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Abstract This paper is devoted to the derivation and analysis of accurate and efficient Perfectly Matched
Layers (PML) or efficient absorbing layers for solving fractional Laplacian equations within Initial Bound-
ary Value Problems (IBVP). Two main approaches are derived: we first propose a Fourier-based pseu-
dospectral method, and then present a real space method based on an efficient computation of the
fractional Laplacian with PML. Some numerical experiments and analytical results are proposed along
the paper to illustrate the presented methods.

Keywords fractional partial differential equations; perfectly matched layers; Fourier pseudospectral
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1 Introduction

During the last decades, there was a growing interest in the computational physics community to get
access to efficient and simple fractional equation solvers due to recent development of differential models
involving the fractional Laplacian, like e.g. in quantum physics, fluid dynamics, solid mechanics, epidemi-
ology. We refer to [17,18,23,27,29,35,37,44] for some applications. This paper deals with the derivation
and analysis of accurate and efficient numerical methods for fractional Laplacian equations with Perfectly
Matched Layers (PML) within Initial Boundary Value Problems (IBVP). The main focus on this paper is
hence the discretization of fractional equations on bounded domains or truncated infinite domains, avoid-
ing spurious wave reflections thanks to PML or accurate absorbing layers. Two approaches are proposed.
First, we develop a pseudospectral scheme, extending some of the ideas presented in [2,4,5,8] to fractional
Laplacian equations with PML (see hereafter some technical details and references on PML). We next
introduce a relatively simple real space scheme based on an efficient evaluation of the fractional Laplacian
with PML. The main two difficulties addressed below for the approximation of the fractional Laplacian
equations are i) the fact that fractional Laplacians are non-local operators which make their approxi-
mation potentially computationally expensive, ii) the fact that, on bounded domains, the combination
with absorbing layers/absorbing boundary conditions require some special cares. We are simultaneously
interested in the derivation of methods which are efficient (in this regard, absorbing boundary conditions
may not be appropriate [9]) and accurate, justifying the use of PML (see e.g. [12,13,14,15,19,20,32,33,
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42,43]) and pseudospectral methods (see [2,3,4,5,8,10,34,38,40,41]). On unbounded domains, the latter
allows for writing fractional Laplacians as power functions in Fourier space. Moreover, following simple
ideas developed in [8] for solving PDEs with non-constant coefficients by using FFTs, it is possible to
combine pseudospectral methods with PML. Let us remark that finite-difference/volume/element meth-
ods can also be implemented. The latter may however require to compute the real power of a matrix
approximating the Laplace operator, at least when Dirichlet boundary conditions are imposed. The real
power of a matrix is often numerically computed thanks to the approximation of a Cauchy integral having
a contour enclosing the matrix spectrum [6,25,30,36]. Alternatively, an efficient differential method [7,
25] is proposed. Moreover the combination with PML is easily achieved thanks to rational approximants
such as Padé’s approximants [31].

We consider two-dimensional time-dependent Fractional Laplace Equations (FLE) [26] of the following
form i∂tu(t,x) +

∑
α∈R

vα(t,x)(−4)αu(t,x) = 0, (t,x) ∈ [0, T ]× R2,

u(t = 0,x) = u0(x), x ∈ R2.

(1)

In the above system, {vα}α∈R are supposed to be regular real- or purely complex-valued functions
and R is a finite set of strictly positive real numbers. System (1) includes e.g. fractional diffusion and
Schrödinger-like equations. The proposed methods can be easily be extended in 3-d. Among the many
definitions of fractional derivatives and fractional Laplacians [35], we select the Fourier spectral definition
(also referred to as the Riesz derivative) of the fractional Laplacian, which reads

(−4)αu = F−1(|ξ|2αF(u)(ξ)),

where ξx (respectively ξy) is the Fourier dual variable in direction x (respectively y), ξ = (ξx, ξy),
|ξ|2 := |ξx|2 + |ξy|2, F(u) denotes the two-dimensional Fourier transform of u and F−1 is the associated
inverse Fourier transform. For any u ∈ S(R2) (i.e. the Schwartz’s space of rapidly decaying C∞-functions
[39]) and α ∈ (0, 1), we have (−4)αu ∈ L2(R2). An equivalent definition [26] can be stated, for α ∈ (0, 1)
and any u ∈ S(R2), as

(−4)αu(x) = C(α)p.v.

∫
R2

u(x)− u(y)

|x− y|2+2α
dy = C(α) lim

ε→0+

∫
R2\Bε(x)

u(x)− u(y)

|x− y|2+2α
dy,

where Bε(x) is the ball of radius ε and center x, C(α) is the constant defined by

C(α) :=
(∫

R2

1− cos(ξx)

|ξ|2+2α
dξ
)−1

, (2)

and p.v. denotes the principal value. In fact, it is proven in [26] that the fractional Laplacian can also be
rewritten, for α ∈ (0, 1) and any u ∈ S, as

(−4)αu(x) = −
1

2
C(α)p.v.

∫
R2

u(x+ y)− 2u(x) + u(x− y)

|y|2+2α
dy

= C(α) lim
ε→0+

∫
R2\Bε(x)

u(x)− u(y)

|x− y|2+2α
dy .

Although nonlocal, it could be interesting to numerical investigate this equality. In the following, the
equation under consideration is approximated on an open two-dimensional bounded rectangular physical
domain denoted by DPhy. Hereafter, we present the standard PML-framework for solving PDE on a
bounded domain [12,13]. In order to absorb the waves at the boundary of the computational domain, we
add a layer DPML surrounding DPhys. The overall computational domain is denoted: D = DPhy ∪ DPML.
In two dimensions, one gets D = [−Lx, Lx]× [−Ly, Ly] and DPhys = [−L∗x, L∗x]× [L∗y, L

∗
y], where Lx,y >

L∗x,y. Standard Perfectly Matched Layers (PMLs) methods [9] require a stretching of the real spatial
coordinates using the following change of variables

ν̃ = ν + eiθ
∫ ν

L∗ν

σ̃ν(s)ds, (3)
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with ν = x, y, and where the absorbing functions are defined by

σ̃ν(ν) =

{
σν(|ν| − Lν), L∗ν 6 |ν| < Lν ,
0, |ν| < L∗ν .

The function Sν is such that: Sν(ν) := 1 + eiθν σ̃(ν) for some angle θν ∈ (0, π/2). The function Sν then
allows for an absorption of the waves by the way of the PML. We then define the (possibly fractional)
differential operator along the ν-direction as

∂γν 7→
1

Sγν (ν)
∂γν =

1(
1 + eiθσ̃(ν)

)γ∂γν , (4)

where γ is a given derivation order. In the following, we use the following standard polynomial absorption
profiles

Type I: σ0(ν + δν), Type II: σ0(ν + δν)2. (5)

Alternative techniques can be found such as the ones developed in [16,21,22]. The goal of the paper is
to focus on how to implement PML and absorbing layers into the numerical schemes for FLE but not
to have a full numerical study of the optimization of the tuning parameters. In particular, we propose
efficient and accurate methods for solving fractional Laplace-based equations on bounded domains. In
particular, in all the examples the parameters are fixed in order to show how the methods perform, but
the optimization study is not addressed. Let us now define the Laplacian operator with PML through
its total symbol [4] in the Fourier space

σ(−4PML) = −σ(
1

Sx
∂x(

1

Sx
∂x) +

1

Sy
∂y(

1

Sy
∂y))

= −σ(
1

S2
x

∂2x +
1

Sx
∂x(

1

Sx
)∂x +

1

S2
y

∂2y +
1

Sy
∂y(

1

Sy
)∂y)

=
1

S2
x

|ξx|2 + i
1

Sx
∂x(

1

Sx
)ξx +

1

S2
y

|ξy|2 + i
1

Sy
∂y(

1

Sy
)ξy .

(6)

By analogy, we also introduce the 2-d PML (also called Fractional PML in [8]) Laplacian operator
(−4)αPML with variable coefficients based on the pseudodifferential operator definition [39]

(−4)αPMLu := F−1(aα(x, ξ)F(u)(ξ)) := Op(aα)u,

with the symbol
aα(x, ξ) = (−σ(4PML))α,

and where P = Op(σ) designates the pseudodifferential operator with symbol σ := σ(P ). However, from
a practical point of view, in particular when α is not an integer, it is no longer possible to efficiently
split the real space and Fourier variables in order to reconstruct a “simple” absorbing operator. In the
latter case, a direct implementation would indeed require several non-trivial approximations including
convolution products.

In this paper, we will propose two strategies to solve IBVP for fractional Laplacian equations using
PML-techniques, which allow for i) efficient and accurate computations (spectral convergence when using
FFTs), ii) while avoiding artificial wave reflections at the domain boundary and possible side-effects due
to periodic boundary conditions.

This paper is organized as follows. A Fourier-based method for solving fractional Laplacian equa-
tions on bounded domains using PMLs is derived in Section 2. While the equation is computed using
FFTs, PMLs are evaluated thanks to Padé’s approximants in Subsection 2.2. Section 3 is devoted to the
derivation and analysis of a finite-difference approach for solving fractional Laplacian and Schrödinger-
type equations. The Laplace operator is here approximated by a standard finite-difference scheme,
and fractional Laplace operators are computed explicitly through the real power of discrete Laplace
operator/matrix based on the solution to a differential system (Subsection 3.1). This leads to some
well-adapted schemes for solving FLE in Subsection 3.2. The computational complexity of the algorithm
is analyzed in Subsection 3.3 while the implementation of the PML is detailed in Subsection 3.4. We
conclude the paper in Section 4. In addition, we provide some details about our Padé’s approximants
approach for the PML in Appendix A. An alternative approach based on the approximation of a Cauchy
integral is also discussed in Appendix B.
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2 Pseudospectral method for fractional Laplace equations with PMLs

In this section, we derive a study of a very efficient Fourier-based method for solving IBVP with fractional
Laplacian. The counterpart of Fourier methods, as we are interested in IBVP (thus bounded domains),
is i) periodic effects and ii) artificial wave reflections at the domain boundary. In order to deal with both
issues, we propose to introduce PML-techniques which moreover do not complexify much the overall
computation of the IBVP. Regarding boundary issues, we refer e.g. to [16,21,24].

