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Abstract—Channel state information (CSI) feedback plays an
important part in frequency division duplex (FDD) massive
multiple-input multiple-output (MIMO) systems. However, it is
still facing many challenges, e.g., excessive feedback overhead,
low feedback accuracy and a large number of training pa-
rameters. In this paper, to address these practical concerns,
we propose a deep learning (DL)-based CSI feedback scheme,
named DS-NLCsiNet. By taking advantage of non-local blocks,
DS-NLCsiNet can capture long-range dependencies efficiently.
In addition, dense connectivity is adopted to strengthen the
feature refinement module. Simulation results demonstrate that
DS-NLCsiNet achieves higher CSI feedback accuracy and better
reconstruction quality for the same compression ratio, when
compared to state-of-the-art compression schemes.

Index Terms—Massive MIMO, Frequency Division Duplex
(FDD), CSI Feedback, Non-local Neural Networks, Densely
Connected Convolutional Networks.

I. INTRODUCTION

ECENTLY, massive multiple-input multiple-output

(MIMO) has emerged as one of the pivotal technologies
for fifth-generation (5G) wireless communication systems [1].
Equipped with multiple transmitters and receivers, massive
MIMO systems have achieved great efficiency in terms of
system capacity and anti-interference ability. In frequency
division duplex (FDD) systems, one of the key procedures
is to exploit CSI at the base station (BS), which is essential
for performance improvement. In conventional FDD MIMO
systems, the downlink CSI is obtained at the user equipment
(UE), and then fed back to the BS through feedback links
without compression. However, this method is prohibited in
massive MIMO systems and it is difficult to acquire a large
amount of accurate CSI in practical FDD systems since the
feedback overhead is extremely huge [2].

The challenge of CSI feedback in massive MIMO systems
has stimulated numerous studies. Currently, compressive sens-
ing (CS)-based methods [3]-[5] are exploited to compress
the CSI, but these methods are not effective enough since
they require strict sparsity, so that channel matrices can
hardly fit. Moreover, although CS simplifies the compression
process, it turns decompression into an optimization problem,
which requires an iterative algorithm and thus increases huge
computational and time costs.
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Recently, deep learning (DL)-based methods have been
introduced to CSI feedback tasks, and have shown great
potential in CSI recovery [6]. Compared to CS-based meth-
ods, DL-based methods achieve a significant improvement in
model performance and computational speed. Wen et al. [7]
proposed an autoencoder (AE)-based network named CsiNet,
which uses an encoder to compress the channel matrices into
codewords, and a decoder to transform the codewords into re-
covered channel matrices. Exploiting convolutional operation
and ResNet architecture [8] in the CSI feedback tasks, CsiNet
outperforms existing CS-based algorithms at all compression
ratios. Recurrent neural network (RNN) is widely utilized in
new CSI feedback frameworks, such as CsiNet-LSTM [9],
RecCsiNet [10] and ConvlstmCsiNet [11]. CsiNet-LSTM [9]
focused on modifying the channel recovery module, while
RecCsiNet [10] enhanced the feature compression and decom-
pression module, while considering the temporal correlation of
the channel matrices to further improve the recovery quality.
ConvlstmCsiNet [11] further exploited depthwise separable
convolutions to reduce the computational complexity and
adopted convLSTM and Pseudo-3D to explore the spatial-
temporal representation of channel information. In addition,
CRNet [12] was based on an inception model to adapt to
changes in granularity, and proposed an advanced training
scheme to enhance the network performance. CsiNetPlus [13]
has investigated the influence of convolutional kernels. CoC-
siNet [14] utilized the correlation between nearby UEs to
recover CSI cooperatively. CS-ReNet [15] can significantly
reduce the feedback overhead and lower the complexity of im-
plementing CS at the UE. Guo et al. [16] discussed the trend of
computational complexity of neural networks and introduced
compression and acceleration techniques for communication
systems.
To significantly boost the correctness of CSI feedback and
reduce the computational complexity of neural networks, we
design a novel CSI feedback architecture based on non-local
neural networks [17], where non-local blocks are applied to ex-
tract long-distance dependencies. In addition, we improve the
RefineNet module with dense connectivity [18] to strengthen
the feature propagation and enhance the information flow.
The scheme brings improvements in terms of CSI feedback
accuracy and reconstruction quality.
The main contributions of this paper are listed as follows:
e We propose an innovative DL-based CSI feedback and
recovery mechanism, referred to as DS-NLCsiNet, which
has the potential for practical deployment on real FDD
MIMO systems.

