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Abstract—The unmixing of hyperspectral data is a hot topic
in the field of remote sensing. However, in presence of various
types of noise, especially the noisy channels, the performance of
unmixing approaches is seriously deteriorated. To enhance the
robustness of the unmixing method is a subject worth studying.
This paper presents a robust unmixing method based on the
recently-proposed multilinear mixing model, where the /> ; norm
is adopted in the loss function to suppress the influence of
noise. The sparseness of abundance is also considered to improve
the parameter estimation. The resulting optimization problem is
solved by the alternating direction multiplier method (ADMM).
Experiments on both synthetic and real images demonstrate the
performance of the proposed unmixing strategy.

Index Terms—hyperspectral image, nonlinear unmixing, alter-
nating direction method of multipliers, robust, /> ;1 norm

I. INTRODUCTION

A hyperspectral image (HSI) is different from the ordinary
RGB images, as the former consists of measurements from up
to hundreds of spectral channels across a certain wavelength
range. Thus, each observed pixel corresponds to a spectral
vector. The issue of HSI unmixing plays an important role
in many fields related to HSI analysis, such as precision
agriculture and mineral exploration [1]. It is assumed that
each observed spectrum is mixed by multiple pure material
signatures, termed endmembers. The task of unmixing is
to extract the endmembers and to estimate their fractional
abundances at each pixel.

Over the past decades, numerous unmixing models and
related algorithms have been investigated [1]. The linear
mixing model (LMM) is the most prevalent because of its
simple mathematical modeling and straightforward physical
meaning. The LMM supposes that each observed pixel can
be expressed as a linear combination of endmember spectra.
However, in many real scenarios, the nonlinear effect is
serious, thus requiring more complex, nonlinear modeling of
the mixing process. The bilinear mixing models assume each
photon interacting with two endmembers before reaching the
sensor, and are formulated as superposition of second-order
terms between endmembers on the LMM [2], [3].

More recently, the multilinear mixing model (MLM) has
been proposed in [4], and become a new research hotspot
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for nonlinear unmixing [5], [6]. The MLM accounts for all
degrees of interactions between endmembers, and an addi-
tional parameter is introduced at each pixel to characterize
the probability of further interactions. As this paper aims to
improve the robustness of the MLM, a brief deviation of this
model will be given in the subsequent section.

Different unmixing strategies, either the linear or nonlinear
ones, suffer a lot from various types of noise in the data. In
particular, there exist up to 20% corrupted channels of low
signal-to-noise (SNR) ratio in real HSI [7]. To tackle this
issue, efforts have been dedicated to enhance the robustness of
different unmixing methods against the noise. A category of
methods adopt an additional disturbance term to the model, in
order to simulate the noise interference, such as [8]. Other
methods consider to replace the commonly-used /> norm-
based loss function by a more robust measure, including the
lo,1 norm [9] and the maximum correntropy criterion [7].
Of particular note is the use of the ly; norm in different
machine learning tasks to achieve the robustness against noise
and outliers, including the PCA [11], the NMF [10] and the
regression [12], to name a few.

As far as we know, no previous studies have been proposed
to enhance the robustness of the MLM. This paper presents
a robust unmxing method based on the MLM, termed R-
MLM, mainly by taking advantage of the I3 ; norm-based loss
function. The resulting optimization problem is solved by the
ADMM [13]. Experiments are performed on synthetic and and
real datasets, to verify that the proposed R-MLM has strong
robustness against noisy channels and outliers in HSIs.

II. REVIEW OF MULTILINEAR MIXING MODEL

Let X = [z, %o,....,x7] € REXT be a data matrix
containing T pixels over L spectral bands, and F =
[e1, e, ...,en] € REXN be the endmember matrix composed
by N endmembers. The abundance matrix is denoted by
A = [a1,as,...,ar] € RNXT with a; being the abundance
vector for the i-th pixel. Use P = [p1,p2,...,pr] € RY*T to
collect the probability parameters over pixels, where scalar p;
describes the probability of further interactions for the j-th
pixel. The MLM [4] accounts for all degrees of interactions
between endmembers, and obeys following assumptions: 1)
the incoming light will interact with at least one material; 2)
for j-th pixel, the probability of undergoing further interactions
is p;, and the probability of escaping the scene and reaching



the sensor is (1 — p;); 3) the probability of interacting with a
material is proportional to its corresponding abundance; and
4) the intensity of the light scattered by a material depends on
the corresponding material’s albedo. As a consequence, the
MLM model is formulated as
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g; € REXL is the Gaussian noise.

As for the optimization problem associated to (1), the
unsupervised MLMp [5] proposes a simplified loss function
by vanishing the denominator in the original loss function,
which is given by

where y; =
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st. 0<E<1; p;j<1; a;>0 and 1ia; =1,

(2)
where 15 € NV*1 is the vector of 1, both the abundance non-
negative constraint (ANC) and sum-to-one constraint (ASC)
are imposed, and the probability parameter is bounded.

