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Abstract: Rician noise reduction is an essential issue in magnetic resonance imaging. Recently, learning-based methods have
achieved great success in dealing with image restoration problems, which can provide fast inference and good performance. One
limitation of these methods, however, is that the training procedure is usually noise-level dependent, i.e., the trained models are
bound to a specific noise level and cannot automatically adapt to different noise levels. In this paper, we propose a variational
model for Rician noise removal by integrating a noise adaption function into the field of experts image prior. Instead of directly
solving the energy minimization problem, we unroll the gradient descent step of the energy functional for several iterations, the
time-dependent parameters of which can be learned through a supervised training process. Our proposed methodology is ro-
bustness against noise level changing and noise distributions. Experimental results over T1-, T2- and PD-weighted MRI dataset
demonstrate that our proposed model can achieve superior performance compared with other methods in terms of both the peak
signal to noise ratio and the structural similarity index.

1 Introduction

Noise pollution is a common problem during the image acquisi-
tion and transmission process. It is well-known that signal measured
in Magnetic Resonance Imaging (MRI) is complex data. In the
single-coil MRI system, since both real and imaginary parts are
corrupted by zero mean uncorrelated Gaussian noise with equal vari-
ance, the magnitude image follows a stationary Rician distribution.
Unlike the additive Gaussian noise, Rician noise is signal-dependent,
which makes it more challenging to be removed. Let Ω be an open
bounded subset of Rn, f : Ω→ R be a given image defined on the
domain Ω corrupted by Rician noise, i.e.,

f =
√

(u+ η1)2 + η22,

where η1, η2 represent two zero-mean uncorrelated Gaussian dis-
tributions with standard deviation σ > 0, i.e., η1, η2 ∼ N (0, σ2).
Our goal is to recover a clean image u from a noisy observation f .
Thus, the probability density function (PDF) of f follows the Rician
distribution for the single-coil MRI data such as

P (f |u, σ) =
f

σ2
exp

(
− u2 + f2

2σ2

)
I0

(fu
σ2

)
, (1)

where I0 is a modified Bessel function of the first kind with order-
zero. As demonstrated in [3], Rician distribution is quite suitable
for modeling the MRI data. It has been observed that, in high
Signal-to-noise ratio (SNR) regions, the Rician distribution can be
well approximated by the Gaussian distribution, while in very low
SNR regions (i.e., SNR ≈ 0), it reduces to Rayleigh distribution.
In general, however, the Rician distribution is neither additive nor
multiplicative, which makes Rician noise suppression a challenging
task.

The Maximum a-Posteriori (MAP) estimation gives the most
likely value of u for the given f such that

u∗ = arg max
u

P(u|f).

Based on Bayes’s theorem, we have

max
u

P(u|f)⇔ max
u

P(f |u)P(u)

⇔ min
u

{
− log(P(f |u))− log(P(u))

}
.

(2)

We further characterize the image prior according to the Gibbs
distribution of image prior model as follows

P(u) =
1

Z
exp

(
−R(u)

)
, (3)

where R(u) is a function of the image u, and Z is the so-called
partition function to guarantee

∑
u
P (u) = 1. By substituting (1) and

(3) into (2) and ignoring the constants, we then have

P(u|f) ∝ exp
(
−R(u)−

( 1

2σ2
‖u‖22 −

〈
log I0(

fu

σ2
), 1
〉))

,

(4)
where 〈·, ·〉 denotes the Euclidean inner product. Thus, maximiz-
ing the posterior probability P(u|f) is equivalent to minimizing the
following energy functional

min
u
R(u) + λD(u, f)

with D(u, f) =
1

2σ2
‖u‖22 −

〈
log I0(

fu

σ2
), 1
〉
,

(5)

where λ is a positive parameter to balance the contributions of the
regularization term and data fidelity term.