o In DS-NLCsiNet, non-local blocks from non-local neural



Fig. 1: The architecture of proposed DS-NLCsiNet.

networks are applied to modify the feature extraction
module and improve its efficiency in capturing long-
range dependencies. Furthermore, dense connectivity is
utilized to significantly enhance the recovery quality by
encouraging feature reuse.

o Experimental results show DS-NLCsiNet can recover CSI
more accurately and improve the quality of recovered CS
significantly when compared with some existing methods.

II. SYSTEM MODEL

We consider a single-cell downlink FDD massive MIMO
system constituted of N; (/V; > 1) antennas at the BS as well
as a single antenna at each user equipment (UE). The sys-
tem is operated in orthogonal frequency-division multiplexing
(OFDM) with N, subcarriers.

The received signal at the n'" subcarrier is given as:

~H
Yn :hn VpTn + Zn, (1)

where Hf e CMVex1,v, e CNvX1 g e Cand 2, € C denote
the channel vector in the frequency domain, precoding vector
designed by the BS, modulated transmit data symbol, and ad-
ditive Gaussian white noise at the nt" subcarrier, respectively.
Then the downlink CSI matrix H is firstly obtained at the UE
side via the downlink pilots, which can be modeled as:

H= [H17H27... 7H1\7J c (CNtxJVa' )

The total number of feedback elements is /NV; X ]\70, which
will lead to high feedback overhead that beyond the system
capacity in a massive MIMO system. In order not to concen-
trate on complicated details and challenges, we hypothesize
that perfect CSI has been acquired by the UE, and the BS
can process the precoding vector v,, as long as it receives the
downlink CSI feedback H. _

To reduce feedback overhead, H can be further transformed
into a sparsified matrix H in the angular-delay domain via a
two-dimensional discrete Fourier transform (2D-DFT) opera-
tion as follows: _

H = F,HFY, 3)

where F; € CNeXNe and F,, € CN+*Nt are both DFT matrices
[9]. Moreover, since the time delay between multipath arrivals
lies within a limited time period, only the first few columns
of H having distinct non-zero values [7]. Thus, we only retain
the first N.(IN. < N.) columns, and remove the rest columns.
H is then truncated to a N; x N, sized CSI matrix H, which
still requires huge overhead for the massive MIMO system.

After performing the 2D-DFT and truncation operation, we
separate the channel matrix H into real and imaginary parts.
Then we feed it into the autoencoder network as depicted in
Fig. 1, which includes the encoder and decoder. The encoding
and decoding procedures of CSI can be expressed as follows,
respectively.

t= fen(H)a (4)
H= fu(t), (5)

where the encoder compresses the CSI matrix of size ¢ into
a codeword t of length p, and then sends it back to the
BS for CSI recovery. Then, the compression ratio (CR) is
defined as CR = p/q. After the BS finishes decompressing
the codeword t to the original channel, we can obtain the
recovered channel matrix H by performing zero filling and
inverse DFT procedure.

III. DS-NLCSINET

The architecture of the proposed DS-NLCsiNet is shown in
Fig. 1, constituted of an encoder at the UE and a decoder at
the BS.

In DS-NLCsiNet, it receives the truncated matrix H of size
Ny x N, x 2 as input and sends it to a 1 x 1 convolution
for initial information interaction. Then a non-local block
is applied to extract features, especially for capturing long-
distance dependencies on the structure of channel matrix. The
output of the non-local block remains the same shape with
the input, and is then fed to the reshaping layer to stretch
into a 2N_.Ny-sized vector. The dense layer compresses the
vector into the p-sized (p < 2N.N;) real-valued codeword
t, where p satisfies the compression ratio (CR) standard:
CR = p/2N_.N;. The codeword is then fed back to the BS.

