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Abstract—Sentiment analysis is a key component in various text mining
applications. Numerous sentiment classification techniques, including
conventional and deep learning-based methods, have been proposed in
the literature. In most existing methods, a high-quality training set is as-
sumed to be given. Nevertheless, constructing a high-quality training set
that consists of highly accurate labels is challenging in real applications.
This difficulty stems from the fact that text samples usually contain com-
plex sentiment representations, and their annotation is subjective. We
address this challenge in this study by leveraging a new labeling strategy
and utilizing a two-level long short-term memory network to construct
a sentiment classifier. Lexical cues are useful for sentiment analysis,
and they have been utilized in conventional studies. For example, polar
and negation words play important roles in sentiment analysis. A new
encoding strategy, that is, ρ-hot encoding, is proposed to alleviate the
drawbacks of one-hot encoding and thus effectively incorporate useful
lexical cues. Moreover, the sentimental polarity of a word may change
in different sentences due to label noise or context. A flipping model is
proposed to model the polar flipping of words in a sentence. We compile
three Chinese data sets on the basis of our label strategy and proposed
methodology. Experiments demonstrate that the proposed method out-
performs state-of-the-art algorithms on both benchmark English data
and our compiled Chinese data.

Index Terms—Text classification, sentiment analysis, LSTM, lexicon
embedding, flipping.

1 INTRODUCTION

T EXT is important in many artificial intelligence applica-
tions. Among various text mining techniques, sentiment

analysis is a key component in applications such as public
opinion monitoring and comparative analysis. Sentiment
analysis can be divided into three problems according to
input texts, namely, sentence, paragraph, and document
levels. This study focuses on sentence and paragraph levels.

Text sentiment analysis is usually considered a text
classification problem. Almost all existing text classifica-
tion techniques are applied to text sentiment analysis [1].
Typical techniques include bag-of-words (BOW)-based [2],
deep learning-based [3], and lexicon-based (or rule-based)
methods [4].
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Although many achievements have been made and sen-
timent analysis has been successfully used in various com-
mercial applications, its accuracy can be further improved.
The construction of a high-accuracy sentiment classification
model usually entails the challenging compilation of train-
ing sets with numerous samples and sufficiently accurate
labels. The reason behind this difficulty is two-fold. First,
sentiment is somewhat subjective, and a sample may receive
different labels from different users. Second, some texts
contain complex sentiment representations, and a single
label is difficult to provide. We conduct a statistical analysis
of public Chinese sentiment text sets in GitHub. The results
show that the average label error is larger than 10%. This
error value reflects the degree of difficulty of sentiment
labeling.

Negation and interrogative sentences are difficult to
classify when deep learning-based methods are applied.
Although lexicon-based methods can deal with particular
types of negation sentences, their generalization capability
is poor.

We address the above issues with a new methodology.
First, we introduce a two-stage labeling strategy for senti-
ment texts. In the first stage, annotators are invited to label
a large number of short texts with relatively pure sentiment
orientations. Each sample is labeled by only one annota-
tor. In the second stage, a relatively small number of text
samples with mixed sentiment orientations are annotated,
and each sample is labeled by multiple annotators. Second,
we propose a two-level long short-term memory (LSTM)
[5] network to achieve two-level feature representation and
classify the sentiment orientations of a text sample to utilize
two labeled data sets. Thirdly, in the proposed two-level
LSTM network, lexicon embedding is leveraged to incor-
porate linguistic features used in lexicon-based methods.
Lastly, the labels in a word-polar dictionary usually con-
tain noise and the polarity of a work can also change in
different contexts. A flipping model is proposed to model
the sentiment polarity flipping of a word in a sentence.

Three Chinese sentiment data sets are compiled to in-
vestigate the performance of the proposed methodology.
The experimental results demonstrate the effectiveness of
the proposed methods. Our work is new in the following
aspects.

• A highly effective labeling strategy is adopted. La-
beling a high-quality training set is difficult in senti-
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ment analysis. In our labeling strategy, samples are
divided into ones with relatively pure sentiment ori-
entations and ones with relatively complex sentiment
orientations. This procedure is easily performed in
practice.

• A two-level LSTM network is proposed. Our labeling
procedure yields two training sets with different
sentiment levels; therefore, we propose a two-level
LSTM network that can effectively utilize the two
data sets.

• Lexicon embeddings are introduced based on a new
encoding strategy. To incorporate useful cues which
are usually used in lexicon-based methods, an ef-
fective encoding strategy, namely, ρ-hot encoding, is
proposed in this work to address the limitations of
the classical one-hot encoding.

• A flipping model is proposed to model polar flipping
of words. Polar words are particularly important in
sentiment analysis. However, the polar labels in a
polar-word dictionary are not definitely right be-
cause the dictionary is very likely to contain label
noise and the polarity of a word changes according
to its context. For example, the polarity of ’heavy’ is
positive in “the fish is heavy”, whereas it is negative
in “the cell phone is heavy”. To this end, a flipping
model1 is established to describe the flipping of the
polarity of words in texts.

The rest of this paper is organized as follows. Section
2 briefly reviews related work. Section 3 describes our
methodology. Section 4 reports the experimental results, and
Section 5 concludes the study.

2 RELATED WORK
2.1 Text Sentiment Analysis

Sentiment analysis aims to predict the sentiment polarity of
an input text sample. Sentiment polarity can be divided into
negative, neutral, and positive in many applications.

Existing sentiment classification methods can be roughly
divided into two categories, namely, lexicon-based and ma-
chine learning-based methods [8]. Lexicon-based methods
[9] construct polar and negation word dictionaries. A set
of rules for polar and negation words is compiled to judge
the sentiment orientation of a text document. This method
cannot effectively predict implicit orientations. Machine
learning-based methods [10] utilize a standard binary or
multi-category classification approach. Different feature ex-
traction algorithms, including BOW [11] and part of speech
(POS) [10], are used. Word embedding and deep neural
networks have recently been applied to sentiment analysis,
and promising results have been obtained [12] [13].

2.2 Lexion-based Sentiment Classification

Lexicon-based methods are actually in implemented in an
unsupervised manner. They infer the sentiment categories
of input texts on the basis of polar and negation words.

1. In theory, our model should be useful in any arbitrary method
which leverages the polar labels of words as supervised information
such as [6] [7].

Figure 1. A lexicon-based approach for sentiment classification.

