and parallel with the business process model and
notation.

b) Service and Candidate Service: Service is a single-
function, loosely coupled and highly maintainable with well-
defined interfaces and operations organized around business
capabilities. We define a typical service Υ as a 2-tuple 〈χ, ψ〉
which χ and ψ are inputs and outputs of a service, respectively.
Let CSi = {cs1i , cs2i , · · · , csζii } denotes the candidate services
which are able to perform ti; Z = {ζ1, ζ2, · · · , ζn} holds

Fig. 1: A given workflow including sequence, loop, selection and
parallel structures

the number of candidate services for each ti; i.e. a given ζi
presents the number of candidate services corresponding to
ti. Also, csji denotes jth candidate service for performing ith
task. We assume that the CloudIoT environment consists of
multiple service providers which offer the various candidate
services to perform a given task at different quality of service.

c) QoS parameters: The set Q = {cost, responseTime,
availability, reputation} denotes the set of quality of service
(QoS) parameters. For further argumentation, we defined the
functions named Cost(csji ), RTime(cs

j
i ), Avail(cs

j
i ), and

Reput(csji ) which return the value of the QoS parameters
for a given candidate service csji ∈ CSi. In this paper, the
sequential structure is taken into account, while the other
workflow structures, such as loop, parallel and conditional
can be converted to the sequential composition model through
the methods mentioned in [37]. Thus, ti ∈ T is ith task
in a sequential structure and n is the total number of tasks
within a workflow. QoS normalization is designed to eliminate
the influence of scores in different domains, where several
high scores QoS parameters reduce the distinction of those
low scores on some other QoS parameters within the same
operation [38]. We define the utility function U(Q) as follows
[18]:

U
(
Q
)
=

Qmax −Q

Qmax −Qmin
(1)

where U(Q) assigns the normalized QoS values to candidate
services csji ∈ CSi, for the negative QoS attributes like
response time (longer time, lower quality), and

U
(
Q
)
=

Q−Qmin

Qmax −Qmin
(2)

and for the positive QoS attributes like reputation (more
reputation, higher quality). The terms Qmax and Qmin are
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TABLE II: Summary of notations
# Notation Description
1 T Set of tasks (ti) included in a workflow
2 Υ A typical service formed from 2-tuple 〈χ, ψ〉 which χ and ψ are inputs and outputs of a service
3 n Total number of tasks in a workflow
4 ζi Number of candidate services for task ti
5 Z The set of number of corresponding candidate services for each ti
6 Q Set of QoS parameters
7 CSi Set of candidate services for ith task
8 csji The jth candidate service for ith task
9 B Maximum or minimum possible aggregated QoS values for composite plan
10 bRTime Maximum possible aggregated response time value for composite plan
11 bAvail Minimum possible aggregated availability value for composite plan
12 bReput Minimum possible aggregated reputation value for composite plan
13 W Weight of QoS parameter declared by composite plan requester
14 ωcost Requester weight for cost parameter
15 ωRTime Requester weight for response time parameter
16 ωAvail Requester weight for availability parameter
17 ωReput Requester weight for reputation parameter
18 Cost(csji ) Function for getting cost value of csji
19 RTime(csji ) Function for getting response time value of csji
20 Avail(csji ) Function for getting availability probability value of csji
21 Reput(csji ) Function for getting reputation average value of csji
22 k Number of cycles in a loop structure
23 U(Q) Utility function for QoS value normalization
24 CP Composite plan (it is also referred to as composite service)
25 s

ξi
i Selected candidate service in CP for ti

26 xij A binary variable indicating selection of a candidate service
27 η(u, v) Heuristic information value
28 α Intensification degree
29 β Diversification degree
30 ρ Evaporation rate
31 τ(r, s) Amount of pheromone currently on the path
32 pk(u, v) probability that kth ant will choose the candidate service for next task
33 allowedk Set of all remaining candidate services that should be investigated for ti+1

the maximum and minimum values of the corresponding QoS
attribute which can be obtained from service pool. We consider
U(Q) = 1, if Qmax −Qmin = 0.

d) User’s Constraints: Let B = {bRTime, bAvail,
bReput} denotes user’ constraints on response time, availability
and reputation, respectively. The composite plan must satisfy
these constraints such as

∑n
i=1RTime(cs

j
i ) ≤ bRTime. The

objective function minimizes the cost according to these three
constraints.

e) QoS Weights: The set W = {ωRTime, ωAvail,
ωReput} defines the weight of each QoS parameter, where
ωRTime + ωAvail + ωReput = 1. The user determines his/her
desire weights according to business domain of activities. For
example, in a time-sensitive application like health-care, the
cost parameter has less weight than the response time.

f) QoS-aware Services Composition: By using the above
notation, the services composition problem can be formally
defined as follows: For a given workflow T including n
tasks and ζi candidate services for each ti, find a composite
plan (it is also referred to as composite service) CP =
〈sξ11 , sξ22 , · · · , sξnn 〉 for T , where sξii ∈ Si represents selected
candidate service.

