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Introduction

This short survey provides a brief review of the variable splitting and augmented
Lagrangian method for total variation (TV) related image restoration models. We
will focus on this computational problem closely, and do not plan to touch other
related topics like theoretical model analysis and algorithmic connections, which
can be referred to, e.g., Aubert and Kornprobst (2010); Glowinski et al (2016a) and
references therein. Also, to keep the context as compact as possible, we would not
expand all the details, although there are definitely lots of exellent works in the
literature.

Total variation, which is a semi-norm of the space of functions of bounded vari-
ation, was first proposed for image denoising by Rudin, Osher and Fatemi (ROF)
in Rudin et al (1992). In the discrete setting, it is essentially the L1 norm of gradi-
ents and can maintain the sparse discontinuities. Therefore, it is appropriate to pre-
serve image edges Strong and Chan (2003); Chambolle and Lions (1997); Caselles
et al (2007) that are usually the most important features for images to recover. Ow-
ing to its edge-preserving property and convexity, total variation has been demon-
strated very successful and become popular in image restoration like image denois-
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ing Rudin et al (1992, 2003); Aubert and Aujol (2008); Le et al (2007); Jin and Yang
(2011); Dong and Zeng (2013); Sciacchitano et al (2015); Zhao et al (2014), image
deblurring Rudin and Osher (1994); Chan and Wong (1998); Chan et al (2005);
Huang et al (2008); Ma et al (2013) and image inpainting Shen and Chan (2002);
Chan et al (2005); Bertalmio et al (2003), and also various other types of image pro-
cessing tasks including image decomposition Aujol and Chambolle (2005); Aujol
et al (2005); Le and Vese (2005); Vese and Osher (2004); Ng et al (2013); Vese and
Osher (2003), image segmentation Chan and Vese (2001); Chan et al (2006), image
super-resolution Marquina and Osher (2008), face recognition Chen et al (2006a),
fluorescence tomography Freiberger et al (2010), CT reconstruction Persson et al
(2001); Jia et al (2011); Tian et al (2011); Sidky and Pan (2008); Sidky et al (2011);
Ritschl et al (2011); Zhu et al (2012); Yang et al (2010); Chen et al (2013), phase
retrieval Chang et al (2016, 2018) and so on.

The total variation model has been generalized in many ways for different pur-
poses. The original total variation regularization was proposed for gray image
restoration Rudin et al (1992), which is the single channel case. To restore mul-
tichannel data, such as color images with RGB channels, people extended it to
color TV and vectorial TV regularizations Blomgren and Chan (1998); Sapiro and
Ringach (1996); Bresson and Chan (2008). It is well known that images recovered
by total variation regularized models have the undesired staircase effect. To prevent
the total variation oversharpening, there are several remarkable methods to improve
the total variation regularization. These include the variable exponent TV models
Chen et al (2006b); Li et al (2010) and a wide class of high order models, such as
inf-convolution model Chambolle and Lions (1997), Chan-Marquina-Mulet model
Chan et al (2000), Lysaker-Lundervold-Tai model Lysaker et al (2003) and total
generalized variation model Bredies et al (2010); Bredies and Holler (2020), etc. By
co-area formula, the total variation is the intrgal of lengths of all level curves of the
intensity function Chan and Shen (2005). One natural extension way is thus to in-
troduce curve curvature term for regularization. For example, Euler’s elastica which
contains both lengths and curvatures was proposed for image inpainting Masnou
and Morel (1998); Chan et al (2002); Tai et al (2011); Yashtini and Kang (2016),
denoising Tai et al (2011); Duan et al (2013); Zhang et al (2017b), segmentation
Esedoglu and March (2003); Zhu et al (2006, 2013b); Duan et al (2014); Bae et al
(2017); Tan et al (2020), zooming Tai et al (2011); Duan et al (2013), illusory con-
tour Masnou and Morel (2005); Kang et al (2014), image decomposition Liu et al
(2018) and image reconstruction Zhang et al (2017a); Yan and Duan (2020). Such
regularity can provide strong priors for the continuity of edges. Another total vari-
ation related geometric regularization technique we would like to mention is mean
curvature minimization Zhu and Chan (2012), which considers the image or graph
in a high-dimensional space and transfers the image minimization problems to the
corresponding surface minimization problems. From the viewpoint of image do-
main, total variation regularization was also extended to implicit surfaces, triangu-
lated meshes and even general manifolds for image and data processing on curved
spaces Bertalmio et al (2001); Lai and Chan (2011); Wu et al (2012); Lellmann
et al (2013); Wu et al (2013); Weinmann et al (2014); Osher et al (2017) and nor-
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mal vector filtering for surface denoising Zhang et al (2015); Liu et al (2019). By
exploiting the spatial interactions in images, total variation regularization was also
generalized to nonlocal TV Peyré et al (2008); Lou et al (2010); Dong et al (2012);
Liu and Zheng (2017) and total fractional-order variation Zhang et al (2015). By
using non-convex penalty functions instead of the L1 norm, non-convex TV regu-
larizations got more and more attentions in recent years, see Blake and Zisserman
(1987); Nikolova (2005); Nikolova et al (2008, 2010); Xu et al (2011); Chen et al
(2012b); Hintermüller and Wu (2013); Coll et al (2015); Bian and Chen (2015);
Lanza et al (2016); Chan et al (2018); Feng et al (2018); Wu et al (2018); Zeng and
Wu (2018, 2019); Zeng et al (2019a,b); You et al (2019); Xu et al (2019); Selesnick
et al (2020); Pang et al (2020); Gao and Wu (2020) and the references therein. They
have been shown capable to generate good results with neat edges, as indicated by
the interesting the lower bound theory Nikolova (2005); Chen et al (2010, 2012b);
Feng et al (2018); Zeng and Wu (2018, 2019); Zeng et al (2019b).

However, the non-smoothness of the total variation semi-norm gives rise to a
challenge of its minimization. To overcome this problem, the common way is re-
placing total variation by its smoothed versions in image restoration model. There-
fore, one can solve the new associated Euler-Lagrangian equation and obtain an
approximate solution of the original model Acar and Vogel (1994); Blomgren et al
(1997). For solving this Euler-Lagrangian equation, Rudin, Osher and Fatemi pro-
posed a gradient flow method Rudin et al (1992). This method is slow due to strict
constraints on the time step size and many methods have been proposed to improve
on it. Some efficient methods are fixed point methods Vogel and Oman (1998); Chan
and Mulet (1999), dual methods Chan et al (1999); Chambolle (2004); Dong et al
(2009); Esser et al (2010); Chambolle and Pock (2011); Cai et al (2013); He et al
(2014); Wen et al (2016), the split Bregman method Goldstein and Osher (2009)
and splitting-and-penalty based methods Wang et al (2008); Yang et al (2009b,a);
Guo et al (2009), proximity algorithms Micchelli et al (2011, 2013); Chen et al
(2014), alternating direction method of multipliers Chan et al (2013); Ng et al
(2010); Wahlberg et al (2012); Ng et al (2013) and augmented Lagrangian meth-
ods Tai and Wu (2009); Wu and Tai (2010); Wu et al (2011); Zhang and Wu (2011);
Wu et al (2012).

The augmented Lagrangian method was originally introduced by Hestenes (1969)
and Powell (1969) for solving constrained optimization problem and further system-
atically studied by many researchers, such as Rockafellar Rockafellar (1974, 1976)
and Bertsekas Bertsekas (1996(first published 1982). It was also widely applied
to optimize unconstrained minimization problem with the aid of operator splitting
technique Glowinski (2015) by which one can transform the unconstrained opti-
mization problem to its equivalent constrained versions. One of the special and
very useful instance of augmented Lagrangian methods is the alternating direc-
tion method of multipliers (ADMM)Boyd (2010); He and Yuan (2012); Glowinski
(2014, 2015); Glowinski et al (2016b); Yan and Yin (2016), which is famous in op-
timization and statistics community and has broad applications. ADMM has been
extensively studied in recent decades He et al (2002); Boyd (2010); He and Yuan
(2012, 2015); He et al (2016); Yang and Han (2016); Jiao et al (2016); Cui et al
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(2016); Yue et al (2018); He et al (2020) and has many practical variants, such as
linearized ADMM Wang and Yuan (2012); He et al (2020), preconditioned ADMM
Esser et al (2010); Deng and Yin (2016); Jiao et al (2017), proximal ADMM Fazel
et al (2013); Chen et al (2015); Li et al (2016), accelerated ADMM Ouyang et al
(2015); Kadkhodaie et al (2015); Li and Lin (2019), stochastic ADMM Fang et al
(2017); Chen et al (2018); Ouyang et al (2013) and non-convex ADMM Chartrand
and Wohlberg (2013); Yang et al (2017); Li and Pong (2015); Houska et al (2016);
Hong et al (2016); Wang et al (2018, 2019); Themelis and Patrinos (2020); Boţ and
Nguyen (2020).

Indeed, the variable splitting and augmented Lagrangian method gained great
successes in solving nonlinear variational problems that arise from physics, mechan-
ics, economics, etc Glowinski and Tallec (1989); Glowinski (1984). The variable
splitting step helps to transform a complicated problem into a constrained optimiza-
tion with more variables, then an iteration based on augmented Lagrangian method
is performed with several easier subproblems. Inspired by this, the method was pro-
posed by Tai and Wu to optimize the total variation based image restoration model
in Tai and Wu (2009); Wu and Tai (2010). As expected, augmented Lagrangian
methods benefit from the periodic boundary condition which is commonly assumed
for image processing problems and the L1 norm which is included in the total varia-
tion semi-norm. The augmented Lagrangian method for TV based image restoration
model has two subproblems. The periodic boundary condition allows us to solve
one of the subproblems via Fourier transformation with FFT implementation in the
case of deconvolution case. Meanwhile, the other subproblem with the L1 norm has
closed form solution. Despite of the fact that the image processing problems are
naturally in large scale, these two advantages of the augmented Lagrangian method
make it efficient in minimizing the objective functionals related with the non-smooth
total variation for various image processing tasks. Since Tai and Wu (2009); Wu
and Tai (2010), the variable splitting and augmented Lagrangian method has been
widely applied to total variation related minimizations like the single channel case
Wu and Tai (2010); Tai and Wu (2009); Wu et al (2011), the multichannel case
Wu and Tai (2010); Zhang and Wu (2011), high order models Wu and Tai (2010);
Gao et al (2018), TV-Stokes model Hahn et al (2012); Chen et al (2012a), wavelet
based image restoration Afonso et al (2010, 2011); Dong and Zhang (2013), Euler’s
elastica image restoration model Tai et al (2011); Duan et al (2013); Zhang et al
(2017b); Yashtini and Kang (2016), Euler’s elastica image segmentation model Zhu
et al (2013b); Bae et al (2017), mean curvature image denoising Zhu et al (2013a);
Sun and Chen (2014); Myllykoski et al (2015); Zhang (2018), total variation video
restoration Chan et al (2011), MR image reconstruction Guo and Huang (2009);
Ramani and Fessler (2011); Allison et al (2013), SAR imaging Güven et al (2016),
total variation minimization in curved spaces for either data processing Bertalmio
et al (2001); Lai and Chan (2011); Wu et al (2012); Lellmann et al (2013); Wu et al
(2013); Weinmann et al (2014); Osher et al (2017) or normal-vector-filtering based
surface denoising Zhang et al (2015); Liu et al (2019) and even more in Freiberger
et al (2010); Ilbey et al (2017); Koko and Jehan-Besson (2010); Han et al (2014);
Li et al (2013); Freiberger et al (2010); Nien and Fessler (2015). Therein for some
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complicated non-convex models like Euler’s elastica or mean curvature based, how
to introduce the auxiliary variables is tricky and important to get stable and efficient
algorithms. There are some close connections between the augmented Lagrangian
method and other approaches such as split Bregman method Goldstein and Osher
(2009) and Chambolle’s projection method Chambolle (2004), and some works for
improving classical augmented Lagrangian method can be found in Li et al (2013);
Xiao and Song (2012), etc.