2.1 Fractional Laplacian equations with time-dependent coefficients

Let us first assume that the coefficients are only time-dependent, which allows us to perform a simple
transformation on the equation and to introduce classical PMLs for the Laplacian. We consider{

i∂tu+ c(t)(−4)αu = 0, (t,x) ∈ [0, T ]× R2,
u(0,x) = u0(x), x ∈ R2,

(7)

with α ∈ (0, 1), (t,x) in [0, T ] × R2 and c : t 7→ c(t) being a smooth real time-dependent function. We
formally compose the equation with (−4)1−α, leading to{

i∂t(−4)1−αu− c(t)4u = 0, (t,x) ∈ [0, T ]× R2,
u(0,x) = u0(x), x ∈ R2.

(8)

A PML-Laplacian formulation is introduced in [0, T ] × [−Lx, Lx] × [−Ly, Ly] with periodic boundary
conditions, that is 

i∂t(−4)1−αu− c(t)4PMLu = 0, (t,x) ∈ [0, T ]×D,
u(0,x) = u0(x), x ∈ D,
u(t, Lx, y) = u(t,−Lx, y), t ∈ [0, T ],
u(t, x, Ly) = u(t, x,−Ly), t ∈ [0, T ] .

(9)

Let us denote the set of grid-points [8] by

DNx,Ny =
{

(xk1 , yk2)
}
(k1,k2)∈ONx,Ny

,

ONx,Ny =
{

(k1, k2) ∈ N2/ k1 = 0, · · · , Nx − 1, k2 = 0, · · · , Ny − 1
}
,

and the uniform mesh size by hx := xk1+1 − xk1 = 2Lx/Nx and hy := yk2+1 − yk2 = 2Ly/Ny (for
the entire domain D). The corresponding discrete wave numbers are defined by ξν;p = pπ/Lν , for p ∈
{−Nν/2, · · · , Nν/2− 1} with ν = x, y. Regarding the pseudospectral approximations [8,11,28] , we use
the following notation

û
(x)
p,k2

(t) =

Nx−1∑
k1=0

uk1,k2(t)e−iξx;p(xk1+Lx), ũ
(x)
k1,k2

(t) =
1

Nx

Nx/2−1∑
p=−Nx/2

û
(x)
p,k2

(t)eiξx;p(xk1+Lx) , (10)

and

û(x,y)p,q (t) =

Nx−1∑
k1=0

Ny−1∑
k2=0

uk1,k2(t)e−i(ξx;p(xk1+Lx)+ξy;q(yk2+Ly)),

ũ
(x,y)
k1,k2

(t) =
1

NxNy

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

û(x,y)p,q (t)ei(ξx;p(xk1+Lx)+ξy;q(yk2+Ly)).

(11)

More precisely [11], û
(x,y)
p,q (t) is an approximate discrete Fourier transform and ũ

(x,y)
k1,k2

(t) is an approxima-
tion to u(t, xk1 , yk2) obtained through a discrete inverse Fourier transform with for some c > 0

max
(k1,k2)∈ONx,Ny

|ũk1,k2(t)−F−1(u)(t, xk1 , yk2)| 6 c(NxNy)1−s‖u‖Hs ,
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for s > 1 and u(t, ·) ∈ L1 ∩Hs periodic on the torus T2, where L1 (resp. Hs) is the standard Lebesgue
(resp. Sobolev) space. Typically, the high modes which are neglected in the above approximation leads
to the following aliasing error estimates: for u(t, ·) ∈ Hr, there exists c > 0 such that

‖˜̂u(t, ·)− u(t, ·)‖Hs 6 c(NxNy)s−r‖u(t, ·)‖Hr ,

for some r > s > 1 (in 2-d) and u(t, ·) ∈ L1 ∩ Hr-periodic. We next introduce the following discrete
x-directional fractional operator [[(−4x)α]]uk1,k2(tn) approximating (−4x)αu(tn, xk1 , yk2) such that

[[(−4x)α]]uk1,k2(tn) :=
1

Nx

Nx/2−1∑
p=−Nx/2

∣∣ξx;p∣∣2αeiαπ ̂̃u(x)p,k2(tn)eiξx;p(xk1+Lx) (12)

and the approximation ∂αx u(tn, xk1 , yk2) to [[∂αx ]]uk1,k2(tn) given by

[[∂αx ]]uk1,k2(tn) :=
1

Nx

Nx/2−1∑
p=−Nx/2

(iξx;p)
αeiαπ ̂̃u(x)p,k2(tn)eiξx;p(xk1+Lx). (13)

Similar operators can be defined along the y-direction. Then, an approximation of the fractional Laplacian
4αu(tn, xk1 , yk2) on the grid is

[[(−4)α]]uk1,k2(tn) :=
1

NxNy

Nx/2−1∑
p=−Nx/2

Ny/2−1∑
q=−Ny/2

(∣∣ξx;p∣∣2 +
∣∣ξy;q∣∣2)α

×eiαπ ̂̃u(x,y)p,q (tn)ei(ξx;p(xk1+Lx)+ξy;q(yk2+Ly)) .

(14)

We denote by unh = {unk1,k2}(k1,k2)∈ONx,Ny the approximation of u on DNx,Ny at time tn and by Sν;h

(resp. S′h,ν) the projection of Sν (resp. S′h,ν) on the grid set DNx,Ny . Starting from u0
h, a natural implicit

scheme in time tn < tn+1 = tn +∆t (with ∆t > 0) then reads

[[(−4)1−α]]un+1
h + ic(tn+1)∆t[[4PML]]un+1

h = [[(−4)1−α]]unh , (15)

where 4PML is approximated by

[[4PML]] :=
Ih

S2
x,h

[[4x]]−
S′x,h

S3
x,h

[[∂x]] +
Ih

S2
y,h

[[4y]]−
S′y,h

S3
y,h

[[∂y]]. (16)

At each time iteration, we then solve (15)-(16) by using a standard iterative linear system solver:

An+1un+1
h = Bunh .

This methodology was also used in [2,5] for the Dirac and the Schrödinger equation.

To illustrate the approach, we consider the following system (with α = 9/10){
i∂tu(t,x) + (−4)9/10u(t,x) = 0, (t,x) ∈ [0, T ]× R2,
u(t = 0,x) = u0(x), x ∈ R2,

(17)

with the initial data
u0(x, y) = 10e−10((x+40/13)2+(y−1)2)−5ix+2iy. (18)

We rewrite the equation in the form (8), which is approximated by (15) and (16), i.e.

[[(−4)9/10]]un+1
h + i∆t[[4PML]]un+1

h = [[(−4)9/10]]unh. (19)

The computational domain is D = [−4, 4]2 and the final time is T = 40. In this example, we take
Sν(ν) = 1 + 10−2eiθσ̃(ν), where σ(ν) = σ0(ν + δ)3 [4] and σ0 = 5, θ = π/4 and δν = 0.025Lν . We
implement a semi-implicit discretization scheme to solve the corresponding IBVP (9), i.e. we first solve
the equation in the x- and then the y-direction using an ADI-type algorithm. The real space grid contains
Nx × Ny = 752 points and we fix the time step to ∆t = 10−1. We report in Fig. 1 the amplitude of
the initial data, the solution with periodic boundary conditions (without PML), the reference numerical
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Fig. 1 (Top-left) amplitude of the initial data, (Top-right) periodic solution, (Bottom-left) reference solution and (Bottom-
right) of the PML solution.

solution (computed on a larger domain) and the PML-based solution. We observe that the wave is mainly
absorbed at y = −4.

We can directly generalize this approach to equations of the form

i∂tu(t,x) +
∑
α∈R

vα(t)(−4)αu(t,x) = 0, (t,x) ∈ [0, T ]× R2,

u(0,x) = u0(x), x ∈ R2.

(20)

Indeed, for m ∈ N∗ fixed, we consider the following problem on D with periodic boundary conditions at
∂D. We propose to use a simple operator-splitting by successively solving m single fractional equations
similar to (7), for any αi in R = {α1, · · · , αm}. More precisely, we have the following proposition.

Proposition 1 Let us assume that (20) is well-posed. Then, it is equivalent to solve successively the
following set of equations


i∂t(−4)1−α1u(1)(t,x)− vα1

(t)4u(1)(t,x) = 0, u(1)(0, ·) = u0, t ∈ [0, T ],
· · ·

i∂t(−4)1−αku(k)(t,x)− vαk(t)4u(k)(t,x) = 0, u(k)(0, ·) = u(k−1)(T, ·), t ∈ [0, T ],
· · ·

i∂t(−4)αmu(m)(t,x)− vαm(t)4u(m)(t,x) = 0, u(m)(0, ·) = u(m−1)(T, ·), t ∈ [0, T ].

(21)

Proof. Since we have [4α,4α′ ] = 0 for any α, α′ ∈ R2, the operator splitting is error-free. Therefore,
we exactly have

eit((−4)α+(−4)α
′
) = eit(−4)αeit(−4)α

′

,
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implying that (20) is equivalent to
i∂tu

(1)(t,x) + vα1
(t)(−4)α1u(t,x) = 0, u(1)(0, ·) = u0, t ∈ [0, T ],
· · ·

i∂tu
(k)(t,x) + vαk(t)(−4)αku(k)(t,x) = 0, u(k)(0, ·) = u(k−1)(T, ·), t ∈ [0, T ],

· · ·
i∂tu

(m)(t,x) + vαm(t)(−4)αmu(m)(t,x) = 0, u(m)(0, ·) = u(m−1)(T, ·), t ∈ [0, T ].