We have modeled the SCP as a mathematical optimization
model according to the aforementioned notations. Eq. 3 defines
the objective function which is to select those candidate
services that maximize the aggregated utilities. In this paper,
we use the simple additive weighting (SAW) technique for the
aggregated utility function. We consider Eqs. 4-6 to enforce
the model to satisfy user’s constraints. In addition, we assume
that there are several candidate services that can be invoked to
address each task. Therefore, Eq. 7 defines a binary decision

variable xij with the interpretation that xij = 1 if and only if
the csji is selected for task ti. Note that xij must satisfy Eq. 8
to guarantee that the solver assigns just an exclusive candidate
service for each task.

max
∑

1≤i≤n

∑
j∈Z

xij ∗ ωcost ∗ U
(
Cost(csji )

)
+

xij ∗ ωRTime ∗ U
(
RTime(csji )

)
+

xij ∗ ωAvail ∗ U
(
Avail(csji )

)
+

xij ∗ ωReput ∗ U
(
Reput(csji )

)
(3)

s.t. ∑
1≤i≤n

∑
j∈Z

U
(
RTime(csji )

) ∗ xij ≤ bRTime ∀j (4)

∏
1≤i≤n

∑
j∈Z

U
(
Avail(csji )

) ∗ xij ≥ bAvail ∀j (5)

1

n
∗

∑
1≤i≤n

∑
j∈Z

U
(
Reput(csji )

) ∗ xij ≥ bReput, ∀j (6)

∑
1≤i≤n

xij = 1, ∀j (7)

xij ∈ {0, 1}, ∀i, j (8)
1 ≤ j ≤ ζi, ζi ∈ Z, 1 ≤ i ≤ n (9)

ωcost + ωRTime + ωAvail + ωReput = 1 (10)

B. CloudIoT Service Scenario

We consider a software company A developing a health-
care software application. The company A needs to consider
a wide variety of CloudIoT services to combine them into
development of an integrated health system with the power
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Fig. 2: Architecture of proposed SAIoT (scalable anomaly-aware service composition in CloudIoT)

of real-time medical care and predictive analytics. More pre-
cisely, the company A requires the following services for the
underlying health-care application:

• Sensing Service: to acquire desired data like location,
body temperature, and blood pressure.

• Navigation Service: to offer users the nearest clinic or
hospital and suggest the best route to the destination.

• Storage Service: to safe and reliable storing of collected
data (because of limitation in IoT devices)

• Analytic Service: to analyze the acquired data for identifi-
cation, prediction, and clinical decision support services.

• Translation Service: to support different locale to present
customized reports for the users.

• Payment Service: to provide an online payment method
for insurance/medical fees.

It is difficult for the company A to find and select the
best services in terms of QoS parameters. This is because
there exist lots of combinations among candidate services
(i.e. services that are able to invoke for performing each
aforementioned task). Furthermore, relying on the providers’
advertised QoS values may not reflect the actual performance
of services. Therefore, the company A applies a composition
request to a service broker to find the best composite plan.
The service broker tries to model QoS values and find the best
composition in a reasonable amount of time. It is notable that
the application of our proposed approach is not limited to this
motivation scenario.

IV. SAIOT: SCALABLE ANOMALY-AWARE SERVICES
COMPOSITION

In order to overcome the problem of service composition in
CloudIoT environments, we propose the SAIoT architecture
shown in Fig. 2. The SAIoT is designed to ensure the
successful composition using 1) an adaptive structure to cope
with dynamicity of CloudIoT services, 2) anomaly-aware QoS
modeling to reduce the effect of outliers in historical QoS
records, and 3) a (near-)optimal service selection algorithm to
form the composite plan in a timely manner. More precisely,
there are three main components in the SAIoT architecture:

• Workflow and Constraints receives composition requests
as well as advertised services and their QoS values.
Typically, a composition request includes a set of tasks
(workflow) along with user’s constraints/preferences. Be-
sides, Internet companies advertise their services to the
service brokers. Service broker provides users with an
SLA and also monitors (by using a QoS Monitoring and
Log System) the compliance to the SLA during the service
operation.