The content included here are organized as follows. In section 2, we present some
basic notations. In section 3, we present augmented Lagrangian methods TV restora-
tion models with L2 fidelity term and TV restoration models with non-quadratic
fidelity. In section 4, we present augmented Lagrangian methods for multichannel
TV restoration. In section 5, we present augmented Lagrangian methods for high
order models, including Lysaker-Lundervold-Tai model, total generalized variation
model, Euler’s elastica model and mean curvature model. In section 6, we show
some numerical experiments. We conclude this paper in section 7.

Basic notation

We follow Wu and Tai (2010) for most notations. As a gray image is a 2D array, we
represent it by an N×N matrix, without the loss of generality. It is useful to denote
the Euclidean space RN×N as X , and write Y = X ×X . We recall the discrete
gradient operator

∇ : X → Y

x→ ∇x,

where ∇x is given by

(∇x)i, j = ((D̊+
1 x)i, j,(D̊+

2 x)i, j), i, j = 1, . . . ,N,

with

(D̊+
1 x)i, j =

{
xi, j+1− xi, j, 1≤ j ≤ N−1,
xi,1− xi,N , j = N,

(D̊+
2 x)i, j =

{
xi+1, j− xi, j, 1≤ i≤ N−1,
x1, j− xN, j, i = N.

Here D̊+
1 and D̊+

2 are used to denote forward difference operators with periodic
boundary condition for FFT algorithm implementation. We mention that other
boundary conditions with corresponding implementation tricks can also be adopted.

The usual inner products and L2 norms in the spaces X and Y are as follows.
We denote

〈x,z〉= ∑
1≤i, j≤N

xi jzi j and ‖x‖=
√
〈x,x〉,
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for x,z ∈X ; and

〈w,y〉= 〈w1,y1〉+ 〈w2,y2〉, and ‖y‖=
√
〈y,y〉,

for y = (y1,y2) ∈ Y and w = (w1,w2) ∈ Y . At each pixel (i, j), we define

|yi, j|= |(y1
i, j,y

2
i, j)|=

√
(y1

i, j)
2 +(y2

i, j)
2

as the usual Euclidean norm in R2. We mention that ‖x‖Lp is used to denote the
general Lp norm of x ∈X .

By using the inner products of X and Y , it is clear that the discrete divergence
operator, as the adjoint operator of −∇, is as follows

div : Y →X

y = (y1,y2)→ divy,

where

(divy)i, j = y1
i, j− y1

i, j−1 + y2
i, j− y2

i−1, j = (D̊−1 y1)i, j +(D̊−2 y2)i, j,

with backward difference operators D̊−1 and D̊−2 and periodic boundary conditions
y1

i,0 = y1
i,N and y2

0, j = y2
N, j.

Augmented Lagrangian method for total variation related image
restoration models

We assume d ∈X to be an observed image. As usual, we model the degradation
procedure as

x linear transformation−−−−−−−−−−−→ Kx noise−−−→ d, (1)

where x ∈X is the ground truth image and K : X →X is a linear operator like
a blur. In other cases, such as when K is a Radon transform or a subsampling, the
dimensions of the observed data d and the ground truth data x may be different.
However, there is no essential difficulty and the method framework here also ap-
plies. Here the noise is not necessarily to be additive and could be Gaussian, impul-
sive, Poisson or even others. The task of image restoration is to recover x from d. In
this survey we only consider the case where the linear operator K is given. Even so,
we usually cannot directly solve x from (1), because this is a typical inverse prob-
lem. Both the random measurement noise and the bad condition number of K bring
computational difficulties. Regularization on the solution should be considered to
overcome the ill-posedness.

Although the classical Tikhonov regularization has achieved great successes in
lots of general inverse problems, it turns out to over smooth image edges, the most
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important image structure. Indeed, one of the most basic and successful image
restoration models is based on total variation regularization, which reads

min
x∈X
{E(x) = F(Kx)+R(∇x)+B(x)}, (2)

where F(Kx) is a fidelity term, R(∇x) is the total variation of x Rudin et al (1992)
defined by

R(∇x) = TV(x) = ∑
1≤i, j≤N

|(∇x)i, j|, (3)

and B(x) is an indicator function of box constraints defined as follows

B(x) =
{

0, b≤ xi, j ≤ b,∀ i, j,
+∞, otherwise.

Lots of researches Le et al (2007); Ng et al (2010); Sidky and Pan (2008); Sidky
et al (2011); Chan and Ma (2012); Chan et al (2013) show that to involve this kind
of constraints is useful, when the intensity range is clear. Otherwise, one can just let
the box parameters b be −∞ or b be +∞. This model includes numerous particular
cases studied in the literatures.

For further analysis and interpretation, we make the following assumptions:

• Assumption 1. Null(∇)∩Null(K) = {0};
• Assumption 2. dom(R◦∇)∩dom(F ◦K)∩dom(B) 6=∅;
• Assumption 3. F(z) is convex, proper, coercive, and lower semi-continuous;
• Assumption 4. dom(F) is open,

where Null(·) is the null space of ·; dom(F) = {z ∈X : F(z)<+∞} is the domain
of F , and dom(R ◦∇),dom(B),dom(F ◦K) are similar. Here we have some com-
ments on these assumptions, which are relatively quite natural. Since most linear
operators Ks like blur kernels correspond essentially to averaging operations, As-
sumption 1 is reasonable. Moreover, although the fidelity terms F(·)s are diverse by
the statistics of the noise models, many of them meet all of those Assumption 3 and
4, like the following typical ones:

1. The squared L2 fidelity (corresponding to Gaussian noise):

F(Kx) =
α

2
‖Kx−d‖2,

2. The L1 fidelity Nikolova (2002, 2004) (corresponding to impulsive noise):

F(Kx) = α‖Kx−d‖L1 ,

3. The Kullback-Leibler (KL) divergence fidelity (corresponding to Poisson noise,
assuming di, j > 0,∀i, j, as in Le et al (2007)):

F(Kx) =

{
α ∑

1≤i, j≤N
((Kx)i, j−di, j log(Kx)i, j), (Kx)i, j > 0,∀ i, j,

+∞, otherwise,
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where α > 0 is a parameter. Note for Poisson noise, we use the definition of the
fidelity on the whole space D for analysis convenience, compared to Le et al (2007)
(where K = I) and Brune et al (2009).

Under the Assumptions 1, 2, 3 and 4, it is not difficult to see that the functional
E(x) in (2) is convex, proper, coercive, and lower semi continuous. Thus we have
the following existence and uniqueness result, by the generalized Weierstrass theo-
rem and Fermat’s rule Glowinski and Tallec (1989); Rockafellar and Wets (1998);
Ekeland and Témam (1999).

Theorem 1. The minimization problem (2) has at least one solution x, which satis-
fies

0 ∈ K∗∂F(Kx)−div∂R(∇x)+∂B(x), (4)

with ∂F(Kx) and ∂R(∇x) being the sub-differentials Rockafellar and Wets (1998);
Ekeland and Témam (1999) of F at Kx and R at ∇x, respectively. Moreover, if F ◦
K(x) is strictly convex, the minimizer is unique.

Next, we present to use the augmented Lagrangian method for TV regularization
based image restoration models (2) which satisfy our assumptions.

Augmented Lagrangian method for TV-L2 restoration

In this section, we review the augmented Lagrangian method proposed for the TV
restoration model with L2 fidelity term Tai and Wu (2009); Wu and Tai (2010),

min
x∈X

{
ETV(x) =

α

2
‖Kx−d‖2 +R(∇x)

}
, (5)

where α > 0 and R(∇x) is defined as in (3). This model is a special case of model
(2), where F(Kx) = α

2 ‖Kx−d‖2 and the box constraint vanishes. In the literatures,
people commonly calls model (5) as TV-L2 model.

The TV-L2 model is a fundamental model in image restoration, which is usu-
ally applied for removing Gaussian type noise and the linear degradation like blur
in image restoration problems Rudin et al (1992); Rudin and Osher (1994); Acar
and Vogel (1994). By standard Bayesian estimation, the L2 fidelity term is deduced
from the statistical distribution of the i.i.d Gaussian noise, which guarantees that the
recovered image resembles the underly truth image closely. Meanwhile, the total
variation regularization preserves the sharp edges.

As we mention before, the total variation term is non-smooth and is a compound
of the L1 norm and the gradient operator. There is a basic idea that is decoupling
the total variation term and treating the L1 norm and the gradient operator relatively
independently. By combining with variable splitting technique, the augmented La-
grangian method demonstrates this idea nicely.

First, we introduce an auxiliary variable y ∈Y for ∇x and convert the minimiza-
tion problem (5) to an equivalent constrained optimization problem
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min
x∈X ,y∈Y

{
GTV(x,y) =

α

2
‖Kx−d‖2 +R(y)

}
,

s.t. y = ∇x.
(6)

Then, we define the following augmented Lagrangian function for the con-
strained optimization problem (6),

LTV(x,y;λ ) =
α

2
‖Kx−d‖2 +R(y)+ 〈λ ,y−∇x〉+ β

2
‖y−∇x‖2, (7)

with the Lagrange multiplier λ ∈ Y and a positive penalty parameter β . The aug-
mented Lagrangian method for the problem (6) is to seek a saddle-point of the aug-
mented Lagrangian function (7):

Find (x∗,y∗,λ ∗) ∈X ×Y ×Y ,
s.t. LTV(x∗,y∗;λ )≤LTV(x∗,y∗;λ ∗)≤LTV(x,y;λ ∗),

∀(x,y,λ ) ∈X ×Y ×Y ,
(8)

The following theorem Glowinski and Tallec (1989); Wu and Tai (2010) reveals
the relation between the solution of problem (5) and the saddle-point of problem
(8).