This concludes the proof. �
From (21) and for tn to tn+1, let us introduce the discrete times tnk = tn+∆t for any k ∈ {1, · · · ,m−1}

and define unk = u(tnk , ·). We then propose the following modified system of fractional equations on
(0, T )×D containing the PML contribution

i∂t(−4)1−α1u(t,x)− vα1
(t)4PMLu(t,x) = 0, u(tn, ·) = un, t ∈ [tn, tn1

],
· · ·
i∂t(−4)1−αku(t,x)− vαk(t)4PMLu(t,x) = 0, u(tn, ·) = unk−1 , t ∈ [tn, tnk ],
· · ·
i∂t(−4)αmu(t,x)− vαm(t)4PMLu(t,x) = 0, u(tn, ·) = unm−1 , t ∈ [tn, tn+1].

By using the same notations as [8] and for tn < tn+1 = tn + ∆t, a straightforward implicit scheme in
time consists is successively solving the following system of linear equations

[[(−4)1−α1 ]]un1

h − ic(tn1)∆t[[4PML]]un1

h = [[(−4)1−α1 ]]unh ,
· · ·
[[(−4)1−αk ]]unkh − ic(tnk)∆t[[4PML]]unkh = [[(−4)1−αk ]]u

nk−1

h ,
· · ·
[[(−4)1−αm ]]un+1

h − ic(tn+1)∆t[[4PML]]un+1
h = [[(−4)1−αm ]]u

nm−1

h ,

where unkh is an approximation to u on DNx,Ny at time tnk , and where [[4]] is the pseudospectral
approximation (14) of 4 with α = 1. Higher order splitting schemes can easily be derived to increase
the accuracy of the solver and to reduce the numerical dispersion.

We can extend the above approach to problems with space-dependent coefficients. However, some
additional work is necessary. We consideri∂tu(t, x, y) +

∑
α∈R

vα(t, x, y)(−4)αu(t, x, y) = 0, (t, x, y) ∈ [0, T ]× R2,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ R2,

(22)

where {vα}α∈R correspond to smooth real- or purely complex-valued functions, and R is a given finite
set of strictly positive numbers. Naturally, we can no more directly apply the above transformation.
Instead, we proceed as follows. For any exponent α ∈ R, we set ψα = (−4)α−1u, and then now consider

i∂tu(t, x, y) +
∑
α∈R

vα(t, x, y)(−4)ψα(t, x, y) = 0, (t, x, y) ∈ [0, T ]× R2,

u(t, x, y) = (−4)1−αψα(t, x, y) ,
u(t = 0, x, y) = u0(x, y) .

For the equation on a bounded domain D with periodic boundary conditions and using PML, we analyze
i∂tu(t, x, y) +

∑
α∈R

vα(t, x, y)(−4PML)ψα(t, x, y) = 0, (t, x, y) ∈ [0, T ]×D,

u(t, x, y) = (−4)1−αψα(t, x, y) ,
u(t = 0, x, y) = u0(x, y) .

Starting from k = 0 with u(0) given, we iteratively construct a sequence {u(k)}k such that for k > 1
i∂tu

(k)(t, x, y) +
∑
α∈R

vα(t, x, y)(−4PML)ψ(k)
α (t, x, y) = 0, (t, x, y) ∈ [0, T ]×D,

ψ
(k)
α (t, x, y) = (−4)α−1u(k−1)(t, x, y) ,

u(t = 0, x, y) = u0(x, y) .

(23)
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Using the same notations as in Subsection 2.1, from tn to tn+1, the corresponding scheme then reads
until convergence (k → +∞)

u
(k),n+1
h − i∆t

∑
α∈R v

n+1
α,h [[4PML]]ψ

(k),n+1
α,h = u

(k),n
h

ψ
(k),n+1
α,h = [[(−4)α−1]]u

(k−1),n+1
h ,

(24)

where u
(k),n
h (resp. ψ

(k),n
α,h ) is an approximation to u (resp. ψα) on DNx,Ny at time tn and iteration k,

and where [[4PML]] is defined by (16).
Although the idea developed in the above remark may work, we rather explore a methodology which

does not require the use of an iterative process. To this end, an alternative approach based on Padé’s
approximants is proposed for equations with space-dependent coefficients.

2.2 Padé’s approximants for fractional equations with space-dependent coefficients

The iterative approach developed above may have slow convergence (and possibly divergence). We pro-
pose a direct methodology based on approximants of the fractional PML-Laplacian symbol for rational
values of the exponents α. Different types of approximants exist, among which Padé’s are the most
common ones [31]. We first introduce

i∂tu(t, x, y) +
∑
α∈R

vα(x, y)(−4)αu(t, x, y) = 0, (t, x, y) ∈ [0, T ]× R2,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ R2,

(25)

where {vα}α∈R are smooth real- or purely complex-valued functions. Hence, we do not consider fractional
Schrödinger equations with t-dependent coefficients. However, as long as the corresponding equation is
well-posed, there is nothing that prevents the use of the method developed below in this case. For α ∈ R
(which is supposed to be a finite set of strictly positive numbers), we search for an approximation to the
fractional operator symbol

σ
(
(−4PML)α

)
=
( 1

S2
x

|ξx|2 + i
1

Sx
∂x(

1

Sx
)ξx +

1

S2
y

|ξy|2 + i
1

Sy
∂y(

1

Sy
)ξy

)α
. (26)

The chosen approximant to σ
(
(−4PML)α

)
at order M (in the sense (29)), is denoted by p

(α)
M (x, y, ξx, ξy)

and is assumed to be a power series/sum in ξx and ξy, such that
(
−4PML

)α
is approximated by P

(α)
M

given by

Op
(
p
(α)
M (x, y, ·, ·)

)
= P

(α)
M (x, y, ∂x, ∂y),

where

p
(α)
M (x, y, ξx, ξy) =

(
|ξx|2 + |ξy|2

)α
, for (x, y) ∈ DPhy .

We next consider the equation on a bounded domain D = [−Lx, Lx]× [−Ly, Ly] with periodic boundary
conditions: 

i∂tu(t, x, y) +
∑
α∈R

vα(x, y)(−4PML)αu(t, x, y) = 0, (t, x, y) ∈ [0, T ]×D,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ D ,
u(t,±Lx, y) = u(t,∓Lx, y), u(t, x,±Ly) = u(t, x,∓Ly) .

(27)

More specifically, for fixed M ∈ N∗, we use the approximate problem
i∂tu(t, x, y) +

∑
α∈R

vα(x, y)P
(α)
M u(t, x, y) = 0, (t, x, y) ∈ [0, T ]×D ,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ D ,
u(t, Lx, y) = u(t,−Lx, y), u(t, x, Ly) = u(t, x,−Ly) .

(28)
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Since DPhy ( D, we then get

i∂tu(t, x, y) +
∑
α∈R

vα(x, y)(−4)αu(t, x, y) = 0, for (t, x, y) ∈ [0;T ]×DPhy .

From a practical point of view, constructing the approximants is not an easy task. We detail the method-
ology for α = 1/2, and for α ∈ N/2N in A.

We consider the case of the square-root Laplacian (i.e. for α = 1/2). It is shown in [1] that the
θ-rotated Padé approximation at order M ∈ N of

√
z is given by

√
z ≈ p(1/2)M (z) =

M∑
k=0

a
(M)
k −

M∑
k=1

a
(M)
k d

(M)
k

z + d
(M)
k

, (29)

where the coefficients are, for θ ∈ [0, π/2),

a
(M)
0 = 0, a

(M)
k =

eiθ

M cos2
( (2k + 1)π

4M

), d
(M)
k = tan2

( (2k + 1)π

4M

)
eiθ . (30)

Then formally, in (27) we define

(−4PML)1/2 :=

M∑
k=0

a
(M)
k +

M∑
k=1

a
(M)
k d

(M)
k

( 1

S2
x

∂2x −
S′x
S3
x

∂x +
1

S2
y

∂2y −
S′y
S3
y

∂y − d(M)
k

)−1
. (31)

Remark 1 The discretization of the RHS in (31) requires the solution to a low dimensional linear system
(since it is only applied in the PML). More specifically, an equation of the form (−4PML)1/2u = f would
be approximated by 

∑M
k=0 a

(M)
k u+

∑M
k=1 a

(M)
k d

(M)
k ϕk = f ,( 1

S2
x

∂2x −
S′x
S3
x

∂x +
1

S2
y

∂2y −
S′y
S3
y

∂y − d(M)
k

)
ϕk = u .

Let us consider the equation with periodic conditions at {(±Lx, y) : y ∈ [−Ly, Ly]} and {(x,±Ly) : x ∈
[−Lx, Lx]} {

i∂tu(t, x, y) + v(x, y)(−4PML)1/2u(t, x, y) = 0, (t, x, y) ∈ [0, T ]×D ,
u(t = 0, x, y) = u0(x, y), (x, y) ∈ D ,

which then becomes the following system, still with periodic boundary conditions at {(±Lx, y) : y ∈
[−Ly, Ly]} and {(x,±Ly) : x ∈ [−Lx, Lx]}

i∂tu+ v(x, y)(−4)1/2u = 0, (x, y) ∈ DPhy ,

i∂tu+ v(x, y)
(∑M

k=0 a
(M)
k u+

∑M
k=1 a

(M)
k d

(M)
k ϕk

)
= 0, (x, y) ∈ DPML ,( 1

S2
x

∂2x −
S′x
S3
x

∂x +
1

S2
y

∂2y −
S′y
S3
y

∂y − d(M)
k

)
ϕk = u, (x, y) ∈ DPML .