Many methods have been proposed for Rician noise removal
concerning the selection of the regularization term. Choosing the
potential function as the magnitude of the discrete gradient at each
pixel gives us the popular total variation (TV) prior, which has been
widely used for Rician denoising in the literature. Basu et al. [1]
proposed a Rician denoising model by introducing the Rician like-
lihood term into the anisotropic diffusion process of Perona-Malik.
Later, Getreuer et al. [2] generated a variational model using the to-
tal variation regularizer and the negative log-likelihood fidelity term.
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Liu et al. [3] developed a generalized total variation based denois-
ing method and used a local variance estimator method to calculate
the spatially adaptive regularization parameters. Li and Zeng [4] pro-
posed a strictly convex TV-based model for Rician noise removal by
adding an additional data-fidelity term into the non-convex model.
Kang et al. [5] incorporated the convex fidelity term with a noncon-
vex hybrid TV regularization to recover piecewise-smooth images
corrupted by Rician noises. Martin et al. [6] studied the properties
of the TV-based Rician denoising model and employed the proxi-
mal point method for the minimization of the difference of convex
functions, which demonstrated the effectiveness of the nonconvex
data fidelity term over the convex approximation through numerical
validation. Kang et al. [7] proposed a sparse representation based
model associated with the non-convex data-fidelity and a non-convex
TV regularizer. Chen et al. [8] presented a Rician denoising model
based on sparse representation and dictionary learning. Liu et al. [9]
developed a hybrid regularization model by regarding the MRI data
as a combination of true intensity, bias field, and noise followed by
Rician distribution. Although there is the mathematical guarantee
for the solutions of the aforementioned methods, there are still two
major drawbacks: 1) the regularization parameters need to be manu-
ally adjusted in these models, which are inefficient and ineffective in
practice; 2) it is well-known that the TV regularization favors piece-
wise constant solution and has the staircase-effect, which leads to
unnatural restoration results.

Other methods based on self-similarity and sparsity of images
have also been implemented for Rician noise reduction. Coupé et
al. [10] proposed a 3D optimized blockwise version of the nonlo-
cal means filter for MRI denoising, which was further extended to
spatially varying noise. Manjón et al. [27] presented new denoising
methods based on a 3D moving-window discrete cosine transform
hard thresholding and a 3D rotationally invariant version of the non-
local means filter. The well-known denoising method BM3D has
also been used for Rician distributed data through the forward and
inverse variance-stabilizing transforms (VST) [11]. The nonlocal
methods show superior performance in dealing with images full of
texture and structured patterns. However, these methods lack spatial
dependency due to the point-to-point estimation. Indeed, medical
images are usually highly structured as their pixels exhibit strong
spatial dependency.

Roth and Black [12] proposed the fields of experts (FoE) to model
the prior probability of an image by using a set of linear filters and a
potential function, which achieves great success in low-level image
processing tasks via a supervised learning process. Specifically, the
parameters of the FoE model can be learned from the training sam-
ples by either probabilistic sampling-based algorithm [12] or bilevel
optimization method [13]. Interested readers can find more informa-
tion on the FoE model in the survey paper [14] and the references
therein. Despite the high denoising quality, the FoE models suffer
from a time-consuming iterative process. Chen et al. [15, 16] pro-
posed a trainable nonlinear reaction diffusion (TNRD) model based
on the FoE prior, where all parameters including filters and influ-
ence functions were learned from training data through a loss-based
approach. Instead of employing the iterative scheme adopted in the
FoE models, the TNRD model took advantage of the unrolling strat-
egy such that the learning parameters were embedded in a fixed
number of iterations, which is highly computationally efficient and
well suited for parallel computing on GPUs. Since then, the TNRD
model has been successfully applied to different image denoising
problems such as Poisson noise removal [17] and speckle reduction
[18]. Later, Qiao et al. [19] proposed the trainable non-local reac-
tion diffusion models by incorporating the nonlocal self-similarity
prior. Feng et al. [20] built up a multi-scale pyramid image represen-
tation to devise a multi-scale nonlinear diffusion process. All these
works demonstrate that discriminative learning methods can outper-
form traditional denoising methods and provide high computational
efficiency.