After the decoder at the BS receives the codeword, it first
decompresses the p-sized codeword and reshapes it into a N; X
N, x 2 sized rough recovery of H. Further refinements are
divided into two parts: Global Structure Refinement and Local
Detailed Refinement. A non-local block is first deployed to
help reconstruct the global structure of CSI matrix, utilizing
its high efficiency of transferring information between remote
pixels. Then two DS-RefineNet blocks are used to supplement
the local details, where the convolutions are local operations,
which are more suitable for detailed reconstruction. Following
the DS-RefineNets, a 3 x 3 convolutional layer is implemented
to scale the values to the [0, 1]. The final reconstruction of H is
generated. For each convolutional layer, we use leaky ReLU as
the activation function and place a batch normalization layer.



A. Non-local Block

Existing DL-based CSI feedback architectures usually ex-
ploit convolutional or recurrent operations to extract the fea-
tures of the channel matrix. However, these two methods
can only deal with one local neighborhood at a time. To
obtain a larger resolution view, we usually need to repeat
these operations, which is computationally inefficient and will
cause optimization difficulties. Therefore, we introduce non-
local (NL) blocks from non-local neural networks [17] to
the CSI Feedback architecture, in order to capture long-range
dependencies well.

The NL-block is specially designed for sequence data
(spatial, temporal or spatial-temporal) and can directly pass
information between any two positions. The main idea comes
from the NL-Mean algorithm for image denoising, that is,
displaying mean operation on all image blocks, which is
calculated by:

u(w) =Y wlzi,y)v(y). 6)

yeQ

To highlight commonalities and eliminate differences (usually
noise), the normalized weight coefficient w(z;,y) is involved
here, i.e., the more similar block y with the output u(x;), the
higher weight is given.

Similar to the NL-Mean operation as shown in Eq. 6, the
generic NL operation can be expressed as:

yi = %Zf(xi,mg(zj), )
Vj

where = and y denote the input and output feature maps,
respectively, ¢ is the index of a position on feature maps, and j
represents all possible positions on x. C(x) = > y; f (zi, 2;5)
is the normalization factor. The function g computes the
embedded feature representation of the input feature map at
the position j. Here, we use a 3 x 3 convolution for g. The
function f computes the correlation between index ¢ and j, i.e.
auto-correlation coefficient matrix. Several forms of f can be
selected, e.g., Gaussian, embedded Gaussian and dot product
[17], and we choose the embedded Gaussian form:

f (g, 5) = 2@ 06 (8)

where 0 and () represent the embedding spaces, and the
potential of abstract feature representation can be explored
in training to achieve better performance than the original
Gaussian form. For more details, we use 3 x 3 convolution
for both § and ). Note that the Gaussian multiplication can
be combined with C(z) to exactly form into the expression
of softmax activation.

The structure of NL-block in our model is as depicted in
Fig. 2. The operation involved in a NL-block is given as:

zi = NL(y;) + @y, )

where NL(-) stands for NL-Block function and z; denotes
a residual connection. Considering that the matrix product
process may take up a lot of memory, we add down-sampling
operations (3 x 3 convolution with stride=2) to all 6, () and g to
downsize the feature maps, where the multiplied matrix can

local block.jpg

Fig. 2: The structure of a non-local block with embedded Gaussian
version. “x” denotes the channel matrix multiplication, and “+”
denotes the element-wise sum. The Gaussian version can be imple-
mented by removing 6 and (). For convenience, the input size is set
N, = N¢ = 32 in our model.

turn from the original shape 1024 x 1024 to the downsized
shape 256 x 256. Meanwhile, the number of channels is
increased to 16 in all #, § and g to compensate for the
performance loss caused by down-sampling. The up-sampling
operation (3 x 3 transposed convolution with stride=2) is used
before the addition with the residual connection to recover the
shape of feature maps. For regulation, batch normalization and
ReLU activation layers are applied after all convolutions in the
NL-block.