(32)

The implicit time semi-discrete version then reads
un+1 − i∆tv(x, y)(−4)1/2un+1 = un, (t, x, y) ∈ [tn, tn+1]×DPhy ,

un+1 − i∆tv(x, y)
(∑M

k=0 a
(M)
k un+1 +

∑M
k=1 a

(M)
k d

(M)
k ϕ

n+1/2
k

)
= un, (t, x, y) ∈ [tn, tn+1]×DPML ,( 1

S2
x

∂2x −
S′x
S3
x

∂x +
1

S2
y

∂2y −
S′y
S3
y

∂y − d(M)
k

)
ϕ
n+1/2
k = un, (x, y) ∈ DPML .
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Finally, for tn < tn+1 = tn + ∆t, a fully discrete version reads as follows. For ϕh = {ϕi,j}(i,j)∈Z2 , we
propose the following second-order approximation of the Laplace operator, with fixed space steps ∆x
and ∆y, 

∂x,hϕi,j =
ϕi+1,j − ϕi−1,j

2∆x
, ∂y,hϕi,j =

ϕi,j+1 − ϕi,j−1
2∆y

,

−4x,hϕi,j =
ϕi+2,j − 16ϕi+1,j + 30ϕi,j − 16ϕi−1,j + ϕi−2,j

12∆x2
,

−4y,hϕi−2,j =
ϕi,j+2 − 16ϕi,j+1 + 30ϕi,j − 16ϕi,j−1 + ϕi,j−2

12∆y2
.

We introduce below a second-order scheme (in space) in the PML, so that a 3-point discretization of the
Laplacian in each direction is sufficient. A fourth-order approximation of the Laplacian such as −4x,hϕi,j
is hence not required. Setting

wh = uh|DPML
, νh = uh|DPhy

,

we consider the following numerical scheme approximating (32), from tn+1 to tn,

νn+1
h − i∆tvh

(
[[4]]un+1

h

)
|Phy

= νnh, in DPhy ,(
Ih − i∆tvh

M∑
k=0

a
(M)
k

)
wn+1
h = i∆tvh

M∑
k=1

a
(M)
k d

(M)
k ϕ

n+1/2
k,h ,( 1

S2
x,h

4x,h +
1

S2
y,h

4y,h −
S′x,h

S3
x,h

∂x,h −
S′y,h

S3
y,h

∂y,h − d(M)
k Ih

)
ϕ
n+1/2
k,h = wn

h in DPML ,

(33)

where Sν,h denotes {Sν(νi)}i. Let us remark that the third system in (33), can be implemented inde-
pendently as

A
(k)
h ϕn+1

k,h = wn+1
h ,

with A
(k)
h = {A(k)

i,j }i,j such that

A
(k)
i,i = 2

( 1

S2
x(xi)∆x2

+
1

S2
y(yj)∆y2

)
− d(M)

k ,

A
(k)
i,i+1 = −

1

S2
x(xi)∆x2

+
S′x(xi)

S3
x(xi)∆x

, A
(k)
i−1,i = −

1

S2
x(xi)∆x2

−
S′x(xi)

S3
x(xi)∆x

,

and finally

A
(k)
i,i+Nx

= −
1

S2
y(yj)∆y2

+
S′y(yj)

S3
y(yj)∆y

, A
(k)
i−N,i = −

1

S2
y(yj)∆y2

−
S′y(yj)

S3
y(yj)∆y

.

The other entries are zero. We trivially get that the matrices {A(k)
h }16k6M are symmetric and invertible.

The two first equations can be rewritten in the form

Ahun+1
h = Fn+1/2

h , Fn+1/2
h :=

(
νnh, i∆tvh

M∑
k=1

a
(M)
k d

(M)
k ϕ

n+1/2
h

)T
.

A numerical example is proposed to illustrate the approach based on Padé’s approximants in the 1-d
case. The computational domain is D = [−10, 10], with DPhy = [−9.5, 9.5]. We take ∆x = 5 × 10−2,
∆t = 7.5× 10−2 and NT = 500. The initial data is given by

u0(x) = 10 exp
(
− (x− 20/3)2 + ik0x

)
,

with k0 = 10. We consider a PML-solution with σ(x) = exp(5x), ∆t = 2 × 10−2, and compare it in
Fig. 2, with a reference solution computed on a larger domain and a solution with periodic boundary

10



Fig. 2 Solutions of reference (Left), PML (Middle) and solution computed with periodic boundary conditions (Right) :
{(x, t, log |u(x, t)|), (x, t) ∈ D × [0, T ]}.

conditions (we represent {(x, t, log |u(x, t)|), (x, t) ∈ D × [0, T ]}). This shows the absorbing effect of the
PML, which mainly avoids the periodic transmission of the outgoing waves.

In the next example, we compare the quality of the PML absorption for increasing orders of the
Padé’s approximation with M = 4, 8, 12, for θ = 2π/7. The same test is next performed, for M = 12
but for different values of the rotation angle: θ = 0, π/8, π/4, 2π/7, π/3, see Fig. 3 (Left) and (Right).
These experiments illustrate the importance of properly selecting the PML parameters to enhance the
absorption and to optimize the PML. Clearly, the full optimization of the tuning parameters is an
important question which has to be addressed in a future and is known to be nontrivial. We also check
the stability and absorption of the method with M = 12 and θ = 7π/2, by representing the `2-norm of
the PML/Reference/Periodic-BC solutions as a function of time in Fig. 4 (Left). A convergence graph
as a function of M is proposed in Fig. 4 (Right). More specifically, in the latter we report the `2-norm
error (PML-solution vs solution of reference) at final time, ‖unTh − u

nT
Ref‖2, as a function of the number

M of Padé approximants. Let us also mention [23] for the mathematical analysis of the stability of the
numerical scheme in the fractional framework.

This generalization of the derivation of the PMLs for α = p/2k, k ∈ N∗ and p ∈ N∗, is detailed in
Appendix A.

-8 -6 -4 -2 0 2 4 6 8
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10
-2

-8 -6 -4 -2 0 2 4 6 8

10
-6

10
-5

10
-4

10
-3

10
-2

Fig. 3 (Left) PML resolution in logscale {(x, log |u(x, T )|), x ∈ D} at T = 37.5 for different values M of Padé functions 4,
8, 12, and θ = 2π/7; (Middle) for different values of θ: 0, π/8, π/4, 2π/7, π/3. (Right) `2-norm of unh as a function of n for
PML, Periodic BC and reference solution.

3 Approximation of fractional Laplacian equations using a system of ODEs

Fourier-based methods are particularly convenient to work with when dealing with fractional derivatives,
due to the simple expression of fractional operators in the Fourier space based on the spectral definition.
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Fig. 4 (Left) `2-norm of unh as a function of n for PML, Periodic BC and reference solution. (Right) `2-norm error at final
time ‖unTh − unTRef‖2 as a function of number of Padé approximants.

However, the coupling with PMLs on bounded domains is not simple, in particular due to the complex-
ity to implement Padé’s approximants. Alternative approaches such as real space methods should be
developed. The aim of this section is to address such a contribution. According for instance to [25], it is
possible to approximate the fractional Laplacian by using a strategy based on differential equations to
estimate the real power of a matrix. This idea was in particular developed in [7]. We detail below this
approach, including absorbing layers into the formulation.

3.1 Differential equations formulation to approximate the fractional Laplacian

Let us recall first that for any matrix A ∈ RN×N with no negative eigenvalues, and for α ∈ R, the
N -dimensional system

y′(τ) = α(A− I)
(
τ(A− I) + I

)−1
y(τ), y(0) = b, (34)

is such that y(τ) =
(
τ(A − I) + I

)α
b, y(1) = Aαb, where I is the identity matrix in RN×N . The latter

is a standard method for solving fractional algebraic linear systems. The approximation of (−4)αu for
any u ∈ Wα,p(RN ) is computed by discretizing (34), for p ∈ [1,∞) and α ∈ (0, 1). Later on, A will
represent an approximate one- (resp. two-) dimensional Laplacian −∆, for N = Nx (resp. N = NxNy)
spatial discretization points.

We denote by Πh a projector from C(R2;C)∩L2(R2;C) to `2(hZ×hZ), where h is a spatial discretiza-
tion step. We define uh ∈ CN as a finite-difference approximation of u on `2(hZ×hZ), and Ah ∈ RN×N
as a finite-difference approximation of the Laplacian for solving (34). To compute uh, we can proceed as
follows. We first construct the sequence {wk

h}k such that(
Ih − δτα(Ah − Ih)B

(k)
h

)
wk+1
h = wk

h, w0
h = uh, (35)

where τk = kδτ , for k ∈ N, and defining

C
(k)
h =

(
B

(k)
h

)−1
=
(
τk+1Ah + (1− τk+1)Ih

)
= τk+1

(
Ah + (τ−1k+1 − 1)Ih

)
. (36)

System (35) can also be written

C
(k)
h

(
Ih − δτα(Ah − Ih)

)
B

(k)
h wk+1

h = wk
h,

leading to the alternative formulation

C
(k)
h

(
Ih − δτα(Ah − Ih)

)
ωk+1,∗
h = wk

h ,

wk+1
h = C

(k)
h ωk+1,∗

h , w0
h = uh .