• QoS Modeling calculates the utility of each candidate ser-
vice based on corresponding QoS values. This module it-
self utilizes Isolation Forest, a machine learning anomaly
detection technique, to remove the existing abnormal QoS
records (we further discuss QoS anomaly detection in
Section IV-A). The QoS Modeling Module also adaptively
encodes the required candidate services according to the
given workflow using proposed (AMWE) algorithm 1
(more details are provided in Section IV-B).

• Composition pursues the selection of a (near-)optimal set
of services in terms of QoS attributes concerning user’s
constraints using the proposed (ACFS) algorithm 2 (we
further discuss scalable QoS-aware service selection in
Section IV-C).

It is worth mentioning that the proposed SAIoT architecture is
general and can be applied to different types of applications.

A. Anomaly-aware QoS Modeling

Services on the Internet may be affected by heavy system
workload, temporary machine down, and network failure [12]
which all cause anomalies in QoS records. Anomalies which
are also known as outliers are deviant or unusual data points.
Therefore, to construct an accurate QoS model, it is essential
to analyze the historical QoS records to remove anomalies. The
anomaly detection is a well-researched area and there is a suf-
ficient amount of literature that covers it in statistical and data
science. We adopted Isolation Forest (IF) [39], an unsupervised
anomaly detection method to deal with anomalies. Isolation
Forest (IF) builds an ensemble of random trees for a given



6

dataset, the anomalies are points with the shortest average path
length on the Isolation Tree [39]. We exploited the Isolation
Forest anomaly detection system because it is an unsupervised
algorithm which means it does not need labels to identify the
anomalies in the historical QoS records. Besides, it is a light-
weight anomaly detection method than others that calculate
distance or density [40]. In addition, the linear time complexity
and a low memory requirement is best-fitted for the large-
scale historical dataset of distributed CloudIoT services [35].
Last but not the least, parameter tuning of the Isolation Forest
algorithm is based on two straight-forward input parameters,
i.e., sub-sampling size and number of trees. The authors in
[39] suggest the default value of 256 for sub-sample and 100
trees.

Isolation Forest algorithm follows the below steps: Random
and recursive partition of QoS values is performed, which
is represented as a random tree. This is the training stage
where the user defines the parameters of the subsample and
the number of trees. The tree construction is ended when the
recursive partition of data is finished. This random partitioning
produces noticeable shorter paths for anomalies. In other
words, it is expected that the distance taken to reach the
outliers is farther than that for the normal data (hence, they
are highly likely to be anomalies). The distance of the path
has been averaged and normalized to calculate the anomaly
score.

Fig. 3: Anomaly score contour of IF for a Gaussian distribution of
data points

As shown in Fig. 3, an anomaly score of 1 is considered as
an outlier, values close to 0 is considered normal. The decision
on the anomaly point is made based on this score; hence, there
is no need for a label.

B. Encoding of Workflow and Services

In the next phase, we arrange the candidate services ac-
cording to the workflow in a light-weight graph structure.
This light-weight structure, therefore, is able to be adaptively
updated according to the service pool and QoS values in a
timely manner. To this aim, we encode the candidate services
of a given workflow into a directed acyclic graph according
to task dependency. A directed graph, or digraph, is a graph

with directions assigned to its edges and denoted by (V,E)
where V and E present set of vertices and edges, respectively.
The vertices represent candidate services for each task. An
edge from candidate service sξii to s

ξi+1

i+1 is connected if the
execution of ti+1 is dependent on the execution of ti in the
workflow. Algorithm 1, the Anomaly-aware QoS Modeling
and Workflow Encoding (AMWE), summaries the anomaly-
aware QoS modeling and workflow encoding. It is notable
that the weight on edge connecting sξii to sξi+1

i+1 represents the
utility of service sξi+1

i+1 based on equations 1 and 2 which are
adopted from anomaly-removed historical QoS records.

C. Scalable Composition Algorithm

We developed an Ant Colony-based algorithm for CloudIoT
Services composition named ACFS in order to solve the
mathematical optimization model of Eq. 3. The ant colony is
an optimization algorithm inspired by swarm intelligence of
natural ants when discovering the shortest path in navigation
from the nest to a food source with pheromone trails [41]. Each
ant moves at random and deposits pheromone on the path. The
deposition of pheromone is the way that ants communicate
with each other. Ants detect lead ant’s path and tend to follow.
As pheromone on a route increases, the selection probability
of that route increases. We employed an Ant colony-based
algorithm because it is widely used and its proficiency in
service composition has been proved [24], [42]–[44].