1.1 Our contributions

In this paper, we propose a simple yet efficient TNRD model to
deal with the Rician noise deduction problem with unknown noise
levels. We introduce a novel noise adaption function into the FoE
regularizer, which is derived based on the prior information on the
distribution of the noise levels. The corresponding TNRD model can
defeat the general TNRD model trained on the samples with varying
noise levels, and approximate the restoration results of the TNRD
model trained on the samples with specific noise level without re-
training. More specifically, the contributions of our proposed noise
adaptive trainable nonlinear reaction diffusion (A-TNRD) model are
summarized as follows:

• We propose a novel FoE regularizer by integrating the noise adap-
tion function and derive the trainable nonlinear reaction diffusion
process for solving the FoE regularized variational model for Rician
noise removal.
• We define the noise adaption function according to the assumption
on the distribution of the noise variance. Both uniform distribu-
tion and normal distribution are chosen as examples to illustrate the
performance of our A-TNRD model.
• The A-TNRD model can handle Racian noises of unknown noise
levels and outperform several state-of-the-art methods on the public
MRI dataset. Especially, our proposal achieves a significant im-
provement over the general TNRD model, which is trained on the
same dataset with varying noise levels.
• Our proposal is further applied to other image denoising prob-
lems, i.e., the additive Gaussian noises and Laplace noises, and
achieves consistent results as Rician denoising, which demonstrates
the potentials of the adaptive FoE regularizer in real image restora-
tion problems.

1.2 Organization of the paper

The rest of this paper is organized as follows. We review the clas-
sical FoE prior regularizer and TNRD process in Section 2. The
proposed noise adapted FoE regularizer and A-TNRD model for
Rician noise removal are described in Section 3. We present the
implementation details of the A-TNRD model in Section 4. The
comparison experiments on different MRI modalities and noise lev-
els are conducted on both synthetic and real MRI data in Section 5.
Finally, we conclude the paper and discuss possible future works in
Section 6.

2 Preliminary knowledge

In this section, we review the FoE image prior in a variational for-
mulation and the effective end to end solver for the FoE regularized
model, i.e., the TNRD process.

2.1 The FoE image prior

The FoE prior is a filter based effective higher-order Markov ran-
dom fields (MRF) image prior, which has been applied to many
image processing problems. Unlike traditional methods based on
manual adjustment of regularization parameters, the FoE prior model
is a discriminative regularization term defined as

R(u) =

Nk∑
i=1

N∑
p=1

ρi
(
(ki ∗ u)p

)
, (6)

where Nk is the number of filters, N is the number of pixels in
the image u, ρi is the penalty function, ki is the linear filter, and
ki ∗ u denotes 2D convolution of the image u with the filter ki.
Both the potential functions ρi and filters ki, i = 1, . . . , Nk, are pre-
learned based on the training dataset, which can be realized by the
loss-specific bilevel optimization scheme [23]. Such an FoE prior
model has achieved great success in dealing with image restora-
tion problems, such as image denoising, deblurring, inpainting, and
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super-resolution, etc. By combining the FoE prior with suitable data
fidelity term, we obtain the following minimization problem

min
u

E(u) =

Nk∑
i=1

N∑
p=1

ρi
(
(ki ∗ u)p

)
+ λD(u, f). (7)

Although both the kernel functions and the influence functions in
(7) can be learned from the training data, it still requires to solve a
complex optimization problem in the testing stage, which comprises
its practical usability.