(37)
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As a consequence, for kT = b1/δτc, Πh

(
(−4)αu

)
is approximated by wkT

h . We get the error estimate

‖Πh

(
(−4)αu

)
−wkT

h ‖2 = O(δτp + hq) ,

where p is the order of the ODE solver for (34) (p = 1 here) and q is the order of the finite-difference
approximation of the Laplace operator. The main issue in the above scheme is the need to solve a

linear system for evaluating w
(k+1)
h . For instance, if Ah is a five-point stencil finite-difference operator

approximating the two-dimensional Laplace operator, it has the following eigenvalues and corresponding
eigenvectors [1]

λ
(lx,ly)
h =

4

∆x2
sin2

( lxπ

2(Nx + 1)

)
+

4

∆y2
sin2

( lyπ

2(Ny + 1)

)
,

v
(lx,ly)
h,jx,jy

= sin
(
jx

lxπ

Nx + 1

)
sin
(
jy

lyπ

Ny + 1

)
, (lx, ly) ∈ {1, · · · , Nx} × {1, · · · , Ny}.

The eigenvalues of B
(k)
h are denoted by µ

(lx,ly ;k)
h = τ−1k+1

(
(τ−1k+1 − 1) + λ

(lx,ly)
h

)−1
. Then, the following

proposition holds.

Proposition 2 Let us assume that Ah is the five-point stencil finite-difference operator approximating
the two-dimensional Laplace operator. Then, for any α ∈ R, we have

Aα
hu

(0)
h = P hΛ

(α,kT )
h P−1h u

(0)
h , (38)

where Λ
(α,kT )
h = diag

(
ζ
(1,1;kT )
h , · · · , ζ(Nx,Ny ;kT )h

)
is a diagonal matrix with

ζ
(lx,ly ;p)
h =

(
ΠkT−1
p=0 ν

(lx,ly ;p)
h

)−1
, ν

(lx,ly ;p)
h = 1− δtα(λ

(lx,ly)
h − 1)µ

(lx,ly ;p)
h ,

and P h is the matrix of the eigenvectors. Equivalently, one gets

Aα
h = P hΛ

α
hP
−1
h , (39)

with Λh := diag
(
λ
(1,1)
h , · · · , λ(Nx,Ny)h

)
.

Proof. The vector Aα
huh is approximated by wkT

h , which is obtained iteratively by

wk
h =

(
Ih − δtαP h(Λh − Ih) τ−1k+1(Λh + (τ−1k+1 − 1)Ih)−1P−1h

)
wk+1
h , w0

h = uh.

For 0 6 p 6 kT − 1, we have

Aα
hu

(0)
h = u

(kT )
h = P hΛ

(α,kT )
h P−1h u

(0)
h . (40)

Since Ah is diagonalizable, i.e. Ah = P hΛhP
−1
h , we conclude that

Aα
h = (2πi)−1Ah

∫
Γ

zα−1(zIh −Ah)−1dz =
(
P hΛhP

−1
h

)α
= P h(2πi)−1Λh

∫
Γ

zα−1(zIh −Λh)−1dzP h = P hΛ
α
hP
−1
h .

�
Let us remark that the differential equation approach is more general than (39), as the latter is

restricted to diagonalizable matrices. The extension of this proposition to the 3-d case or to higher order
finite-difference approximations with Dirichlet boundary conditions is straightforward. Regarding, the
accuracy of order p of the approximation of (−4)αu, let us recall that, for u regular enough, we have

−4hu = −4u+O
(
hpR1(u)

)
,

so that, for homogeneous Dirichlet boundary conditions [35], we get at least

(−4)αhu = (−4)αu+O
(
hpαRα(u)

)
,

where R1 and Rα are some smooth differential operators. This result justifies the computation of the
real power α of Ah. In principle, this is no longer valid for nonzero Dirichlet boundary conditions (see
e.g. [35]). Let us now state the following proposition.
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Proposition 3 Let us consider the scheme (35)-(36) approximating (34) for computing −(−4)αu in
one-dimension, for u ∈ H2α(D). We assume that the Laplace operator is approximated by a K-point
stencil finite-difference scheme using the matrix Ah, on a uniform finite spatial grid {xj}−J6j6J . Then,
there exists a real-valued positive constant C > 0 such that

max
−J6j6J

∣∣(−4)αu0(xj)−Aα
hu

(0)
h

∣∣ 6 C(∆xK−1 + δt).

Proof. First, in (35)-(36), the computation of B
(k)
h and wk+1

h is performed exactly. The ∆x contribution
comes from the (K − 1)th order approximation of −4 by a K-point stencil finite-difference scheme. The
first-order error in time is finally due to the approximate solution of the differential system based on the
backward Euler scheme (35). �

To illustrate this approach, we approximately compute (−4)αu0 in 1-d with α = 1/2 on D =
[−10, 10], with null Dirichlet boundary conditions, and

u0(x) = exp(−x2/10) cos(2x)/N ,

where N is the L2-normalization constant. We discretize the Laplace operator by using a three-point
stencil finite-difference scheme on a grid with 1001 points. We initially project u0 on the finite-difference

grid, leading to u
(0)
h = {u0(xj)}16j61001. We compare u

(kT )
h with Aα

hu
(0)
h for different values of kT (i.e.

thanks to δt since kT δt = 1), reporting in Fig. 5 (Left) the error ‖Aα
hu

(0)
h − u

(kT )
h ‖`2(D) (in logscale) as

a function of δti = 0.125/2i, for i = 1, · · · , 6. In particular, we observe the first-order accuracy of the

ODE solver. We also plot Aα
hu

(0)
h and u

(kT )
h , for kT = 256 and N = 1001 in Fig. 5 (Right).
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Fig. 5 (Left) error in `2-norm (logscale), i.e. ‖Aαhu
(0)
h − u(kT )

h ‖`2(D), with respect to ∆t. (Right) Solutions Aαhu
(0)
h and

u
(kT )
h , for kT = 256 and N = 1001.

We propose a second simple test focusing on the computation of Aα
h . We report in Fig. 6 (logscale)

the CPU-time in seconds for different methods to compute (−4)αu0, with a L2(D)-normalized data
u0(x) = exp(−10x2) cos(2x)/N over D = [−2, 2], with N = 1 + 26+p (p = 1, · · · , 7) grid points. We
compare the Direct Finite-Difference (DFD) method where the solution to (37) is obtained using GMRES,
and the Optimized Finite-Difference (OFD) method using (40) to efficiently compute the matrix power. In
the latter case, the Laplace operator is approximated by a three-point stencil scheme and kT = 1, 50, 100
in (35). These numerical results show that the OFD method is much faster than the DFD approach, and
is almost independent of kT . Indeed, it only requires to solve one linear system unlike the DFD method
which requires the computation of kT linear systems/

3.2 Application to the numerical solution of time-dependent fractional Laplacian equations

Based on the previous approximations, we can solve time-dependent fractional Laplacian equations.
Compared to FFT-based approaches, it is necessary to solve a differential system at each time iteration
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Fig. 6 CPU time vs. the number of grid points (logscale) to compute (−4)αu0. Comparison between the Direct Finite
Difference Method (37) using GMRES and the Optimized Finite Difference based on (40).

to update the value of the fractional Laplacian. More specifically, we consider∂tu(t, x, y) +
∑
α∈R

vα(x, y)(−4)αu(t, x, y) = 0, for (t, x, y) ∈ [0, T ]× R2,

u(t = 0, x, y) = u0(x, y), for (x, y) ∈ R2,

(41)

where {vα}α∈R are smooth positive real-valued functions, and R is a finite set of strictly positive real
numbers. We propose the following implicit time-discretization

un+1 +∆t
∑
α∈R

vα(x, y)(−4PML)αun+1 = un, (t, x, y) ∈ [tn, tn+1]×D .

For two vectors v = {vj}16j6N , w = {wj}16j6N in RN , we define v ⊗w ∈ RN as:

v ⊗w = {vjwj}16j6N . (42)

Then, for each α ∈ R ∩ R\N, (−4)αun+1 is approximated by Aα
hu

n+1
h solution to

un+1
h +∆t

∑
α∈R

vα,h ⊗Aα
hu

n+1
h = unh,

Aα
hu

n+1
h = w

(α),n,kT
h ,

(43)

where, for each α, w
(α),n,kT
h is computed from(
Ih −∆tα(Ah − Ih)B

(k)
h

)
w

(α),n,k+1
h = wk

h, w
(α),n,0
h = un+1

h . (44)

According to Proposition 2, imposing some Dirichlet boundary conditions at x = ±Lx and y = ±Ly, we
can rewrite the scheme as the following linear system (see (42))(

Ih +∆t
∑
α∈R

vα,h ⊗ P hΛ
(α,kT )
h P−1h

)
un+1
h = unh . (45)

If the equation has constant coefficients {vα}α∈R, it is not necessary to use a linear system solver at each
time iteration. Indeed, in the latter case the scheme is simply to(

Ih +∆t
∑
α∈R

vαP hΛ
(α,kT )
h P−1h

)
un+1
h = unh . (46)
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Setting v
(k)
h = P−1h u

(k)
h , we obtain the explicit expression

vn+1
h =

(
Ih +∆t

∑
α∈R

vαΛ
(α,kT )
h

)−1
vnh . (47)

Then, u
(n+1)
h = P hv

(n+1)
h can be solved if needed. Thus, we can state the

Proposition 4 For any α ∈ R, the scheme (45) approximating (41) is unconditionally `2-stable.

Proof. The entries of Λ
(α,kT )
h as well as the functions {vα}α∈R are positive, so that

ρ
(
Ih +∆t

∑
α∈R

vα,h ⊗ P hΛ
(α,kT )
h P−1h

)
> 1,

where ρ(A) designates the spectral radius of a given matrix A. We then deduce from (45) that we have
the inequality ‖un+1

h ‖`2 6 ‖unh‖`2 . �
In fact, we can extend the above proposition to fractional Schrödinger equations.