Theorem 2. x∗ ∈X is a solution of problem (5) if and only if there exist y∗ ∈ Y
and λ ∗ ∈ Y such that (x∗,y∗;λ ∗) is a saddle-point of problem (8).

Finally, we employ an alternating direction iterative procedure in the augmented
Lagrangian method to seek a saddle-point of problem (8); See Algorithm 0.1.

Algorithm 0.1: Augmented Lagrangian method for TV-L2 model
Initialization: x−1 = 0, y−1 = 0, λ 0 = 0;
Iteration: For k = 0,1, . . .:
1. compute (xk,yk) as an (approximate) minimizer of the augmented Lagrangian function (7)

with the Lagrange multiplier λ k, i.e.,

(xk,yk)≈ arg min
(x,y)∈X ×Y

LTV(x,y;λ
k), (9)

where LTV(x,y;λ k) is defined as (7);
2. update

λ
k+1 = λ

k +β (yk−∇xk).

We can see that the minimization problem (9) still can not be solved directly
and exactly. Our strategy is separating the problem (9) into two subproblems with
respect to x and y and minimizing them alternatively.
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The solution to sub-minimization problem w.r.t. x

Given y, the minimization problem (9) with respect to x is

min
x∈X

{
α

2
‖Kx−d‖2−〈λ k,∇x〉+ β

2
‖y−∇x‖2

}
.

It is a quadratic optimization problem, whose first-order optimization condition
gives a linear equation

(αK∗K−β∆)x = αK∗d−div(λ k +βy). (10)

If K is a convolution operator like a convolution blur, the above equation under
periodic boundary condition can be efficiently solved via Fourier transform with
fast Fourier transform (FFT) implementation Wang et al (2008); Wu and Tai (2010).
One can obtain its solution by

x = F−1
(

αF (K∗)F (d)−F (div)F (λ k +βy)
αF (K∗)F (K)−βF (∆)

)
,

where F and F−1 denote the Fourier transform and the inverse Fourier transform.
Fourier transforms of operators K∗, K, div, and ∆ mean the transforms of the cor-
responding convolution kernels. If K is not a convolution operator, such as a Radon
transform or a subsampling, we can solve the above equation (10) by other well-
developed linear solvers like conjugate gradient (CG) method.

The solution to sub-minimization problem w.r.t. y

Given x, the minimization problem (9) with respect to y is

min
y∈Y

{
R(y)+ 〈λ k,y〉+ β

2
‖y−∇x‖2

}
. (11)

According to the definition of R(y), we can rewrite (11) as

min
y∈Y

 ∑
1≤i, j≤N

|yi, j|+
β

2 ∑
1≤i, j≤N

∣∣∣∣∣yi, j−
(

∇x− λ k

β

)
i, j

∣∣∣∣∣
2
 , (12)

whose solution is in closed form as follows

yi, j = max
(

0,1− 1
β |ηi, j|

)
ηi j, (13)

where η = ∇x−λ k/β ∈ Y . This solution can be derived from the first-order opti-
mization condition via the subdifferential theory Wang et al (2008) or the geometric
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explanation of the minimizer Wu et al (2011). We remark that the geometric method
can be easily extended to higher (> 2) dimensional case Wu and Tai (2010); Wu et al
(2011) (See, e.g., multichannel image restoration and high order models in later sec-
tions) or the case where R(·) is non-convex Wu et al (2018).

Here, we review the geometric interpretation of the formula (13) given in Wu
et al (2011). As one can see, the problem (12) is separable and at each pixel (i, j),
we can reduce it to a simple form

min
u∈R2

{
|u|+ β

2
|u− v|2

}
, (14)

where v ∈ R2; See Figure 1.

b

b

b

O u1

u2

vu

u∗

Fig. 1: A geometric interpretation of the formula (13)

In fact, the minimizer of (14) locates in the same quadrant of v and inside of
the solid circle with O as center and |v| as radius; See Figure 1. Without loss of
generality, we consider the points inside the solid circle at the first quadrant, e.g., u.
We draw a dotted circle with O as center and |u| as radius, which intersects the line
segment Ov at a point u∗. By the triangle inequality, we have

|u|+ |u− v| ≥ |v|= |u∗|+ |u∗− v|.

Since |u|= |u∗|, we obtain
|u− v| ≥ |u∗− v|,

which indicates

|u|+ β

2
|u− v|2 ≥ |u∗|+ β

2
|u∗− v|2.
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The above equality implies that the solution of (14) locates on the line segment
Ov. Therefore, we let u = γv with 0 ≤ γ ≤ 1 and simplify the problem (14) into an
univariate optimization problem

min
0≤γ≤1

{
γ|v|+ β

2
(γ−1)2|v|2

}
. (15)

The above problem (15) can be solved exactly and has a closed form solution,

γ
∗ = max

(
0,1− 1

β |v|

)
.

According to (10) and (13), we can solve (9) by an alternating minimization
procedure; See Algorithm 0.2.

Algorithm 0.2: Augmented Lagrangian method for TV-L2 model – solve the
minimization problem (9)

Initialization: xk,0 = xk−1, yk,0 = yk−1;
Iteration: For l = 0,1, . . . ,L−1:

• compute xk,l+1 by solving (10) for y = yk,l ;
• compute yk,l+1 from (13) for x = xk,l+1;

Output: xk = xk,L, yk = yk,L.

Here L can be chosen using some convergence test techniques. In fact, setting
L = 1 is sufficient to establish the convergence of the sequence Wu and Tai (2010)
generated by Algorithm 0.1. In this case, the augmented Lagrangian method is well
known as the alternating direction method of multipliers Boyd (2010).

Convergence analysis

In this section, we present some convergence results of Algorithm 0.1. Actually, we
can verify that Algorithm 0.1 is converged in two cases, i.e., when the minimization
problem (9) is exactly solved in each iteration and the minimization problem (9)
is roughly solved in each iteration Glowinski (1984); Glowinski and Tallec (1989);
Wu and Tai (2010). We comment that the convergence proof in Wu and Tai (2010)
is based on Glowinski (1984); Glowinski and Tallec (1989), but reduces the uniform
convexity assumption of R(·). Here, we just take the main convergence results from
Wu and Tai (2010) and omit the details.

In the first case, we should set L→ ∞ in Algorithm 0.2 and the inner iteration is
guaranteed to converge.

Theorem 3. The sequence {(xk,l ,yk,l) : l = 0,1,2, . . .} generated by Algorithm 0.2
converges to a solution of the problem (9).
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Theorem 4. Assume that (x∗,y∗;λ ∗) is a saddle-point of LTV(x,y;λ ). Suppose that
the minimization problem (9) is exactly solved in each iteration; i.e., L→ ∞ in Al-
gorithm 0.2. Then the sequence (xk,yk;λ k) generated by Algorithm 0.1 satisfies{

lim
k→∞

GTV(xk,yk) = GTV(x∗,y∗),

lim
k→∞
‖yk−∇xk‖= 0.

(16)

Since R(y) is continuous, (16) indicates that xk is a minimizing sequence of ETV(·).
If we further have Null(K) = {0}, then{

lim
k→∞

xk = x∗,

lim
k→∞

yk = y∗.

In the second case, we set L = 1 in Algorithm 0.2.

Theorem 5. Assume that (x∗,y∗;λ ∗) is a saddle-point of LTV(x,y;λ ). Suppose that
the minimization problem (9) is roughly solved in each iteration, i.e., with L = 1 in
Algorithm 0.2. Then the sequence (xk,yk;λ k) generated by Algorithm 0.1 satisfies{

lim
k→∞

GTV(xk,yk) = GTV(x∗,y∗),

lim
k→∞
‖yk−∇xk‖= 0.

(17)

Since R(y) is continuous, (17) indicates that xk is a minimizing sequence of ETV(·).
If we further have Null(K) = {0}, then{

lim
k→∞

xk = x∗,

lim
k→∞

yk = y∗.

Augmented Lagrangian method for TV-L2 restoration with box
constraint

In this section, we review the augmented Lagrangian method for the TV restoration
model with the L2 fidelity term and the box constraint Chan et al (2013), which
reads

min
x∈X

{
ETVB(x) =

α

2
‖Kx−d‖2 +R(∇x)+B(x)

}
, (18)

where α > 0, R(∇x) is defined as (3), and we have −∞ < b≤ b̄ <+∞ in B(x). This
model is also a special case of model (2), where F(Kx) = α

2 ‖Kx−d‖2.
The box constraint is inherent in digital image processing. The nature image is

stored as discrete numerical arrays in some digital media. The typical used ranges
are [0,1] and [0,255]. It has been show that adding the box constraint in image
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restoration can improve the quality of the recovered image Beck and Teboulle
(2009); Chan and Ma (2012); Chan et al (2013).

The original method proposed in Chan et al (2013) is under the framework of the
alternating direction method of multipliers, which is a special case of the augmented
Lagrangian method. For the sake of clarity, we reformulate it in our notations and
styles.

Compared with the TV-L2 model (5), this model has one more non-differentiability
term B(x). Thus, we need another variable to eliminate the nondifferentiation for x.
We introduce two auxiliary variables y∈Y and z∈X and rewrite the problem (18)
to be the following constrained optimization problem

min
x∈X ,y∈Y ,z∈X

{
GTVB(x,y,z) =

α

2
‖Kx−d‖2 +R(y)+B(z)

}
s.t.

(
y
z

)
=

(
∇

I1

)
x,

(19)

where I1 : X →X is the identify operator.
We define the augmented Lagrangian function for the problem (19) as follows

LTVB(x,y,z;λy,λz) =
α

2
‖Kx−d‖2 +R(y)+B(z)

+

〈(
λy
λz

)
,

(
y
z

)
−
(

∇

I1

)
x
〉

+
1
2

∥∥∥∥(y
z

)
−
(

∇

I1

)
x
∥∥∥∥2

S

,

(20)

where
(

λy
λz

)
is the Lagrangian multiplier and S =

(
βyI2

βzI1

)
with the identify

operator I2 : Y → Y and positive parameters βy, βz. Here ‖u‖S denotes the S -
norm, defined by ‖u‖S =

√
〈u,S u〉.

For the augmented Lagrangian method, we consider the saddle-point problem

Find (x∗,y∗,z∗,λ ∗y ,λ
∗
z ) ∈X ×Y ×X ×Y ×X ,

s.t. LTVB(x∗,y∗,z∗;λy,λz)≤LTVB(x∗,y∗,z∗;λ
∗
y ,λ

∗
z )≤LTVB(x,y,z;λ

∗
y ,λ

∗
z ),

∀(x,y,z,λy,λz) ∈X ×Y ×X ×Y ×X . (21)

Finally, we use an alternating direction iterative scheme in the augmented La-
grangian method to solve the saddle-point problem (21); See Algorithm 0.3.