2.2 The TNRD process

In order to improve the efficiency of the FoE prior model (7),
Chen and Pock [15, 16] proposed to solve the following nonlinear
diffusion equation

ut − ut−1
∆t

= −∇E(ut−1)

= −
Nk∑
i=1

k̄ti ∗ φi(k
t
i ∗ ut−1)︸ ︷︷ ︸

difussion term

− ψt(ut−1, f)︸ ︷︷ ︸
reaction term

, (8)

where φi(·) = ρ′i(·) is the influence function, k
t
i is obtained by ro-

tating the filter ki with 180 degrees, and ∆t is the time step size. The
reaction term is obtained from the gradient of the data fidelity term,
i.e., ψ(u, f) = λ∇uD(u, f). Instead of making use of the chosen
filters and influence functions, one can use the unrolling strategy to
generate a nonlinear diffusion process to learn the time-dependent
parameters Θt = {λt, kti , φ

t
i}. By truncating the diffusion process

(8) after T stages, we obtain an iterative system with respect to the
variable u as follow

ut = ut−1 −
( Nk∑
i=1

k̄ti ∗ φ
t
i(k

t
i ∗ ut−1) + ψt(ut−1, f)

)
,

with t = 1, 2 . . . T.

(9)

In (9), the initial value of u is given as u0 = f , and the time step
size in equation (8) is set as ∆t = 1, because the formula (8) on the
right side can be freely scaled according to the actual needs.

The parameter set Θ = {Θt}t=T−1t=0 can be learned through a
supervised training process by minimizing a loss function measur-
ing the distance between the estimated image and the ground truth.
Similarly, the training framework of the reaction-diffusion model is
realized by the bilevel optimization scheme as follows

min
Θ
L(Θ) :=

Ns∑
s=1

`(usT , u
s
gt) =

Ns∑
s=1

1

2
‖usT − u

s
gt‖22,

s.t.


us0 = fs0 ,

ust = ust−1 −
(∑Nk

i=1 k̄
t
i ∗ φ

t
i(k

t
i ∗ u

s
t−1) + ψ(ust−1, f

s)
)
,

t = 1, 2 . . . T,

where Ns is the number of training samples, usgt and fs are the
ground truth image and noisy image, respectively.

Followed the work of [16, 24], we parameterize the influence
function as a weighted linear combination of Gaussian radial basis
functions (RBFs) to approximate influence functions on each stage
such as

φi(z) =

M∑
j=1

wi,j exp
(
−

(z − µj)2

2γ2

)
,

where M denotes the total number of the RBFs and wi,j =

(wi,1, wi,2 · · ·wi,M ) ∈ RM is the weights for the ith influence

function, i = 1, . . . , Nk. As the RBFs with equidistant centers µj
and unified scalar γ are adopted and fixed in the TNRD model, the
weights wi,j are the only parameters that need to be learned for
generating the influence functions.

As done in [16], we define the linear kernels ki as a linear
combination of Discrete Cosine Transform (DCT) basis kernels
B ∈ RR×(R−1) with zero mean to get rid of the possible scaling
problem, i.e.,

ki = B ci
‖ci‖2

,

where ki ∈ RR, R = r × r is the filter size for i = 1, . . . , Nk.
Thus, learning filters ki are to estimate the parameters ci ∈ RR−1.
Consequently, we need to learn the parameters Θt = {λt, cti, w

t
i,j}

for t = 1, . . . , T , through he training process.
In this work, we use the joint training scheme to optimize the pa-

rameters of all stages simultaneously, which has shown to be more
reliable than the greedy training [16]. Such bilevel optimization
can be solved by the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) quasi-Newton’s method [25]. It can be observed
that the TNRD model is closely related to Convolutional Neural Net-
works (CNNs) based denoising methods. We simply conclude the
relationship among the FoE model, TNRD model, and CNN model
as follows:

1) If the parameters {Θt}t=T−1t=0 are fixed across all the stages, the
TNRD process deduces to the FoE prior regularized model for image
restoration problem. The merit of the TNRD model is that the time-
varying parameters can be simultaneously trained in a supervised
way.
2) The TNRD process can be cast into recurrent neural networks,
which uses the trained nonlinear activation function instead of fixed
ones such as ReLU functions or sigmoid functions. Another dif-
ference is that the TNRD model contains a reaction term, which
can describe the interrelationship between the observed data and the
recovered data.

