MULTILINEAR SINGULAR INTEGRALS ON NON-COMMUTATIVE L? SPACES

FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

AssTrACT. We prove L7 bounds for the extensions of standard multilinear Calderén-
Zygmund operators to tuples of UMD spaces tied by a natural product structure. The
product can, for instance, mean the pointwise product in UMD function lattices, or the
composition of operators in the Schatten-von Neumann subclass of the algebra of bounded
operators on a Hilbert space. We do not require additional assumptions beyond UMD on
each space — in contrast to previous results, we e.g. show that the Rademacher maximal
function property is not necessary. The obtained generality allows for novel applications.
For instance, we prove new versions of fractional Leibniz rules via our results concerning
the boundedness of multilinear singular integrals in non-commutative L? spaces. Our
proof techniques combine a novel scheme of induction on the multilinearity index with
dyadic-probabilistic techniques in the UMD space setting.

1. INTRODUCTION

A Banach space X has the UMD property if any X-valued martingale difference se-
quence converges unconditionally in L? for some (equivalently, all) p € (1, o). Standard
examples of UMD spaces are provided by the reflexive L? function spaces, as well as the
reflexive Schatten-von Neumann subclasses SP of the algebra of bounded operators on a
Hilbert space. The works by Burkholder [2] and Bourgain [1] yield an alternative char-
acterization: X is a UMD space if and only if singular integrals, in particular the Hilbert
transform, admit an L”(X)-bounded extension. Such equivalence, albeit striking, is not so
surprising when viewed from the modern dyadic-probabilistic perspective on singular
integral operators. Indeed, Petermichl [43, 44] realized that the Hilbert transform lies in
the convex hull of certain dyadic operators akin to martingale transforms (the so-called
dyadic shifts), while Hytonen [28] extended this representation to general singular inte-
gral operators of Calderén-Zygmund type, relying on a probabilistic construction. These
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results have roots in the pioneering work of Figiel [13] and on the probabilistic approach
of Nazarov-Treil-Volberg to non-homogeneous Tb theorems [41].

The theory of linear singular integrals on Banach spaces, beyond its intrinsic interest, has
historically been motivated by its interplay with several related areas, such as geometry
of Banach spaces [31, 32], elliptic and parabolic regularity theory [3, 47], the theory of
quasiconformal mappings [15]. Furthermore, vector-valued bounds may often be used
in the pursuit of their multi-parameter analogs [22, 27].

In this article, we are concerned with Banach-valued extensions of multilinear singular
integral operators. A linear singular integral takes the general form

TF) = | Ko dy,

where different assumptions on the kernel K lead to important classes of linear transfor-
mations arising across pure and applied analysis. The term singular integral refers just to
the underlying kernel structure — a Calderén-Zygmund operator is a bounded singular
integral operator. A heuristic model of an n-linear singular integral operator T in R? is
then obtained by setting

T(fi,..., f)@) =U(L® @ fi)x,...,x), xeRY, fii R >C,

where U is a linear singular integral operator in R™. For the basic theory see e.g.
Grafakos—Torres [18].

Multilinear singular integrals arise naturally from applications to partial differential
equations, complex function theory and ergodic theory, among others. Focusing on the
results of greater significance for the present work, we mention that L? estimates for the
fractional derivative of a product, often referred to as fractional Leibniz rules, are widely
employed in the study of dispersive equations starting from the work of Kato and Ponce
[33], descend from the multilinear Hérmander-Mihlin multiplier theorem of Coifman-
Meyer [4]. The bilinear Hilbert transform is a prime example of a modulation invariant
bilinear Calderén-Zygmund operator. It rose to prominence with Calderén’s first com-
mutator program, and has been featured as a model operator in the study of bilinear
ergodic averages; the latter connection is expounded in e.g. [11]. Proving L? estimates for
the bilinear Hilbert transform in the Lacey-Thiele framework [34, 35] involves a decom-
position into single trees, which are essentially modulated bilinear Calderén-Zygmund
operators.

Vector-valued extensions of multilinear Calderén-Zygmund operators have mostly
been studied within the more restrictive framework of ¢¥ spaces and function lattices.
Boundedness of these extensions is classically obtained through weighted norm inequal-
ities, more recently in connection with localized techniques such as sparse domination:
see [16] and the more recent [6, 37, 42] for a non-exhaustive overview of their interplay.
The paper [10], by Y. Ou and one of us, contains a bilinear multiplier theorem which
applies to certain non-lattice UMD spaces. The approach of [10] is based on a localization
of the UMD-valued tent space norms, see for instance [23], within the Carleson embed-
ding framework of Do and Thiele [12]. The tent space techniques lead to the additional
assumption of L estimates for a certain analogue of the Hardy-Littlewood maximal op-
erator obtained by replacing uniform bounds with randomized, or R-bounds, see e.g.
[47] for a definition. This assumption, usually referred to as the RMF property of X, dates
back to the work of Hytonen, McIntosh and Portal on the vector-valued Kato square root
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problem [21], and is in fact necessary for the X-valued Carleson embedding theorem to
hold [20].

In this article, we obtain vector-valued extensions of multilinear singular integrals
to tuples of UMD spaces tied by a natural product structure, such as that of pointwise
product in UMD function lattices or, more generally in fact, that of composition within the
Schatten-von Neumann classes. We do not require additional conditions on the spaces
involved — in particular, we do not require the RMF property. Thus, we are able to
extend multilinear Calrerén—-Zygmund operators to natural tuples of non-commutative
L? spaces — a result which does not seem attainable via abstract theorems involving
multilinear RMF type assumptions. A motivating corollary is a version of the fractional
Leibniz rule for products of Schatten-von Neumann class-valued functions.

In contrast to [10, 21, 23], our techniques are dyadic-probabilistic: a multilinear version
of the representation theorem of Hytonen [28], which appeared in the bilinear case in
[39] by Y. Ou and three of us, reduces the problem to the boundedness of the extensions
of a class of multilinear dyadic model operators, namely paraproducts and multilinear
dyadic shifts of arbitrary complexity. The novelty lies in how we treat these operators —
multilinearity poses significant problems in the vector-valued setup.

We note that UMD-valued extensions of bilinear, complexity zero dyadic shifts have
implicitly been treated in the work by Hytonen, Lacey and Parissis on the UMD dyadic
model of the bilinear Hilbert transform [30, Section 6]. The simple approach of [30] does
not extend to either the higher complexity or the multilinear cases. We tackle the n-linear
case by inducting suitably on the linearity, which is made possible by associating to our -
tuples of UMD spaces a collection of related m-tuples, m < n. The framework is carefully
designed to allow us to treat non-commutative theory. Moreover, bilinear theory would
not reveal all the difficulties and is, in fact, strictly easier — a feature that is also present in
our followup paper [9] involving operator-valued multilinear analysis. Before providing
further insights on the novelty of our proof techniques, and comparisons to previous
approaches, we give the statements of our main results.

1.1. Main results. We start by discussing a simpler question, where the current literature
already has some restrictions that we can lift. If X is a Banach space and T is an n-linear
integral operator on R? acting on n-tuples of functions in LZ(IR?), we may let T act on
(LE(RY) ® X) x LEO(RY) x - - - x L2(R?) by

T(fl/fZ/ o /fn) (x) = Z el,jT(fl,f/fZ’ e ,fn)(X), X € ]Rd/
A= Z erifi,  fij€LTRY), e1j€ X

A basic thing implied by our methods is that n-linear Calderén-Zygmund operators
extend boundedly when applied to one UMD-valued function and n — 1 scalar func-
tions, without any additional assumption on the UMD space. We send to Subsection 2.4
for the precise definition of an n-linear Calderén-Zygmund operator. This is the sim-
plest complete multilinear analogue of Bourgain’s UMD Hoérmander-Mihlin multiplier
theorem from [1]; see also Weis [47] and Hytonen-Weis [26] for the operator-valued,
non-translation invariant case.

In the bilinear, translation invariant, operator-valued setting, a related result appeared
in[10, Corollary 1.2] under the assumption, known to be rather restrictive, that Xisa UMD
space with the non-tangential Rademacher maximal function property [21]. Theorem 1.1



4 FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

shows, in particular, that the latter assumption is unnecessary. However, we formulate the
following more general version to facilitate the discussion below regarding the somewhat
special nature of bilinear theory.

1.1. Theorem. Let X1, X5, Y3 be UMD spaces with an associated product (a bounded bilinear
operator)

X1 X Xo — Y3: (x1,x2) = x1X2, Ix1x2ly, < Ix1lx, 1x2lx, -

Let n > 2 and T be an n-linear Calderdn-Zygmund operator on RY. The n-linear operator

T(fi, for--s fn) (x) = Zel,j1€2,j2T(f1,j11f2,j2/f3/---/fn)(x)/ xeRY,
jl/jz
fi= Z evj fij, fa = Zez,jsz,jz fris foj ELO(RY), e1j, € X1, e, € Xa,
1 J2

extends to a bounded operator

n
T: [P{(RY; X1)XLP2(RY; X,) X H LPI(RY) — L91(R%; Y3),
k=3

n
1
1 E 1
< oo, — 0 = L
1<pk— /n<f]n+1< e T
k=1

The proof of this model case is an adaptation of the proof of Theorem 3.31 with some
additional observations regarding the bilinear case — see Remark 4.13. This simpler result
also showcases why the genuine n-linear theory that we formulate next is harder than
bilinear theory: the n-linear theory requires us to exploit a more careful product setting
so that we can run our inductive proof. We also note that at least in the basic case
X1 = Y3 =Xand X; = C, Theorem 1.1 can also be seen as a corollary of Theorem 3.31
using Example 3.17. It is simpler to just look at the proof, however.