In proposed ACFS, artificial ants travel on the structure
CSGraph (output of Algorithm 1) to evaluate the different
feasible composite plan. In CSGraph, nodes present adver-
tised candidate services and the weights on edges state the
utility of candidate service regarding QoS values. Each ant
is placed at a random node. The ant decides where to go
based on probabilities calculated from pheromone strengths
and heuristic information. The value of τ(u, v) gives the
amount of pheromone which is currently on the path from
a given node u to given node v. The amount of pheromone
determines the level of historical fitness of that candidate
service which investigated by other ants in previous iterations
of the algorithm. The value of η(u, v) presents the heuristic
information value of the edge. The heuristic information is
the score of utility for candidate services which is computed
using Eq. 11, which means the more utility value a candidate
service, the higher the heuristic value it obtains.

η(u, v) = ωcost · U
(
Cost(csξiv )

)
+ ωRTime · U

(
RTime(csξiv )

)
+ωAvail · U

(
Avail(csξiv )

)
+ ωReput · U

(
Reput(csξiv )

)
(11)

pku,v(θ) =

⎧⎪⎨
⎪⎩

[
τu,v(θ)

]α∗
[
ηu,v

]β∑
s∈allowedk

[
τu,s(θ)

]α ∗ [ηu,s]β , v ∈ allowedk

0, otherwise
(12)

Each ant endeavors to find a composite plan through finding
the best candidate service. When an ant finds a best candidate
service for task ti, it should find the best candidate in CSi+1

for the task t + 1. Therefore, in Eq. 12, the term pku,v(θ) is
the probability that kth ant chooses the candidate service for
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Algorithm 1: Anomaly-aware QoS Modeling and
Workflow Encoding (AMWE)

Input : T = (t1, t2, · · · , tn)
CSi = {csi1, csi2, · · · , csζii }
Q = {cost, responseT ime, availability,
reputation}
W = {ωcost, ωRtime, ωAvail, ωReput}

Output : CSGraph: Candidate services and their
QoS values structured as a DAG

1 Q← AnomalyDetectionAndFiltering(Q) /* Find
the average value from
anomaly-removed historical QoS */

2 foreach csji ∈ CSi do
3 ucsji ← ωcost ∗ U(Cost(csji )) + ωRtime ∗

U(RTime(csji )) + ωAvail ∗ U(Avail(csji )) +
ωReput ∗ U(Reput(csji )) /* Aggregated
QoS values using SAW */

4 end
5 startNode← true, endNode← true
6 while task ti in T do
7 if startNode then
8 foreach candidate service sj1 in CS1 do
9 (start, csj1) ← ucs(csj1) /* the edge

between start node to
candidate services for
first task */

10 append(CSGraph, (start, csj1))
11 end
12 startNode← false
13 end
14 if endNode then
15 foreach candidate service csjn in CSn do
16 (csjn, end) ← ε /* the edge between

candidate services for
final task to end node */

17 append(CSGraph, (start, csj1))
18 end
19 endNode← false
20 end
21 foreach candidate service csji in CSi do
22 foreach candidate service csji in CSi+1 do
23 (csji , cs

j
i+1) ← ucs(csji+1)

24 append(CSGraph, (csji , cs
j
i+1))

25 end
26 end
27 end
28 Set the utility value 0 to all other edges in CSGraph;
29 return (CSGraph)

next task when the ant is at candidate service u of task ti,
and tries to find next candidate service v, for task ti+1 at time
θ. Because each candidate service can be assigned exactly
to a unique task (based on Eq. 7), the set of all remaining
candidate services that should be investigated for ti+1 denoted

as allowedk. The parameters α and β have a fixed value at the
beginning of a run and determine the relative importance of
pheromone strengths and heuristic information, respectively.
By using α and β, our proposed ACFS is able to adjust the
degree of intensification (exploitation), i.e., using the latest
best composite plan according to pheromone length on edges,
and degree of diversification (exploration), i.e., finding a new
composite plan according to the candidate services pool.