Although the TNRD model can achieve state-of-the-art performance
for Rician denoising problems, there is one drawback that still needs
to be addressed, i.e., the trained diffusion networks only perform
well in the way they are trained [16]. For example, the trained model
based on the noise level σ = 20 will break down for a test image
with the noise level σ = 40. Although the users can train a TNRD
model on the dataset with different noise levels, the performance of
such a general TNRD model usually gives worse results than the
engineering denoising methods like VST-BM3D [11].

3 The proposed model

In this section, we propose an adaptive FoE image prior to
deal with Rician noise at different noise levels and develop the
corresponding noise adaptive TNRD model.

3.1 The adaptive FoE prior and A-TNRD model

We formulate the FoE regularized model for Rician denoising
by combining the FoE prior with the data fidelity term derived
from the Rician distribution (5). Therefore, the following energy
minimization problem is concerned with

min
u

Nk∑
i=1

N∑
p=1

ρi
(
(ki ∗ u)p

)
+ λ

( 1

2σ2
‖u‖22 −

〈
log I0(

fu

σ2
), 1
〉)
.

(10)
Therefore, we can easily derive a trainable nonlinear diffusion pro-
cess from the energy functional (10) for the Rician noise reduction

ut = ut−1 −
Nk∑
i=1

k̄ti ∗ φ
t
i(k

t
i ∗ ut−1)− λt

σ2

(
ut−1 −

I1(vt−1)

I0(vt−1)
f
)
,

(11)
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Fig. 1: The architecture of our A-TNRD model with the reaction term derived for Rician noises, each substructure of which corresponds to a
diffusion step in (13).

where vt−1 =
fut−1

σ2 , and the derivative of the modified Bessel
functions are defined as I ′0(v) = I1(v), I ′1(v) = I0(v)− 1

v I1(v)
with more details in [4].

Although the regularization parameter λ is affected by the noise
level σ, the diffusion process (11) still loses its effectiveness when
the noise level is different from the training process. Please refer
to Table 2 in Section 5 for the results of applying TNRD30 trained
on samples with noise level σ = 30 to images corrupted by Rician
noise of σ ∈ [15, 45], which coincide well with the above argument.
In fact, the FoE prior term plays a more important role than the data
fidelity term in the TNRD model. Thus, we propose a novel TNRD
model with the noise level dependent FoE image prior. More specif-
ically, we introduce a continuous function g(σ) into the FoE prior
such as

Rσ(u) =

Nk∑
i=1

N∑
p=1

ρi

((
g(σ)(ki ∗ u)

)
p

)
, (12)

where g(σ) is called the noise adaption function used to depict the
noise level. Based on the adaptive FoE image prior (12), we modify
the TNRD model for Rician noise removal as follows

ut = ut−1 −
( Nk∑
i=1

g(σ)k̄ti ∗ φ
t
i

(
g(σ)(kti ∗ ut−1)

)
+ λt

(
ut−1 −

I1(vt−1)

I0(vt−1)
f
))
.

(13)

Note that the factor 1/σ2 in the reaction term is scaled by the noise
adaptive function g(σ). In this way, both the parameters of the filters
and the influence functions will be affected by the noise adaption
function g(σ). We call the model (13) the adaptive trainable nonlin-
ear reaction diffusion (A-TNRD). Such noise adapted FoE prior is
not limited to the Rician denoising, which can be applied to other
noise removal problems and image processing tasks.

Similarly, the diffusion model (13) can be interpreted as running
the gradient descent of the energy function for several iterations, and
the parameters of each step are optimized by training through the
following process

min
Θ
L(Θ) =

Ns∑
s=1

`(usT , u
s
gt) =

1

2

Ns∑
s=1

‖usT − u
s
gt‖22,

s.t.



us0 = fs0 ,

ust = ust−1 −
( Nk∑
i=1

g(σ)k̄ti ∗ φ
t
i

(
g(σ)(kti ∗ u

s
t−1)

)
+λt

(
ust−1 −

I1(v
s
t−1)

I0(vst−1)
fs
))
,

where t = 1 . . . T.

(14)

The training process of our proposed model is shown in Fig. 1, which
is a typical feed-forward network.