Our main theorem concerns extensions of n-linear CZO operators T to an n-tuple
Xj,..., X, of UMD Banach spaces lying in an enveloping algebra A, allowing for a
standard definition of (associative, not necessarily abelian) product A x A — A. We
refer to these configurations as UMD Holder tuples if certain conditions are in place,
in particular, if the n-tuples are associated with suitable collections of related m-tuples,
m < n. If each X is a subspace of A, and f; € L¥(R?) ® X for 1 < k < n, we may define
the extension of a scalar integral operator by

n
T(hy )@= Y T fui)@ [ J i xeRE,
(12) J1reeerfn k=1
fie= Zek,jkfk,jk/ fiji € LE(RY), e j, € X
J
The abstract setup is developed in Section 3. For expository purposes, herein we provide
a statement in a rather general concrete case of a UMD Holder tuple. In the statement, we

denote by LF(M) the non-commutative L? spaces associated to a von Neumann algebra
M endowed with a normal, semifinite, faithful trace 7.
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1.3. Theorem. Let M be a von Neumann algebra endowed with a normal, semifinite, faithful

trace. Fors =1,...,S, let (M, lis) be measure spaces and fors = 0,...,S let
1 n
1<pl, P <, — = =

qn+1 k=1 pk

1

be Banach Holder tuples. Let
aa  NT L (Ms, pis; LPE (Mis1, pis—i - LMy, i LEOM)) -++), k=1,...,m,
' Y1 = LT (Ms, Us; L9 (Ms_1, Us—1;" " L (M, Ui; Lo (M))---).

The n-linear operator (1.2) extends to a bounded operator

=

n
1
T: H ka(le; Xk) - anﬂ (]Rd/ Yn+1)/ 1< Pk < o, ; < qn+1 < oo, Gn+1 £

H
G
:

n
T: [ [L'RE X = LR V).
k=1

In fact, we have the stronger estimate

KT i fr)) M (il Ul )

1/
(1‘5) n+l 1
M(g1,. .-, Sn+ = Qs ~ial ‘
(81, gnr1)(X) sup ]|:1|<lgf|>Q (8o |Q|/Qg

The estimate (1.5) is equivalent to a certain sparse bound, see Remark 3.29.

We send to Subsection 3.3 and to the references [7, 8] for more details on sparse
bounds and to [37, 38] for a survey of the weighted inequalities that may be derived as a
consequence.

Theorem 1.3 is obtained as a corollary of Theorem 3.31 using Example 3.21. However,
we remark that, at least to the best of the authors” knowledge, the spaces (1.4) encompass
all known examples of UMD Banach spaces. We further remark that the mixed norm
structure of the spaces (1.4) prevents from using purely non-commutative tools, as (1.4)
may be interpreted as semi-commutative spaces only if p; does not vary with s for all
1 < k < n; on the other hand, (1.4) are not UMD lattices, so that Theorem 1.3 is out of
reach of purely lattice-type techniques.

Theorems 1.1 and 1.3 can be used to deduce certain weighted multilinear Leibniz
rules in the UMD-valued and non-commutative setting. For simplicity of notation,
we particularize the statements to the bilinear, unweighted, non-endpoint case for the

homogeneous fractional derivative D° f = F (/& Isﬂé)), in the setting of Theorem 1.1. A
variety of formulations may be found e.g. in the article by Grafakos and Oh [17].

1.6. Corollary (Fractional Leibniz rules in UMD spaces). Let Xj, X5, Y3 be UMD spaces as
in the statement of Theorem 1.1. For all sufficiently smooth f; : R* — Xy, fo : RY — X, there
holds

||Ds(f1f2)||ma(]1{d;y3) S ||Dsf1||U’1(1Rd;X1) ||f2||mz(]Rd;X2) + ”fl”L’l(]Rd;Xl) ”DSfZ L2(RY;X,)
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whenever s > d and

1
0o — 00 1 _ 1 1 _ 1 1
L<prp2rr2 < co, 2 <3 <0 93— p1 + pp "o’

Corollary 1.6 appears to be the first instance of a Leibniz type rule in the full vector-
valued setting, with no additional assumptions on the UMD spaces involved. We have
not strived for optimality of the range for the fractional exponent s. While the range
obtained in Corollary 1.6 is wider than what would follow from results of Coifman-

Meyer type, see [17, Remark 1], the extension to the sharp range s > max {O,d (q% - 1)}

requires bilinear estimates for kernels which fail to be of the standard CZ type considered
herein. Such estimates are carried out e.g. in [17]: their extension to the full vector-valued
setting is left for future work.

Proof of Corollary 1.6 . We follow the beginning of the proof of [17, Theorem 1]. The
estimate we seek is reduced to a bound for the UMD-valued extension of three different
bilinear paraproducts (meaning suitable parts of a Littlewood-Paley decomposition of
a product of functions — not in the exact sense as we use the word in connection with
dyadic model operators). We note that the symbol of the high-low paraproducts I'l; and
I, is of Coifman-Meyer type; therefore Iy, I, are bilinear CZO operators as defined
in Subsection 2.4 and Theorem 1.3 applies directly. The high-high term IT;3 is a bilinear
integral operator with kernel

K = ), [ 27027 = 0)p(@" = )@ = ) d

meZ

where 1) is a Schwartz function whose Fourier transform W is supported in an annular
region around the origin and ¢; = D*¢ for some Schwartz function ¢ such that its Fourier
transform has compact support containing 0, so that

ps (Ol s (L + )@, xe R
As s > d for us, this implies that I3 is a bilinear CZO operator with a kernel K satisfying
T3] s +IKllezyn S 1,

JENERN
where ||K||cz, is the kernel constant defined in the beginning of Section 2.4. The required
bounds for I'l3 follow from an application of Theorem 1.1. O

1.2. Proof techniques and novelties. A basic example of an n-linear dyadic shift operator
of complexity zero on IR, in adjoint form, is

Girvees e = Y e [ (] Anfi)([] Bufi0)

meZ, keC keN

where ¢, are bounded coefficients, and E,, and A, respectively indicate the conditional
expectation on the m-th dyadic filtration and the corresponding martingale difference,
CNN =0and CUN = {1,...,n + 1}, with the key feature that the cardinality of the
cancellative indices C is always at least 2. We approach UMD-valued extensions of the
above forms to (n + 1)-tuples of UMD spaces via a novel induction argument, aimed at
reducing the cardinality of the set of non-cancellative indices N and the linearity of the shift
n at the same time. The induction relies upon a certain structure of the tuples involved,
which is most easily described in the bilinear, n = 2, case. Loosely speaking, we consider
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UMD spaces X1, X2, X3 endowed with a linear functional 7 defined on all products e;ezes,
ej € X, with the property that
lexllx, ~  sup |t(erezes)l
le2lx, =leslx; =1

and the same holds for all permutations of Xj, X5, X3. In combination with the martingale
decoupling inequality of McConnell [40] and Hytonen [29], and Stein’s inequality in UMD
spaces, this structure allows to reduce a trilinear shift form on X, X5, X3 where, say, 1 € C
and 2 € N, to a bilinear shift form on Xj, X;, where both indices are cancellative, and
whose boundedness is known from the UMD character of X;. The induction is crucial in
the n-linear case to allow a repeated use of Stein’s inequality.

We remark here that the martingale decoupling has been previously used by Hanninen
and Hytonen [19] in the proof of a T'1 theorem for linear singular integrals on UMD spaces
with operator-valued kernels, providing among other results a non-translation invariant
analogue of Weis’s theorem [47]. The multilinear operator-valued theory, together with
a related representation theorem, is the object of forthcoming work by the authors [9].

Acknowledgments. The authors would like to warmly thank Yumeng Ou for fruitful
discussions on the subject of multilinear UMD-valued singular integrals. F. Di Plinio is
grateful to Ben Hayes and Vittorino Pata for enlightening exchanges on factorization in
noncommutative L” spaces.

2. DEFINITIONS AND PRELIMINARIES

2.1. Vinogradov notation. We write A < B if A < CB for some absolute constant C. The
constant C can at least depend on the dimensions of the appearing Euclidean spaces,
on integration exponents, on the degree of linearity of the multilinear operators, and on
various Banach space constants. We use the notation A ~ Bif B S A < B.

2.2. Dyadic notation. Let Dy be the dyadic lattice in R?, defined by
Do ={275([0,1) + m): k€ Z,m € Z%.

We recall the random dyadic grids of Nazarov-Treil-Volberg, see for example [41]. The
version we use here is from [29]. Let Q = ({0,1}%)Z and let IP be the natural probability
measure on (2 such that the coordinates are independent and uniformly distributed on
{0,1}4. If Q € Dy and w = (wy)kez € Q, we set

Q+w:==0Q+ Z w27k
k: 27k <€(Q)

The random dyadic lattice D, on R? is defined by D, = {Q + w: Q € Dy}. By a dyadic
lattice D we mean that D = D, for some w.

Let X be a Banach space. If p € (0, 0] we denote by LP(X) = LP(IR?; X) the usual Bochner
space of X-valued functions f: R? — X. Let D be a dyadic lattice. Suppose Q € D and
fe LllOC (X) (the set of locally integrable functions). We use the following notation:

The side length of Q is denoted by £(Q);

ch(Q) consists of those Q' € D such that Q" € Q and £(Q’) = €(Q)/2;

Ifk € Z,k > 0, then Q® denotes the cube R € D such that Q c R and 2k¢(Q) = £(R);
The average of f over Qis (f)o = H@ fQ f dx, and we also write Eqf = (f)olo;
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e The martingale difference Aqf is Aof = Y.yeeno) Eo'f — Eof;
e Forke Z,k > 0, define
k
ASf= ) Arf and Eff= ) Exf.
ReD ReD
RO=Q RM=Q
Haar functions. When Q € D we denote by hg a cancellative L> normalized Haar function.
This means the following. Writing Q = I; X -+ X I; we can define the Haar function /),

n=(m,...,n4) € {0,1}%, by setting
hn :hm®...®hnd

where hO = |L|” 1/211 and h1 L]~ 1/2(111 —-1y,) for every i = 1,...,d. Here [;; and I;,
are the left and right halves of the interval I; respectlvely Ifn + 0 the Haar function is
cancellative: [ h" = 0. We usually exploit notation by suppressing the presence of 17, and

simply write hg for some h77 n#0.
Notice that if f € L1 (X), then Aqf = Yopzolf, h! )hn , or suppressing the n summation,

AQf (f,hQ)hQ. Here (f,hQ) = fth

2.3. Definitions and properties related to Banach spaces. An extensive treatment of
Banach space theory is given in the books [24, 25] by Hytonen, van Neerven, Veraar and
Weis.

We say that {ex}x is a collection of independent random signs, where k runs over some index
set, if there exists a probability space (M, u) so that e: M — {=1,1}, {ex}x is independent
and p(lex = 1}) = p(fex = —1}) = 1/2. Below, {ei}r will always denote a collection of
independent random signs.