Algorithm 2: The ACFS Algorithm
Input : CSGraph: Candidate services and their

(Anomaly-removed) QoS values structured
in a DAG using AMWE algorithm

Parameter: maxIter: maximum number of
iterations, nAnt: number of ants, α, β:
relative importance between global and
heuristic information, ρ: the evaporation
rate

Output : BCP : best composite plan
1 Initialize using CSGraph
2 while maxIter do
3 Randomly position nAnt artificial ants on some

nodes /* Each node presents a
typical candidate service */

4 foreach ant = 1 to nAnt do
5 anti Builds a composite plan in CSGraph

w.r.t α and β /* select candidate
services one after the other
for each task in a workflow
with probability pk(u, v) */

6 end
7 Decay pheromone levels over time w.r.t ρ

8 Pheromone is lain with strength depending on how
much the composite plan is good using
τu,v(θ + 1) /* apply the global
pheromone updating rule */

9 BCP = the best composite plan obtained so far
10 end
11 return(BCP )

The framework of the our ACFS algorithm is as depicted in
Algorithm 2: when all ants chose the desire candidate services
for all tasks in the workflow and constructed a composite
plan, the global pheromone updating takes happen according
to Eq. 13. This means the current pheromone levels on all
links are reduced (i.e. pheromone levels decay over time).
Pheromone is lain (belatedly) by each ant as follows: it places
pheromone on all links of its composite plan, with the special
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strength depending on the fitness of composite plan.

τu,v(θ + 1) = (1− ρ) ∗ τu,v(θ) +
nAnt∑
s=1

Δτku,v(θ), ∀(u, v)
(13)

Δτu,v(θ)
k =

{
1

auk(θ)
, if path (u, v) is used by ant k,

0, otherwise.
(14)

where ρ ∈ [0, 1] is a parameter that controls the rate of
evaporation, and auk(θ) is the composite plan utility obtained
by kth ant. As described in Algorithm 2, the whole process will
be repeated until the ACFS reaches a termination condition.

V. PERFORMANCE EVALUATION

The proposed SAIoT architecture is evaluated in several
scenarios of services composition. The composite plan con-
sidered in the simulation scenarios is based on the sequential
structure discussed in Section III-B; since any other workflow
structures such as loop, parallel and condition can be converted
to the sequential structure through the methods mentioned
in [45], [46]. For anomaly detection, we used the Isolation
Forest algorithm from the scikit-learn machine learning library
in Python [47]. Isolation Forest was introduced in 2008 and
became available in the scikit-learn v0.21.3 in 2016. All the
measurements and experiments have been performed on an
Intel(R) Core(TM) i7-6650U 2.21 GHz processor with 16
GB RAM. The machine is running under Windows 10 and
MATLAB R2018b.

To evaluate the SAIoT composition framework and its main
components (QoS modeling, anomaly detection, and service
selection), we first introduce the metrics and baselines defined
for the evaluation of our framework. After that, we assess
the Quality of Composition using multiple scenarios. The
results show that our approach achieves 30.64% of the average
improvement in QoS value of a composite plan with equal
or even less price compared to the previous works. Then,
we show the presence of anomalies in a real dataset in QoS
Anomaly Detection and finally, we present the Scalability as
well as the optimality of our composition mechanism. The
evaluation proves that our proposed algorithms obtain a (near-
)optimal composition in a timely manner.

A. Performance Metrics and Baselines for Comparison

To evaluate the performance of the SAIoT architecture, a
series of experiments are conducted to compare our Anomaly-
aware approach with the recent attempts targeting fluctuation
and variability of QoS values. We utilize the following base-
lines for comparison:

• AdQoS-based [34]: In this approach, users of a social
system advertise their observation about a service. To find
a QoS value for each service, the average users-advertised
QoS values (users’ rating) for each service is calculated.
This approach is selected because it tries to estimate QoS
values based on users’ rating. Furthermore, this approach
is proposed to compose cyber-physical services which are
similar to the CloudIoT environment.

• infoTherory-based [33]: In this approach, unreliable can-
didate services are pruned before service selection phase.
The unreliable candidate services are those services with
higher variance and entropy in their QoS values. Accord-
ing to [33], we chose 1/5 candidate services with lower
variance. This approach is selected because it concerns
the problem of variability of QoS values. Furthermore,
this approach has had an acceptable performance in
comparison with well-known approaches like the Skyline
method [19] and Global approach [11].

The following performance metrics are defined to evaluate
the efficiency and effectiveness of our proposed SAIoT archi-
tecture:

• Quality of Composition: Based on the concept of reliable
composition used in [33] and the well-know constraint-
based utility concept applied in [19], the Quality of Com-
position is defined as the maximum aggregated quality
of service for a given composition request which an
approach can result with a minimum cost (price). It is
worth mentioning that, to provide a fair evaluation of the
Quality of composition, in the experiments, we provide
decision-makers with the both price of the composite plan
and its aggregated QoS, simultaneously. Also, based on
[33], [34], to find the exact impact of each approach
on the Quality of composition, we implemented all ap-
proaches using 0-1 mixed-integer programming. Finally,
we used the response time parameter, as the most used
QoS attribute in the IoT literature [8].