To solve the minimization problem (22), we separate it into two subproblems

respect to x and
(

y
z

)
and employ an alternative minimization procedure.
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Algorithm 0.3: Augmented Lagrangian method for TV-L2 model with box
constraint

Initialization: x−1 = 0,
(

y−1

z−1

)
=

(
0
0

)
,
(

λ 0
y

λ 0
z

)
=

(
0
0

)
;

Iteration: For k = 0,1, . . .:
1. compute (xk,yk,zk) as an (approximate) minimizer of the augmented Lagrangian func-

tional with the Lagrange multiplier
(

λ k
y

λ k
z

)
, i.e.,

(xk,yk,zk)≈ arg min
(x,y,z)∈X ×Y ×X

LTVB(x,y,z;λ
k
y ,λ

k
z ), (22)

where LTVB(x,y,z;λ k
y ,λ

k
z ) is as in (20);

2. update (
λ k+1

y
λ k+1

z

)
=

(
λ k

y
λ k

z

)
+

(
βy(yk−∇xk)
βz(zk− xk)

)
.

The solution to sub-minimization problem w.r.t. x

Given
(

y
z

)
, the minimization problem (22) with respect to x reads

min
x∈X

{
α

2
‖Kx−d‖2−

〈(
λ k

y
λ k

z

)
,

(
∇

I1

)
x
〉
+

1
2

∥∥∥∥(y
z

)
−
(

∇

I1

)
x
∥∥∥∥2

S

}
, (23)

whose first-order optimization condition gives a linear equation

(αK∗K−βy∆ +βzI1)x = αK∗d−div(λ k
y +βyy)+λ

k
z +βzz. (24)

Similar to the equation (10), the above equation can be efficiently solved by fast
linear solvers such as FFT and CG.

The solution to sub-minimization problem w.r.t. (y,z)

Given x, the minimization problem (22) with respect to
(

y
z

)
reads

min
(y,z)∈Y ×X

{
R(y)+B(z)+

〈(
λ k

y
λ k

z

)
,

(
y
z

)〉
+

1
2

∥∥∥∥(y
z

)
−
(

∇

I1

)
x
∥∥∥∥2

S

}
, (25)

which can be separated into two independent minimization problems:

• y-subproblem:

min
y∈Y

{
R(y)+(λ k

y ,y)+
βy

2
‖y−∇x‖2

}
, (26)
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• z-subproblem:

min
z∈X

{
B(z)+(λ k

z ,z)+
βz

2
‖z− x‖2

}
. (27)

We can obtain the minimizer of (26) from (13) and the minimizer of (27) as follows

zi, j = P[b,b̄](ξi, j), ∀i, j, (28)

where P[b,b̄](·) is the projection onto the interval [b, b̄] and

ξ = x− λz

βz
∈X .

After knowing the solutions of the subproblems (23) and (25), we use the follow-
ing alternative minimization procedure to solve (22); See Algorithm 0.4.

Algorithm 0.4: Augmented Lagrangian method for TV-L2 model with box
constraint – solve the minimization problem (22)

Initialization: xk,0 = xk−1,
(

yk,0

zk,0

)
=

(
yk−1

zk−1

)
;

Iteration: For l = 0,1,2, ...,L−1:

• compute xk,l+1 by solving (24) for
(

y
z

)
=

(
yk,l

zk,l

)
;

• compute
(

yk,l+1

zk,l+1

)
from (13) and (28) for x = xk,l+1;

Output: xk = xk,L,
(

yk

zk

)
=

(
yk,L

zk,L

)
.

The convergence results of Algorithm 0.3 and Algorithm 0.4 are similar to the
convergence results proposed in previous section, one can refer to Chan et al (2013)
for details.

Augmented Lagrangian method for TV restoration with
non-quadratic fidelity

In this section, we review the augmented Lagrangian method proposed in Wu et al
(2011) for the TV restoration model with non-quadratic fidelity which reads

min
x∈X
{ETVNQ(x) = R(∇x)+F(Kx)} . (29)

where R(∇x) is defined as (3). Here, we consider the non-quadratic fidelity F(Kx)
which arises for removing non-Gaussian type noises, such as impulsive noise and
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Poisson noise. For impulsive noise removal, we usually use the L1 fidelity Nikolova
(2002, 2004)

F(Kx) = α‖Kx−d‖L1 , (30)

and for Poisson noise removal, we commonly choose the Kullback-Leibler (KL)
divergence fidelity Le et al (2007); Brune et al (2009)

F(Kx) =

{
α ∑

1≤i, j≤N
((Kx)i, j−di, j log(Kx)i, j), (Kx)i, j > 0,∀ i, j,

+∞, otherwise.
(31)

In this section, we focus on the augmented Lagrangian method for image restoration
with these two non-quadratic fidelities. For other non-quadratic fidelities, one can
extend our method accordingly.

The non-quadratic fidelities (30) and (31) are non-smooth. Adopting the idea to
cope with total variation term, we require one more auxiliary variable to remove the
nonlinearity arising from F(Kx). We first introduce two auxiliary variables y and z
and reformulate (29) to an equivalence constrained optimization problem

min
x∈X ,y∈Y ,z∈X

{GTVNQ(y,z) = R(y)+F(z)}

s.t.
(

y
z

)
=

(
∇

K

)
x.

(32)

We then define the augmented Lagrangian function for (32) as

LTVNQ(x,y,z;λy,λz) = R(y)+F(z)

+

〈(
λy
λz

)
,

(
y
z

)
−
(

∇

K

)
x
〉
+

∥∥∥∥(y
z

)
−
(

∇

K

)
x
∥∥∥∥2

S

(33)

with Lagrange multiplier
(

λy
λz

)
and S =

(
βyI2

βzI1

)
, and consider the saddle-

point problem

Find (x∗,y∗,z∗,λ ∗y ,λ
∗
z ) ∈X ×Y ×X ×Y ×X ,

s.t. LTVNQ(x∗,y∗,z∗;λy,λz)≤LTVNQ(x∗,y∗,z∗;λ
∗
y ,λ

∗
z )≤LTVNQ(x,y,z;λ

∗
y ,λ

∗
z ),

∀(x,y,z,λy,λz) ∈X ×Y ×X ×Y ×X . (34)

Finally, we use the following iterative algorithm to solve the saddle-point prob-
lem (34); See Algorithm 0.5.

We employ an alternating minimization procedure to solve the problem (35).

The solution to sub-minimization problem w.r.t. x

Given
(

y
z

)
, we have the subproblem of x as follows
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Algorithm 0.5: Augmented Lagrangian method for TV restoration with non-
quadratic fidelity

Initialization: x−1 = 0,
(

y−1

z−1

)
=

(
0
0

)
,
(

λ 0
y

λ 0
z

)
=

(
0
0

)
;

Iteration: For k = 0,1, . . .:
1. compute (xk,yk,zk) as an (approximate) minimizer of the augmented Lagrangian func-

tional with the Lagrange multipliers
(

λ k
y

λ k
z

)
, i.e.,

(xk,yk,zk)≈ arg min
(x,y,z)∈X ×Y ×X

LTVNQ(x,y,z;λ
k
y ,λ

k
z ), (35)

where LTVNQ(x,y,z;λ k
z ,λ

k
z ) is as in (33);

2. update (
λ k+1

y
λ k+1

z

)
=

(
λ k

y
λ k

z

)
+

(
βy(yk−∇xk)
βz(zk−Kxk)

)
.

min
x∈X

{
−
〈(

λ k
y

λ k
z

)
,

(
∇

K

)
x
〉
+

∥∥∥∥(y
z

)
−
(

∇

K

)
x
∥∥∥∥2

S

}
, (36)

which has the optimization condition

(βzK∗K−βy∆)x = K∗(λ k
z +βzz)−div(λ k

y +βyy). (37)

We can use fast linear solvers to solve the above equation, such as FFT and CG.

The solution to sub-minimization problem w.r.t. (y,z)

Given x, we have the subproblem of
(

y
z

)
as follows

min
(y,z)∈Y ×X

{
R(y)+F(z)+

〈(
λ k

y
λ k

z

)
,

(
y
z

)〉
+

∥∥∥∥(y
z

)
−
(

∇

K

)
x
∥∥∥∥2

S

}
. (38)

We can split it into two distinct minimization problems with respect to y and z as
follows

• y-subproblem:

min
y∈Y

{
R(y)+(λ k

y ,y)+
βy

2
‖y−∇x‖2

}
. (39)

• z-subproblem:

min
z∈X

{
F(z)+(λ k

z ,z)+
βz

2
‖z−Kx‖2

}
. (40)
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For the problem (39), it is same as the problem (11) and can be solved via (13).
For the problem (40), we next show its solution based on the choices of F(·).

For the L1 fidelity (30), we can rewrite the z-subproblem (40) as

min
z∈X

{
α‖z−d‖L1 +

βz

2
‖z−ξ‖2

}
where

ξ = Kx−
λ k

z

βz
.

It has closed form solution Donoho (1995); Yang et al (2009b); Wu et al (2011)

zi, j = di, j +max
(

0,1− α

βz|ξi, j−di, j|

)
(ξi, j−di, j), (41)

which is a 1-dimension case of (13). In this case, the alternating minimization pro-
cedure to solve the problem (35) is described in Algorithm 0.6.

Algorithm 0.6: Augmented Lagrangian method for TV restoration with the L1

fidelity – solve the minimization problem (35)

Initialization: xk,0 = xk−1,
(

yk,0

zk,0

)
=

(
yk−1

zk−1

)
;

Iteration: For l = 0,1,2, ...,L−1

• compute xk,l+1 by solving (37) for
(

y
z

)
=

(
yk,l

zk,l

)
;

• compute
(

yk,l+1

zk,l+1

)
from (13) and (41) for x = xk,l+1;

Output: xk = xk,L,

(
yk

zk

)
=

(
yk,L

zk,L

)
.

For the KL divergence fidelity (31), we can rewrite the z-subproblem (40) as

min
z∈X

zi, j>0,∀i, j

α ∑
1≤i, j≤N

(zi, j−di, j logzi, j)+
βz

2 ∑
1≤i, j≤N

∣∣∣∣∣zi, j−
(

Kx−
λ k

z

βz

)
i, j

∣∣∣∣∣
2
 .

It has closed form solution Setzer et al (2010); Wu et al (2011)

zi, j =
1
2

√(ξi, j−
α

βz

)2

+4
α

βz
di, j +

(
ξi, j−

α

βz

) , (42)

where
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ξ = Kx−
λ k

z

βz
.