Suppose X is a Banach space. We denote the underlying norm by | - |x. The Kahane-
Khintchine inequality says that for all x1,...,xp € X and p, g € (0, o) there holds that

M p\Lp 2 9\1/4
(1E| Z emxm|X) ~ (1E| Z emxm|X) .
m=1 m=1

liaaco = (B] Y emnal, )

The Kahane contraction principle says that if (am)ﬁf:l isasequence of scalarsand p € (0, oo],
then

We also denote

M
(2.1) (lE’ Z smamxm’i)l < max |a,| IE‘ Z smxm‘ /p.
m=1

Actually, if p € [1, 0] and 4, € R, then (2.1) holds w1th “s” in place of “<”, see [24] for
more details.

A Banach space X is said to be a UMD space if for all p € (1,00), all X-valued LF-
martingale difference sequences (d -)7?: and signs €; € {—1, 1} there holds that

Lr(X) || Z

2.2) “ eid; [
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Here the L7(X)-norm is with respect to the measure space where the martingale differences
are defined. If the estimate (2.2) holds for one py € (1, o), then it holds for all p € (1, c0).

A version for UMD-valued functions of Stein’s inequality concerning conditional ex-
pectations is due to Bourgain. For a proof, see for example [24, Theorem 4.2.23]. For our
purposes we formulate the estimate in the following way. Suppose X is a UMD space
and let D c R? be a dyadic lattice. Suppose that for each Q € D we have a function
fo € Llloc (X) supported in Q (such that only finitely many of them are non-zero). Then for
all p € (1, o) there holds that

(23) ]EH Y colfodalo
QeD

17(X) s IEH Z éofa (X))’

QeD
The decoupling inequality. We record a special case of the decoupling estimate [19, Theorem
6] by Hanninen-Hytonen. These decoupling estimates originate from McConnell [40],
but see also Hytonen [29].

Let D be a dyadic lattice in R? and Q € D. Let V be the probability measure space
Vo = (Q,Leb(Q), |QI"! dx|Q), where Leb(Q) is the set of Lebesgue measurable subsets of
Q and |Q|~! dx|Q is the normalized Lebesgue measure restricted to Q. Define the product
probability space V = [[pep Vg, and let v be the related measure. If y € V, we denote
the coordinate related to Q € O by yq.

Suppose X is a UMD space, p € (1,0) and f € LP(X). Letk € {0,1,2,...} and j €
{0,...,k}. Define D;;, ¢ Dby

(2.4) Dj = {Q € D: £(Q) = 2"**V* for some m € Z).
[19, Theorem 6] implies that

2.5) /]R d‘ Y Abf(x)'i dx~F /]R d /q/ | y 5Q1Q(x)Abf(yQ)idv(y)dx
QeDjx QeDjx

forany / € {0,1,...,k}. The point of dividing to the subcollections D is that now AZQ f
is constant on every Q" € Dj; such that Q" € Q, which is required by the decoupling
theorem (together with the fact that [ AZQ f =0and spt AIQ fcQ).

2.4. Multilinear singular integrals and model operators. A function

K: IRd(n+1) \ A— C/ A= {x = (xll .. ~1xi’l+1) € Rd(n+1): Xy == xl’l+1}/
is called an n-linear basic kernel if for some a € (0, 1] and Ck < oo it holds that
K@) < S S

dn
(T ey = )
and forall j € {1,...,n + 1} it holds that

jej — %[
IK(x) - K(x')] < Ck

dn+a
(Tt by = 2ol
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whenever x = (x1,...,%:41) € RD\ A and ¥’ = (xy,. ..,x]'_l,x;., Xjt1, .- Xni1) € RA(+1)
satisfy

|xj — x;-l <27' max |x; — xul.
2<m<n+1

The best constant Ck is called [|K||cz,.

An n-linear operator T defined on a suitable class of functions (e.g. on the linear
combinations of cubes) is an n-linear singular integral operator (SIO) with an associated
kernel K, if we have

n+1

TWfieesf St = [ K00 [ ] fi) s
=1

RA(n+1)

whenever spt f; N spt f; = () for some i # .
We say that T is an n-linear Calderén—Zygmund operator (CZO) if the following conditions
hold:

e T is an n-linear SIO.
e We have that for all m € {0, ..., n} there holds that

* 1 . 1/2
IT"™ (1, ..., Dllpvo = sup sup (== Y KT™(1,..., 1), hf) "~ < oo,
D KoeD |KO| KeD
KcKy

where the first supremum is taken over all dyadic lattices D. Here T* := T, T™
denotes the mth adjoint of T for m € {1,...,n}, and the pairings (T"(1, ..., 1), hx)

have a standard T1 type definition with the aid of the kernel K.
e We have that

IT|lwep := sup sup |Q|_1|<T(1Q/~--/1Q)/1Q>| < 00,
D QeD

An SIO T is a CZO if and only if

n
(2.6) ITCfrs o il ey S [ [ W fnlliomrey
m=1

for some (equivalently for all) exponents p1,...,pn € (1,), gus1 € (1/n,00) satisfying
121 1/Pm = 1/qn+1. While such a T1 theorem is well-known (see e.g. [9, 18, 39]), we will
need a very precise version of this called a dyadic representation theorem. To this end,
we need some definitions.
Letk = (ki,...,kn+1),0 < k; € Z, and let D be a dyadic lattice in RY. An operator S = SIE)
is called an n-linear dyadic shift if it has the form

2.7) Sy fi) = Y Ao fi),
KeD
where
Axfir )= Y. axy [ [ oo

Q1 Qni1€D j:1
(k;)
Q=K
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a ) < —,
2k (@))] IKI”

and there exist two indices jo, j1 € {1,...,n+1}, jo # j1,50 thatide],0 = hQ/‘o’ZQh = th and
o, = W if j ¢ Ljo, i)

An n-linear dyadic paraproduct m = mgp also has n + 1 possible forms, but there is no
complexity (the k = (ky, ..., ky4+1)) associated to them. One of the forms is

(fi s fn) = Z ax ﬁ(fj)KhK,

KeD  j=1

where the coefficients satisfy the BMO condition

1/2
(2.8) sup Z IaKl2
K(]EZ) | 0| KeD
KcKyp

This is the paraproduct associated with the tuple (1x/IK], ..., 1x/IK]|, hk), and in the re-
maining n alternative forms the /i is in a different position.

We call shifts and paraproducts dyadic model operators (DMOs). Suppose T is an n-linear
Calderén-Zygmund operator in R? related to a kernel K. If fi,--., fus1 are, say, L"1(RY)
functions, then the representation theorem states that

(o]

(2'9) <T(f1/-~~/fn)/fn+1> = CT]Ew Z Zz—maxk,-a/2<uk m,u(fl/“'/fn)/fn+l>-

Here
n

ICrl < Z IT™(1, ..., Dllsmo + I Tlwsp + [IKllcz,
m=0

< ||T||Ln+1x_.,an+1_,L(n+1)/n + ”K”CZM

a is the parameter in the Holder Continuity assumptions of the kernel of T, and the sum
over u is finite, say, over u = 1,2,...,C(n,d). If maxk; > 0, then Uk , is some dyadic

shift Sk of complexity k with respect to the lattice D,,. If maxk; =0, then Uk , is a shift
of complex1ty zero or a paraproduct. In this sense, a CZO T can be represented using
DMOs. For n = 2, a proof of this result is given by three of us and Y. Ou in [39]. The
n-linear case for general n, which requires certain modifications, is [9, Theorem 6.3]. The
reference [9, Theorem 6.3] is a more general theorem involving operator-valued CZOs.
We note that the additional assumptions related to the operator-valued setup, such as
the RMF assumption, concern only the estimation of the model operators. They are not
needed for the above stated structural theorem, which has essentially the same proof in
the scalar-valued and operator-valued settings.

As DMOs satisfy L? estimates in the full expected range of exponents, the T1 theorem
follows from the representation theorem. Our main task in this paper will be to prove
LP-bounds for the extensions of n-linear DMOs to suitably defined tuples of UMD spaces,
which we term UMD Holder tuples and define in the subsequent section.
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3. UMD HOLDER TUPLES AND THE BOUNDEDNESS OF MULTILINEAR SIOs

Throughout this section, and the remainder of the article, we make use of the following
notational conventions. For m € IN we write J,;, := {1,...,m} and denote the set of
permutations of J C J,, by (7). We simply write X(m) in place of X(J,,). We say that
p1,--.,Pm is a Holder tuple of exponents if

m
(3.1) 1<Pl,eepm <0, Z%:l.
j=1

3.1. UMD Hélder tuples. The notion of UMD Holder tuple involves fixing an associative
algebra A over C. We denote the associative operation A X A — A by the product
notation, that is, we write (¢, f) + ef. In the abstract definition, we do not find useful
for A itself to be endowed with a topology; on the other hand, we will work with linear
subspaces of A endowed with a Banach norm.

We assume that there exists a subspace £! of A and a linear functional 7 : £L! — C,
which we refer to as trace.

Given an m-tuple (Xj, ..., X;;) of Banach subspaces of ‘A, we construct the seminorm

m
(3.2) lely(x,,...x,) = sup{ T (e H eg(g)] 10 € Z(m), IejIX]. =1,j=1,.. .,m}
=1
on the subspace
m
(3.3) Y(Xq,...,Xm) = {e EA: eHeU(g) eL'Vo e Y(m), ej € X, j = 1,...,m}
=1

of A. The next lemma clarifies the intent of definition (3.2): if | - |z is a seminorm such
that all (m + 1)-linear forms on X7 X --+ X X;;; X Z in (3.5) below are bounded, then the
Z-seminorm dominates the seminorm Y (Xjy, ..., Xy).

3.4. Lemma. Let (Xy,...,Xy) be a m-tuple of Banach subspaces of A. Suppose that e € A
belongs to the subspace (3.3). Then

1)

=1

m
< lelz Ie]-IX]., YoeX(m),ejeXjj=1,...,m,
j=1

(3.5)

holds for lelz = lely(x,,..x,)- In addition, if | - |z is a seminorm on A such that (3.5) holds,

Proof. Immediate from the definitions. O

3.6. Definition (Admissible spaces). We say that a Banach subspace X of A is admissible
if Y(X) from (3.3) is a Banach space with respect to | - |y(x) of (3.2)}, the map

(3.7) yeYX) o Xlyle X,  Xlyl) =1, xeX
is onto, and furthermore, for each x € X, y € Y(X), xy € LYand
(3.8) T(xy) = t(yx).