As shown in Eq. 7, the NL operation calculates the cor-
relation f(x;,x;) at all positions, so that it can directly pass
information as well as extract correlation features between any
two positions (Vj) in one operation. It can also be regarded as a
global convolution with its own self-correlation matrix as the
kernel, which can cover the whole map, providing a global
view for feature extraction. The correlation in long-distant
positions can be efficiently captured, which makes NL-block
more suitable for structural feature extraction. In this way, it
only takes a few layers to achieve the best results without
introducing too many parameters.

B. DS-RefineNet

To further improve the information flow between layers,
we design a new densely connected convolutional network
structure by utilizing dense connectivity [18], called DS-
RefineNet.

The structure of the proposed DS-RefineNet is shown in
Fig. 3. DS-RefineNet is based on the structure of RefineNet
[7] with the same convolutions. Compared to skip connection
implemented in RefineNet, we introduce direct connections
from any layer to its all subsequent layers. This procedure
can be described as:

v = H([xo, 21, ,2-1]), 1=1,2,3, (10)



Fig. 3: The architecture of proposed DS-RefineNet

where H, denotes the convolution operation,
[xo, 21, -+ ,2;—1] represents the concatenation of the
feature map in layers O,--- ,l — 1 and z; denotes the output

of [*" convolution operation.

The structure of dense connectivity has a better effect on
improving NN’s flexibility than skip connection in RefineNet.
In RefineNet, skip connection only allows the origin input
to access the final output, while in DS-RefineNet, every two
layers have directed connections and each layer can access
the origin input as well as the output at any front node. When
facing the NN’s degradation problem, connections are densely
everywhere in the structure of DS-RefineNet, providing nearly
all the selections for the data to choose how to flow the
indispensable layers and jump across those unnecessary ones.
While in RefineNet, there are only two ways, i.e., data flows
through all layers or jumps across them by the skip connection.
All layers are regarded as a whole that the data cannot deal
with any single layer, which greatly reduces the network
efficiency.

The flexibility of neural networks in DS-RefineNet brings
many benefits. On one hand, by creating a short path from
early layers to later layers, it can largely alleviate the problem
of vanishing gradient; on the other hand, this connection
mode in DS-RefineNet makes the transmission of features and
gradients more efficient, and the network is easier to train.
Each layer can directly access the gradient from the loss
function and the original input signal, resulting in implicit
deep supervision. In the structure of decoder, the received
compressed signal is first input in the non-local block to get
a rough reconstruction of CSI. Then the rough reconstruction
is fed into two DS-RefineNet blocks for more detailed refine-
ments.

In every DS-RefineNet block, there are three 3 x 3 convo-
lutional layers. The batch normalization layer followed with
leaky ReLU activation is implemented before each convolu-
tional layer. For the [ layer, we concatenate multiple inputs
of H;(-) as a tensor. The first, second and third convolutional
layer generates 8, 16 and 2 feature maps, respectively. The
final output of DS-RefineNet is the concatenation of each
layer’s output in the channel axis.

Due to the concatenation operation, the neural network in
the second DS-RefineNet may become too wide. To further
reduce the number of feature maps, a transition layer should
be implemented between two DS-RefineNet blocks. Different
from [18], we use 1 x 1 convolution as a substitute for the tran-
sition layer. Since the architecture of CSI feedback schemes
is simpler than that of computer vision networks [12], the
bottleneck before every 3 x 3 convolution will not be utilized

here to reduce the input feature maps. The implementation of
DS-RefineNet has a significant impact on strengthening feature
propagation and encouraging feature reuse. After these two
DS-RefineNet blocks, the feature maps will pass through a
3 x 3 convolution and a sigmoid activation to output the final
reconstructed CSI.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, to verify the effectiveness of the proposed
CSI compression feedback algorithm, experimental simula-
tions are developed for indoor and outdoor scenarios, re-
spectively, in an FDD massive MIMO system. Comparative
analysis of our proposed scheme with several other methods
of CSI feedback compression networks is also performed.