Proposition 5 Consider the fractional Schrödinger equation with homogeneous Dirichlet boundary con-
ditions 

i∂tu(t, x, y) +
∑
α∈R

vα(x, y)(−4)αu(t, x, y) = 0, for (t, x, y) ∈ [0, T ]×D,

u(t = 0, x, y) = u0(x, y), for (x, y) ∈ D ,
u(t,±Lx, y) = u(t, x,±Ly) = 0,

(48)

where {vα}α∈R are smooth real-valued functions. We further assume that the problem is well-posed.
Then, the following schemes are unconditionally stable

– Implicit Euler scheme

un+1
h − i∆t

∑
α∈R

vα,h ⊗ P hΛ
(α,kT )
h P−1h u

n+1
h = unh . (49)

– Crank-Nicolson scheme(
Ih − i

∆t

2

∑
α∈R

vα,h ⊗ P hΛ
(α,kT )
h P−1h

)
un+1
h

=
(
Ih + i

∆t

2

∑
α∈R

vα,h ⊗ P hΛ
(α,kT )
h P−1h

)
unh .

(50)

In addition, the Crank-Nicolson scheme preserves the `2-norm.

As recalled in Proposition 2, we can alternatively use (39) to compute the power of Ah. Then, we have

Proposition 6 The scheme

un+1
h − i∆t

∑
α∈R

vα,h ⊗ P hΛ
α
hP
−1
h u

n+1
h = unh (51)

is unconditionally stable.

Let us remark that, in presence of a potential V , the above analysis remains valid by simply slightly
modifying the differential equation to solve. In particular, the following proposition is of interest for
approximating −(−4)α + V .

Proposition 7 For any vector V ∈ RN , matrix A ∈ RN×N with no negative eigenvalues, and any
α ∈ R, the N -dimensional system

y′(τ) = α(A− I)
(
τ(A− I) + I

)−1(
y(τ) + (V I)b), y(0) = b (52)

is such that
y(τ) =

(
τ(A− I) + I

)α
b+ τ(V I)b, y(1) = (Aα + V I)b,

where I is the identity matrix in RN×N .
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3.3 Computational complexity analysis

In this Subsection, we analyze the computational complexity of the above schemes for solving the two-
dimensional time-dependent fractional Laplacian equations. Let us focus on (45), while the complexity
for the other schemes could easily be deduced. The main computation for solving fractional Laplacian
equations is related to the approximation of (−4)αu when α is not an integer. In the following, we
assume for the sake of simplicity that R ⊂ R\N and we define r := #R. We denote by kT the number
of iterations for solving (44) to compute Aα

hu
n
h for any given n > 1, and N is the total number of grid

points (≈
√
N points in each direction x and y for the 2-d case). For each α ∈ R∩R\N and time iteration,

kT sparse linear systems (44) are solved, each requiring O(Nγ1) operations for some 1 < γ1 < 2, i.e.
O(kT rN

γ1) operations at any time iteration. Finally, for a total of NT time iterations, the solution to
(45) needs O(NTN

γ2) operations, with 1 < γ2 < 2. This leads to the following Proposition.

Proposition 8 We consider the two-dimensional system (41) approximated by (45) in combination
with (44) on a two-dimensional grid with N points. The overall computational complexity, for NT time
iterations (with kT fixed in (44)), is O

(
NT (Nγ2 + kT rN

γ1)
)
, for some exponents 1 < γ1, γ2 < 2.

Let us note that the computation of {w(α),n,kT }α∈R is embarrassingly parallel. The main drawback
of the scheme is the need to solve rkT systems (44) at each time iteration. However in the framework

of Proposition 2, we directly get an evaluation of τ−1k+1

(
(Ah − Ih)(Ah + (τ−1k+1 − 1)Ih)

)−1
which would

be otherwise highly complex. Moreover, the use of an implicit scheme for constructing Aα
hu

n
h allows for

reducing kT . When the equation has constant coefficients, the global complexity can even be drastically
improved as explained in the following Proposition.

Proposition 9 For constant coefficients vα, we assume that we approximate the 2-d system (41) by (44)-
(45), based on N spatial grid points. Then, the global complexity is given by O

(
NTN logN

)
operations,

plus a pre-computational cost of O
(
r kTN

)
operations, where the linear system (45), fractional Laplacian

(44), are both explicitly evaluated and accelerated via the Discrete Sine Transform (DST). By comparison,
a direct implicit implementation of (41), combined with (44), requires O

(
NT (rkTN

γ1 +Nγ2)
)

operations,
for some exponents 1 < γ1, γ2 < 2 with a larger prefactor.

Proof. If (41) has constant coefficients, the scheme is reduced to (46). By setting v
(0)
h = P−1h u

(0)
h , we

deduce that

vnh =
(
Ih +∆t

∑
α∈R

vαΛ
(α,kT )
h

)−n
v0h .

Since Ih + ∆t
∑
α∈R vαΠ

kT−1
p=0 Λ

(α,p)
h is a diagonal matrix, its explicit construction (once for all) and

evaluation at power −n only requires O(nN + r kTN) operations. Finally, at any time iteration n, it is
possible to evaluate unh = P hv

n
h within O(N logN) operations via the DST. To compute explicitly all

the vectors unh requires O(NTN logN) operations. If only uNTh is needed, the overall cost is O
(
NTN +

N log(N)
)
. A direct implicit implementation of (44) would require O(rkTN

γ1) operations, for 1 < γ1 < 2,
since linear systems must be solved at each iteration, leading to a larger complexity. Once (−4)αu is
approximated for each α ∈ R, then NT linear systems must be solved, requiring O(NTN

γ2) operations,
with 1 < γ2 < 2. �

3.4 PML implementation

The inclusion of a PML in the computational equation yields additional difficulties. Let us consider e.g.
the following fractional Schrödinger equationi∂tu(t, x, y) +

∑
α∈R

vα(x, y)(−4)αu(t, x, y) = 0, (t, x, y) ∈ [0, T ]× R2,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ R2 ,

(53)
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where (x, y) ∈ R2 and t > 0, {vα}α∈R are smooth real-valued functions. In addition, R is a finite set of
strictly positive real numbers. According to Section 2, the corresponding equation with PML reads

i∂tu(t, x, y) +
∑
α∈R

vα(x, y)(−4PML)αu(t, x, y) = 0, (t, x, y) ∈ [0, T ]×D,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ D ,
u(t,±Lx, y) = u(t, x,±Ly) = 0, t ∈ [0, T ] ,

with

4PML :=
1

S2
x

∂2x +
1

Sx
∂x(

1

Sx
)∂x +

1

S2
y

∂2y +
1

Sy
∂y(

1

Sy
)∂y . (54)

A direct implicit discretization is then

un+1
h +∆t

∑
α∈R

vα,h ⊗Aα
hu

n+1
h = unh,

where Ah is a 3-point finite-difference approximation of −4PML. The main issue is to efficiently compute
Aα
h , which will be addressed later on.

Let us first present a simple 1-d case considering

i∂tu+ (−4)3/4u/10 = 0 , (t, x) ∈ [0, T ]× R .

The computational domain is D = [−L,L], with L = 10. We then solve{
i∂tu+ (−4PML)3/4u/10 = 0 , (t, x) ∈ [0, T ]×D,
u(t,±L) = 0.

We fix ∆x = 5× 10−2 (N = 401), ∆t = 10−1 and NT = 300. The operator 4PML is approximated by a
three-point stencil finite-difference scheme. The initial data is

u0(x) = 10 exp
(
− (x− 5)2/2 + ik0x

)
,

with k0 = 7. The PML absorbing function is chosen as follows: σ(x) = −σ0(x+ δ), with σ0 = 0.5, δ = 1
and θ = 2π/7. We compare in Fig. 7 the amplitude of the PML solution (in logscale) with a solution
of reference computed on a larger domain, as well as the solution with homogeneous Dirichlet boundary
conditions. We observe the effectiveness of the PML as absorbing layer. Let us remark that the question
of optimizing the PML is again not addressed here, which may improve the absorption quality.

Fig. 7 Reference solution (Left), PML solution (Middle) and solution with Dirichlet boundary conditions (Right)
{(x, t, log |u(x, t)|), (x, t) ∈ D × [0, T ]}.

As mentioned above, the efficient computation of Aα
h is challenging. Unlike the Dirichlet boundary

conditions case, the matrix Ah associated with PML is not as simple. Based on Padé’s approximation,
we propose a decomposition (for simplicity, we consider R = {α}) as follows

i∂tu+ v(x, y)(−4)αu = 0, (x, y) ∈ DPhy ,

i∂tu+ v(x, y)
(∑M

k=0 a
(M)
k u+

∑M
k=1 a

(M)
k d

(M)
k ϕk

)
= 0, (x, y) ∈ DPML ,( 1

S2
x

∂2x −
S′x
S3
x

∂x +
1

S2
y

∂2y −
S′y
S3
y

∂y − d(M)
k

)
ϕk = u, (x, y) ∈ DPML ,

u(t,±Lx, y) = 0, u(t, x,±Ly) = 0, t ∈ [0, T ] ,
u(t = 0, x, y) = u0(x, y), (x, y) ∈ D.
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Let us recall that the Padé’s coefficients are α-dependent [31]. In DPhy, we apply the method developed
in Subsection 3.2. Alternatively, the approximation of (−4PML)α can be performed by using a Cauchy
integral representation. The latter may be interesting as the PML is much smaller and the corresponding
Cauchy integral cheaper than applied to the whole domain D. Denoting by APML a finite-difference
approximation of −4PML, one would get

Aα
PML = (2πi)−1APML

∫
ΓAPML

zα−1(zI −APML)−1dz . (55)

We refer to B for a simple and efficient preconditioning of the Cauchy integral computation.
Let us detail the numerical scheme in 1-d, assuming that {vα}α∈R are constant

un+1
h − i∆t

∑
α∈R

vα,hC
α
hu

n+1
h = unh + i∆tF nh .