3.2 The choices of noise adaption function g(σ)

An important issue of our A-TNRD model is how to define the
noise adaption function g(σ), which can be derived based on the
prior knowledge of the noise level. Two typical priors are consid-
ered in our implementations, i.e., the noise levels followed uniform
distribution and normal distribution, respectively.

3.2.1 Uniform distribution: We suppose the noise levels of the
training samples follow the uniform distribution by generating a set
of σ satisfying the uniform distribution with σmin and σmax, i.e.,
σ ∼ U(σmin, σmax), which are then applied to degrade the clean
images. Obviously, the cumulative distribution function can com-
pletely describe the probability of the random variable taking any
given value. Therefore, we define the noise adaption function g(σ)
as a continuous function using the cumulative distribution function
as follows

g(σ) =
σ − σmin

σmax − σmin
+ 1 , (15)

where we plus one to transform the range of function values to [1, 2]
for better training of the TNRD model.

0 50 100 150 200 250 300
Training Samples

15

20

25

30

35

40

45

(a) σ of training samples

15 20 25 30 35 40 45
1

1.2

1.4

1.6

1.8

2
g(σ)
g(σ

TS
)

(b) g(σ)

Fig. 2: Illustration of the distribution of σ in training samples and the
function g(σ) used in our A-TNRDUD model, where σTS denotes
the noise level σ of training samples.

As shown in Fig. 2, we display the standard deviation used to gen-
erate the noisy images in the training stage with σ ∼ U(15, 45) and
the corresponding g(σ) used in our adaptive TNRD model. In the
testing stage, for a given image, we adopt the Rician noise estima-
tion method in [29] to evaluate the noise level σ, and then take the
σ into the well-trained A-TNRD model to restore the clean image.
With the uniform distribution prior, as long as the noise levels of the
test images are in between σmin and σmax, our A-TNRDUD model
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can automatically adapt with different images degraded by Rician
noises.

3.2.2 Normal distribution: We can also generate another train-
ing dataset with noise levels followed the normal distribution σ ∼
N(µ, s2). Similarly, we define g(σ) based on the cumulative distri-
bution function as follows

g(σ) =
1

s
√

2π

∫σ
−∞

e−
1
2 (
x−µ
s )2dx+ 1 . (16)

It is easy to check that, when we have σ ∼ N(30, 25) in the training
stage, there are 68% training samples with noise level σ ∈ [25, 35]
and 95% of the training samples with noise levels σ ∈ [20, 40].
Thus, more samples are distributed near the mean value. We dis-
play both the standard deviation σ followed σ ∼ N(30, 25) used in
the training stage and the corresponding function g(σ) in Fig. 3. In
principle, our A-TNRDGD model using the normal distribution prior
can handle noisy images of any noise level. However, due to the lack
of training samples in tails, the qualities of the restoration results
achieved by the A-TNRDGD model may drop for noisy images with
σ far from the mean of the Gaussian distribution.

0 50 100 150 200 250 300

Training Samples

15

20

25

30

35

40

45

(a) σ of training samples

15 20 25 30 35 40 45
1

1.2

1.4

1.6

1.8

2

TS )

(b) g(σ)

Fig. 3: Illustration of the distribution of σ in training samples and
the influence function g(σ) of our A-TNRDGD model, where σTS
denotes the noise level σ of training samples.

3.3 Computing the gradients

We aim to minimize the upper-level objective function in (14)
with respect to the parameters Θt = {λt, cti, w

t
i,j} for t = 1, . . . , T .