• QoS Anomaly Detection: In light of evidence from study
[48], as the IoT systems are getting popular, they are in-
creasingly being used in industries over the world. How-
ever, we found no studies targeting explicitly anomaly
detection in the services composition. Therefore, using
the QoS Anomaly Detection criteria defined in [16], we
show the presence of anomalies in the real dataset and
its effect on SLA violation.

• Scalability and Optimality: To evaluate the execution time
of ACFS algorithm and the optimality of its solution, we
compare the running time of ACFS to 0-1 mixed-integer
programming (which is used by other AdQoS-based and
infoTherory-based approaches. This metric proves the
performance of ACFS especially for large number of
tasks or candidate services, in terms of execution time
and optimality of composition. Importantly, we study the
required parameters of ACFS to make sure the proposed
algorithm is efficient enough to find a (near)-optimal
composite plan in a reasonable amount of time.

B. Quality of Composition
Our anomaly-based QoS modeling has been tested on a wide

set of experiments. The dataset used in these experiments is
based on the QoS values of Planetweb reported in the WS-
Dream project [49] which consists of 1,974,675 real-world
web service invocations by 339 service users from 30 countries
on 5,825 real-world web services in 73 countries. A number
of compute nodes from the PlanetLab1 are employed to serve

1https://www.planet-lab.org/
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as service users. PlanetLab is a global research network that
supports the development of new network services and consists
of 1353 nodes at 717 sites. The dataset includes information
of 339 service users comprising user ID, IP address, country,
Autonomous System (AS) number, latitude, longitude, region,
and city. Moreover, information of 5.825 web services includ-
ing service ID, WSDL address, service provider, IP address,
country, AS, latitude, longitude, region, city are included in
this dataset. We generate the cost price values synthetically as
a function of the response time values according to [22].

In the first experiment, we have evaluated the Quality of
composition of our proposed anomaly-aware approach with
different workflow sizes (number of tasks). For each test case,
the number of tasks in the workflow (|T |) has been varied
between 5 and 50. The number of candidate services (|CSi|)
for each task has been set to 10 for all test cases. Fig. 4
shows the quality of composition, i.e., the response time of
obtained composite plan, and the price of the composite plan,
simultaneously. As shown in Fig. 4, our proposed anomaly-
aware approach not only improves the quality of composition,
but it also presents a composite plan with equal or less price
than AdQoS-based and infoTherory-based approaches. This is
because neither AdQoS-based nor infoTherory-based considers
the presence of anomalies in their QoS modeling phase.

More precisely, the infoTherory-based approach detects
unreliable services and removes them from the service pool
before assessing their quality and price in the selection phase.

Although this service pruning helps the algorithm finds the
optimal composition in a shorter time, it leads to inaccurate
QoS modeling. Unlike infoTherory-based approach, ACFS
only removes abnormal historical records rather than removing
the service. Also, as the results show, in compare with AdQoS-
based, ACFS always find a better composition with higher
quality and lower price. This is because the AdQoS-based
approach simply calculates the average QoS each service based
on user observation (rating). However, users-item matrix (the
collection of users’ rating on the services) includes some
anomalies which impact on the calculation of the utility of
the candidate services U(Q(csij)). On the other hand, our
proposed approach first detects anomalies in recorded QoS
values and therefore, is able to find a composite plan with a
higher quality of service with equal or even less price.

In the second experiment, we have evaluated the Quality of
composition of our proposed anomaly-aware approach with
the increment in the number of candidate services (|CSi|). In
CloudIoT environments, the service broker faces with several
candidates to assess and select. Therefore, for each test case,
the number of candidate services has been varied between 10
and 50 with step 10. For all test cases, the number of tasks
in the workflow (|T |) has been set to 10. Fig. 5 indicates the
quality of composition (response time of obtained composite
plan) and the price of the composite plan, simultaneously.
Refer to Fig. 5, our proposed anomaly-aware approach not
only improves the quality of composition, but it also presents
a composite plan with equal or less price than AdQoS-based
and infoTherory-based approaches. In fact, our anomaly-aware
approach uses a machine-learning anomaly detection system,
to remove the existing outliers when considering all candidate
services in the selection phase. This finding can be explained
by the fact that infoTherory-based approach filters the unreli-
able candidate services from the candidate services pool and
it means it takes into account only those candidate services
which provide the lower variance. However, this filtering
helps the system to decrease the size of the search space, it
increases the probability of finding solutions with less quality
of composition in comparison with the other approaches. As
shown in Fig. 5, although the QoS values are observed based
on users’ ratings in AdQoS-based, intermittent connections and
sporadic access [15] still cause anomalies in recorded QoS
values, leading to overestimation or underestimation in the
QoS modeling phase.