This includes that if y € Y(X) then |ylyx) < 0.
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3.9. Remark. If X is admissible, then the map (3.7) is an isometric bijection from Y(X) onto
X*. We are thus allowed to identify Y(X) with X* via (3.7) and we do so without explicit

mention from now on. Notice that if X is admissible, then X is a UMD space if and only
if Y(X) is.

For our purposes, it is convenient to state the next observation in the form of a lemma.

3.10. Lemma. Let X be admissible and reflexive. If Y(X) is also admissible, then Y(Y(X)) = X as
sets and |x|y(y(x)) = |x|x for all x € X.

Proof. The reflexivity of X and Remark 3.9 imply that Y(Y(X)) is isometrically isomorphic
with X. Here we want to show that they are actually equal as sets with equal norms.
Denote Y := Y(X) and Z := Y(Y). It follows quite directly from the definitions that X is a
subset of Z.

Let ¢: X* — Y be the isometric isomorphism from the definition of the admissibility
of X. This induces the isometric isomorphism ¢: X* — Y* defined by

P™)(y) = x"(@ 7 (),
where x™ € X* and y € Y. Since X is reflexive and Y is admissible, we have the canonical
isometric isomorphism p: X — X* and the isometric isomorphism n: Y* — Z. Now, the
compositionno ¢ o p: X — Z is an isometric isomorphism.
Suppose x € X and denote z := o ¢ o p(x). Let y € Y. Then we have that

@) =1 @H) =9~ o @@ W) = ¢ W~ 0§ onTH(2) = T(xy).
Since x and z are both elements of Z, the fact that 7(zy) = t(xy) for all y € Y implies that
x = z. Thus, the isometric isomorphism 7o ¢ 0 p: X — Z is actually the identity map. O

If X, X,..., X, are Banach spaces we write X = Y(Xj,...,X;;) to mean that X and
Y(Xy,...,Xy) coincide as sets, Y(Xj, ..., Xj;) is a Banach space with the norm |- |y(x,,.. x,,),
and that the norms are equivalent, that is, |x[x ~ |x]y(x,,..x,) for all x € X.

We turn to defining UMD Holder m-tuples relatively to A, 7. We first do so for m = 2.

3.11. Definition (UMD Holder pair). Let X1, X, be admissible spaces. We say that {X;, X5}
is a UMD Holder pair if X; is a UMD space and X, = Y(Xj). In view of Remark 3.9 and
Lemma 3.10 one can equivalently say that {X, X5} is a UMD Hélder pair if X, is a UMD
space and X; = Y(Xj).

For m > 3 the definition of a UMD Holder m-tuple is given inductively on m as follows.

3.12. Definition (UMD Holder m-tuple, m > 3). Let Xj, ..., X,, be admissible spaces. We
say that {Xy, ..., X;;} is a UMD Holder m-tuple if the following properties hold.

P1. For all jo € J, there holds
Xjy = Y ({X;: j € Tu \ ljo}})-

P2. Ifl1<k<m-2and J ={j1 < j2 < < ji} ©Jm then Y(Xj,..., X;,) is an admissible
Banach space with the norm (3.2) and

(3.13) Xy X, YXy, oo, X))

is a UMD Holder (k + 1)-tuple.

The following remark is an important consequence of the definition.
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3.14. Remark. Let m > 3 and {Xj, ..., X;,} be a UMD Holder m-tuple. Then according to
P2 the pair {X;), Y(Xj,)} is a UMD Holder pair, which by Definition 3.11 implies that X,
and Y(X;,) are UMD spaces. The inductive nature of the definition then ensures that each
Y(Xj,...,Xj,) appearing in (3.13) is a UMD space.

3.15. Remark. Letm > 2and {Xj, ..., X;;} be a UMD m-Holder tuple. Lete; € X for j € .
For each 0 € X(m), as X1y = Y(X;52), - - - » Xo(m)), We necessarily have 1—[;]11:1 es(j) € L' and

m m
1T(€s(1) * * - €om)| < lea) Y (Xomy, -+ Xogm) H lea()lx, ) = H lejlx;-
j=2 j=1

We clarify the extent of our definition with some examples of UMD Hélder tuples.

3.16. Example. It is immediate to verify that the m-tuple X; =C, j =1,...,m, is a UMD
Holder m-tuple with respect to the usual product.

The next example is of relevance if one wants to deduce Theorem 1.1 in the basic case
X1 = Y3 =X and X, = C from Theorem 3.31. However, otherwise we do not need it, and
Theorem 1.1 is best seen mimicking our main proofs.

3.17. Example. Let X = X; be a complex UMD space and denote X, = X*. The goal of
this example is to show that for each m > 2 the tuple {Xy, X, ..., Xjy} with X; = C for
2 < j <misa UMD Hélder tuple. This is conceptually simple but requires some work in
order to define a suitable enveloping algebra A. We let V = X @ X*, and define A to be
the tensor algebra over V, namely
A= Ve
k=0

L' =spanfe®e’ + f*®f, e, feX ¢, f e XY
notice that this is a linear subspace of V®2. We then define the functional 7 by
T(e®e* + f" ®f) =(f",e) +<c", f)

fore, f € X, e*, f* € X* and extend it to all of £! by linearity. We notice that the definition
(3.3) yields that

We let

X 1i{jl...,jk},2€{j1...,jk},
1,...,X]'k)= X* 1E{j1...,jk},2¢{j1...,jk},

C {12c{ji....jxyor{,2}Nn{j1...,jk} = @.
With this information in hand, we learn that X, X*, C are admissible spaces. Proceeding
by induction on m, we then easily verify that {X;, X», ..., Xy} is a UMD Holder tuple.

Y(X;

We now start explaining how non-commutative L? spaces fit our abstract framework.

3.18. Example. Consider a von Neumann algebra M C B(H), namely a self-adjoint unital
subalgebra of the algebra of bounded linear operators on a complex Hilbert space H which
is closed in the weak operator topology [45, 46]. Let M, = {A € M : (Ah,h) > 0Vh € H}
denote the positive part of M. A trace 7 is a functional M, — [0, co] satisfying

T(A + AB) = T(A) + At(B), VA, Be M, A>0
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as well as the tracial property
T(AA") = 1(A™A)

for all A € M. Following [46], we assume 7 is normal, semifinite, faithful (n.s.f.) and define
the corresponding space of measurable operators A = LY(M) equipped with convergence
in measure: a detailed definition is in [46]. Then A is a (metrizable) topological *-algebra
and M is dense in A. We will also recall the notion of S,, S as introduced in [46, p.1463]:
S, is the cone of those A € M, such that t(suppA) < oo, where supp A is the least
projection P € M, with PA = A, and S ¢ M is the linear span of S;. We note [48,
Proposition 1.15(ii)] that T may be extended to a unique linear functional on S, satisfying

(3.19) ©(A") =1(A),  t(AB)=1(BA), VA,BeS.

For 1 < p < oo, we call noncommutative LV space the Banach subspace of A obtained by
completion of S with respect to the norm

NG
1Al a0 = [T ((A*A)Z)] , l<p<co
In fact, we record the characterization
M) ={AeA:1((A*A)?) < oo}

in the above equality, T denotes the extension of the trace to the positive part of A defined
via generalized singular numbers [46]. We also point out the Holder inequality

IE1E2Mlrmy < W€l apllEllramy, % = p% + plz
valid whenever 1 < py,p2, p < o0. A suitable substitute holds for p = o if the L7 (M)-norm
is replaced by the 8(H)-norm. Furthermore, notice that T may be extended from S to a

unique linear bounded functional on L!(M) satisfying
IT(A) < Al pg)-

The tracial property (3.19) extends to the following: if A, B € A are such that A € LP(M)
and B € L' (M), then

(3.20) 7(AB) = ©(BA).

This is the concrete equivalent of property (3.8) we assumed in the abstract setup. We
refer to [48, Rem. 1.2.11] for the details of (3.20).

For 1 < p < o0, we then have LP(M)* = L’ (M) with isometric isomorphism given by
the Riesz representation map

AelP(M) = By e L' (M),  AA) =1(BrA) YA e LF(M).

A fortiori, LF(M) is reflexive for 1 < p < co. For our purposes, it is also important to
observe that LF (M) is a UMD space in the same range [46, Corollary 7.7]. We detail below
two concrete examples of von Neumann algebras equipped with a n.s.f. trace.

If M is an abelian von Neumann algebra, then M = L*(M, u) for some measure
space (M, u), an.s.f. trace is obtained by integration with respect to the measure p, and
A = L°(M, u), the topological *-algebra of measurable functions on M with respect to
convergence in measure. Then LP(M) = LF(M, u) for 1 < p < co.
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If M = B(H), the bounded linear operators over a separable Hilbert space H and
T(A) = ) (Aei,e))

=1

where ¢; is any orthonormal basis of H [46, Example (ii), p. 1465], then the spaces L (M)
are referred to as Schatten-von Neumann classes and denoted by SP.

Let now pj, j = 1,...,m be a Holder tuple as in (3.1). We claim that X; = LV/((M) is a
UMD Héolder tuple relative to the algebra A = LY(M), with trace 7. This can be proved
by induction on m, relying on the equality
1 1

POM) = YALE M) - i EEIEE S
LY M) =YL (M) = je TY), o)

valid for each @ C J € I, whose verification is immediate and left to the reader.

3.21. Example. In Appendix A, we prove that if {p“;i : 1 < j < m} are Holder tuples of

exponents as in (3.1) fors = 0,...,S, Mis a von Neumann algebra with n.s.f. trace 7 as in
Example 3.18, and (M, 1is) are o-finite Borel measure spaces for s = 1,..., S, the tuple of
spaces

S S-1 1 0
X; =L (Ms, us; L”7 (Ms_1, ps—1; -+~ LV (M, pug; LT (M) -+ )
is a UMD Holder m-tuple relative to the trace

fl—) / T(f(fl,...,ts))dylX"'Xys(tl,...,tg).
M1X"~><M5

A precise statement is provided in Proposition A.1.

3.2. Extensions of CZOs. If X is a Banach space we will use the notation L° ® X for
functions of the type Zﬁl fie;, where N € N, f; € L°(RY) =: L and ¢; € X.