Now, the alternating minimization procedure to solve the problem (35) with the KL
divergence fidelity (31) can be described in Algorithm 0.7.

Algorithm 0.7: Augmented Lagrangian method for TV restoration with the KL
divergence fidelity – solve the minimization problem (35)

Initialization: xk,0 = xk−1,
(

yk,0

zk,0

)
=

(
yk−1

zk−1

)
;

Iteration: For l = 0,1,2, ...,L−1

• compute xk,l+1 from (37) for
(

y
z

)
=

(
yk,l

zk,l

)
;

• compute
(

yk,l+1

zk,l+1

)
from (13) and (42) for x = xk,l+1;

Output: xk = xk,L,

(
yk

zk

)
=

(
yk,L

zk,L

)
.

The convergence results of Algorithm 0.5, Algorithm 0.6 and Algorithm 0.7 are
established in Wu et al (2011), which are similar to convergence results proposed
previously for Algorithm 0.1 and Algorithm 0.2.

Extension to multichannel image restoration

In this section, we review the augmented Lagrangian method for the multichannel
TV restoration Wu and Tai (2010). The multichannel images are widely used, such
as three-channel RGB color image.

The multichannel TV restoration model

We denote an M-channel image by xxx = (x1,x2, . . . ,xM), where xm ∈ X , ∀m =
1,2, . . . ,M. We mention that, at each pixel (i, j), the intensity of xxx is vector-values,
i.e.,

xxxi, j = ((x1)i, j,(x2)i, j, . . . ,(xM)i, j).

Let us define

XXX = X ×X ×·· ·×X︸ ︷︷ ︸
M

, YYY = Y ×Y ×·· ·×Y︸ ︷︷ ︸
M

.
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Then we have xxx ∈XXX and

∇xxx = (∇x1,∇x2, . . . ,∇xM) ∈YYY .

The usual inner products and L2 norms in the spaces XXX and YYY are as follows. We
denote

〈xxx,zzz〉= ∑
1≤m≤M

〈xm,zm〉, ‖xxx‖=
√
〈xxx,xxx〉;

〈yyy,www〉= ∑
1≤m≤M

〈ym,wm〉, ‖yyy‖=
√
〈yyy,yyy〉.

for xxx,zzz ∈XXX and yyy,www ∈YYY . At each pixel (i, j), we also define the following pixel-
by-pixel norms

|xxxi, j|=
√

∑
1≤m≤M

(xm)2
i, j and |yyyi, j|=

√
∑

1≤m≤M
|(ym)i, j|2.

for xxx ∈XXX and yyy ∈YYY .
With reference to the degradation model (1) of the gray image, here we model

the multichannel image degradation procedure as

xxx linear transformation−−−−−−−−−−−→ KKKxxx noise−−−→ ddd,

where ddd ∈XXX is an observed image and KKK : XXX →XXX is linear operator like a blur.
Here the noise could be also Gaussian, impulsive, Poisson or even others.

In this survey, we consider KKK as the blur operator and the noise is Gaussian type.
The operator KKK has the form of

KKK =


K11 K12 · · · K1M
K21 K22 · · · K2M

...
...

. . .
...

KM1 KM2 · · · KMM

 ,

where each Ki, j is a convolution matrix. The diagonal elements of KKK denote within-
channel blurs, while the off-diagonal elements describe cross-channel blurs. To
solve xxx, we consider the following multichannel image restoration model Bresson
and Chan (2008); Wu and Tai (2010)

min
xxx∈XXX

{
EMTV(xxx) =

α

2
‖KKKxxx−ddd‖2 +RMTV(∇xxx)

}
, (43)

where
RMTV(∇xxx) = TV(xxx) = ∑

1≤i, j≤N

√
∑

1≤m≤M
|(∇xm)i, j|2

is the vectorial TV semi-norm Sapiro and Ringach (1996); Bresson and Chan (2008)
(seen Blomgren and Chan (1998) for some other choices).
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Similarly as for the single-channel image restoration model, here we make the
following assumption:

• Null(∇)∩Null(KKK) = {0}.

Under this assumption, one can verify that the functional EMTV(xxx) in (43) is convex,
proper, coercive, and lower semi-continuous. Hence, we have the following result
Wu and Tai (2010).

Theorem 6. The problem (43) has at least one solution xxx, which satisfies

0 ∈ αKKK∗(KKKxxx−ddd)−div∂RMTV(∇xxx),

where ∂RMTV(∇xxx) is the subdifferential of RMTV at ∇xxx. Moreover, if Null(KKK)= {0},
the minimizer is unique.

Augmented Lagrangian method for multichannel TV restoration

By introducing a new variable yyy=(y1,y2, . . . ,yM)∈YYY , we first reformulate the min-
imization problem (43) to the following equivalent constrained optimization prob-
lem:

min
xxx∈XXX ,yyy∈YYY

{
GMTV(xxx,yyy) =

α

2
‖KKKxxx−ddd‖2 +RMTV(yyy)

}
s.t. yyy = ∇xxx.

(44)

We then define the augmented Lagrangian functional as

LMTV(xxx,yyy;λλλ ) =
α

2
‖KKKxxx−ddd‖2 +RMTV(yyy)+ 〈λλλ ,yyy−∇xxx〉+ β

2
‖yyy−∇xxx‖2,

with the multiplier λλλ ∈ YYY and a positive constant β . The augmented Lagrangian
method aims at seeking a saddle-point of the following problem:

Find (xxx∗,yyy∗;λλλ
∗) ∈XXX ×YYY ×YYY

s.t. LMTV(xxx∗,yyy∗;λλλ )≤LMTV(xxx∗,yyy∗;λλλ
∗)≤LMTV(xxx,yyy;λλλ

∗)

∀(xxx,yyy;λλλ ) ∈XXX ×YYY ×YYY . (45)

Finally, an iterative procedure to solve the problem (45) is described in Algorithm
0.8.

As for the minimization problem (46), we separate it into two subproblems with
respect to xxx and yyy and minimize them alternatively.

The solution to sub-minimization problem w.r.t. xxx

For a given yyy, there is the following minimization problem of variable xxx
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Algorithm 0.8: Augmented Lagrangian method for the multichannel TV
model.

Initialization: xxx−1 = 0, yyy−1 = 0, λλλ
0 = 0;

Iteration: For k = 0,1,2, . . . :
1. compute (xxxk,yyyk) from

(xxxk,yyyk)≈ arg min
(xxx,yyy)∈(XXX ,YYY )

LMTV(xxx,yyy;λλλ
k), (46)

2. update
λλλ

k+1 = λλλ
k +β (yyyk−∇xxxk).

min
xxx∈XXX

{
α

2
‖KKKxxx−ddd‖2−〈λλλ k,∇xxx〉+ β

2
‖yyy−∇xxx‖2

}
. (47)

Applying Fourier transforms to the optimality condition of the problem (47), we
obtain

[αF (KKK∗)F (KKK)−βF (∆)]F (xxx) = αF (KKK∗)F (ddd)−F (div)F (λλλ k +βyyy), (48)

from which F (xxx) can be found and then xxx via an inverse Fourier transform Yang
et al (2009a,b); Wu and Tai (2010); Zhang and Wu (2011). Here applying Fourier
transform to a block matrix is regarded as applying Fourier transform to each block.

The solution to sub-minimization problem w.r.t. yyy

For a given xxx, there is the following minimization problem of variable yyy

min
yyy∈YYY
{RMTV(yyy)+ 〈λλλ k,yyy〉+ β

2
‖yyy−∇xxx‖2}.

It has the following closed form solution Yang et al (2009a,b); Wu and Tai (2010);
Zhang and Wu (2011)

yyyi, j = max

(
1− 1

β |ηηη i, j|
,0

)
ηηη i, j, (49)

where ηηη =∇xxx− λλλ
k

β
∈YYY . Indeed, this solution is a high dimensional version of (13),

which can be also derived from the geometric method.
According to (48) and (49), we then have an alternating minimization procedure

to (46); See Algorithm 0.9.
We remark that the convergence results of Algorithm 0.3 and Algorithm 0.4 can

be directly extended for the Algorithm 0.8 and Algorithm 0.9 Wu and Tai (2010)
and we omit the details.
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Algorithm 0.9: Augmented Lagrangian method for the multichannel TV
model—solve the minimization problem (46).

Initialization: xxxk,0 = xxxk−1,yyyk,0 = yyyk−1;
Iteration: For l = 0,1,2, . . . ,L−1:

• compute xxxk,l+1 from (48) for yyy = yyyk,l ;
• compute yyyk,l+1 from (49) for xxx = xxxk,l+1;

Output: xxxk = xxxk,L,yyyk = yyyk,L.

Extension to high order models

In this section, we review augmented Lagrangian methods for some high order mod-
els, including the Lysaker-Lundervold-Tai model Lysaker et al (2003), the total gen-
eralized variation model Bredies et al (2010); Bredies and Valkonen (2011), the Eu-
ler’s elastic based model Chan et al (2002); Tai et al (2011) and the mean curvature
model Zhu and Chan (2012); Zhu et al (2013a).

Augmented Lagrangian method for Lysaker-Lundervold-Tai model

To overcome the staircase effect, Lysaker, Lundervold and Tai (LLT) suggested reg-
ularizing the total variation of the gradient and proposed a model based on second
order derivatives Lysaker et al (2003). We begin with some notations to establish
this model.

Let
Ŷ = X ×X ×X ×X .

We define the discrete Hessian operator

H : X → Ŷ

x→ Hx,

with

(Hx)i, j =

(
(D̊−+11 x)i, j (D̊++

12 x)i, j

(D̊++
21 x)i, j (D̊−+22 x)i, j

)
,

where D̊−+11 , D̊++
12 , D̊++

21 and D̊−+22 are second order difference operators and given
by

(D̊−+11 x)i, j := (D̊−1 (D̊
+
1 x))i, j,

(D̊++
12 x)i, j := (D̊+

1 (D̊
+
2 x))i, j,

(D̊++
21 x)i, j := (D̊+

2 (D̊
+
1 x))i, j,

(D̊−+22 x)i, j := (D̊−2 (D̊
+
2 x))i, j.