The primary advantage of these methods is that they do
not require labeled training data. The key of lexicon-based
methods is the lexical resource construction, which maps
words into a category (positive, negative, neutral, or nega-
tion). Senti-WordNet [14] is a lexical resource for English text
sentiment classification. For Chinese texts, Senti-HowNet is
usually used.

Fig. 1 characterizes a typical lexicon-based sentimen-
t classification approach. The approach iteratively checks
each word in an input sentence from left to right. The
weight score of each word is calculated according to the
procedure shown in Fig. 1. The final sentiment score is the
average score of the words with weight scores. The scores
of positive, neutral, and negative sentiments are denoted
as ‘+1’, ‘0’, and ‘-1’, respectively. According to the lexicon-
based algorithm shown in Fig. 1, the sentiment score of ‘it is
not bad’ is 0.25, and the sentiment score of ‘it is good’ is 1.
However, the score of ‘it is not so bad’ is -0.75, and this score
is definitely wrong. Therefore, machine learning (including
feature learning) methodologies have become mainstream
in sentiment analysis.

2.3 Deep Learning-based Sentiment Classification

Deep learning (including word embedding [15]) has been
applied to almost all text-related applications, such as trans-
lation [16], quality assurance [17], recommendation [18],
and categorization [19]. Popular deep neural networks are
divided into convolutional neural networks (CNNs) [20]
and recurrent neural network (RNNs) [21] [22]. Both are
utilized in sentiment classification [23]. Kim investigated
the use of CNN in sentence sentiment classification and
achieved promising results [3]. LSTM [24], a classical type
of RNN, is the most popular network used for sentiment
classification. A binary-directional LSTM [25] with an atten-
tion mechanism is demonstrated to be effective in sentiment
analysis.

Deep learning-based methods rarely utilize the useful
resources adopted in lexicon-based methods. Qiao et al.
[7] incorporated lexicon-based cues into the training of an
LSTM-based model. Their proposed method relies on a new
loss function that considers the relationships between polar
or certain types of words (e.g., negation) and those words
next to them in input texts. Our study also combines lexical
cues into LSTM. Nevertheless, unlike Qiao et al.’s study that
implicitly used lexical cues, the present work explicitly uses
lexical cues in the LSTM network. Shin et al. [26] combined
the lexicon embeddings of polar words with word embed-
dings for sentiment classification. The difference between
our approach an the method proposed by Shin et al. the is
discussed in Section 3.3.5.



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 3

Numerous studies on aspect-level sentiment analysis ex-
ist [27] [28] [29]. This problem is different from the sentiment
classification investigated in this study.

3 METHODOLOGY
This section first introduces our two-stage labeling proce-
dure. A two-level LSTM is then proposed. Lexicon embed-
ding is finally leveraged to incorporate lexical cues.

3.1 Two-stage Labeling
As stated earlier, sentiment is subjective, and texts usually
contain mixed sentiment orientations. Therefore, texts sen-
timent orientations are difficult to label. In our study, three
sentiment labels, namely, positive, neutral, and negative, are
used. The following sentences are taken as examples.

S1: The service is poor. The taste is good, but the
rest is not so bad.

S2: The quality of the phone is good, but the appear-
ance is just so-so.

In user annotation, the labels of these two sentences
depend on users. If a user is concerned about service, then
the label of S1 may be 1negative’. By contrast, for another
user who does not care about service, the label may be
‘positive’. Similarly, a user may label S2 as ‘positive’ if he
cares about quality. Another user may label it as ‘negative’
if the conjunction ‘but’ attracts the user’s attention more.
Another user may label it as ‘neutral’ if they are concerned
about quality and appearance.

The underlying reason is that sentiment is more sub-
jective than semantics. In related research on subjective
categorization, such as visual aesthetics, each sample is
usually repeatedly annotated by multiple annotators, and
the average label is taken as the final label of the sample.
This labeling strategy can also be applied to text sentiment
annotation. However, we argue that this strategy is unsuit-
able for a (relatively) large number of samples. The reason
lies in the following two aspects.

• Multiple annotators for a large number of data sets
require a large budget.

• In our practice, annotators claim that their judgment
criteria on sentiment become fused on texts with
mixed sentiment orientations (e.g., S1 and S2) over
time during labeling, and they become bored accord-
ingly.

A two-stage labeling strategy is adopted in this study.
In the first stage, each sentence/paragraph is divided into
several clauses according to punctuation. The sentiment
of each partitioned clause is relatively easy to annotate;
therefore, each clause is labeled by only one user. In the
second stage, a relatively small-sized sentence/paragraph
set is labeled, and each sentence is labeled by all involved
annotators. We still take the two sentences, S1 and S2, as
examples. S1 and S2 are split into clauses, as shown below.

• S1:

– S1.1: The service is poor
– S1.2: The taste is good
– S1.3: but the rest is not so bad.

• S2:

– S2.1: The quality of the phone is good
– S2.2: but the appearance is just so-so.

Each of the above clauses is labeled by only one annotator.
The annotation in the first stage is easy to perform; thus,
the number of clauses can be larger than the number of
sentences used in the second labeling stage.

3.2 Two-level LSTM
Given two training data sets (denoted by T1 and T2), a new
learning model should be utilized. LSTM2 is a widely used
deep neural network in deep learning-based text classifica-
tion.

LSTM is a typical RNN model for short-term memory,
which can last for a long period of time. An LSTM is appli-
cable to classify, process, and predict time series information
with given time lags of unknown size. A common LSTM
block is composed of a cell, an input gate, an output gate,
and a forget gate.

When LSTM is used to classify an input sentence, the
hidden vectors (ht) of each input vector are summed to
form a dense vector that can be considered the feature
representation of the input sentence, i.e.,

vt =
∑
t

ht (1)

In many applications, a bi-directional LSTM (Bi-LSTM)
structure is usually used. In Bi-LSTM, forward and back-
ward information are considered for information at time t;
hence, the context is modeled. Bi-LSTM is thus significantly
reasonable for text processing tasks. In our two-level LSTM,
Bi-LSTM is used in each level.