Let {Xi,..., X1} be a UMD Holder tuple where n > 1. Suppose Ty is an n-linear
CZO with a kernel K as defined in Section 2.4. Since we know that T is a bounded
operator, see (2.6), we know that (To(f1, - ., fu), fu+1) makes sense for f; € L. We define

the corresponding (1 + 1)-linear form
A, L7 ®@Xy X XL ® X1 — C,

(3 22) n+1
‘ Aty ) = Y (Tolfiarse s fnads frtane YT | | €ay),
Ay, Ap+1 ]':1

where f; = Zi\gl iajq- If U is a dyadic model operator as in Section 2.4 we define the
form Ay in the corresponding way. We can also make sense of Ay more directly. For
example, if U is a dyadic shift as in (2.7), then

n+1
(3.23) Aulfionfu) =Y Y axoyt([[¢hihop)-
KeD Qq,...,Qu4+1€D j=1

(k)
Q;"=K
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3.24. Remark. We chose to utilize the identity permutation in X(n + 1) for the product
appearing in (3.22). However, the notion of being a UMD Holder tuple is clearly invariant
under reordering of {Xy,..., Xy+1} .

Letp; € (1,0) for j € J,,+1 be such that Z’.Hl 1/p;j = 1. From Theorem 3.31 it will follow

j=1
among other things that
n+1
(3.25) AT Fioees fa) S | Wl
j=1

Based on this boundedness one can define as usual 7+ 1 adjoint operators. Let us describe
how the adjoints look like in our Holder tuple set up.
Fix jo € Ju+1 and f; € LFi(X)) for j € Ju41 \ {jo}. Consider the linear functional

(3.26) fio € LP0(Xjo) = Ary(fi, -+ ) fus1),
which is bounded because of (3.25). Recall that Lo (X;)* is identified with LPi) (Y(X i)
with duality pairing
(g5 = [ (0,0 d
Therefore, there exists a function
TP(f 2 j € Tuwr \Ajoh) = T (i, figt, St -+ furn) € LV (VX))

so that

Aniveeeofosn) = [ o005 € T \ oDy .
The n-linear bounded operator

TI": LPV(X1) X - X Lot (X o1) X LP0t (Xpan) X - X LP1 (Xr) = LOO (Y(X,)

is one of the adjoint operators. In the same way one can define the adjoint Té* of Ty so
that ‘

<T(])0*(glr ceey gj0—1/ gj0+l/ ceey gn+1)/ g]0> = <T0(g1/ ey 811)1 gn+1>/
where g; € LF].

Suppose f; = 22\21 fiatia € LT ® X for j € Ju+1 \ {jo}. A calculation involving the
invariance of 7 under cyclic permutations yields that
T (f;+ j € Twa \ job)
= Z T(]:)O*(_f},ﬂj : ] € jl’l+1 \ {jO})ej0+1,ajO+1 o en+1,an+1 e ejg—l,ﬂ]'o_l'

3.3. Sparse domination of dyadic operators. The following basic sparse domination
result, Lemma 3.27, was first proved by Culiuc, Ou and one of us in the linear scalar-
valued setting in [6, 7] and recast by Y. Ou and three of us in the multilinear scalar-valued
case [39]. The proof in our current Banach-valued setting is completely analogous.

Let n € (0,1). We say that a collection S of cubes in IR? (not necessarily dyadic) is
n-sparse (or just sparse) if for every Q € S there exists a set Eg € Q with [Eg| > 71|Q| so
that the sets Eg, Q € S, are pairwise disjoint.
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3.27. Lemma. Let n > 1, {Xy,..., Xy11} be a UMD Holder tuple, D be a dyadic grid, k =
(k1, ..., kns1), 0 < k; € Z. Suppose that the scalars aK,(Q;) satisfy the normalization

n+1

a0l < Ar | JIQjIMAKI™
j=1

and we are given scalar functions u;0 = Y.oreen(q) Cj0 1o satisfying lujol < |QI71/2.
If there exists a Holder tuple p1, ..., pu+1 as in (3.1) such that the forms

n+1
Up(gr,ogw) = Y, Y. axoyt([[smie)) D co,
KeD’ Q1. Ons1€D i=1
o
satisfy
n+1
Sup |uD’(g1/ e /gn+1)| < A2 H ||gj||ij(]Rd;X’.)l g] € Lgo(le/ X])/] = 1/ oo, n+ ]-1
D'cD i
j=1

then for each tuple f; € LZ(X;), j = 1,...,n+ 1, and n > O there exists an n-sparse collection
S = S8((fj),n) € D such that

n+1
KUn(fi, -, ), fistd] Sy (A1 + A+ 42) Y 1QU ] Jdfilx o,
QeS j=1

where x = max k.

In the previous lemma the sparse collection is in the same grid where the dyadic
operator is defined. The result can be updated to involve a universal sparse set, which
is explained in Remark 3.28. This is important when we move the sparse estimate from
DMOs to CZOs via the representation theorem, which involves a family of dyadic grids.

3.28. Remark. There exist dyadic grids O;,i=1,..., 3¢, with the following property, see
Lacey—Mena [36], [39], or [8] for a simple proof. Let g, € Llloc, m=1,...,.n+1, be
scalar-valued and let 11,12 € (0,1). Then for some i there exists an 7,-sparse collection

U = U((gm), n2) C D, so that for all n;-sparse collections of cubes S we have

n+l n+l
Y Q] [dgnba spm Y 1Q ] [dlgubo:
QeS m=1 QeU m=1

3.29. Remark. In [8], it is noted that the sparse domination estimate for an n + 1-linear
form A on R%, acting on scalar functions

n+1

A, fel S Y IQUT T4 D,

QeS j=1
is equivalent to the estimate in terms of the multilinear maximal operator M

n+1

IA(f1 - fue)) S IM(f1 o frs)ll, MU(f - far) () = Sug H<|fj|>Q-
x€Q
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Vector-valued versions of this principle may be formulated in a totally analogous way.
We have used this equivalence to state the sparse bounds in our main results; this is
particularly convenient as the formulation in terms of the multilinear maximal function
may be given without defining what a sparse collection is.

Next, we discuss the well known fact that the sparse domination of an operator implies
boundedness in the full range: for more details and weighted corollaries see [8, 39] and
references therein.

Let Xj,...,X,+1 be Banach spaces, n > 1. Assume that A is an (n + 1)-linear form
initially defined on LP(RY) ® Xp X -+ X L®(RY) ® X541 such that if fj € L¥(R?) ® X, then
there exists a dyadic lattice 9 and a sparse collection S C D so that

n+1
(330) A, el £ Y IQ [ o
QeS j=1

This easily implies that if p; € (1, c0) for j € ;41 are such that 21]1:11 1/pj = 1then A canbe
extended to a bounded form A: LP1(X1) X - - - X LP»*1(X,,1) — C. Indeed, just use Holder’s
inequality and then Carleson embedding theorem in the right hand side of (3.30).

We estimate the adjoints T”* of A, which are defined in the usual way based on the
functional as in (3.26). By symmetry it will suffice to tackle the case j = n + 1 and simply
write T in place of T¢+1~,

We use the so-called A extrapolation from Cruz-Uribe-Martell-Pérez [5]. Let Ac(RY)

be the class of A weights in IR?, see [5] for a definition. Suppose v € Aw(RY) and
fj € LY (X)) for j € Jy. Taking f,41(x) = &(x)v(x) for a suitably chosen & € L(X;41) there
holds that

[ TG fll 0~ A ) 5 Y [ [0 )o00(Q)

QeS j=1

< Y (Mfibs, - i)Y ) 0(Q)

QeS
< /]Rd Mg)(|f1|X1, Ry |fn|X,1)Ur

where (h)zé = (Q)7! fQ hv and M”D(gl,...,gn) ‘= SUPQgep [T, ¢Igml)olp is the dyadic
maximal function and in the last step we used the Carleson embedding theorem. Now,
the A extrapolation result, Theorem 2.1 in [5], gives that

p
[ TGl o5 [ Mk b o

forallp € (0,00) and v € Ax(RY). Using this with v = 1 the boundedness of the maximal
function gives that

n
ITCFy o fidllmace,y < [ [y
=1

where p; € (1,00] are such that 1/g,41 := Z?zl 1/p; > 0. Notice that the boundedness
of M7, follows from Holder’s inequality and the boundedness of ML, since there holds
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that M7, (g1, -+, 8n) < 1 M;)( gm)- As is clear, multilinear weighted bounds also follow
from this argument and the corresponding results of M”D.

3.4. Proof of the main theorem. In this section we state and prove our main theorem
assuming the estimates for model operators from Section 4 and Section 5.

3.31. Theorem. Let n > 1, Ty be an n-linear CZO with kernel Ky and {X1, ..., X1} be a UMD
Holder tuple. The (n + 1)-linear form Ar, defined in (3.22) can be extended to act on functions
fi € LZ(X;), and given 1 € (0,1) there exists an 1-sparse collection of cubes S = S((fu), 1) so
that

n+1

ATy (fi, -, sl g [IKolicz, + [ Tollwse + ) I(ToY* (1, ..., Dllsvo]
j=1

n+1

x Y 1A ] Jafilxeo

QeS j=1
Consequently, we for instance have

n
IToCfrs s il < | ] Wfilries,
j=1
whenever p; € (1,00] are such that 1/q,,41 := 2;’:1 1/p;j > 0. See Section 3.3 for a full discussion

of the corollaries of the sparse estimate.

Proof. Let f; € L ® X| for j € J 11 be of the form f; = Zi\zl ia€jqa- Then, we have by the
dyadic representation (2.9) that

AT(](fl/ o ~lfi’l+1)

o n+1
_amaxki K
= CT Z lEa) Z Z 2 2 <qu,ll(f1/a1’ oo /fn,un )/ fn+1,a,,+1 >T( H ej,uj)
(332) A1y An+1 Ky, ikni1=0 U j=1

) amaxk;
=CrEo ), Y277 Ay (fir fr)

ki, kps1=0 U
In Section 4 and Section 5 it is shown that if U is a dyadic model operator then
n+1
(3.33) Au(gL, - gne1)l H lgillrix,
]:
holds for any p; € (1,0) and g; € L°(X), j € Jn+1, such that Z?:ll 1/p; = 1, if U is a shift,
then the estimate depends polynomially on the complexity. This implies that Ar, can be
extended to act on functions f; € L°(X;) and that (3.32) holds for such functions.
The estimate (3.33) implies via Lemma 3.27 and Remark 3.28 that if f; € L (X)) for
j € Ju+1 then there exist a dyadic grid and an n-sparse collection S = S((f})) € D so that
all the model operators appearing in (3.32) satisfy
n+1

A (fuee fodl < ) 1 TSI

QeS j=1
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where the estimate depends polynomially on the complexity. This combined with (3.32)
finishes the proof. O

In Section 6, we show that the UMD Holder tuples enjoy a suitable maximal property
among tuples of spaces admitting L’-bounded extensions of n-linear CZO operators and
dyadic shifts.