III. PROPOSED ROBUST MULTILINEAR UNMIXING MODEL

To enhance the unmixing performance against corrupted
channels and outliers, we propose a novel robust MLM
method. To estimate the parameters in (1), we consider fol-
lowing optimization problem based on the I2 ; norm
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where Iy 7 is the matrix of 1, P =1.P € RXT | YV =
EA, and v > 0 is the parameter controlling the influence of
abundance sparseness.
A. ADMM algorithm for R-MLM

We apply the well-known ADMM algorithm to solve (3).
After introducing the auxiliary variables ), G, and H, the
augmented Lagrangian function of (3) is written by
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where p > 0 is the regularization parameter, and Vi, V5
and V3 are scaled dual variables. We address problem (4)
iteratively, by alternating the optimization over each variable
block {4, P,Q, G, H}, while keeping the others fixed.

1) Update Q: After discarding the irrelevant terms of () in
(4), the reduced subproblem becomes

QU+ — arngin Q2.1

+ %”(1LXT_P(t))®Y(t)+p(t)®Y(t)@X—X—Q—i—Vl(t)||%.,
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Similar as in [9], each row of @) is updated by

QU (r,:) = vect- soft((( R %), (6)
where ¢ =(1,x7—PM)oY O+ POOY Do X —X—Q+V",
and vect-soft(b, 7) is the rowwise application of the vector
soft threshold operator defined by g(b,7) = b(max{|b||2 —
7,0}/ max{||bl|2 — 7,0} + 7).

2) Update A and G: Removing the terms independent of
A and G, we obtain
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Denote £ = E® ((1— Pj(t))leN + Pj(t)wjlx,), and &, =
33j+Q;—t+1) - (Vﬂ?, where Q;Hl) and (Vl)g.t) denotes the j-
th column of the corresponding matrix, repectively. Note that
similar symbols will be directly used hereafter. The equivalent
pixel-wise optimization problem is
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As in [16], the solution of (8) is
a;tH) =B lw-CANB 'w—1y) )
where B=(EW)TE® + Iy, n, C=B '1y(14B '1x)71,
=(EM)Tz, G(t) (Vg)(t) and Iy is identity matrix.

To update G, We consider the optimization subproblem

G(t"'l):argénin’y||GH171+LfoT(G)+% “A(t+1)_G+V2(t)

(10)
Without considering the ANC constraint, which is given by
LfoT(G), the solution of (10) is

G+ — softv/u(A(tH) + Vg(t)), (11)
where
¢—b b>r1
soft, (b) = 0 ol < 7 (12)
b+71 b< —1



is the soft threshold operator [13]. To further impose ANC,
we project the result onto the first orthant by
G = max{0yr, GEHDY (13)

3) Update P and H: The reduced optimization problem in
terms of P is formulated as

PUHD — arg min%HP —H®Y 4 Vg(t)”fp
P
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and the solution is
plt+1) — (12((Y(t+1)_y(t+1) ® X)
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where matrix Y *+1= EA+1 records the linear mixing part.
Similarly, the subproblem w.r.t H is given by

2
HD = arg;nin va<iy(H) + HP(HI)—H + V3(t) -
(16)
If we omit the boundary constraint with t(y<;7y(H), the
solution of (16) would be

H(t+1) _ P(t+1) + ‘/S(t) (17)
The final solution of H**Y is given by
H®Y = min{1,., HTY}, (18)

4) Update V1, Vo and V3: The scaled dual variable blocks
Vi, Vo and V3 represent the running sum of the primal
residuals, and are updated as follows

Vl(t+1) _ Vl(t) + (Lpxr — p(t+1)) oy (t+1)

+ p(t+1) ® Y(t+1) ® -X — Q(t+1) (19)
VD =y 4 oG+ _ gD (20)
‘/S(t+1) — Vg(t) + P(t-‘,—l) _ H(t+1). (21)

B. Initialization and stopping criterion

As the proposed R-MLM is a supervised unmixing method,
the endmembers are extracted by the VCA [14]. The abun-
dance matrix is initialized by the FCLS [15], the nonlinear
parameter vector is initialized by (15), with the boundary
constraint satisfied. Other variable blocks are initialized with
Zero matrix/vector.

The stopping criterion of the R-MLM is two-folds: 1) the
tolerances of primal and dual residuals satisfy res, < toll and
resq < tol2, with toll = tol2 = v/NT x 1072, as in [16]; 2)
the iteration number does not exceed the preset maximum
value.

Algorithm 1 Algorithm for R-MLM

Input: X € RE*T: HSI data; E € RF*Y: endmember matrix
Output: A € RV*T: abundance matrix; P € R'*T: proba-
bility parameter vector

1: sett =0, u>0, and v > 0.