The output hidden state at time t of a Bi-LSTM block can
be described as follows:

−→
h t =

−→o t ⊗ tanh(−→c t)←−
h t =

←−o t ⊗ tanh(←−c t)
ht = [

−→
h t,
←−
h t]

(2)

where
−→
h t, −→o t, and −→c t are the corresponding vectors at

time t in the forward LSTM block; and
←−
h t,←−o t, and←−c t are

the corresponding vectors at time t in the backward LSTM
block. H = {h1, · · · , hT }. When attention is used, the dense
feature vector γ of an input sentence is calculated as follows:

α=softmax(wTH)
γ =HαT

(3)

where α is the vector that consists of attention weights.
Our proposed network consists of two levels of LSTM

network. In the first level, a Bi-LSTM is used and learned
on the basis of the first training set T1. This level is a
conventional sentiment classification process. The input of
this level is a clause, and the input xt is the embedding of
the basic unit of the input texts3. The network is shown in
Fig. 2(a).

2. CNN is another widely used text classification model. Our idea
can also be applied to CNN.

3. In English texts, the basic unit is usually a word; in Chinese texts,
the basic unit is a Chinese word or character.
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Figure 2. The proposed two-level LSTM network (this network does not including the lexicon embedding and the polar flipping model which are
introduced in Figs. 5 and 7).

In the second level, a Bi-LSTM is also used and learned
on the basis of the second training set T2. The input of this
level is a sentence or a paragraph. The input xt consists
of two parts4. The first part is the feature vector of the t-
th clause. The feature vector is generated by the first-level
network. In other words, the dense feature shown in Fig.
2(a) (γ) is used. The second part is the sentiment score
(not predicted label) output by the first-level network. The
sentence S1 (The service is poor. The taste is good, but the
rest is not so bad.) used in Subsection 3.1 is taken as an
illustrative example. S1 contains three clauses. Let σ be the
sigmoid function. The input vector of S1 can be represented
by

S1 : {η1, η2, η3}

where
ηi = {y(1)i , γ

(1)
i }

y
(1)
i = σ(Wγ

(1)
i + b)

i = 1, 2, 3

(4)

where y(1)i is the output score of the ith clause by the first-
level LSTM and γ

(1)
i is the feature representation of the ith

clause by the first LSTM. The network of the whole two-
level network is shown in Fig. 2(b). The loss function of the
whole network is defined as follows:

l =
∑
n

[loss(yn, y
′
n) +

λ

nI

∑
i

loss(yni, y
′
ni)] (5)

where yn and y′n are the true and predicted labels of the n-th
sample, respectively; yni and y′ni are the true and predicted
label of the i-th clause of the n-th sample, respectively; λ
is the parameter; nI is the number of clauses in the i-th
sample.

3.3 Lexical Embedding
Lexicon embedding aims to integrate a wide range of lex-
ical cues into the two-level LSTM network. Based on our
empirical analysis and previous studies, key lexical words,
POS, and conjunction cues are considered. The proposed
lexicon embedding is based on ρ-hot encoding. Therefore,
ρ-hot encoding is first described.

4. The third part is lexicon embedding which will be introduced in
Section 3.3.4.

3.3.1 ρ-hot encoding
For categorical data, one-hot encoding is the most widely
used encoding strategy when different categories are in-
dependent5. For example, if one-hot encoding is used to
represent three categories, namely, positive, neutral, and
negative, the encoding vectors for the three categories are
[1, 0, 0]T , [0, 1, 0]T , and [0, 0, 1]T , respectively.

In this work, many lexical cues are categorical data, and
different categories are independent. These lexical cues can
directly be represented by one-hot encoding. The encoded
vectors for lexical cues are then concatenated with other
vectors, such as character/word embedding. Based on our
empirical evaluations, a more effective encoding is proposed
based on the conventional one-hot encoding. The encoding
strategy is defined as follows.

ρ− hot encoding : νρ,n=ρ · ν1 ⊗ 1n×1 (6)

where νρ,n is the ρ-hot encoded vector; ρ is the proportion
parameter; ν1 is the one-hot encoded vector; 1n×1 is an n-
dimensional vector; ⊗ is the tensor product. If both ρ and
n are equal to 1, then ρ-hot encoding is reduced to one-
hot encoding. The parameter n is applied to increasing the
length of the final encoded vector.

When ρ equals 0.6 and n equals 4. For a three-
dimensional one-hot encoded vector ν1, we have

if ν1= [1, 0, 0]
T
,

νρ = 0.6 · ν1 ⊗ 14×1
= [0.6, 0.6, 0.6, 0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T

if ν1= [0, 1, 0]
T
,

νρ = 0.6 · ν1 ⊗ 14×1
= [0, 0, 0, 0, 0.6, 0.6, 0.6, 0.6, 0, 0, 0, 0, 0, 0, 0, 0]T

if ν1= [0, 0, 1]
T
,

νρ = 0.6 · ν1 ⊗ 14×1
= [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6, 0.6, 0.6, 0.6]T

(7)
The numerical examples in Eq. (7) indicate that the

obtained ρ-hot encoded vector (νρ) can have varied values
for non-zero elements and longer lengthes compared with
the corresponding one-hot encoded vector (ν1). Similar yet

5. When different categories are correlated, sophisticated encoding
strategies can be utilized. For example, one-hot is a traditional encoding
for words. Many word-embedding methods are proposed with consid-
eration of the relation among words.
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Figure 3. The histogram of the values in word embedding vectors. Most
values are smaller than 1.

simple tricks for the increasing of the vector length have
been successfully used in previous studies [30] [31].

So far, there is no accurate theoretical explanation for our
proposed ρ-hot encoding. Nevertheless, one-hot encoding
presents two main limitations when the encoded vector is
concatenated with other vectors.

• The value difference between the elements of one-hot
encoded vectors and those of other encoded vectors
(e.g., word embedding vectors) may be large. Fig. 3
shows the histogram of the values of the elements of
the word embedding vectors. The magnitude of most
elements are smaller than 1.

• The lengths of one-hot encoded vectors are usually
shorter than those of other encoded vectors. Conse-
quently, the proportion of one-hot encoded part is
small in the concatenated vectors.

The above two limitations may affect the final sentiment
analysis performance, whereas our proposed ρ-hot encod-
ing alleviated these two limitations.

3.3.2 Embedding for key lexical words

Most lexicon-based sentiment methods rely on four types
of words, namely, positive, negative, neutral, and negation.
These words are useful cues for predicting the sentiment
labels of input texts. The incorporation of these words
should also be useful. A previous study has shown that
a typical document comprises approximately 8% of such
words [32]. Sentiments expressed in a conditional sentence
can be difficult to determine due to the semantic condition.
The sentiment polarities of interrogative sentences are also
difficult to classify according to our empirical study. Because
the automatically judging whether a sentence is conditional
or interrogative is challenging, we directly consider suppos-
itive and interrogative words.