4. BOUNDEDNESS OF MULTILINEAR SHIFTS IN UMD HOLDER TUPLES

This section is dedicated to the proof of the boundedness of multilinear shifts. Before
starting the main argument, we record a randomized bound for UMD Hélder tuples in
the following lemma.

4.1. Lemma. Let {Xj,..., X1} be a UMD Holder tuple, n > 2, and let K € Z,. For each
k=1,...,Klet ay be a scalar such that |ax| < 1 and for each j € J,, assume that we are given
ejx € Xj. Then we have

K

1Zak ikl <H||(e,,k>k adcx,)-

Proof. Fix K, |ax| < 1and ¢ € X; as in the assumptions. Let {e] }k pi€Tn- 1, be collections
of 1ndependent random signs. We denote the expectation w1th respect to the random
variables {¢; } , by [E', and write E = [E! - - - E""1. We have the identity

K n K n
o 1.1.2 .2 n-1_n-1 ‘
ax H eix =E Z €€ lls T ko Sk Ok H ejk;
k=1 j=1 kiyefn=1 =1
K K K
=E elae el 2 e e le
= K k161, ko Sky 2k2 K nk,,
k=1 k=1 kn 1
We can dominate this with
K n—1
E elage ( él el o
Ktk X ki SkCiki kn €nky x
k=1 i=2 k=1 kq,=1

which is further controlled by

(A
]E el Lele
ki SkCiki Sk enkn
i=2 k,-

The first factor is less than ||(el,k)kK:1||Rad(X1) by Kahane’s contraction principle. We now

consider the second factor. We see that the variables ¢, appear only inside the norm Xp,
and moreover there holds that

1
E || Z gkzgkzez k2

)1/2

(4.2)
1/2

K 2
= 2 )izt IRad(xy)-



22 FRANCESCO DI PLINIO, KANGWEI LI, HENRI MARTIKAINEN, AND EMIL VUORINEN

After using this identity, the variables e; do not appear anymore, and the variables si
appear only inside the norm X3. Repeating the same reasoning, we deduce that the
second factor in (4.2) is equal to the product H’;:z ||(€j,k)kK=1||Rad(X,»)- O

Now, we turn to the actual proof of boundedness of shifts. We assume that n > 1
and that {X, ..., X,+1} is a UMD Holder tuple. Let k = (kq,...,ku+1), 0 < k; € Z, and let
D be a dyadic lattice in R?. Suppose S := S’b is an n-linear dyadic shift as described
in Equation (2.7). We consider its related (n + 1)-linear form Ag which acts on locally
integrable functions f;: RY — X; by

(43) Ag(fir oo furt) = ) Ak(fis oo frt),
KeD
where .
n+
Ax(fr, ) fur1) = Z AK(Q))jes, T( H(fj,th))~
Q1 Q1 €D j=1
(ki)
Q] _K
Here AK(Q))jes, ., is a scalar satisfying |“K,(Qj)/e;]n+1| < H?;rll Ilel/ 2|K|™", and there exist two

indices jo, j1 € Jus1, jo # ji,sothathg =ho o =hg, andhg, = W, if j € Tnaa \lo fu)-

The sparse domination lemma 3.27 reduces the problem to the following theorem.
4.4. Theorem. Suppose p; € (1,0) for j € 41 are such that 27:11 1/pj = 1. The dyadic shift
form from (4.3) satisfies the estimate

n+1

Asi(fir o fusl S | [,
j=1

for fi € L (X), where the estimate depends polynomially on x := max;k;.

Proof. Let f; € LZ°(X;) for j € J,, and consider (4.3). Recall the lattices D, from (2.4),
where x := max; k;. We first divide the sum over the cubes K € D as YioL KeD- We fix
one i and consider the corresponding term.

Let J be the set of those indices such that the corresponding Haar functions are non-

cancellative, that is, th = h%,. Suppose j € J is such that k]- > 0. We use that fact that
]
— & )
(firhq) = E{ fj, h%/> and split

k-1
ki I;

(45) E(fi= ) A+ Exfi.

lj=0
There holds that
(4.6) (Exfj,ho.) = {fi )i, gy )
and

l,
(4.7) (ALl = firlt i) Q(kj-rp,h?gj),
] ]

where as usual we suppressed the summation over the different Haar functions.
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We use (4.5) to split ZKEQW Ax(fi, - - -, fu+1) into at most (1 + x)"~! terms of the form

n+1 -
(4.8) Z Z‘ AK(Q))jes, 1 T( H<pz,jf]" th>)’
KeD; Q1,...,an+1eZ) j=1

(k)
Q=K

where l; € Z,0 <[; <k;. For j € 41 \3' we have that sz is the identity operator, and

below we write [; = k;. If j € :‘f and /; > 0 then sz = A;ﬁ, and if j € jand l; = 0 then P%j
is either Ex or A (but does not change with K). We write

Yo X =) )

KEDI',K Ql ///// QVH—lGD KGZ)f/K Ll ~~~~~ Ln+1 €D Ql ///// Qn+1€D
(kj) ) (kj=17)
Q. /=K L=k Q7 =L

and notice that by (4.6) and (4.7) we always have that
I T ’
<PIJ<,]f]/ hQ]> = <f]/ th>7/(Q]I L])/
where hi, € {hgj,hL].} and

Q'
|)/(Qj,Lj)| = W
We can now write (4.8) further as

n+1

4.9) Z Z er(Lj)jGJn+1 T( H<f]’ h,L]))
j=1

KeD; Ly,....Ly1€D
)

L. =K
i
where
n+1
bK'(L/')]'GJnH = Z AK(Q))jed, HV(Q]/ )
er-(;(-xQ[r;—%—leD j=1
Qj] ] L]

There exists I C J,4+1 with #9 > 2 so that h’ = hL. forje Jandif j € Jy41 \ J then

W o= ho and [; = 0. Also, we have the normahzat10n bk (L DT | < ]_[”+1 IL; 12K

'We have reduced to considering the new shift type operator (4. 9) The coeff1c1ents
satisfy the usual normalization of shifts, but the number #7 of indices with cancellative
Haar functions may be bigger than 2. What is essential is that the complexity related
to the non-cancellative indices is zero — that is, if j € Jy+1 \ J then [; = 0. We now
start estimating (4.9). Also, the separation of scales, K € D;,, will allow us to use the
decoupling estimate (2.5).

L;
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Case 1. Assume that J = J,41. Let gu41 € (1, 00) be the exponent determined by
1/qn41 = Z?zl 1/p;. We need to estimate

n
|| Z br(L)ses, . H( fishephe, .,
=1

KeD,KLl ..... ) piatCea
Uﬂ
L=
]
~(IE/d/ | Z gKlK(X) Z bK(L])JEJnJrl
RESV KeD; Lijlns €D
Uﬂ
L) =
]
In+1 1/qn1
><H<f],hL it ()| dv(y)d)
n+l
j=1

where we used the decoupling estimate. Notice that since by assumption X1 =
Y(X4,...,X,), there holds also that Y(X,,;1) = Y(Y(X3,...,X},)), so we could also use
the norm | - |y(y(x,,..,x,) instead. Write

n
Z bty | [<Fir e (k)
j=1

= |K1|”/ bK(yK,Z)HA f]z])dz_/ bK(yK,zK)HA filzjx) dva(2),
K i1

where v, is the product measure v X - - - X v on the product space V" and

n
by, z) = K" Y by [ ] @i, ve).
Li,...Ly1€D ]:1
L;lj):K

We can now continue the estimate by using Holder’s inequality related to the integral
Joyn- We end up with

(4.10) (]E/Rd/q// K;‘

n
1: In+1
‘ ex1k(x)bx(yx, zx) H Aléfj(zj,K)|Y(Xn+1) dv,(z) dv(y) dx

)1/"7n+1

Suppose n > 2. Notice that [bx(yk, zk)| < 1 and use Lemma 4.1 to get that

) Z EKlK(X)bK(]/K,ZK)HAKf] ]K)‘

Y(Xs
KeD;

< H (1K (x)A; 12 K0)ken; IRad(x) -

j=1
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Using first Holder’s inequality, then Kahane-Khintchine inequality and finally the de-
coupling estimate, we conclude that

- j j 1pj
(410) < H ([, | 10N e, g d(6) &)

~ﬁ(113 /IR d /V Y excwnlficeof dv(z) dv)
j=1 KeD; !

n
< H illrs -
]:

Suppose then n = 1. In this case we have that g, = p; and Y(X3) = X;. We use Kahane-
Khintchine inequality to move the expectation inside of the exponent p;. Then, we use
Kahane’s contraction principle and move the expectation out again. This gives that

1/p1
) < Nl ).

(4.10) < (E /]R d /q/ ‘ Y eK1K(x)A§§f1(zK)"; dv(z)dx

KeD;

where the last step used the decoupling estimate. Linear estimates for shifts have ap-
peared e.g. in [19, 29].

Case 2. Assume now that J C J,41. Since #9 > 2, this implies that n > 2. Let
jo € Jn+1 \ J be anindex such that jo+1€ J;by (n+1)+1wemean 1. Leto € X(n + 1)
be the cyclic permutation such that o(n) = jo. Then o(n + 1) € J. If ¢; € X; for j € Jy11
then from Remark 3.15 one sees that H]]?:l ej € Y(X;+1) and therefore the cyclic invariance
of the trace (3.8) gives that 7(ey - - - e44+1) = T(en+1€1 - - - €1). Repeating this we have that (4.9)
is equal to

n+1

DY bK(LJ-)femT(g<fo<f>fh£g@>)-

Having made this important observation, we may now assume, for small notational
convenience, that jo = n and ¢ = id. Under this assumption n € 7,41 \ J, which implies
that I, = 0. Thus, the coefficient bK,(L/)jegM depends only on the cubes Ly,...,L,_1, Ly+1
and K. Below we will write the coefficient as bK,(Lj).