We denote by N the total number of grid points, NPML± the number of grid points in DPML± (left and
right PML regions) with DPML := DPML+ ∪ DPML− . We also introduce NPhy as the number of interior
grid points (N = NPhy +NPML− +NPML+), setting

Cα
h =


∑M
k=0 a

(M)
k IPML− 0TPhy− 0TPML

0Phy− Ã
α

Phy 0TPhy+

0PML 0Phy+

∑M
k=0 a

(M)
k IPML+

 ∈ RN×N ,

where ÃPhy ∈ RNPhy×NPhy is a three-point stencil discretization of the Laplace operator −4 restricted
to DPhy. The matrices IPML± ∈ RNPML±×NPML± are the identity matrices corresponding to the points

on DPML± , 0PML ∈ RNPML+×NPML− and 0Phy± ∈ RNPhy±×NPML± designate the zero matrices. Moreover

F nh is a vector with zero components in Dphy and approximates
∑M
k=1 a

M
k d

(M)
k ϕnk in DPML, where( 1

S2
x

∂2x −
S′x
S3
x

∂x − d(M)
k

)
ϕnk = un, (x, y) ∈ DPML .

The corresponding scheme can be rewritten in the form(
Ih − i∆t

∑
α∈R vαP hΛ

(α,kT )
h P−1h

)
un+1
h = unh + i∆tF nh , (56)

where we have now

Λ
(α,k)
h =


∑M
l=0 a

(M)
l IPML− 0TPML− 0TPML

0Phy− Λ̃
(α,k)

Phy 0TPhy+

0PML 0Phy+

∑M
l=0 a

(M)
l IPML+

 ∈ RN×N ,

Λ̃
(α,kT )

h is a diagonal matrix and, for 1 6 lx 6 NPhy, ζ
(lx;kT )
h =

(
ΠkT−1
p=0 ν

(lx;p)
h

)−1
. The matrix P h is

defined as

P h =

 IPML− 0TPML− 0TPML

0Phy− P̃Phy 0Phy

0PML 0Phy+ IPML+

 ∈ RN×N ,

where

Aα
h = P hΛ

(α,kT )
h P−1h , Ã

α

Phy = P̃PhyΛ̃
(α,kT )

Phy P̃
−1
Phy .

For real {vα}α, the scheme (56) is trivially `2-stable. Notice that we even have an explicit knowledge of

the eigenvalues of Aα
h thanks to those of Ã

α

Phy. The latter also trivially provides stability conditions for
complex sequence {vα}α. In this new following illustrative example, we consider the initial problem

i∂tu+ (−4)1/2u/10 = 0 , (t, x) ∈ [0, T ]× R .
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The bounded computational domain is D = [−10, 10] and we solve the following system
i∂tu+ (−4)1/2u/10 = 0, (t, x) ∈ [0, T ]×DPhy,

i∂tu+
(∑M

k=0 a
(M)
k u/10 +

∑M
k=1 a

(M)
k d

(M)
k ϕk

)
= 0, x ∈ DPML ,( 1

S2
x

∂2x −
S′x
S3
x

∂x − d(M)
k

)
ϕk = u/10, x ∈ DPML ,

u(t,±L) = 0, t ∈ [0, T ] .

We fix ∆x = 10−1 (N = 101), ∆t = 10−1 and NT = 1100 and M = 2. The coefficients {a(M)
k }k and

{d(M)
k }k are defined in (30). The initial data is

u0(x) = exp
(
− (x+ 5)2/2 + ik0x

)
/N ,

with k0 = −8 and N is the normalization constant for the L2-norm. The PML absorbing function is
such that σ(x) = −σ0(x + δ)2, with the parameters σ0 = 0.5, δ = 0.5 and θ = 2π/11. We compare in
Fig. 8 the amplitude of the PML-solution (in logscale) with a solution of reference computed on a larger
domain [−20, 20] as well as the solution with zero Dirichlet boundary conditions. We observe only some
small scale reflections back into the computational domain which confirm the behavior of the absorbing
layers. We also report in Fig. 9, the solutions in semilogscale at final time T = 30 to show the absorbing
property of the PML.

Fig. 8 Solution of reference (Left), PML (Middle) and with Dirichlet boundary conditions (Right)
{(x, t, log |u(x, t)|), (x, t) ∈ D × [0, T ]}.
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Fig. 9 Solution in logscale computed with Dirichlet boundary conditions, PML and reference solutions
{(x, T, log |u(x, T )|), x ∈ D}.

In the two-dimensional case, the derivation of the numerical scheme is slightly more technical but is
based on similar ideas. Let us assume that N := Nx = Ny. In the case of Dirichlet boundary conditions at
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{(±Lx, y) : y ∈ [−Ly, Ly]} ∪ {(x,±Ly) : x ∈ [−Lx, Lx]}, the standard 2-d second-order finite-difference
approximate Laplacian is denoted by

Ch =


APhy EPhy 0Phy · · · · · · 0Phy

EPhy APhy EPhy 0Phy · · · 0Phy

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

0Phy · · · 0Phy EPhy APhy EPhy

0Phy · · · · · · 0Phy EPhy APhy

 ∈ RN
2×N2

,

where APhy ∈ RN×N and EPhy ∈ RN×N . When including the PML on a N ×N grid, we decompose the
PML region into South, North, West, East regions as

DPML = DPML(S) ∪ DPML(N) ∪ DPML(E) ∪ DPML(W ) .

We denote by NPML(S,N,W,E) the number of grid points is each direction South, North, West, East,
respectively. Formally, the scheme still reads

un+1
h +∆t

∑
α∈R

vα,hC
α
hu

n+1
h = unh − i∆tF nh, (57)

where F nh is a vector, which is zero on Dphy and provides an approximation to
∑M
k=1 d

(M)
k ϕnk on DPML,

where ( 1

S2
x

∂2x −
S′x
S3
x

∂x +
1

S2
y

∂2y −
S′y
S3
y

∂y − d(M)
k

)
ϕnk = un, (x, y) ∈ DPML .

We prove now a proposition which is useful in practice, regarding the “diagonalization of the scheme”,
leading to an efficient implementation (see Proposition 9).

Proposition 10 The scheme (57) can be analytically rewritten in the form:(
Ih +∆t

∑
α∈R

vαP hΛ
(α,kT )
h P−1h

)
un+1
h = unh − i∆tF nh , (58)

where Λ
(α,kT )
h is a diagonal matrix with N2 − N2

Phy eigenvalues
∑M
k=0 a

(M)
k , and, for 1 6 lx 6 NPhy,

1 6 ly 6 NPhy, such that

ζ
(lx,ly ;kT )
h =

(
ΠkT
p=1ν

(lx,ly ;p)
h

)−1
.

Moreover, this scheme is unconditionally `2-stable.

Proof. Let us first notice that the matrix Cα
h ∈ RN2×N2

is block diagonal

Cα
h =



∑M
k=0 a

(M)
k IPML(S) 0T

PML(S) · · · · · · · · · 0T
PML(S) 0PML(SE)

0PML(W ) Aα
Phy EPhy · · · · · · · · · 0T

PML(E)

0PML(W ) EPhy Aα
Phy EPhy · · · · · · 0T

PML(E)

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

0PML(W ) · · · · · · EPhy A
α
Phy EPhy 0T

PML(E)

0PML(W ) · · · · · · · · · EPhy Aα
Phy 0T

PML(E)

0PML(N) 0PML(N) · · · · · · · · · 0PML(N)

∑M
k=0 a

(M)
k IPML(N)


,

where IPML(S) ∈ RNNPML(S)×NNPML(W ) , IPML(N) ∈ RNNPML(N)×NNPML(N) and 0PML(S,W,E) ∈ RN×NNPML(S,W,E) .
The matrix Aα

h reads

Aα
h =


∑M
k=0 a

(M)
k IPML(WW ) 0T

Phy(W ) 0T
PML(EW )

0Phy(W ) ÃαPhy 0T
Phy(E)

0PML(EW ) 0Phy(E)

∑M
k=0 a

(M)
k IPML(EE)

 ∈ RN
2×N2

,
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where Ãh ∈ RNPhy×NPhy is the matrix Ah ∈ RN2×N2

restricted to DPhy, and IPML(WW ) is the identity
matrix in RNPML(W )×NPML(W ) , IPML(EE) is the identity matrix in RNPML(E)×NPML(E) , and 0Phy(W ) is the

null matrix in RNPhy×NPML(W ) , 0Phy(E) is the null matrix in RNPML(E)×NPhy . Finally, we obtain

(
Ih +∆t

∑
α∈R

vαP hΛ
(α,kT )
h P−1h

)
un+1
h = unh − i∆tF nh , (59)

where now

Λ
(α,k)
h =


∑M
k=0 a

(M)
k IPML(S) 0PML(S) 0PML(S)

0Phy Λ̃
(α,k)

Phy 0Phy

0PML(N) 0PML(N)

∑M
k=0 a

(M)
k IPML(N)

 ∈ RN
2×N2

,

and Λ̃
(α,kT )

h is a diagonal matrix with N2 −N2
Phy eigenvalues

∑M
k=0 a

(M)
k (corresponding to the regions

DPML(W,E)), such that, for 1 6 lx 6 NPhy, 1 6 ly 6 NPhy, we have

ζ
(lx,ly ;kT )
h =

(
ΠkT
p=1ν

(lx,ly ;p)
h

)−1
.

The matrix P h is defined as

P h =

 IPML(S) 0̃
T

PML 0T
PML(NS)

0̃PML P̃ h 0T
PML(N)

0PML(NS) 0PML(N) IPML(N) ,

 ∈ RN
2×N2

and is such that

Aα
h = P hΛ

(α,kT )
h P−1h , Ã

α

h = P̃ hΛ̃
(α,kT )

h P̃
−1
h .