Five types of words, namely, positive (Pos), negative
(Neg), negation (Nt), suppositive (Sup), and interrogative
(Int), are represented by the proposed encoding method.
The rest words, which do not belong to any of the above
five types, are named “others (Oth)” instead of “neutral”
because some words, such as “the”, are unrelated to “sen-
timent”. The value of n in Eq. (6) is set as 10. The encoded
vectors are as follows.

Pos : [ρ1×10,01×10,01×10,01×10,01×10,01×10]
T

Neg : [01×10,ρ1×10,01×10,01×10,01×10,01×10]
T

Nt : [01×10,01×10,ρ1×10,01×10,01×10,01×10]
T

Sup : [01×10,01×10,01×10,ρ1×10,01×10,01×10]
T

Int : [01×10,01×10,01×10,01×10,ρ1×10,01×10]
T

Oth : [01×10,01×10,01×10,01×10,01×10,ρ1×10]
T

In the proposed ρ-hot embedding, the parameter ρ can
be learned during training.

Certain types (e.g., positive, negative, and negation) of
words should play more important roles than other words
do in texts; therefore, their embeddings are also used in
the attention layer. A new LSTM based on our lexicon
embedding is proposed, as shown in Fig. 4. The attention
layer and final dense vector of the network in Fig. 2(a) are
calculated as follows.

αt = softmax(Wα

[
ht
lt

]
+ bi)

γ =
∑
t
αt

[
ht
lt

] (8)

where αt is the attention weight for the t-th input, lt is the
lexicon embedding for key lexical words for the t-th input,
and γ is the final dense vector. Eq. (7) is used in the first-
level LSTM.

3.3.3 Embedding for POS
POS is usually used as a key cue in sentiment analysis [33].
Intuitively, adjective and adverb words are very likely to
be more important than some other types of words such
as adjective and article. To this end, we use additional
lexicon embedding based on POS information. This new
lexicon embedding is also applied to the attention layer.
The motivation lies in that certain types of POS should play
important roles in sentiment.

The proposed ρ-hot embedding is still applied to POS
types in this study. According to our initial case studies,
eight POS types are considered. They are noun, adjective,
verb, pronoun, adverb, preposition, accessory, and others.
The eight POS types are represented by the proposed ρ-hot
encoding. We let n in Eq. (6) be 10. The first three POS types
are as follows.

Noun :[ρ1×10,01×10,01×10,01×10, · · · ,01×10]
T

Adj : [01×10,ρ1×10,01×10,01×10, · · · ,01×10]
T

Verb : [01×10,01×10,ρ1×10,01×10, · · · ,01×10]
T

When POS embedding is used, the attention layer and final
outputs of the network in Eq. (3) become

αt = softmax(Wα

 ht
lt
ηt

+ bi)

γ =
∑
t
αt

[
ht
lt

] (9)

where ηt is the lexicon embedding for POS of the t-th input.

3.3.4 Embedding for conjunction
Conjunction words play important roles in sentiment analy-
sis [34]. For example, conjunctions such as ‘but’ and ‘more-
over’ usually indicate the focus of texts and attract readers
attention. These words may be useful cues for attention
inference in the second level of our network. Therefore,
conjunctions are considered in the input of the second-level
LSTM.

Once a set of conjunction words is compiled, ρ-hot
embedding is used. In our experiments, the number of
conjunction words (including thesaurus) is 13 for Chinese
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Figure 4. The first-level LSTM with lexicon embedding in both the input
and attention layers.

texts and 26 for English texts. Therefore, the parameter n for
Chinese conjunction words in Eq. (6) is set as 1.

When conjunction embedding is used for the second-
level layer, the attention layer and final outputs of the
network in Fig. 2(b) are calculated as follows.

βt = softmax(Wβ


y(1)
t

ht
(2)

ωs
t

ωe
t

+ b′i)

γ(2) =
∑
t
βt

[
h(2)

t

y(1)
t

] (10)

where βt is the attention weight for the t-th input clause;
h
(2)
t is the hidden vector of the second-level LSTM; ωst and
ωet are the conjunction embeddings for the first and last
words in the t-th input clause, respectively; and γ(2) is the
final dense vector used for the final classification.

The two-level network with lexicon embedding is shown
in Fig. 5. The lexicon embedding is used in both input and
attention layers.

3.3.5 Differences between our and existing lexicon embed-
ding
Shin et al. [26] also embedded lexical information into
sentiment analysis. Three major differences exist between
our method and the method proposed by Shin et al. [26].

• The lexicon embedding proposed by Shin et al. us-
es one-hot encoding, whereas the proposed method
uses a new encoding strategy that can be considered
a soft one-hot encoding.

• The lexicon embedding proposed by Shin et al. ex-
tends the lengths of raw encoded vectors. However,
the extension aims to keep the lengths of lexical and
word embeddings equal. Their extension method
also only relies on zero padding and is thus different
from the proposed method.

• Only sentimental words are considered in the lexicon
embedding proposed by Shin et al. On the contrary,
sentimental words, POS, and conjunctions are con-
sidered in our work.

3.4 The Polar Flipping Model
The polarity of words is crucial in sentiment analysis. Most
rule-based methods mainly rely on polar and negation
words. The word polarity is also usually applied as (partial)
supervised information in learning-based methods. Qian et

Figure 5. The whole two-level LSTM network with lexicon embedding in
both the input and attention layers.

al. [7] leveraged the polar labels to regularize the hidden
state of each word in training texts. They utilized the KL
divergence between the polar label and the predicted label
of a word as the regularization term during training. Al-
though word level polar information is proven to be useful
in sentiment analysis, the application of word-level polar
information suffers from the following defects:

• Because the number of words usually exceeds ten
thousand, the labeling of all words’ polarity is not an
easy task. Labeling error is thus unavoidable.

• The polarities of some words highly depend on its
contexts. Therefore, the polarity of a word may vary
in different texts.

In this work, the word-level polar labels are considered
noisy labels. In noisy-label learning [35], a flipping model is
usually used to model the relationships between (possibly)
noisy and true labels. Inspired by noisy-label learning, a
polar flipping model is proposed. Let P1, P2, and P3 repre-
sent the three polar labels ’positive’, ’negative’, and ’neural’,
respectively. Without of loss generalization, the label of a
given word is assumed to be P1. Let x be the representation
of the given word and C be the representation of the context
information. Then, the polar flipping model is described as
follows:

P=σ1(x,C)P1

+ [1− σ1(x,C)]{σ2(x,C)P2 + [1− σ2(x,C)]P3}
(11)

where both σ1 and σ2 are sigmoid functions. Eq. (10) de-
scribes the flipping of the polarity of a word given its con-
text. If σ1(x,C) == 1, then P = P1; else if σ2(x,C) == 1,
then P = P2; else P = P3.