We need to estimate

-1
” Y, Y, by E( fir H X fudxIKI 2,y

KeD; Llrmanl—lrLiHIED
L.) =K
i

In+
~(E /R d /V | KZ@: TPk d(y)dx

L9041 (Y (X,111))

)1/Qn+1
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where we used the decoupling estimate, and for K € D;, and y € V we defined the
function @k : R? — Y(X,.41) by setting @i ,(x) to equal

n—1
KN by [ [ fuhe, o)
j=1

L1/~~~/Ln—1/Ln+1 €D

After using Stein’s inequality (2.3) with respect to x € R? with fixed y € V we are left
with

In+1 1/%14—1
4.11) (E /IR d /V |K§; ex 1 (X)Px 4 (x) Y(Xm)dv(y)dx) .

Recall that n > 2 in Case 2. From Remark 3.15 we can deduce that if ¢, € X,, and
en+1 € Xn+1, then enens1 € Y(Xl,---,Xn—l) and leqeniily(x,,..x,1) < lenlx,lensilx,,,- Also,
since {X1,...,X,;-1,Y(Xq,...,X,-1)} is a UMD Holder tuple, we see from Remark 3.15
again that if e] € Xjforje j’n 1, then [T"Z [ e] € Y(Y(X1,...,Xu-1)). Suppose now that
ejx € X; forje Ju-1,k=1,...,K,ande, € X Then the above consideration implies that
the key inequality

K K n-1

412 | <| |
12 )3 He’k ) 2 e YO0 )

P peeie SRR

holds. Write Z := Y(Y(Xj,...,X,-1)) for the moment. Using this in (4.11) and then
Holder’s inequality we have that (4.11) is dominated by || |z (x,) multiplied by

R —
IE/W/“"K%K ex1k(x) Z bK(L)H(f],h >th+1(yK)|p(j = dv(y) dx)n(J,,_l)

L1, Ly-1,Lys1€D

!
L(])_K

. n—1
AL L e[l

KED,‘,K Ll L’E } L;H,lED
L; 7ok

IR
—_

PIn-1(z)"

where we defined 1/p(Jy-1) = Z;’:—ll 1/p;j, AbiK,(Lj) = |K|Y 2bK,(L].) and used the decoupling
inequality. Notice that
TS0 L2 2
|K|n—1
We see that we have reduced the estimate to the boundedness of an (1 — 1)-linear shift

type operator as in (4.9). Now, we have two possibilities. If all the Haar functions hij

for j € J,-1 are cancellative then we are in a position to apply Case 1 from above to
finish the estimate. If some of them is non-cancellative, then we dualize with a function
g € LPI1)'(Y(Xq,...,X,_1)). This leads us to a corresponding situation as the beginning
of Case 2 above but now the form is n-linear and the underlying UMD Holder n-tuple is
{X1,..., Xn-1,Y(Xq,. .., Xu-1)}. We see that we can repeat the argument in Case 2 until we
can apply Case 1. This finishes the proof.

bk (1)l <
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O

4.13. Remark. We discuss why Theorem 1.1 works without any UMD Hoélder tuple as-
sumptions on the spaces Xj, X, and Y3, and why we can’t allow more UMD spaces in
Theorem 1.1. The key point is that for e; € X; and e> € X the estimate

K K
(4.14) 'Zel,kez . 'kZ{eLk

k=1
which corresponds to (4.12), holds without any further assumptions on the spaces. Using
this kind of estimates one can prove Theorem 1.1 with similar techniques as in the proof
of Theorem 4.4.
Suppose then we have UMD spaces Xj, ..., X, and Y41, where n > 3, and we have
a product Xj X --- X X, — Y,41 —a bounded n-linear operator. Of course, an estimate
corresponding to (4.14) holds, namely

% lealx,,

However, in the above proof for shifts, when we use Stein’s inequality, we need to reduce
the linearity before we can use it again. That is why we need the product structure of
UMD Holder tuples rather than just a product X; X - -+ X X, = Y},41 on the top level.

5. BOUNDEDNESS OF MULTILINEAR PARAPRODUCTS IN UMD HOLDER TUPLES

In this section we prove the boundedness of multilinear paraproducts. Let us first
recall a result for paraproducts acting on UMD-valued functions. If X is a UMD space,
D is a dyadic lattice and {ag}oep is a collection of scalars satisfying the BMO condition
(2.8), then
(5.1) | Y aathoto

QeD

S e ),

L/(X)

where p € (1, 00). This result goes back to Bourgain, see Figiel-Wojtaszczyk [14]. Another
nice proofis obtained by adapting the argument of Hinninen-Hytonen [19], who consider
paraproducts with operator coefficients.

Let n > 1 and let {Xj, ..., X,,+1} be a UMD Holder tuple. Suppose that D is a dyadic
lattice and that 7 := mp is a paraproduct as described in Section 2.4. Let jo € J,+1 be
the index related to the cancellative Haar functions of 7w and let o € X(n + 1) be the cyclic
permutation such that o(n + 1) = jo. We consider the (n + 1)-linear form A, acting on
functions f; € L7(X;) by

(5.2) An(fi, oo fus1) = Z agQT [H(fa(j))Q](fa(n+l)/hQ> ,

QeD j=1

where the scalars {ag}gep satisfy the BMO condition (2.8). The following theorem com-
bined with Lemma 3.27 proves the desired estimate.
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5.3. Theorem. Suppose that p; € (1, 00) for j € 41 are such that Z”“ 1/p;j =1 If fj € LT (X))
for j € Jy+1 then the form Ay from (5.2) satisfies the estimate

n+1

Ar(firees fasl S [ [ 1l
j=1

Proof. For m € J, we let p(J) be the exponent defined by 1/p(Jm) = Z’jnzl 1/p;. For
convenience of notation we may assume that jo = n + 1, so that 0 = id. In this case we

need to estimate the term
|3 HWQ Q
QD j=1

U’(Jn)(y (Xi+1 ))

The case n = 1 is the known estimate (5.1). Therefore, we assume that n > 2.
Applying the UMD property of Y(X,,+1) we are led to

00 H<f]>Q| ol ax) ",

(5.4) (E N v

QeD

where to pass from hg to |hg| we used that for fixed x € R? the families {egho(x)} and
{eglho(x)|} are identically distributed. Since |hg| = 1o/ |QJ'/2, we can use Stein’s inequality
to have that

(5.4 < ( / Y cono H( Fdo @) ’Wn )"

QED Y(Xn 1)

Now, we use the same inequality we used in the shift proof, Equation (4.12), and
Holder’s inequality to have that the last term is less than || f ||z (x,) multiplied by

P(Jn 1) 1/p(jn—1)
/ |ZéQaQH<f]>Q| olx )|| YOV X 1) d) '

QeD
Since{Xy,..., X1, Y(Xq,..., Xn_l} isa UMD Holder n- tuple, we see that we have reduced

to a situation as in (5.4) but now the degree of linearity is n—1. We can repeat the argument
until we end up with a linear operator, and then we apply (5.1). O

6. Maximarity oF UMD HOLDER TUPLES

In this brief section, we show that UMD Holder tuples are in a suitable sense maximal
for LP-boundedness of extensions of n-linear CZO operators and dyadic shifts via an
associative product as in Section 3. The precise statement is in Proposition 6.3 below.

Therefore, we fix an associative algebra A and a functional 7 as in Section 3. We begin
with a lemma.

6.1. Lemma. Let (Xy,...,Xy) be a n-tuple of admissible spaces. If X,,.1 is an admissible space
such that for all (n + 1)-linear shift forms (3.23) and functions f; € C'RHY®X;, j=1,...,n+1

n+1
< (H ||fj||Ln+1(1Rd,-xj)]
=1

(6.2) Aug)w/u(flz covs fur fua1)
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with implicit constant depending possibly on the complexity k, then (3.5) holds for m = n, and in
particular X1 — Y(Xq, ..., Xn).

Proof. Test (6.2) on a suitable trivial shift and appeal to Lemma 3.4. O

To make our maximality claim precise, we need an additional definition. We say that
the tuple {Xj, ..., X,+1} of admissible spaces is an n-linear shift extension if (6.2) holds for all
(n+1)-linear shift forms (3.23). If in addition, whenever Z is an admissible space such that
for some jo € 41 the tuple {Xy, ... Xj-1,Z, Xjy+1, - .- Xy41} is an n-linear shift extension,

it must be Z — X;, we say that {X, ..., Xj;+1} is a maximal n-linear shift extension.

6.3. Proposition. Let {Xy,..., Xy+1} be a UMD Holder tuple. Then
o {Xy,..., Xns1} is a maximal n-linear shift extension;
o whenever 1 <k <n—-land #J =k, {X;: j € JHU{Y({X; : j € TN} is a maximal
k-linear shift extension.

Proof. Theorem 4.4 shows that if {Xj, ..., X;;41} is a UMD Holder tuple, then it is an n-
linear shift extension. As X, = Y({X; : j € Jo}) by definition of UMD Holder tuple, we
learn from Lemma 6.1 that {Xj, ..., X,,41} is in fact a maximal n-linear shift extension. This
proves the first point.

By the inductive definition of UMD Holder tuple, foreach1 <k <n-1and #7 =k,
{Xj: e JHU{Y(X; : j € J})}is a UMD Holder tuple. Then this tuple must be a maximal
k-linear shift extension because of the first point. The second point is also proved. O

APPENDIX A. ITERATED MIXED-NORM NON-COMMUTATIVE L SPACES

Let Mbe a von Neumann algebra equipped with a n.s.f. trace as described in Example
3.18. Recall in particular that A = L°(M) is an associative *-algebra endowed with a
compatible complete metrizable topology, induced by the metric d# of convergence in
measure. For an integer S > 1, let (M, us), s = 1,...,S, be o-finite measure spaces and
(Qs, ws) the product measure space

S S
Qg = HMS, wsg = H Us.
s=1 s=1

Let 24 s be the vector space of simple functions f : Qg — A, namely

J
fO =Y Adg®,  t=(,...t)€Qs,

=1

with A; € A, E/ c Qg with ws(E/) < co. Then 2,5 is an associative algebra with respect to
the pointwise product: for f, g € % s, the function f g defined by (fg)(t) = f(t)g(t), where
the latter is the strong product in A, belongs to <7 s. We denote by

a/s = closure of @ w.r.t. sequential dg-pointwise convergence
namely, f € a7 if there exists a sequence f, € % s such that

limda(f(), fu() =0 ae. teQs.
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Then 7, the class of strongly measurable A-valued functions on Qg, is an associative
algebra with respect to the same product. Furthermore, .o/ is complete with respect to
the topology of convergence in measure, namely f, — fif forall ¢ >0

lim g1 ({t € Qs : da(f(1), ful®) > €}) = 0,

and the product operation is continuous. Note that the latter topology is also metrizable,
proceeding in an analogous way to [24, Proposition A.2.4].