2: initialize A, P©), Q) G©), H©), 1 v %ang 1.

3: while stopping criterion not met, do

4. Update QD) with (6).

5; Update S¢HD | GO+ with (9), (13), respectively.

6. Update PU+D  HT+D) with (15), (18), respectively.

7. Update V"™, v and VY with (19), (20),
and (21), respectively.

8: t=t+1

9: end while

IV. EXPERIMENTS

The performance of the proposed R-MLM is demonstrated
on unmixing both the synthetic and real datasets, which are all
seriously corrupted by noise. Four state-of-the-art unmixing
approaches are compared, including the linear assumption
based FCLS [15], a bilinear-based method GBM [3], and two
multilinear unmixing methods, i.e., MLM [4] and MLMp [5].

A. Experiments on synthetic DC data

The synthetic DC data is generated as follows: Five random
endmembers are selected from the USGS spectral library [17].
The MLM is used to generate 50 x 50 mixed pixels, with
the abundance vectors following the Dirichlet distribution and
meeting both ANC and ASC. The nonlinear probability param-
eter P is randomly selected from the half-normal distribution
with ¢ = 0.3. To simulate the noisy bands and outliers, in
addition to the Gaussian noise (SNR = 20, 25, and 30dB), we
also impose the impulse noise and dead lines [18].

In the experiments, the maximum iteration number is
set to be 500, the tolerance value is chosen as previ-
ously stated, and the penalty parameter which controls
the convergence rate is set as p = 0.5 . The sparse-
ness parameter 7y is selected from the candidate values set
{0.0001, 0.005, 0.001, 0.005,0.01,0.05,0.1}, and we roughly
set v=0.01 in this experiment. For the comparing methods, we
keep the same parameter settings as in their original papers. As
the unsupervised MLMp [5] is performed in a supervised man-
ner, the endmembers are fixed to the result of the VCA. With
groundtruth information on the actual abundances, the unmix-
ing performance on DC image is evaluated by the root-mean-

square error, defined by RMSE = \/ S ey — @2 for
abundance estimation.

As in TABLE I, the proposed R-MLM always yields the
optimal unmixing results on DC data, at three noise levels. It
shows the robustness of the proposed method against different
types of noise, including the Gaussian noise, impulse noise and
dead lines. Also, as the SNR value increases, the performances
of all the unmixing strategies improve to some extent. It is not




TABLE I
AVERAGED RMSE OVER 5 RUNS ON DC.

HSIs demonstrated the robustness of the proposed unmixing
method against different types of noise. Future works include
the investigation of other loss functions, e.g., Welsch function,

SNR =20dB | SNR = 25dB | SNR = 30dB
R-MLM 0.0365 0.0195 0.0122
MLMp 0.0701 0.0592 0.0575
MLM 0.0532 0.0506 0.0507
GBM 0.1386 0.1380 0.1383
FCLS 0.1375 0.1369 0.1372

surprised that the MLM-based methods are generally superior
to the others here, as the DC image is generated by MLM.

B. Experiments on Cuprite data

The Cuprite data is returned by AVIRIS and is well-
investigated. It has 250 x 190 pixels and contains 224 bands
covering a wavelength range of 0.4-2.5 pm. To test the
algorithm robustness against noisy channels, all the 224 bands
are retained for analysis, including the water vapor absorption
and low signal-to-noise ratio bands (4-104, 116-149 and 171-
187). This field is known to be mainly composed by 12
endmembers, which are extracted by the VCA.

Since the groundtruth information is unknown for real
HSI, the unmixing results are evaluated by the reconstruction
error (RE) and the averaged spectral angle distance (SAD)
between the observed and reconstructed pixels, as reported
in TABLE II. As observed, the proposed R-MLM algorithm
leads to the best results, demonstrating its robustness when
processing HSIs containing outlier bands. Fig. 1 compares the
abundance maps of endmember #alunite, where the estimation
by R-MLM is affected by the corrupted bands least.

TABLE 1T
COMPARISON OF RE AND SAD ON CUPRITE, WITHOUT CONSIDERING
BANDS 4-104, 116-149 AND 171-187.

R-MLM | MLMp | MLM GBM FCLS
RE 0.0020 0.0074 | 0.0060 | 0.0079 | 0.0082
SAD 0.0366 0.0871 | 0.0738 | 0.0739 | 0.0751

Fig. 1. Abundance maps of #alunite by R-MLM, MLMp, MLM, GBM and
FCLS on Cuprite.

V. CONCLUSION

This paper proposed a novel robust multilinear unmixing
model. Taking advantage of the [ ; norm, the interference of
different noises to the unmixing process was suppressed. To
improve the parameter estimation, the abundance sparseness
was also introduced. The associated optimization problem was
addressed by the ADMM. Results on the synthetic and real
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