In this work, the hidden state vector h of the word in
LSTM is used to represent (x,C) in Eq. (10). Therefore, Eq.
(10) becomes:

P=σ1(h)P1 + [1− σ1(h)]{σ2(h)P2 + [1− σ2(h)]P3}
(12)

In noisy-label learning, the noisy rate is usually assumed
to be small. In our model, to control the flipping rate, we
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Figure 6. The illustrative network structure with supervised information
in middle layers.

Figure 7. The first-level network with the flipping model (To simplify the
illustration, only polar information is shown in the lexicon embedding).

take the flipping loss as an additional regularization term.
Consequently, the loss function defined in Eq. (5) becomes:

ltotal =
∑
n
[loss1(yn, y

′
n) +

λ1

nI

∑
i

loss2(yni, y
′
ni)

+ λ2

nIK

∑
k

loss3(Pnik, P
′
nik)]

(13)

where Pnik and P ′nik are the true and the flipped polar labels
of the k-th word in the i-th clause in the n-th sample; λ1 and
λ2 are balance parameters; nIK is the number of words in
the i-th clause of the n-th sample. The functions loss1 and
loss2 in Eq. (12) are the cross-entropy loss; the function loss3
is calculated as follows:

loss3(Pnik, P
′
nik) = 1− σ1(hnik) (14)

where hnik is the hidden vector of the k-th word in the i-th
clause in the n-th sample. According to the loss function
defined in Eq. (12), our method can be viewed as being
added supervised information in the middle layers (both
word and clause levels) of the whole network as shown
in Fig. 6. The first-level LSTM in the proposed two-level
network described in Fig. 2(b) is shown in Fig. 7.

Based on Fig. 7, there are three main differences between
our and existing hierarchal networks:

• Our network depends on a relatively new labeling
strategy, namely, two-stage labeling.

• Each level of our network is associated with su-
pervised information, whereas only the top level is
with supervised information in almost all existing
hierarchal networks.

• Each level of our network is associated with a loss
term in our network, whereas there is usually only
one loss in existing hierarchal networks.

• Plentiful lexical cues are embedded into our network,
whereas there is usually only one type of lexical cues
considered in existing networks.

3.5 The Learning Details

The algorithmic steps of the entire learning procedure for
the proposed ρ-hot lexicon embedding-based two-level L-
STM (called ρTl-LSTM) are shown in Algorithm 1. In Algo-
rithm 1, T1 refers to the training data that consist of clauses
and the labels obtained in the first-stage labeling procedure.
T2 refers to the training data that consist of sentences and
the labels obtained in the second-stage labeling procedure.

ALGORITHM 1: ρTl-LSTM
Input: Training sets T1 and T2; dictionary of key lexical words;

POS for each word; dictionary of conjunction words;
character/word embeddings for each character/word;
parameters λ1 and λ2.

Output: A trained two-level LSTM for sentiment classification.
Steps:
1. Construct the ρ-hot-based embedding vector for each word

(including punctuation) in the clauses in T1. The
embeddings include the character/word and lexicon
embeddings of each character/word;

2. Construct the embedding vector for each conjunction word
in each clauses as the input for the second-level LSTM;

3. Train the two-level LSTM on the basis of the input
embedding vectors and labels of polar words, the T1 text
clauses, and the T2 text samples; the loss function is defined
in Eq. (12).

The proposed two-level LSTM can be applied to texts
with arbitrary languages. Word information is required in
lexical construction regardless of whether character or word
embedding is used. The reason is that the three types
of lexicon embeddings are performed at the word level.
Therefore, when character embedding is used, the lexicon
embedding of each character is the lexicon embedding of
the word containing it.

4 EXPERIMENTS
This section shows the evaluation of the proposed method-
ology in terms of the two-level LSTM network and each
part of the lexicon embedding. Both English benchmark text
corpora and Chinese text corpora are used.

4.1 Results on Chinese Corpora

In the experiments, three competing algorithms, namely,
BOW, CNN, and (conventional) LSTM, are used. The lexi-
con embedding-based method proposed by Shin et al. [26]
discussed in Section 3.3.5 is also compared.
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For BOW, term frequency-inverse document frequency
is utilized to construct features. Ridge regression [36] is
used as a classifier. For CNN, a three-channel CNN is used.
For LSTM, one-layer and two-layer Bi-LSTM with attention
are adopted, and the results of the network with superior
performance are presented. CNN and LSTM are performed
on TensorFlow, and default parameter settings are followed.

The key parameters are searched as follows. The embed-
ding dimensions of characters and words are searched in
[100, 150, 200, 250, 300]. The parameter n in ρ-hot encoding
is searched in [1, 3, · · · , 15]. The parameters λ1 and λ2
are searched in [0.001, 0.01, 0.1, 1, 10]. Baidu Chinese word
segmentation API is used.

4.1.1 Experimental Data and Labeling

We compile three Chinese text corpora from online data for
three domains, namely, ‘hotel’, ‘mobile phone (mobile)’, and
‘travel’. All texts are about user reviews. Each text sample
collected is first partitioned into clauses according to Chi-
nese tokens6. Three clause sets are subsequently obtained
from the three text corpora.

The labels ‘+1’, ‘0.5’, and ‘0’ correspond to the three
sentiment classes ‘positive’, ‘neutral’, and ‘negative’, respec-
tively. The text data are labeled according to our two-stage
labeling strategy.

• In the first stage, only one user is invited to label
each clause sample as the sentiment orientations for
clauses (or sub-sentences) are easy to label.

• In the second stage, five users7 are invited to label
each text sample in the three raw data sets. The
average score of the five users on each sample is
calculated. Samples with average scores located in
[0.6, 1] are labeled as ‘positive’. Samples with average
scores located in [0, 0.4] are labeled as ‘negative’.
Others are labeled as ‘neutral’. The details of the
labeling results are shown in Table 1.

TABLE 1
Details of the three data corpora. Each corpus consists of
raw samples (sentences or paragraphs) and partitioned

clauses (sub-sentences).