Augmented Lagrangian Method for TV Restoration 25

The usual inner product and L2 norm in the space Ŷ are as follows. We denote

〈y,w〉= 〈y1,w1〉+ 〈y2,w2〉+ 〈y3,w3〉+ 〈y4,w4〉 and ‖y‖=
√
〈y,y〉,

for y =
(

y1 y2

y3 y4

)
∈ Ŷ and w =

(
w1 w2

w3 w4

)
∈ Ŷ . At each pixel (i, j),

|yi j|=
√
(y1)2

i j +(y2)2
i j +(y3)2

i j +(y4)2
i j

is the usual Euclidean norm in R4. By using the inner products of Ŷ and X and the
definitions of the finite difference operators, the adjoint operator of H is as follows

H∗ : Ŷ →X

y =
(

y1 y2

y3 y4

)
→ H∗y,

where

(H∗y)i, j = (D̊+−
11 y1)i, j +(D̊−−21 y1)i, j +(D̊−−12 y3)i, j +(D̊+−

22 y4)i, j,

where D̊+−
11 , D̊−−12 , D̊−−21 , and D̊+−

22 are second order difference operators.
By regularizing the norm of the discrete Hessian, the LLT model Lysaker et al

(2003); Wu and Tai (2010) reads

min
x∈X

{
ELLT(x) =

α

2
‖Kx−d‖2 +RHO(Hx)

}
, (50)

where α > 0, d ∈X is the observed image, K : X →X is the blur operator and

RHO(Hx) = ∑
1≤i, j≤N

|(Hx)i, j|. (51)

Similarly as for the total variation restoration model, we make the following
assumption:

• Null(H)∩Null(K) = {0}.

Under this assumption, the functional ELLT(x) in (50) is convex, proper, coercive,
and lower semi-continuous. Hence, we have the following result Wu and Tai (2010).

Theorem 7. The problem (50) has at least one solution x, which satisfies

0 ∈ αK∗(Kx−d)+H∗∂RHO(Hx),

where ∂RHO(Hx) is the subdifferential of RHO at Hx. Moreover, if Null(K) = {0},
the minimizer is unique.
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In the following we review the augmented Lagrangian method proposed in Wu
and Tai (2010) to solve (50). We first introduce a new variable y∈ Ŷ and reformulate
(50) into a constrained optimization problem

min
x∈X ,y∈Ŷ

{
GLLT(x,y) =

α

2
‖Kx−d‖2 +RHO(y)

}
s.t. y = Hx.

(52)

To solve (52), we define the augmented Lagrangian functional as

LLLT(x,y;λ ) =
α

2
‖Kx−d‖2 +RHO(y)+ 〈λ ,y−Hx〉+ β

2
‖y−Hx‖2, (53)

with the multiplier λ ∈ Ŷ and a positive constant β , and consider the following
saddle-point problem:

Find (x∗,y∗,λ ∗) ∈X × Ŷ × Ŷ

s.t. LLLT(x∗,y∗;λ )≤LLLT(x∗,y∗;λ
∗)≤LLLT(x,y;λ

∗)

∀(x,y;λ ) ∈X × Ŷ × Ŷ . (54)

We employ an iterative procedure to solve the saddle-point problem (54), which
is described as Algorithm 0.10.

Algorithm 0.10: Augmented Lagrangian method for the LLT model.
Initialization: x−1 = 0, y−1 = 0 ,λ 0 = 0;
Iteration: For k = 0,1,2, . . . :
1. compute (xk,xk) from

(xk,xk)≈ arg min
(x,y)∈(X ,Ŷ )

LLLT(x,y;λ
k), (55)

2. update
λ

k+1 = λ
k +β (yk−Hxk).

The solution to sub-minimization problem w.r.t. x

Given y, we are going to solve the following minimization problem

min
x∈X

{
α

2
‖Kx−d‖2−〈λ k,Hx〉+ β

2
‖y−Hx‖2

}
, (56)

the first-order optimal condition of which gives us a linear equation as follows

(αK∗K +βH∗H)x = αK∗d +H∗(λ k +βy). (57)
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This equation can solved by well-developed linear solvers such as FFT and CG.

The solution to sub-minimization problem w.r.t. y

Given x, we are going to solve the following minimization problem

min
y∈Ŷ

{
RHO(y)+(λ k,y)+

β

2
‖y−Hx‖2

}
, (58)

the closed form solution of which is

yi, j = max
(

0,1− 1
β |ηi, j|

)
ηi j, (59)

where η = Hx− λ k

β
∈ Ŷ . We mention that the solution (59) is a high dimensional

version of (13), which can be also derived from the geometric method.
According to (57) and (59), we then use an iterative procedure to alternatively

calculate x and y ; see Algorithm 0.11.

Algorithm 0.11: Augmented Lagrangian method for the LLT model—solve the
minimization problem (55).

Initialization: xk,0 = xk−1,yk,0 = yk−1;
Iteration: For l = 0,1,2, . . . ,L−1:

• compute xk,l+1 by solving (57) for y = yk,l ;
• compute yk,l+1 from (59) for x = xk,l+1;

Output: xk = xk,L,yk = yk,L.

We mention that the convergence results of the augmented Lagrangian method
for the LLT model are straightforward as in Wu and Tai (2010) and we omit the
details.

Augmented Lagrangian method for total generalized variation
model

Total generalized variation (TGV) is a very successful generalization of total vari-
ation, which involves high order derivatives to reduce staircase effect Bredies et al
(2010); Bredies and Valkonen (2011). In this section, we consider the following
discrete second-order total generalized variation Bredies et al (2010); Bredies and
Valkonen (2011) based image restoration model
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min
x∈X ,w∈Y

{
1
2
‖Kx−d‖2 +α1R(∇x−w)+α0RHO(E w)

}
, (60)

where R(∇x−w) is defined by replacing ∇x by ∇x−w in (3), E denotes a distribu-
tional symmetrized gradient operator

E : Y → Ŷ

w = (w1,w2)→ E w =
1
2
(∇w+(∇w)T ),

with

(E w)i j =
1
2
(∇w+(∇w)T )i j

=

(
(D̊+

1 w1)i j
1
2 ((D̊

+
2 w1)i j +(D̊+

1 w2)i j)
1
2 ((D̊

+
2 w1)i j +(D̊+

1 w2)i j) (D̊+
2 w2)i j

)
,

and RHO(·) is defined in (51). Similarly, by using the inner products of Ŷ and Y
and the definitions of the finite difference operators the adjoint operator of −E is as
follows

div2 : Ŷ → Y

z =
(

z1 z3

z3 z2

)
→ div2 z,

where

div2 z =
(

D̊−1 z1 + D̊−2 z3

D̊−1 z3 + D̊−2 z2

)
with

(div2 z)i j =

(
(D̊−1 z1)i j +(D̊−2 z3)i j

(D̊−1 z3)i j +(D̊−2 z2)i j

)
.

Augmented Lagrangian based methods for total generalized variation related
models can be found in Shirai and Okuda (2014); Liu (2016); Gao et al (2018).
Here, we propose the augmented Lagrangian method to solve (60). We first intro-

duce two auxiliary variable y = (y1,y2) ∈Y and z =
(

z1 z3

z3 z2

)
∈ Ŷ and transform it

into an equivalent constrained optimization problem

min
x∈X ,w∈Y ,y∈Y ,z∈Ŷ

{
GTGV(x,y,z) =

1
2
‖Kx−d‖2 +α1R(y)+α0RHO(z)

}
s.t.

(
y
z

)
=

(
∇ −I2

E

)(
x
w

)
.

(61)

We then define the augmented Lagrangian function as follows
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LTGV(x,w,y,z;λy,λz) =
1
2
‖Kx−d‖2 +α1R(y)+α0RHO(z)

+

〈(
λy
λz

)
,

(
y
z

)
−
(

∇ −I2
E

)(
x
w

)〉
+

1
2

∥∥∥∥(y
z

)
−
(

∇ −I2
E

)(
x
w

)∥∥∥∥2

S

,

(62)

where
(

λy
λz

)
is the Lagrange multiplier and S =

(
βyI2

βzÎ2

)
with the identify

operator Î2 : Ŷ → Ŷ , and consider the saddle point problem

Find (x∗,w∗,y∗,z∗,λ ∗y ,λ
∗
z ) ∈X ×Y ×Y × Ŷ ×Y × Ŷ

s.t. LTGV(x∗,w∗,y∗,z∗;λy,λz)≤LTGV(x∗,w∗,y∗,z∗;λ
∗
y ,λ

∗
z )≤LTGV(x,w,y,z;λ

∗
y ,λ

∗
z ),

∀(x,w,y,z,λy,λz) ∈X ×Y ×Y × Ŷ ×Y × Ŷ . (63)

Finally, the iterative algorithm for seeking a saddle point is given by Algorithm
0.12.

Algorithm 0.12: Augmented Lagrangian method for TGV model

Initialization:
(

x−1

w−1

)
=

(
0
0

)
,
(

y−1

z−1

)
=

(
0
0

)
,
(

λ 0
y

λ 0
z

)
=

(
0
0

)
;

Iteration: For k = 0,1, . . .:

1. compute (xk,wk,yk,zk) from
(

λ k
y

λ k
z

)
, i.e.,

(xk,wk,yk,zk)≈ arg min
(x,w,y,z)∈X ×Y ×Y ×Ŷ

LTGV(x,w,y,z;λ
k
y ,λ

k
z ), (64)

2. update (
λ k+1

y
λ k+1

z

)
=

(
λ k

y
λ k

z

)
+

(
βy(yk−∇xk +wk)

βz(zk−E wk)

)
.

The solution to sub-minimization problem w.r.t. (x,w)

Given
(

y
z

)
, we concern with the following minimization problem
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min
(x,w)∈X ×Y

{
1
2
‖Kx−d‖2−

〈(
λ k

y
λ k

z

)
,

(
∇ −I2

E

)(
x
w

)〉
+

1
2

∥∥∥∥(y
z

)
−
(

∇ −I2
E

)(
x
w

)∥∥∥∥2

S

}
. (65)

This problem is a quadratic optimization problem, whose optimal condition gives a
linear system equations(

K∗K−βy∆ βy div
−βy∇ βy−βz div2 E

)(
x
w

)
=

(
K∗d−div(λ k

y +βyy)
−λ k

y −βyy−div2(λ
k
z +βzz)

)
,

i.e., 
(K∗K−βyD̊−1 D̊+

1 −βyD̊−2 D̊+
2 )x+βyD̊−1 w1 +βyD̊−2 w2 = g1,

−βyD̊+
1 x+(βyI −βzD̊−1 D̊+

1 −
βz

2
D̊−2 D̊+

2 )w
1− βz

2
D̊−2 D̊+

1 w2 = g2,

−βyD̊+
2 x− βz

2
D̊−1 D̊+

2 w1 +(βyI −
βz

2
D̊−1 D̊+

1 −βzD̊−2 D̊+
2 )w

2 = g3,

(66)

where

g1 = K∗d− D̊−1
(
(λ k

y )
1 +βyy1)− D̊−2

(
(λ k

y )
2 +βyy2),

g2 =−(λ k
y )

1−βyy1− D̊−1
(
(λ k

z )
1 +βzz1)− D̊−2

(
(λ k

z )
3 +βzz3),

g3 =−(λ k
y )

2−βyy2− D̊−1
(
(λ k

z )
3 +βzz3)− D̊−2

(
(λ k

z )
2 +βzz2).