A. Parameter Setting

To train DS-NLCsiNet, the end-to-end learning for the
encoder and decoder is applied. The output to DS-NLCsiNet
is H;, which can be expressed as:

H; = f(H;; 0)
= fde(fen(Hﬁ@en);@de)y (]])

where H;, © = {0.,;04.} and f = fae(fen(:)) denote
the input channel matrices, parameter set and autoencoder
network, respectively.

We use Adam optimizer with default setting to train our
frameworks,and we choose the mean squared error (MSE) as
loss function, which is given as:

N

1(0) = > I1f(s:0) ~ Hi, (12)
i=1

where [|-||, is the Euclidean norm, and N is the number of

samples in the training data.

We use the COST2100 channel model [19] to generate the
values of H, considering two different scenarios: the indoor
picocellular scenario at the 5.3GHz band and the outdoor rural
scenario at the 300MHz band. The BS uses N; = 32 antennas
and N, = 1024 subcarriers. We reserve the first N, = 32
columns of the channel matrix H since only they have non-
zero values. Then H is truncated into the shape of 32 x 32.
We use 100,000 samples for training, 30,000 for validation
and 20,000 for testing, respectively. The batch size, epochs
and learning rate are set as 200, 1000 and 0.001, respectively.

B. Complexity Analysis

Compared with other state-of-the-art CSI feedback methods,
the complexity analysis of the proposed DS-NLCsiNet is
depicted in Table I, where the number of parameters and
MACCs! stand for space and time complexity, respectively.

As shown in Table I, our frameworks do not introduce too
many parameters when compared with CsiNet, while greatly
enhancing the recovery quality of CSI. The increase in MACCs
mainly comes from convolution layers. When C'R is relatively

'MACC: multiply-accumulate operations. A multiplication operation and
an additive operation count for one MACC operation.



TABLE I: The number of parameters and MACCS

CR 1/4 1/8 1/16 1/32
CsiNet [7] 2,103,904 1,055,072 530,656 268,448
a RecCsiNet [10] 28,331,104 22,300,512 19,481,824 18,121,632
g ConvlstmCsiNet [11] 28,326,904 22,296,312 19,477,624 18,117,432
A~ NLCsiNet 2,107,684 1,058,852 534,436 272,228
DS-NLCsiNet 2,108,992 1,060,160 535,744 273,536
CsiNet [7] 4,366,336 3,842,048 3,579,904 3,448,832
O RecCsiNet [10] 153,059,328 128,942,080 117,669,888 112,230,400
&t) ConvlstmCsiNet [11] 121,708,544 97,591,296 86,319,104 80,879,616
= NLCsiNet 10,424,448 9,375,872 8,851,548 8,589,440
DS-NLCsiNet 11,497,120 10,448,544 9,924,256 9,662,112
small, the amount of computation of convolutional layers is TABLE II: NMSE in dB and cosine similarity p
more than that of dense layers. The model parameters and CR Method Tndoor Outdoor
MACCs of DS-NLCsiNet are much lower than those of RecC- ethods NMSE | p | NMSE [ »p
siNet and ConvlstimCsiNet, which improve the reconstruction CsiNet -17.36 | 099 | -875 | 091
accuracy at the cost of huge space and time complexity, 1 NLCsiNet 2251 | 099 | -9.02 | 0.93
. . . . 4 DS-CsiNet -20.01 | 0.99 | -10.38 | 0.93
since the dense layer's in LSTM cell substantially increase the DS-NLCsiNet | -24.99 | 0.99 | -12.09 | 0.95
amount of computation. CsiNet -12.70 | 096 | -7.61 0.88
1 NLCsiNet -13.60 | 0.98 -7.69 0.89
. . 8 DS-CsiNet -16.00 | 0.99 -7.66 0.89
C. Comparative Analysis DS-NLCsiNet | -17.00 | 0.99 | -7.96 | 0.90
To gain insight into the proposed DS-NLCsiNet, the fol- CsiNet -8.65 | 0931 451 | 079
lowi CSI feedback hod impl d in th 1 NLCsiNet -9.76 0.95 -4.80 0.80
ow'lng eedbac m@t ods are mmplemented 1n the same 16 DS-CsiNet 9.17 094 | -494 | 0.82
environment for comparison: DS-NLCsiNet | -12.93 | 0.97 -498 | 0.81
o CsiNet [7]: A well-known CSI sensing and recovery CsiNet -6.24 1 0.89 | -2.81 | 0.67
hani h lies RefineN 1 NLCsiNet -7.58 0.92 -3.18 0.71
mechanism that applies RefinelNet. . 32 DS-CsiNet | -738 | 091 | -322 | 0.70
o NLCGsiNet: Instead of using DS-RefineNet, this scheme DS-NLCsiNet | -8.64 | 0.93 | -335 | 0.73