Data corpus raw clauses

Travel

Pos. 1567 3490
Neu. 576 5168
Neg. 1957 2633
Total 4100 11291

Hotel

Pos. 1586 3987
Neu. 401 2123
Neg. 1838 5154
Total 3825 11264

Mobile

Pos. 1400 2788
Neu. 589 2375
Neg. 1494 2955
Total 3483 8118

6. Token-based token is inaccurate for English text partition. Never-
theless, the segment results for Chinese texts are acceptable. A more
reasonable way will be investigated in our future work.

7. Five graduate students, including three males and two females,
were invited to label the data.

All the training and test data and the labels are available
online8.

In our experiments, the five types of key lexical words
introduced in Subsection 3.3.2 are manually constructed.
The details of the five types of words are listed in Table
29. The conjunction words are also manually constructed.
The number of conjunction words used in the experiments
is 169.

TABLE 2
Numbers of five types of key lexical words.

Data corpus Travel Hotel Mobile

Positive 366 254 358
Negative 327 194 382
Negation 61 61 61

Interrogative 48 48 48
Suppositive 18 18 18

In each experimental run, the training set is compiled
on the basis of the training data listed in Table 1. The
compiling rule is specified before each experimental run.
The test data are fixed to facilitate experimental duplication
and comparison by other researchers. The data with the
fixed split are available at our Github page.

4.1.2 Results of existing methods
In this subsubsection, each of the three raw data sets (asso-
ciated with their labels) shown in Table 1 is used. The clause
data are not used. In other words, the training data used in
this subsubsection are the same as those used in previous
studies. For each data corpus, 1000 raw data samples are
used as the test data, and the rest are used as the training
data. The involved algorithms are detailed as follows.

• CNN-C denotes the CNN with (Chinese) character
embedding.

• CNN-W denotes the CNN with (Chinese) word em-
bedding.

• CNN-Lex-C denotes the algorithm which also inte-
grates polar words in CNN which is proposed by
Shin et al. [26]. The (Chinese) character embedding
is used.

• CNN-Lex-W denotes the algorithm which also inte-
grates polar words in CNN which is proposed by
Shin et al. [26]. The (Chinese) word embedding is
used.

• Bi-LSTM-C denotes the BI-LSTM with (Chinese)
character embedding.

• Bi-LSTM-W denotes the Bi-LSTM with (Chinese)
word embedding.

• Lex-rule denotes the rule-based approach shows in
Fig. 1. This approach is unsupervised.

• BOW denotes the conventional algorithm which is
based of bag-of-words features. Four shallow classi-
fiers are used, namely, logistic regression (LR), sup-
port vector machine (SVM), naive Bayes (NB), and
random forest (RF). For SVM, the parametersC and g

8. https://github.com/Tju-AI/two-stage-labeling-for-the-sentiment-
orientations/tree/master/data

9. The five types of key lexical words are also available and intro-
duced in our Github project page.
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are searched via five-fold cross validation from {0.1,
1, 5, 10, 100} and {0.01, 0.1, 1, 5, 10}, respectively. For
RF, the number of trees is searched via five-fold cross
validation from {10, 20, 50, 100, 200, 500}.

The accuracies of the above algorithms are listed in Table
3. Overall, Bi-LSTM significantly outperforms CNN and
BOW (p < 0.01) based on t-test. This conclusion is in accor-
dance with the conclusion that RNN performs efficiently a-
gainst CNN in a broad range of natural language processing
(NLP) tasks on the basis of extensive comparative studies
[37]. In addition, CNN-Lex outperforms CNN under both
character and word embeddings (p < 0.05), which suggests
that lexicon cues are useful in sentiment analysis. Lex-rule
achieves the lowest accuracies on all the three data sets.
Considering that the performances of (traditional) CNN,
Lex-rule, and BOW are relatively poor, they are not applied
in the remaining parts.

TABLE 3
The classification accuracies of existing algorithms on raw

samples.

Data corpus Travel Hotel Mobile

CNN-C 0.723 0.698 0.727
CNN-W 0.731 0.729 0.748

CNN-Lex-C 0.744 0.734 0.731
CNN-Lex-W 0.758 0.764 0.755
Bi-LSTM-C 0.754 0.753 0.805
Bi-LSTM-W 0.746 0.785 0.809

Lex-rule 0.556 0.539 0.684
BOW+LR 0.713 0.678 0.702

BOW+SVM 0.746 0.735 0.718
BOW+NB 0.698 0.712 0.687
BOW+RF 0.733 0.756 0.743

4.1.3 Results of two-level LSTM without lexicon embedding

In this experimental comparison, the proposed two-level
LSTM is evaluated, whereas lexicon embedding is not used
in the entire network. The primary goal is to test whether the
introduced two-stage labeling and the two-level network
structure are useful for sentiment analysis.

The raw and clause data listed in Table 1 are used to
perform the two-level LSTM. Tl-LSTM denotes the two-level
LSTM. ‘R+C’ refer to the mixed data of raw and clause data.
The test data are still the 1000 samples used in Section 4.1.2
for each corpus. Table 4 shows the classification accuracies.
To ensure that the results differ from those in Table 3, we
explicitly add ‘R+C’ after each algorithm in Table 4. In the
last line of Table 4, the base results for each corpus in Table
3 are also listed.

On all the three data corpora, the proposed two-level
network (without lexicon embedding) with character em-
bedding, Tl-LSTM-C, do not significantly outperform other
involved competing methods by conducting t-test. Howev-
er, it achieves the highest accuracies on all the three data cor-
pora. The results in Table 4 indicate that the performances
of Tl-LSTM on the mixed training and test data (R+C) are
better than those of Bi-LSTM. This comparison indicates that
the proposed two-level LSTM is useful.

TABLE 4
The classification accuracies of competing algorithms.

Data corpus Travel Hotel Mobile

Tl-LSTM-C(R+C) 0.801 0.813 0.820
Tl-LSTM-W(R+C) 0.770 0.772 0.820
CNN-Lex-C (R+C) 0.755 0.770 0.749
CNN-Lex-W (R+C) 0.773 0.776 0.786
Bi-LSTM-C (R+C) 0.781 0.784 0.817
Bi-LSTM-W (R+C) 0.762 0.789 0.813

Baseline (best in Table 3) 0.758 0.785 0.809

In addition, for the involved algorithms, most accuracies
achieved on ‘R+C’ are higher than the best results only
achieved on ‘R’ listed in Table 3. This comparison suggests
that the introduced two-stage labeling is useful.