In the above equations, we set 0̃
T

PML(S) as the null matrix in RN
2×NN

PML(S) , 0̃
T

PML(N) is the zero matrix

in RNNPML(N)×N2

, and 0̃
T

PML(NS) is the null matrix in RNNPM(N)×NNPML(S) . All the eigenvalues of Λ
(α,k)
h

are positive, implying that the implicit scheme is `2-stable for any ∆t, concluding hence the proof. �
As in the one-dimensional case, the `2-stability analysis can easily be established from (59) for complex

sequences {vα}α thanks to the explicit knowledge to the eigenvalues of Aα
h , while the real case is trivial.

To illustrate the approach, we fix the following initial boundary-value problem (for α = 1/2), with
homogeneous Dirichlet boundary conditions

i∂tu(t, x, y) + (−4PML)1/2u(t, x, y)/10 = 0, (t, x, y) ∈ [0, T ]×D,
u(t = 0, x, y) = e−((x−13/4)

2+y2)/2+5ix, (x, y) ∈ D,
u(t,±Lx, y) = 0, t ∈ [0, T ],
u(t, x,±Ly) = 0, t ∈ [0, T ] .

(60)

The computational domain is D = [−4.8, 4.8]2 and the final time is T = 4. Following our strategy,
the modified fractional linear equation with PML consists in approximating (−4)1/2 as in (17). In
this example, we take Sx,y(·) = 1 + 10−2eiθσ̃(·) in (16), even if more optimized profiles could be used.
We apply a Crank-Nicolson scheme in time to solve the corresponding IBVP (60). The real space grid
involves Nx × Ny = 512 points and the time discretization is ∆t = 5 × 10−2. We report in Fig. 10 the
amplitude of the initial data, of the solution with homogeneous Dirichlet boundary conditions (without
PML), the reference solution (computed on a larger domain) and the PML-based solution, excluding
the PML region. In this case, we consider a quadratic absorbing profile (Type II) σ(ν) = σ0(ν + δ)2 [4],
setting σ0 = 5× 10−3, θ = 2π/7, and δν = 0.15Lν . From the simulation, we can see that only some small
reflections occur in the physical domain.
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Fig. 10 (Top-left) Amplitude of the initial data, (Top-right) periodic solution, (Bottom-left) reference solution and
(Bottom-right) of the PML solution (with Type II profile).

4 Conclusion

In this paper, we introduced and explored several computational methods for solving fractional Laplacian
equations, including fractional Schrödinger equations. Two main methodologies were proposed. The first
one is a pseudospectral method based on discrete Fourier transforms with periodic boundary conditions
coupled with PMLs. The latter were approximated by using Padé’s approximants as well as finite-
difference methods in the absorbing layers. Alternatively, a finite-difference methodology combined with
i) a differential equation solver for computing power of matrices, as well as ii) PMLs was then proposed
for solving fractional equations with homogeneous Dirichlet boundary conditions. A basic mathematical
analysis has been developed and numerical experiments illustrating the accuracy and efficiency of these
methods were reported. In future works, we plan to implement these methods in high-dimension and to
address realistic physical problems. Finally, the optimization of the PML parameters for fractional PDEs
needs to be further investigated.
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A Padé approximant-based PML

In the following, we detail the procedure for deriving PMLs by using Padé’s approximants with α = p/2k, k ∈ N∗ and
p ∈ N∗.
Case α = 1/2k, k ∈ N∗. The idea developed for α = 1/2 can easily be extended to coefficients of the form 1/2k. We can
iteratively repeat the process described above, by simply using

(−4PML)1/2
k

=

√
(−4PML)1/2

k−1
.

Op
(√

σ
(
(−4PML)1/2

k)) ≈ Op
( M∑
k=0

a
(M)
k −

M∑
k=1

a
(M)
k d

(M)
k

σ
(
(−4PML)1/2

k−1)
+ d

(M)
k

)
.

This leads to long calculations, which however have to be done once for all for any given α = 1/2k for k ∈ N∗.
Case α ∈ N∗/2k, k ∈ N∗. We extend the above ideas to rational numbers α in the form p/2k, for p ∈ N∗. In fact, thanks to
the above discussion, we simply need to detail the case α = p/2, for p ∈ N∗. Although the expressions look quite complex,
in practice simplifications and approximations are possible

i∂tu(t, x, y) +
∑
α∈R

vα(x, y)(−4)αu(t, x, y) = 0, (t, x, y) ∈ [0, T ]× R2,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ R2.

(61)

In the above system, we assume that {vα}
α∈R designates some smooth real- or purely complex-valued functions and that

R is a finite set of strictly positive numbers in N∗/2. We then consider the corresponding IBVP
i∂tu(t, x, y) +

∑
α∈R

vα(x, y)(−4PML)αu(t, x, y) = 0, (t, x, y) ∈ [0, T ]×D,

u(t = 0, x, y) = u0(x, y), (x, y) ∈ D,
u(t,±Lx, y) = u(t,∓Lx, y), u(t, x,±Ly) = u(t, x,∓Ly), t ∈ [0, T ] .

(62)

We can formally rewrite the symbol of (−4PML)α [1] as

σ
(
(−4PML)p/2

)
= σ

(√
−4PML

p)
= σ

(√
−4PML

)
#σ
(√
−4PML

)
· · ·#σ

(√
−4PML

)
,

where we recall that

Proposition 11 [1] For two pseudodifferential operators A and B with C∞-coefficients, α = (α1, α2) with |α| = α1 +α2

and α! = α1!α2!, the symbol to the composed operator AB is given by

σ(AB) = σ(A)#σ(B) ∼
∞∑
|α|=0

(−i)|α|

α!
∂α1
x ∂α2

y σ(A)∂α1
ξx
∂α2
ξy
σ(B) .

From a practical point of view, the computation of these symbols and the approximation of the corresponding operators
can be complex. Instead, we can proceed as follows:

– If p ∈ 2N∗, and denoting q = p/2 ∈ N∗, then the corresponding differential operator simply reads

(−4PML)p/2 = Op
(( 1

S2
x

|ξx|2 + i
S′x
S3
x

ξx +
1

S2
y

|ξy |2 + i
S′y

S3
y

ξy
)q)

and can easily be analytically computed and numerically approximated, as a standard differential operator.
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– If p ∈ 2N + 1, with p = 2q + 1 and q ∈ N, then we rewrite

σ
(
(−4PML)p/2

)
= σ

(
(−4PML)q

√
−4PML

)
= σ

(
(−4PML)q

)
#σ
(√
−4PML

)
=

∞∑
|β|=0

(−i)|β|

β!
∂β1x ∂β2y σ

(
(−4PML)q

)
∂β1ξx ∂

β2
ξy
σ
(√
−4PML

)
,

where β = (β1, β2) ∈ N2 denotes a 2-index. Regarding σ
(√
−4PML

)
, we use Padé’s approximants, so that

σ
(
(−4PML)q+1/2

)
≈

∞∑
|β|=0

(−i)|β|

β!
∂β1x ∂β2y

( 1
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1

S2
y

|ξy |2 − i
S′y

S3
y

ξy
)q
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β2
ξy

(∑M
k=0 a

(M)
k −
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k=1 a

(M)
k d

(M)
k

( 1
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1
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y

|ξy |2

+i
S′x
S3
x

ξx + i
S′y

S3
y

ξy + d
(M)
k

)−1
)
.

From a practical point of view, we define

σ
(
(−4PML)

q+1/2
m

)
:=

m∑
|β|=0

λ
(m)
β (x, y, ξx, ξy) ,

where

λ
(m)
β := ∂β1x ∂β2y

( 1

S2
x
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x
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)
.

Tedious computations allow for an explicit expression of {λ(m)
β }β . We get

λ
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Next, we obtain

λ
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and
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For |β| = 1, we have to construct λ
(m)
(1,1)

, λ
(m)
(2,0)

, and λ
(m)
(0,2)

.

B Cauchy integral approximation

In this Appendix, we discuss the approximation of Aα by using the Cauchy integral representation, for α ∈ R and
A ∈ RN×N . We recall that

Aα = (2πi)−1A

∫
ΓA

zα−1(zI −A)−1dz , (63)
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where ΓA is a closed contour in the complex plane enclosing the spectrum of matrix A, where the latter is assumed to have
its spectrum in C\R−. This approach can be quite inefficient if the spectrum of the matrix A has a large radius. This leads
to a straightforward approximation of the Cauchy integral based on a quadrature rule

Aαh = (2πi)−1A
∑
j

∆zjθjz
α−1
j (zjI −A)−1 ,

where {θj}j are interpolation weights and {zj}j ∈ ΓA ⊂ C are the interpolation nodes on ΓA. There are many ways to
reduce the computational complexity [6,7,25,31]. Among others, we propose in [6] the following possible approach based
on the use of a traditional preconditioner M for the linear system. Typically, M ≈ A−1, and MA has a spectrum clustering
at the point (1, 0) in the complex plane. Thus

(MA)α = (2πi)−1MA

∫
ΓMA

zα−1(zI −MA)−1dz , (64)

where `(ΓM ) � `(Γ ), ` denoting the length of a curve in the complex plan. In particular computing (64) is cheaper than
(63). However, the connection between (MA)α and Aα is not necessarily simple.

Proposition 12 Assume that A is symmetric and M is a preconditioner commuting with A. Then, we have [6]

Aα = M−α(MA)α.

In other words, the polynomial preconditioning allows for an efficient computation of matrix powers.

Practically, the proposed preconditioning allows for a reduction of the length of the contour enclosing the spectrum of
the precontioned matrix MA, as long as M−α can be efficiently computed. We refer to [6] for additional details.
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