Recall that M is equipped with the n.s.f. trace 7, which is a linear bounded functional
on L'(M). Then the functional

ws(f) = /Q (1) des(t)

is linear and bounded on the Bochner space LY(Qs, ws; L'(M)), which is a subspace of .o7s.
With this definition, <75 is endowed with the trace 7s. Under these assumptions, we have
the following proposition.

A.1. Proposition. For a Holder tuple {p? :1<j<m}asin (3.1), let

X? - I"/(M).

Let {pj’. : 1 < j < m} be further Holder tuples of exponents, for 1 < s < S. Then the Banach
subspaces of </

(A.2) X = LI (M, ps; XN, s=1,...5
are a UMD Holder m-tuple.

Before the proof proper, we need to set some notation, and develop suitable auxiliary
lemmata. For1<k<m-1,7 ={j1 <jo <--- < ji} C©Im, and 0 <s < S we write

k
O
(K Pi, Pq 17

u=1

It will be convenient to introduce the auxiliary mixed norm spaces
1
EL = 1M (My, ),
R
for j=1,...,m and similarly
0 _
E;=C
E% = L7 (M, ys;Efjtl), s=1,...,8S.
In general we write S(X) for the unit sphere in the Banach space X.

A.3.Lemma. Let J = {j, : 1 < u < k}. There exists maps B;, : S(Efr[) - S(Ej:u) such that

k
F=IBH  vfesE)

u=1
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and

”fn _f”Ef] -0, ||fn(ts) - f(ts)”ES—l —0ae t;eM; =
(A4 peon s CFNE) — B

1B.(f) = Bulfllles, = O, By (fu)(ts) = Bu(fu) )l — O ae- ts €M, 1<u<k.
Proof. We deal with the case j, = u,u = .,k which is generlc We prove the statement

by induction on s. If s > 2, assume mductlvely that maps B! as in the statement have
been constructed; for the base case s = 1, we run the argument below with B0 the identity
map. In both cases, we need to define B; : S(ES ) — S(E;). We use that each fe S(E ) is

Esj_ L_valued. So for each t; € M, write

k Tq

k
f(t) = 1fE)leagt) = [ | [|f<ts>|g: ]guas)) =[] BiHw)
u=1

u=1
where g is S(E?l)-valued, so that each ¢, = B51(g) is S(E5™)-valued. Notice that each
fu = B5(f) is (strongly) ys-measurable with values in E$!: in fact | f(-)| B! is ys-measurable
and each g, is ps-measurable, as ijl is (norm) continuous from Efy‘l - Ei‘l and g is
us-measurable with values in E7- . A direct calculation reveals that

fulles =1, 1<u<k

It remains to show that the thus defined maps B;, are continuous in the sense of (A.4)
by assuming the same properties hold for the maps B$™!. Let f,, f be as in the first line
of (A.4) and write f,(t;) = |fu(ts)| £t gn(ts). We first show the pointwise convergence: for

each we have
1B ()(ts) = BL(fu)E)llps1 < Ilf(ts)IIEs 1B (g(ts)) — By 1(gn(lfs))llp 1

"J qJ

+ B (@nlt Dl I ES)I ;:1 I ts>|Es 1

Relying on the norm continuity of B! we obtain that both summands in the previous
display converge to zero for each t; such that || f,(£;)l| B! = |[f ()l £ 10 (ts) — g(t)Il £ -

0; this is a set of full u; measure, so that this part of the proof is complete. We come to the
norm continuity in (A.4). We have

B BRI < [ 1A 600 ~ B st it
qj P
+/ |f ts ];?1 |fn(ts E” |Bs 1(gn(t3))|Es 1 d[v‘s(ts)

The first integrand converges to zero pointwise a.e. and is dominated by | f (ts)l , 50 the

Es- 1
T
integral converges to zero by dominated convergence. The second integral is equal to

"J ”J
IF=Fullf gy PO =N Falt) = a2
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. TPy T lpu . . s
Notice that |F|l,s = ||f”EfJ7 NEallp, = ”f””Eé . As F, — F pointwise, F,,, F € LP«(M;, ys)

and [|Fpllps — [IFll,;, then ||F — Fyll,s converges to zero by a well-known variation of the
proof of the L” dominated convergence theorem. O

A.5. Lemma. Let?
X0 =19 (M), X0 =L(M)
j 7 j/+ +7s
X} = L[]‘S'T(Ms/ Us; Xfrfl)/ X},+ = Lq}(Ms/ Us; Xj;j'_j_ ’ s=1,...,S.
Let f € Xf7+ be a simple function with ||f||Xf7 = 1. Then thereexist f, € X5 ,u=1,..., kwith

]u/+,

k
f=1fe Wl =1
u=1

Proof. Again we deal with the generic case j, = u,u = 1,...,k. First of all, we make a
remark about the case s = 0. Fix A € X?Y . with ”A”XOJ = 1. Using the Borel functional

calculus for positive closed densely defined operators to define A? for 0 > 0

0

k iy
(A-6) A=T]Bu4), BuA=4WN, u=1,.k
u=1
Trivially
qO
_g
[1Bu(A)llxo =||AIQ5 =1, u=1,...,k
J

}Ne now prove the main statement. Let f € ij,, . be a simple function with || f|| Xy, = 1. We
actor

fO=FHAW,  FB)=Iflx, tel

Notice that F € Esj of unit norm, so that using Lemma A.3

k
F=[]B®,  1B®I; =1,

u=1

and we may write, also using (A.6)

k
F=[lf  fb=BE®BAWD),

u=1

Notice that each f, is strongly measurable as B,(A(-)) is a simple Xg, +-valued function
and B; (F) is a measurable function in E;. Also as |B,, (A(t))ng =1forallt e ()

I fullx; = 1B, (P)llg;, =1,

which completes the proof of the claim. O

Recall that Ly (M) denotes the positive cone of Ly (M), namely the positive operators in L% (M).
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We turn to the proof of the proposition. Namely we need to show that the tuple Xj

from (A.2) is a UMD Holder tuple for each s = 1,...,S. In proving this, by virtue of
the case s = 0 being already established in Example 3.18 we may argue inductively and
assume the claim has been proved in the cases of 0, ...,s — 1.

Clearly each X? is a subspace of .<%. Denoting by q“;:, s=0,...,S the conjugate exponent

of pj., it is convenient to define the spaces
0
Y? = LTI (M),

Y= L”’7(MS,HS;Y§—1), s=1,...,5.
which are Banach subspaces of .«7%. Further, as each X? is a reflexive Banach space and
enjoys the Radon-Nikodym property [24, Theorem 1.3.21], an inductive argument yields
the Riesz representation theorem (cf. [24, Theorem 1.3.10]) then yields that
S * — S :
(x3) =y, 1<j<m
through the identification
ey b giels  MP=1(f), feX.

We have in particular shown that each Xj is an admissible space for the algebra % with
trace 15 and Y(X;) = Yi, .

We verify that {X; : j € Jm}is a UMD Holder tuple by induction on m. The case m = 2
is actually immediate by virtue of the observation and the well known fact that each

X;, Yj. is a UMD space.
To obtain the inductive step, we fix m > 3 and verify the following equality. For each
1<k<m-1,9 ={j1 <j2<- < jx} CJm, there holds
(A.7) Y({X; : j € J}) is isometrically isomorphic to (Xfr[)* ,
where we refer to the spaces defined in Lemma A.5. More explicitly, denoting
0 _ gt
Y =LIM),
Yy = U (Ms s Yy, s=1...5,

we have Y({X3 1 j € ) = Y5, = (X5,)"

Property P1 then corresponds to this equality in the cases k = m —1. Verifying property
P2 amounts to checking that when k < m—1, the tuple {X; SN {Y;} isa UMD Holder
(k +1)-tuple. Ask <m-1, {X; 1 jeJIU {Y}} is a UMD Holder (k + 1)-tuple and the
exponents {p; 1] € 9,p°(J)} are a Holder tuple, this check is made by a straightforward

appeal to the induction assumption.
We are left with proving (A.7). To do this we will define a linear surjective isometry
O Y({Xj. jedJ)) — Y;. First of all note that

(A.8) ||g||y({X;t;jej}) < ”g”Lpf,](Ms,‘us;Y}_1) = liglly;,

descends immediately from Holder’s inequality in LP(Ms, us)-spaces and Lemma 3.4
applied to the UMD Holder tuple X;l‘l, X;z‘l, cee, Xjk‘l. We will use this below.
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Fix then g € Y({X; 1] € JY)). We claim that if f is a simple X?,] ,-valued function on €);
with ||f||X§T =1, then

(A9) 75 (@A < llgllvxs:je-
Indeed, applying Lemma 3.4 we obtain

k k
|89 = |7 gl_! fu S||g||y({X;;jej})HHfu”Xj,u/ Wl =1, w=1,...k
u= u=

which is (A.9). As X%/ is the X% -norm closure of the linear span of simple Xoj, -valued
function on Q);, the linear bounded functional f +— 75(gf) extends uniquely to an element
D(g) of (X5)" = Y7, with

[P(@llys, < ||g||Y({Xj.;jej})-
It is easy to see that the map @ : Y({X; 1 j €I — Yy is linear. From (A.8) we gather
that if g € Y7, then ®(g) is well-defined. In this case the linear bounded functionals

g = 15(gf) and P(g) coincide on a dense set, it must be ®(g) = g. So P is obviously
surjective. Furthermore using (A.8) again we obtain

[P(@llys, = ||®(g)||Y({X7‘.;jej}) = ||g||Y({x§:jej}) 2 [[D(Q)llys,

whence equality must hold throughout. So @ is a linear isometric isomorphism and the
proof of (A.7) is complete.
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