4.1.4 Results of the whole two-level LSTM

In this experimental run, both lexicon embedding and the
flipping model are used in the proposed two-level LSTM or
ρTl-LSTM. Table 5 shows the results. In order to assess the
usefulness of the flipping model, the results of ρTl-LSTM
without considering flipping are also present.

The performances of TI-LSTM with both lexicon embed-
ding and the flipping model (i.e., ρTl-LSTM) are consistently
better than those of TI-LSTM without lexicon embedding
(i.e., Tl-LSTM) listed in Table 4 and ρTl-LSTM without
flipping (p < 0.05). ρTl-LSTM with flipping also slightly
outperforms ρTl-LSTM without flipping indicating that the
flipping modular is useful in the network. The improved
accuracies of ρTI-LSTM over Tl-LSTM on the three data
corpora are listed in Table 6.

TABLE 5
The classification accuracies of two-level LSTM with lexicon

embedding.

Data corpus Travel Hotel Mobile

ρTl-LSTM-C without flipping 0.816 0.837 0.826
ρTl-LSTM-W without flipping 0.800 0.810 0.841

ρTl-LSTM-C 0.817 0.837 0.837
ρTl-LSTM-W 0.804 0.821 0.847

TABLE 6
The accuracy improvement of two-level LSTM when lexicon
embedding was used over those of two-level LSTM without

lexicon embedding.

Travel Hotel Mobile

+1.6% +2.4% +1.7%
+3.4% +3.9% +2.7%

4.2 Results on English Corpora

Two benchmark datasets are used for evaluating the pro-
posed models: Movie Review (MR) [38] and Stanford Sen-
timent Treebank (SST) [39]. The former consists 10,662 sen-
tences with binary classes (positive and negative); while the
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latter consists of 11,885 sentences with five classes {very
negative, negative, neutral, positive, very positive}.

The involved competing algorithms are CNN, LSTM/Bi-
LSTM, Tree-LSTM [40], NCSL [6], and LR-Bi-LSTM [7]. The
last two methods are two state-of-the-art methods which
also utilize the word-level polar information. The results
of these competing algorithms are obtained directly from
the results presented in Qian et al. work [7]. The polar and
negation words are compiled by following the method used
in Qian et al. work [7]. The number of conjunction words
in the dictionary is 207 which are attributed to 13 classes of
words.

TABLE 7
The accuracies of the competing methods on English

corpora in ρ-hot encoding.

Method MR SST
CNN 0.815 0.469

Bi-LSTM 0.793 0.465
Tree-LSTM 0.807 0.481

NCSL 0.829 0.471
LR-Bi-LSTM 0.821 0.486
ρTl-LSTM 0.851 0.498

The proposed method achieves the highest accuracies
among all the competing methods including the state-of-
the-art NCSL and LR-Bi-LSTM. The increased accuracies
on both sets are smaller than those on datasets reported in
Section 4.1. The main reason lies in that the average numbers
of clauses on both MR and SST are less than 1.5.

4.3 Disussion
The experimental evaluation discussed in Subsection 4.2
verifies the effectiveness of the proposed method, ρTl-
LSTM, on fixed training/testing data split. In this subsec-
tion, we conducted more experiments via 10-cross valida-
tion on each data corpus to further evaluate the proposed
method. More over, unlike the conventional RNN, ρTl-
LSTM contains lexicon embedding that consists of new tech-
nique and components, including ρ-hot encoding, embed-
ding for polar words, embedding for POS, and embedding
for conjunctions. Therefore, this subsection evaluates the
performances of the involved technique and embeddings
separately.

4.3.1 The 10-fold cross validation results on the Chinese
corpora
The 10-fold cross validation results for the main competing
methods in Section 4.1.2 are listed in Table 8. Based on
the t-test, ρTl-LSTM significantly outperforms the involved
competing methods (p < 0.01) on all the three data sets.
Overall, the performances of the methods with character
embedding are comparable to those of the methods with
word embedding.

4.3.2 The effect of different parameters on ρ-hot encoding
Our ρ-hot encoding differs from one-hot encoding in two
aspects. The first aspect is that the nonzero values in one-hot
encoding are only equal to 1, whereas the nonzero values
in ρ-hot encoding are ρ. The second aspect is that only one

TABLE 8
The classification accuracies of competing methods via

10-fold cross validation.
Data corpus Travel Hotel Mobile

CNN-Lex-C (R+C) 0.751 0.755 0.751
CNN-Lex-W (R+C) 0.766 0.769 0.763
Bi-LSTM-C (R+C) 0.768 0.765 0.801
Bi-LSTM-W (R+C) 0.751 0.778 0.803
ρTl-LSTM-C 0.812 0.829 0.831
ρTl-LSTM-W 0.801 0.815 0.841

element in one-hot encoding is nonzero, whereas n elements
in ρ-hot encoding are nonzero.

In this experiment, we test whether ρ-hot encoding is
useful in two experimental runs. In the first run, the value
of ρ is manually set to 0.5 and 1 in the experimental run
without optimization. The parameter n in Eq. (6) is set as
15. The classification accuracies vary according to different
ρ values on all the three data corpora. When ρ equals 1, the
accuracies are the lowest in most cases shown in Fig. 8.

The results shown in Fig. 8 indicate that the value
of ρ does affect the performance of the entire network.
Consequently, the classical one-hot encoding, which fixes
the value of nonzero elements as 1, is ineffective. In our
experiments, the learned value of ρ is approximate 0.4.

In the second run, the performances under different n
(i.e., 1, 5, 10, 15) are tested. Table 9 shows the comparison
results. The value of n does affect the performance of the
entire network, thereby indicating that the introduction of
the n-duplicated strategy in encoding is effective. In the ex-
periments, when n is increasing, the accuracies first increase
and then decrease. The main reason may lie in the fact that
when n becomes large, the proportion of lexicon embedding
becomes large accordingly. An over-length input feature
vector may incur ‘curse of dimensionality’ and thus weaken
the performance of the proposed two-level network.

Figure 8. Classification accuracies under different ρ values. #1-C and
#1-W represent ρTl-LSTM-C and ρTl-LSTM-W on the first (travel) cor-
pus, respectively; #2-C and #2-W represent ρTl-LSTM-C and ρTl-LSTM-
W on the second (hotel) corpus, respectively; #3-C and #3-W represent
ρTl-LSTM-C and ρTl-LSTM-W on the third (hotel) corpus, respectively.
ρ∗ is the searched optimal value.