This linear system equations with periodic boundary condition can be efficiently
solved by Fourier transform via FFT implementation Yang et al (2009a); Zhang and
Wu (2011). Firstly, we apply FFTs to both sides of (66),a11 a12 a13

a21 a22 a23

a31 a32 a33

 F (x)
F (w1)
F (w2)

=

F (g1)
F (g2)
F (g3)

 . (67)

where ai, j,(i, j = 1, . . .3) are Fourier coefficients of the operators in the left side
of (66). Secondly, we solve the resulting systems by block Gaussian elimination
method for F (x), F (w1) and F (w2). Finally, we apply inverse FFTs to obtain x
and w = (w1,w2).

The solution to sub-minimization problem w.r.t. (y,z)

Given
(

x
w

)
, we concern with the following minimization problem
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min
(y,z)∈Y ×Ŷ

{
α1R(y)+α0RHO(z)+

〈(
λ k

y
λ k

z

)
,

(
y
z

)〉

+
1
2

∥∥∥∥(y
z

)
−
(

∇ −I2
E

)(
x
w

)∥∥∥∥2

S

}
. (68)

It can be separated into two independent minimization problems:

• y-subproblem:

min
y∈Y

{
α1R(y)+ 〈λ k

y ,y〉+
βy

2
‖y−∇x+w‖2

}
, (69)

• z-subproblem:

min
z∈Ŷ

{
α0RHO(z)+ 〈λ k

z ,z〉+
βz

2
‖z−E w‖2

}
. (70)

The problem (69) and (70) have the closed form solutions

yi, j = max
(

0,1− α1

βy|ηi, j|

)
ηi, j, and zi, j = max

(
0,1− α0

βz|ξi, j|

)
ξi, j, (71)

where

η = ∇x−w−
λ k

y

βy
∈ Y , and ξ = E w−

λ k
z

βz
∈ Ŷ .

After knowing the solutions of the subproblems (65) and (68), we use the follow-
ing alternative minimization procedure to solve (64); See Algorithm 0.13.

Algorithm 0.13: Augmented Lagrangian method for TGV model–solve the
minimization problem (64)

Initialization:
(

xk,0

wk,0

)
=

(
xk−1

wk−1

)
,
(

yk,0

zk,0

)
=

(
yk−1

zk−1

)
;

Iteration: For l = 0,1, . . . ,L−1:

• compute
(

xk,l+1

wk,l+1

)
from (67) for

(
y
z

)
=

(
yk,l

zk,l

)
;

• compute
(

yk,l+1

zk,l+1

)
from (71) for

(
x
w

)
=

(
xk,l+1

wk,l+1

)
;

Output:
(

xk

wk

)
=

(
xk,L

wk,L

)
,
(

yk

zk

)
=

(
yk,L

zk,L

)
.
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Augmented Lagrangian method for Euler elastic based model

As basic geometric measurements of curves, both length and curvatures are natu-
ral regularities that are widely used in various image processing problems. Euler’s
elastica is defined as the line energy for a smooth planar curves γ

E(γ) =
∫

γ

(a+bκ
2)ds, (72)

where κ is the curvature of the curve, s is arc length, a,b are positive constants. By
summing up the Euler’s elastica energies of all the level sets for an image x, it gives
the following energy for image denoising task

min
x

REE(κ(x),∇x)+
1
2
‖Kx−d‖2, (73)

where κ(x) = div( ∇x
|∇x| ) and REE(κ(x),∇x) is defined by

REE(κ(x),∇x) = ∑
1≤i, j≤N

(
a+bκ

2(xi, j)
)
|(∇x)i, j|.

Euler’s elastica regularization has lots applications in shape and image process-
ing. However, the non-convexity, the non-smoothness and the nonlinearity of the Eu-
ler’s elastica energy make its minimization a challenging task. Chan, Kang and Shen
Chan et al (2002) developed a computational scheme based on numerical PDEs for
inpainting problem. Bae, Shi and Tai Bae et al (2010) presented an efficient mini-
mization algorithm based on graph cuts for minimizing the Euler’s elastica energy.
Tai, Hahn and Chung Tai et al (2011) proposed an augmented Lagrangian method
based on the operator splitting and relaxation techniques, which greatly improved
the efficiency of the Euler’s elastica model. Since then, operator splitting and aug-
mented Lagrangian method have been extensively studied for Euler’s elastica Duan
et al (2013); Zhang et al (2017b); Yashtini and Kang (2016). Recent advances in-
clude functional lifting to get a convex, lower semi-continuous, coercive approxima-
tion of the Euler’s elastica energy Bredies et al (2015), a lifted convex representation
of curvature depending energies in the roto-translational space followed by primal-
dual scheme Chambolle and Pock (2019), and a Lie operator-splitting based time
discretization scheme Deng et al (2019). In Tai et al (2011), Euler’s elastica regular-
ized model (73) is reformulated as the following constrained minimization problem

min
x,y,n,m

REE(divn,y)+
1
2
‖Kx−d‖2 + IM (m)

s.t. y = ∇x, n = m, |y|= m · y,
(74)

where IM (·) is an indicator function of the set
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M = {mi j : |mi, j| ≤ 1, ∀ 1≤ i, j ≤ N}.

Note that the variable m was introduced to relax the constraint on variable n. By
requiring m to be lain in the set M , the term |y|− y ·m is guaranteed non-negative,
which make the sub-minimization problem w.r.t. m easy to handle with. We can
further define the augmented Lagrangian functional as follows

LEE(x,y,n,m;λy,λn,λm) = REE(divn,y)+
1
2
‖Kx−d‖2 + IM (m)

+ 〈λy,y−∇x〉+
βy

2
‖y−∇x‖2 + 〈λn,n−m〉+ βn

2
‖n−m‖2

+ 〈λm, |y|−m · y〉+ 〈|y|−m · y,βm〉,

(75)

where λy, λn, λm are the Lagrange multipliers and βy, βn, βm are positive parameters.
The iterative algorithm is used to find a point satisfying the first-order condition; see
Algorithm 0.14.

Algorithm 0.14: Augmented Lagrangian method for Euler elastic model
Initialization: x−1 = 0, y−1 = 0, n−1 = 0, m−1 = 0, λ 0

y = 0, λ 0
n = 0, λ 0

m = 0;
Iteration: For k = 0,1, . . .:
1. Compute (xk,yk,nk,mk) from

(xk,yk,nk,mk)≈ arg min
(x,y,n,m)

LEE(x,y,n,m;λ
k
y ,λ

k
n ,λ

k
m), (76)

2. Update λ k+1
y

λ k+1
n

λ k+1
m

=

λ k
y

λ k
n

λ k
m

+

 βy(yk−∇xk)
βn(nk−mk)

βm(|yk|−mk · yk)



Before we discuss the solution to the minimization problem (76), we define a
staggered grid system in Figure 2; see more details of the implementation in Tai
et al (2011). We separate the minimization problem (76) into subproblems to pursue
the solutions in an alternative mechanism.

The solution to sub-minimization problem w.r.t. x

Given y, we solve the following minimization problem

min
x

1
2
‖Kx−d‖2 +

βy

2
‖y−∇x‖2−〈λy,∇x〉, (77)

the first-order optimal condition of which gives us

(K∗K−βy∆)x = K∗d−βy divy−divλy.
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(i-1,j-1) (i,j-1) (i+1,j-1)

(i-1,j) (i,j) (i+1,j)

(i-1,j+1) (i,j+1) (i+1,j+1)

(i,j)

(i,j)

Fig. 2: The rule of indexing variables in the augmented Lagrangian functional (75):
x, z, λz, λm are defined on •-nodes. The first and second component of y, n, m, λy,
λn are defined on ◦-nodes and �-node, respectively.

Fast numerical methods can be used to solve the above equation such as fast Fourier
transform (FFT) and iterative schemes.

The solution to sub-minimization problem w.r.t. y

Given x, n and m, we have the subproblem of y as follows

min
y
〈a+b(divn)2, |y|〉+ 〈λy,y〉+ 〈λm +βm, |y|−m · y〉+

βy

2
‖y−∇x‖2, (78)

which can be simplified as

min
y

βy

2

∥∥∥y−
(

∇x+(
λm +βm

βy
)m−

λy

βy

)∥∥∥2
+
〈
|y|,a+b(divn)2 +λm +βm

〉
.

Such the L1 regularized minimization problem can be efficiently solved by the
closed-form solution.

The solution to sub-minimization problem w.r.t. m

Given n and y, the sub-minimization problem of variable m becomes

min
m

IM (m)−〈λm,m〉+
βn

2
‖n−m‖2−〈(λm +βm)y,m〉. (79)

We can reformulate the above minimization into a quadratic problem as follows
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min
m

IM (m)+
βn

2

∥∥∥m− (λm +βm)y+λm

βn
−n
∥∥∥2
,

the optimal solution of which can be achieved by performing the one-step projection
to the solution of the quadratic minimization.

The solution to sub-minimization problem w.r.t. n

Given m and y, we are going to solve the following minimization problem of n

min
n
〈b(divn)2, |y|〉+ 〈λn,n〉+

βn

2
‖n−m‖2, (80)

the Euler-Lagrange equation of which is

−2∇(b|y|divn)+βn(n−m)+λn = 0,

and can be solved by a frozen coefficient method for easier implementation Tai et al
(2011); Yashtini and Kang (2016).

Augmented Lagrangian method for mean curvature-based model

Mean curvature-based model Zhu and Chan (2012) considers an image restoration
problem as a surface smoothing task. A basic model is as follows

min
x

∫
Ω

∣∣∣div
(

∇x√
1+ |∇x|2

)∣∣∣dx+
α

2

∫
Ω

(Kx−d)2dx. (81)

Originally, the smoothed mean curvature model (81) was numerically solved by
the gradient descent method, which involves high order derivatives and converges
slowly in practice. Zhu, Tai and Chan Zhu et al (2013a) developed an augmented La-
grangian method for a mean curvature based image denoising model (81), with sim-
ilar ideas further studied in Sun and Chen (2014); Myllykoski et al (2015); Zhang
(2018). Following Zhu et al (2013a), we rewrite the mean curvature-regularized
model into the following constrained minimization problem

min
x,y,q,n,m

RMC(q)+
α

2
‖Kx−d‖2 + IM (m)

s.t. y = 〈∇x,1〉, q = divn, n = m, |y|= y ·m,
(82)

where RMC(q) is defined as

RMC(q) = ∑
1≤i, j≤N

|qi, j|.
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The corresponding augmented Lagrangian functional for the constrained minimiza-
tion problem is defined as

LMC(x,y,q,m,n;λy,λq,λn,λm) = RMC(q)+
α

2
‖Kx−d‖2 + IM (m)

+
〈
λy,〈∇x,1〉

〉
+

βy

2
‖y−〈∇x,1〉‖2 + 〈q−∇ ·n〉+

βq

2
‖q−∇ ·n〉

+ 〈λn,n−m〉+ βn

2
‖n−m‖2 + 〈λm, |y|− y ·m〉+βm〈|y|− y ·m〉,

(83)

where λy,λq,λn,λm are Lagrange multipliers, and βy,βq,βn,βm are positive param-
eters. The iterative algorithm is used to find a point satisfying the first-order condi-
tion; see Algorithm 0.15.