only employs NL-blocks with RefineNet.

o DS-CsiNet: Instead of using NL-blocks, this scheme only
employs DS-RefineNet.

o DS-NLCsiNet: This is the proposed DL-based CSI
feedback scheme that combines NL-blocks and DS-
RefineNet.

Two metrics can be used to evaluate the performance of
different CSI feedback architectures as follows:

e Normalized Mean Square Error (NMSE): It quantifies the
difference between the original channel matrices and the
recovered matrices, which can be defined as:

12
NMSE:E{HH—HIL}.

(13)
H|;

o Cosine similarity: It evaluates the similarity between
the input and the output matrices by calculating cosine
similarity of the channel response at each subcarrier,
which can be defined as:

~H _
1 N. h, h,
p=EJ = = — (14)
% & Rl

We compare DS-CsiNet, NLCsiNet and DS-NLCsiNet with
CsiNet. The corresponding NMSE and p of each network are
summarized in Table II, where the best results are marked in
bold font. Simulation results demonstrate that our proposed

DS-NLCsiNet outperforms the existing DL-based CSI feed-
back methods in terms of both NMSE and p. Compared with
CsiNet, DS-NLCsiNet also provides significant gains, which
mainly benefits from the use of NL-blocks in both of the
encoder and decoder, and DS-RefineNet in the decoder. In
addition, the performance comparison of DS-CsiNet, NLC-
siNet and DS-NLCsiNet demonstrates that NL-blocks and
DS-RefineNet can indeed enhance the performance of CSI
feedback network, respectively.

Figure 4 plots original and some reconstructed CSI images
in Pseudo-gray at different compression ratios for different
CSI feedback schemes. The CSI images are randomly ex-
tracted from the test dataset in indoor and outdoor scenarios,
respectively. In the first column from left, we show the
original images of the CSI matrix in the angular-delay domain
after performing the 2D-DFT and truncation operation. In
the right three columns, we demonstrate some reconstruction
samples along with the corresponding pseudo-gray plots of
the strength of recovered matrices, which are reconstructed by
using different CSI feedback schemes. Obviously, NLCsiNet
and DS-NLCsiNet both outperform CsiNet, especially at low
compression ratios. In addition, NLCsiNet and DS-NLCsiNet
can recover the CSI in a more accurate way, and can also
retain some feature which might be lost in CsiNet feedback
procedure.



Fig. 4: The absolute value of original and reconstructed CSI images
at different compression ratios (top: in indoor picocellular scenario;
bottom: in outdoor rural scenario)

V. CONCLUSION

In this paper, we have proposed a novel DL-based CSI
feedback scheme by utilizing non-local block and dense con-
nectivity in feature extraction and RefineNet modules, respec-
tively. Experimental results demonstrate that DS-NLCsiNet
outperforms existing methods in terms of recovery accuracy
and reconstruction quality. We believe this architecture has
the potential for practical deployment on real FDD MIMO
systems.
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