C. QoS Anomaly Detection

To show the presence of anomalies in historical records of
real-world services, we detect the anomalies of six services
based on the motivation scenario discussed in Section III-B.
The historical records come from aforementioned reported
QoS values of Planetweb introduce in the WS-Dream project
[49] which consists of 1,974,675 real-world web service
invocations by 339 service users from 30 countries on 5,825
real-world web services in 73 countries. Fig. 6 shows the
anomalies detected in 320 historical QoS records of each
service. As we can see, Isolation Forest is able to detect
anomalies in historical QoS records effectively. This is because
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(a) Sensing Service (b) Navigation Service (c) Storage Service

(d) Analytic Service (e) Translation Service (f) Payment Service
Fig. 6: The anomalies detected in historical QoS records by our Anomaly Detection Module
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(b) Different workflow sizes
Fig. 7: Comparison between Execution times of ACFS and ESF with the increment in workflow size

anomalies in CloudIoT services come with two properties: the
first characteristic is that the small portion of QoS instances
are anomaly (see Fig. 6) and the second one is that the anoma-
lies in historical QoS records are few and different. These
properties make Isolation Forest an ideal system for detecting
anomalies [16], [50]. Using these properties, Isolation Forest
can effectively consider the susceptible QoS values (which are
rare instances) as isolation than normal QoS instances [39].

However, one may ask why threshold-based approaches
like [20] has not been used for removing anomalies. It is
worth mentioning that although setting a threshold value is
simple and straightforward, it cannot reflect the real-world
behavior of CloudIoT environments where the dynamicity of
IoT nodes and Cloud infrastructure (like VM Consolidation
[51] and Multi-tenancy [52] cause anomalies in QoS values.
As Fig. 6 shows, it is not possible to set a predefined value
as a threshold. While the simple threshold-based technique
is not able to adapt itself with abnormal changes in QoS
values (which leads to inaccurate QoS modeling), our anomaly
detection subsystem adaptively can estimate the abnormal
QoS records. As a numerical comparison, the QoS values
of the Sensing Service depicted in Fig. 6a, with and without
anomalies is 2.12 and 1.93, respectively. Interestingly, as we
can see in Fig. 6b, the abnormal QOS records of Navigation
Service are not limited to a predefined range or threshold, i.e.,

there exist some QoS values which are abnormal and they are
still in the range of normal QoS values; but they are abnormal
because they are few and different. Unlike threshold-based
approaches, our anomaly-aware approach does not rely on a
threshold or bound.

D. Scalability and Optimality

The meta-heuristic approaches like ACO do not warranty
to find an optimal solution and may fall into local optimum.
Besides, another aspect of these approaches is the ability of
”Convergence” [53]. Having this ability means the proposed
algorithm can find the optimal solution eventually. There are
many attempts targeted the theoretical analysis and proof the
Convergence of ACO [53]–[55]. To validate that our proposed
algorithm not only composes services in a timely manner,
but it also produces almost optimal solutions, we compared
the optimality of ACFS with an optimal approach, namely
Exact or optimal Solution Finder (ESF). It is notable that
both AdQoS-based and infoTherory-based approaches use this
approach, i.e., mathematical optimization of 0-1 mixed-integer
programming to find the optimal composition. We consider
two cases of experiments depending on the workflow size
and number of candidate services by using a total 40 test
experiments. All experiments are executed 30 times and the
average value is reported. The results show that the cost of
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(b) Different number of candidate services
Fig. 8: Comparison between execution times of ACFS and ESF with increment in number of candidate services

the ACFS’s composite plan is near-optimum as compared to
the solution obtained from ESF. Thus, ACFS is capable to
compose near-optimally service set with respect to QoS pa-
rameters. The purpose of following experiments is to evaluate
the time complexity and optimality of the proposed ACFS
algorithm than other approaches. To this aim, we generated
QoS values synthetically using the QWS dataset collected by
Al-Masri et al. [56].