Algorithm 0.15: Augmented Lagrangian method for mean curvature-based
model

Initialization: x−1 = 0, y−1 = 0, q−1 = 0, n−1 = 0, m−1 = 0, λ 0
y = 0, λ 0

q = 0, λ 0
n = 0,

λ 0
m = 0;

Iteration: For k = 0,1, . . .:
1. Compute (xk,yk,qk,nk,mk) from

(xk,yk,qk,nk,mk)≈ arg min
(x,y,q,n,m)

LMC(x,y,q,n,m;λ
k
y ,λ

k
q ,λ

k
n ,λ

k
m), (84)

2. Update 
λ k+1

y
λ k+1

q
λ k+1

n
λ k+1

m

=


λ k

y
λ k

q
λ k

n
λ k

m

+


βy(yk−〈∇xk,1〉)
βq(qk−∇ ·nk)

βn(nk−mk)
βm(|yk|− yk ·mk)



We can separate the minimization problem (84) into subproblems to obtain the
solutions in an alternative way. Similarly as discussed for Euler’s elastica model,
the minimizers to the variable y, q and m have closed-form solutions, while the
minimizers to the variable x and n are obtained by solving the associated Euler-
Lagrange equations by either FFT or fast iterative schemes. Therefore, we omit the
details here.

Numerical Experiments

In this section, we give some numerical results of augmented Lagrangian methods
for solving the total variation related image restoration models. For each model, we
test only one image by considering the limit space. For more examples, please refer
to literatures Tai and Wu (2009); Wu and Tai (2010); Wu et al (2011); Chan et al
(2013); Tai et al (2011); Zhu et al (2013a). We perform the numerical experiments
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in MATLAB R2018A (Version 9.4) on a MacBook Pro with 2.3 GHz dual-core Intel
Core i5 processor and 8GB memory. For each experiment, we stop the iteration until
the following criterion∥∥xk+1− xk

∥∥
‖xk‖

< 1e−3( for multichannel case

∥∥xxxk+1− xxxk
∥∥

‖xxxk‖
< 1e−3)

satisfies. We measure the quality of the restored images by the improvement of
signal to noise ratio (ISNR)

ISNR(x∗) = 10log10
‖x− x∗‖
‖x−d‖

,

where x is the ground truth image, d is the observed image and x∗ is the recovered
image. For multichannel case, we have the similar definition of ISNR. For each
model, the parameter α is tuned to obtain the highest ISNR. The performances of
augmented Lagrangian methods are demonstrated in Figure 3–Figure 11.

(a) Original.
Size: 512×512

(b) Blurry&Noisy (c) ALM for TV-L2

ISNR:6.83dB t=1.60s

Fig. 3: Augmented Lagrangian method (ALM) for solving TV-L2 model. (b) is
a corruption of (a) with Gaussian blur fspecial(’gaussian’,11,3) and
Gaussian noise with variation 1e−2; (c) is the recovered result.

Figure 3 shows the results of augmented Lagrangian method for solving TV-
L2 model. In this experiment, we corrupt the clean image (size 512× 512) with
Gaussian blur and Gaussian noise. We set the parameters by following the recom-
mendations in Wu and Tai (2010) and let β = 10. We report the recovered image
and its ISNR in Figure 3(c). We also record the used CPU time t when the algorithm
terminates. We can see that augmented Lagrangian method can solve TV-L2 model
efficiently and obtain high quality recovered image.

Figure 4 shows the results of augmented Lagrangian method for solving TV-L2

model with box constraint and the comparisons with TV-L2 model. In this exper-
iment, the degraded image (size 217× 181) is corrupted with Gaussian blur and
Gaussian noise. We set the parameters β = βy = 10 and βz = 400. We report the
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(a) Original.
Size: 217×181

(b) Blurry&Noisy (c) ALM for TV-L2

ISNR:3.77dB t=0.39s
(d) ALM for TVBox
ISNR:4.26dB t=0.78s

Fig. 4: Augmented Lagrangian method for solving TV-L2 model with
box constraint (TVBox). (b) is a corruption of (a) with Gaussian blur
fspecial(’gaussian’,5,1.5) and Gaussian noise with variation 1e− 3;
(c) and (d) are the recovered results.

recovered images and their ISNRs in Figure 4(c) and (d). We also record the used
CPU times t when the algorithms terminate. We can see that augmented Lagrangian
method can solve TV-L2 model with box constraint efficiently and obtain high qual-
ity recovered image. The TV-L2 model with box constraint gains higher ISNR than
the TV-L2 model.

(a) Original.
Size: 512×512

(b) Blurry&Noisy
50% salt & pepper

(c) ALM for TV-L1

ISNR:20.34dB t=4.7s

Fig. 5: Augmented Lagrangian method for solving TV-L1 model. (b) is a corrup-
tion of (a) with Gaussian blur fspecial(’gaussian’,11,3) and 50% salt &
pepper noise; (c) is the recovered result.

Figure 5 and Figure 6 show the results of augmented Lagrangian methods for
TV-L1 model and TV-KL model. In the experiment for TV-L1 model, the observed
image (size 512×512) is degraded with Gaussian blur and 50% salt & pepper noise.
We set βy = 20 and βz = 100. In the experiment for TV-KL model, the observed
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(a) Original.
Size: 256×256

(b) Blurry&Noisy
Poisson

(c) ALM for TV-KL
ISNR:14.89dB t=2.5s

Fig. 6: Augmented Lagrangian method for solving TV-KL model. (b) is a corruption
of (a) with Gaussian blur fspecial(’gaussian’,11,3) and Poisson noise;
(c) is the recovered result.

image (size 256×256) is corrupted with Gaussian kernel and Poisson noise. We let
βy = 20 and βz = 20. We can see that augmented Lagrangian methods can recover
high quality images in these two experiments and the CPU costs are low.

(a) Lena in color.
Size: 512×512×3

(b) Blurry&Noisy (c) ALM for MTV
ISNR:2.99dB t=6.21s

Fig. 7: Augmented Lagrangian method for multichannel TV (MTV)
restoration. (b) is a corruption of (a) with within-channel Gaussian blur
fspecial(’gaussian’,21,5) and Gaussian noise with variation 1e−3; (c)
is the recovered result.

Figure 7 shows the results of augmented Lagrangian method for multichannel TV
restoration. In this experiment, the degraded image is generated by first blurring the
ground truth image (size 512×512×3) with within-channel Gaussian blur and then
adding Gaussian noise to the blurred image. We set β = 100. We also can see that
augmented Lagrangian method can restore high quality multichannel image with a
low CPU cost.
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(a) Original.
Size: 384×512

(b) Blurry&Noisy

(c) ALM for TV-L2

ISNR:8.87dB t=1.08s
(d) ALM for LLT

ISNR:8.99dB t=2.26s

Fig. 8: Augmented Lagrangian method for solving LLT model. (b) is a corruption
of (a) with Gaussian blur fspecial(’gaussian’,11,3) and Gaussian noise
with variation 1e−2; (c) and (d) are the recovered results.

Figure 8 and Figure 9 show the results of augmented Lagrangian methods for
solving LLT model and TGV model and the comparisons with TV-L2 model. In
the experiment for LLT model, the degraded image (size 384× 512) is generated
with Gaussian blur and Gaussian noise. We set β = 10. In the experiment for TGV
model, the degraded image (size 256× 256) is also generated with Gaussian blur
and Gaussian noise. We let (α0,α1) = (1.0,0.1), βy = 10 and βz = 20. We report
the recovered images and their ISNRs in Figure 8(c)-(d) and Figure 9(c)-(d). We
also record the used CPU times t when the algorithms terminate. We can see that
augmented Lagrangian method can solve LLT model and TGV model efficiently
and obtain high quality recovered images. The LLT model and TGV model, which
use high order regularization, can suppress the staircase effect well.

Figure 10 and Figure 11 show the results of augmented Lagrangian methods for
solving Euler’s elastica based image denoising model and mean curvature based
image denoising model. Both these two models include curvature term in the regu-
larization and are non-convex and highly nonlinear. We generate the degraded im-
ages Figure 10(b) and Figure 11(b) by adding Gaussian noise to the clean images
Figure 10(a) and Figure 11(a) respectively. In the experiment for Euler’s elastica
based model, we use βy = 200, βn = 500 and βm = 1. In the experiment for mean
curvature based model, we use βy = 40, βq = 1e5, βn = 1e5 and βm = 40. We report
the recovered images and their ISNRs and show the CPU costs in Figure 10(c) and
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(a) Original.
Size: 256×256

(b) Blurry&Noisy

(c) ALM for TV-L2

ISNR:6.68dB t=0.40s
(d) ALM for TGV

ISNR:6.76dB t=1.84s

Fig. 9: Augmented Lagrangian method for solving TGV model. (b) is a corruption of
(a) with Gaussian blur fspecial(’gaussian’,5,1.5) and Gaussian noise
with variation 1e−2; (c) and (d) are the recovered results.

(a) Original.
Size: 100×100

(b) Noisy (c) ALM for EE
ISNR:9.37dB t=1.52s

Fig. 10: Augmented Lagrangian method for solving Euler’s elastica (EE) based im-
age denoising model. (b) is a corruption of (a) with Gaussian noise with variation
1e−2; (c) is the recovered result.
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(a) Original.
Size: 256×256

(b) Noisy (c) ALM for MC
ISNR:8.10dB t=4.17s

Fig. 11: Augmented Lagrangian method for solving mean curvature (MC) based
image denoising model. (b) is a corruption of (a) with Gaussian noise with variation
1e−2; (c) is the recovered result.

Figure 11(c). We can see that augmented Lagrangian methods can solve non-convex
curvature based models efficiently and obtain high quality recovered images.

Conclusions

In this survey, we have reviewed variable splitting and augmented Lagrangian meth-
ods for total variation related image restoration models. Due to the closed form so-
lutions of subproblems and fast linear solvers like the FFT implementations, these
methods are efficient for both total variation related convex models and non-convex
Euler’s elastica and mean curvature based models.
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