4.3.3 The effect of polar words

In this experimental run, we test whether the labeled polar
(negative and positive) words do affect the performance of
the entire method when they are used in lexicon embedding.
To this end, we order the polar words according to their
frequencies in the training data. Top 0%, 50%, 100% polar
words are used. The corresponding classification accuracies
are depicted in Fig. 9.
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TABLE 9
The accuracies of ρTl-LSTM with different n values in ρ-hot

encoding.

n Travel Hotel Mobile

ρTl-LSTM-C

1 0.790 0.814 0.809
5 0.803 0.821 0.815
10 0.798 0.815 0.820

searched 0.812 0.829 0.831

ρTl-LSTM-W

1 0.796 0.798 0.820
5 0.802 0.809 0.829
10 0.800 0.801 0.820

searched 0.801 0.815 0.841

Figure 9. Classification accuracies under different proportions of polar
words. #1-C and #1-W represent ρTl-LSTM-C and ρTl-LSTM-W on the
first (travel) corpus, respectively; #2-C and #2-W represent ρTl-LSTM-
C and ρTl-LSTM-W on the second (hotel) corpus, respectively; #3-C
and #3-W represent ρTl-LSTM-C and ρTl-LSTM-W on the third (hotel)
corpus, respectively.

In most cases, the accuracies are the lowest when no
polar words are used in the lexicon embedding. When all
polar words are used, the proposed network achieves the
highest accuracies.

In the experiment, only one user is invited to manually
compile the dictionary for a data corpus. One and a half
hour is needed for each data corpus. In our viewpoint, it
is worth manually compiling the polar words for sentiment
analysis by considering the performance improvement and
time-consumption.

4.3.4 The effect of POS cues

In this experimental run, we test whether POS cues do play
positive roles in the entire model. To this end, we remove
POS in the lexicon embedding of the proposed method. The
results are shown in Fig. 10.

In most cases, the accuracies with POS embedding are
greater than those without POS embedding, thereby indi-
cating that the application of POS to lexicon embedding is
useful.

4.3.5 The effect of conjunction cues

In this experimental run, we test whether conjunction cues
do play positive roles in the entire model. To this end, the
lexicon embedding for conjunction words is also removed
from the proposed method. The results are shown in Fig.
11.

The algorithm with conjunction embedding outperforms
that without conjunction embedding consistently, thereby
indicating that the application of conjunction to lexicon
embedding is useful.

Figure 10. Classification accuracies with and without POS in lexicon
embedding. #1-C and #1-W represent ρTl-LSTM-C and ρTl-LSTM-W
on the first (travel) corpus, respectively; #2-C and #2-W represent ρTl-
LSTM-C and ρTl-LSTM-W on the second (hotel) corpus, respectively;
#3-C and #3-W represent ρTl-LSTM-C and ρTl-LSTM-W on the third
(hotel) corpus, respectively.

Figure 11. Classification accuracies with and without conjunction in lex-
icon embedding. #1-C and #1-W represent ρTl-LSTM-C and ρTl-LSTM-
W on the first (travel) corpus, respectively; #2-C and #2-W represent ρTl-
LSTM-C and ρTl-LSTM-W on the second (hotel) corpus, respectively;
#3-C and #3-W represent ρTl-LSTM-C and ρTl-LSTM-W on the third
(hotel) corpus, respectively.

4.3.6 The effect of different training tricks
In this experimental run, we test the main competing meth-
ods under different training tricks including dropout, batch
normalization (BN), and pooling. Table 10 presents the accu-
racies of ρTl-LSTM based on 10-cross validation. These two
training tricks do not improve the performances. Table 11
presents the accuracy comparison between average-pooling
and max-pooling when CNN-lex is used. The average-
pooling significantly outperforms max-pooling (p < 0.01).

TABLE 10
The classification accuracies with different training tricks.

Data corpus Travel Hotel Mobile

ρTl-LSTM-C+BN 0.800 0.817 0.830
ρTl-LSTM-W+BN 0.791 0.804 0.825
ρTl-LSTM-C+droput 0.796 0.820 0.819
ρTl-LSTM-W+dropout 0.795 0.801 0.832
ρTl-LSTM-C+BN+droput 0.793 0.808 0.823
ρTl-LSTM-W+BN+dropout 0.794 0.809 0.832

TABLE 11
The classification accuracies with two pooling strategies.

Data corpus Travel Hotel Mobile

CNN-Lex-C (R+C) with average 0.768 0.767 0.767
CNN-Lex-C (R+C) with max 0.751 0.755 0.751

CNN-Lex-W (R+C) with average 0.779 0.773 0.778
CNN-Lex-W (R+C) with max 0.766 0.769 0.763

4.3.7 Summarization of the experimental comparisons
According to above experimental comparisons, our pro-
posed methodology has the follows advantages:
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• The two-stage labeling strategy can provide more
supervised information which is useful for model
training.

• The proposed ρChot encoding is more flexible than
the one-hot encoding and is thus more useful for cues
embedding.

• The embedding of more lexical cues integrates more
useful information related to sentiment orientations.
The flipping module is also helpful in performance
improvement.

5 CONCLUSION

High-quality labels are crucial for learning systems. Never-
theless, texts with mixed sentiments are difficult for humans
to label in text sentiment classification. In this study, a new
labeling strategy is introduced to partition texts into those
with pure and mixed sentiment orientations. These two
categories of texts are labeled using different processes. A
two-level network is accordingly proposed to utilize the two
labeled data in our two-stage labeling strategy. Lexical cues
(e.g., polar words, POS, conjunction words) are particularly
useful in sentiment analysis. These lexical cues are used in
our two-level network, and a new encoding strategy, that is,
ρ-hot encoding, is introduced. ρ-hot encoding is motivated
by one-hot encoding. However, the former alleviates the
drawbacks of the latter. Due to labeling noise or context,
the polarity of a word varies in different texts. A flipping
model is proposed to model the polarity flipping process.
Three Chinese sentiment text data corpora are compiled to
verify the effectiveness of the proposed methodology. Our
proposed method achieves the highest accuracies on these
three data corpora. On English data corpora, the proposed
method outperforms state-of-the-art algorithms.

The proposed two-level network and lexicon embedding
can also be applied to other types of deep neural networks.
In our future work, we will extend our main idea into
several networks and text mining applications.
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