1) Case 1: We show the performance of the ACFS accord-
ing to the different workflow sizes. We have taken 50 for the
number of candidate services for all scenarios. Each scenario
includes different workflow sizes ranging between 10 to 100
by step of 10. Fig. 7a shows the execution time of ACFS
and ESF. If we have a closer look at these results, we can
see when the size of a workflow becomes more than 40, the
ESF approach grows exponentially to compose service, while
our proposed ACFS algorithm grows linearly. Demonstratively,
as shown in Fig. 7b, ACFS is able to present near-optimal
composition when the size of the workflow grows. Notably,
when the size of the workflow becomes more than 40, ESF
consumes exponential time to solve the composition problems,
whereas ACFS presents a composite plan in acceptable time
with high accuracy.

2) Case 2: We show the performance of the ACFS accord-
ing to the different number of candidate services. We vary
the number of candidate services, ranging from 50 to 500 by
the step of 50. Fig. 8a depicts the impact of the number of
candidate services on the execution time. Notably, when the
number of candidate services becomes more than 200, the exe-
cution time of ESF grows exponentially, while ACFS increases
linearly. These results show that mathematical optimization
methods are best-suited for small-scale scenarios. However,
they take more time in real-world CloudIoT environments
where the number of tasks in a workflow and/or the number
of candidate services grows increasingly. As shown in Fig. 8b,
ACFS is able to present almost optimal composition when the
number of candidate services is increased.

E. Discussion

We evaluate the impact of weight on heuristic information
on the optimality of the solution. ACFS is able to adjust the
degree of intensification and diversification in a fine-grained
manner using α and β. The intensification (or exploitation)

degree considers the history of latest best composite plan de-
rived from all ants in their previous iterations, whereas degree
of diversification (or exploration) guides algorithm to explore
the whole candidate services pool to find a new composite plan
using heuristic information (introduced in Eq. 11). The first
set of experiments aims to measure the influence of heuristic
information weight on the aggregated cost of the composite
plan. We consider a total of 32 experiments in which the
size of workflow increases from 10 to 40 by step of 10. In
all experiments, α, ρ, the number of ants and the number of
candidate services are set to 2, 0.02, 200 and 50, respectively.
As shown in Fig. 9, ACFS can find a high-quality composite
plan according to different workflow sizes when the weight of
heuristic information is set to 40.
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Fig. 9: The effect of heuristic information on cost of the composite
plan with different workflow sizes

The second set of experiments is designed to show how
the weight of heuristic information impacts on the cost of
the composite plan with respect to the number of candidate
services. Similar experiments are conducted for the increasing
number of candidate services. We consider a total of 32 ex-
periments in which the number of candidate services increases
from 150 to 450 by step of 100. In all experiments, α, ρ, the
number of ants, and the workflow size are set to 2, 0.02, 1000
and 10, respectively. As shown in Fig. 10, ACFS can find
a high-quality composite plan when the weight of heuristic
information is set to 40 with an increment candidate services.

As a result, from Figs. 9-10, we can see that the more
weight ACFS considers for heuristic information, the better the
composite plan it finds by comparing with different workflow
sizes and candidate services.
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Fig. 10: The effect of heuristic information on cost of composite plan
with different number of candidate services

VI. CONCLUSIONS AND FUTURE WORK

This paper introduces a novel architecture, named SAIoT
(Scalable Anomaly-aware Services Composition in CloudIoT
Environments), to solve the problem of service composition in
an integrated environment of cloud and IoT (CloudIoT). An
important advantage of using the proposed architecture is that
it considers both phases of QoS-modeling and composition,
simultaneously. It is the first time that the QoS-modeling
module is empowered by an anomaly-aware system to accu-
rately and adaptively calculate the QoS values. Furthermore,
we developed an effective and efficient algorithm to select
candidate services for a given workflow based on an ant
colony optimization algorithm, named ACFS. We conducted
a series of experiments on the real-world dataset to evaluate
the proficiency of SAIoT architecture. The results show that
our approach achieves 30.64% of the average improvement in
QoS value of a composite plan with equal or even less price
compared to the previous works such as information theory-
based and advertised QoS-based methods.

This study can be extended in several directions. First, the
method for detecting anomalies in historical QoS records can
be extended to other anomaly detection systems. Second, the
time complexity of our proposed algorithm can be improved
by adjusting context-aware parameters in CloudIoT, e.g., the
number of ants, the maximum iteration and the weight of
heuristic information. Furthermore, for the Fog or Edge envi-
ronment, it is still an open research problem to develop a more
efficient, dynamic, and anomaly-aware service composition
method with polynomial time complexity and high-quality
composition.
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