As mentioned before, we use the L-BFGS quasi-Newton’s method to
learn these parametes, i.e.,

Θt+1 = Θt − δtPt
∂`(uT , ugt)

∂Θt
, (17)

where δt is the step size andPt is the approximation of the inverse of
Hessian matrix obtained by the second derivatives of ` with respect
to Θt. Because both δt and Pt can be calculated by the L-BFGS
algorithm, we only have to compute the gradient of the loss function
with respect to Θt explicitly, which can be obtained by the chain
derivative rule as follows

∂`(uT , ugt)

∂Θt
=
∂`(uT , ugt)

∂ut
· ∂ut
∂Θt

. (18)

It should be noted that we only consider the case with one training
sample here for brevity, as the gradient of the overall loss func-
tion can be obtained by summing up the above gradient over all
training samples. The standard back-prorogation technique is widely
used in neural network based learning models [26], which can be
implemented for our T -stage joint minimization problem. More

especifically, there is

∂`(uT , ugt)

∂ut
=
∂ut+1

∂ut
· ∂ut+2

∂ut+1
. . .

∂uT
∂uT−1

· ∂`(uT , ugt)
∂uT

,

the intermediate terms of which can be expressed as

∂ut+1

∂ut
= (1− λt+1)I + λt+1

(
1− 1

vt
zt − z2t

)(f
σ

)2
−
Nk∑
i=1

g(σ)(Kt+1
i )>Λi

(
g(σ)(K̄t+1

i )>
)
,

with I being the identity, zt =
I1(vt)
I0(vt)

, Λi being a diagonal ma-

trix defined as Λi = diag(φt+1
i

′
(x1), φt+1

i

′
(x2) . . . , φt+1

i

′
(xN )),

xp = g(σ)Kt+1
i (ut)p, p = 1, 2, . . . , N . Besides, K̄t+1

i and K̄t+1
i

are the matrix forms of the filters kt+1
i and k̄t+1

i , such that
Kt+1
i u⇔ kt+1

i ∗ u and K̄t+1
i u⇔ k̄t+1

i ∗ u, respectively. Note
that we do not need to explicitly construct the matrices Ki and K̄i.
Instead, their operations on vectors can be computed by applying the
convolution operations ki and k̄i with the symmetric boundary con-
dition [16]. Specifically, we first pad the input image symmetrically
and then feed it into the diffusion network. After the process, we
discard the padding pixels to obtain the final output.

Meanwhile, the derivative of `(uT , ugt) w.r.t. uT can be directly
derived from the upper-level minimization problem of (14), which
gives

∂`(uT , ugt)

∂uT
= uT − ugt.

On the other hand, the second term on the right hand side of (18)
can be derived from the diffusion equation (14). Here, we focus on
illustrating the influence of g(σ) in the derivation of ∂ut∂λt , ∂ut

∂wti,j
and

∂ut
∂cti

. More details of the derivation of these derivatives can be found
in [16].

1) Computing ∂ut
∂λt : the derivatives of ut with respect to λt can

be straightforward computed according to (13) as follows

∂ut
∂λt

= −
(
ut−1 −

I1(vt−1)

I0(vt−1)
f

)>
.

2) Computing ∂ut
∂cti

: we have

∂ut
∂cti

=
∂ut
∂kti
· ∂k

t
i

∂cti
,

the derivatives on the right hand side of which can be obtained from

∂kti
∂cti

=
1

‖cti‖2

(
I − cti
‖cti‖2

· (cti)
>

‖cti‖2

)
· B>,

and

∂ut
∂kti

= −
(
g(σ)P>invV

> + g(σ)U>t−1Λg(σ)(K̄t
i )
>),

with Ut−1 being constructed from ut−1 according to ki ∗ ut−1 ⇔
Ut−1ki and P>inv being a linear operation to invert the kernel k.

3) Computing ∂ut
∂wti,j

: we can obtain ∂ut
∂wti,j

as

∂ut
∂wi,j

= −G>g(σ)(K̄t
i )
>

with G = exp
(
−
(
g(σ)Kt

iut−1−µ
)2

2γ2

)
.
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4 Implementation details

4.1 Dataset and evaluation details

We use the Hammersmith dataset for training the parameters
and validating the denoising performance of the proposed model,
which is a subset of the IXI dataset and can be downloaded from
http://brain-development.org/ixi-dataset/. The Hammersmith dataset
contains the T1-, T2- and PD-weighted MRI data, where different
TNRD models are trained for each type of data. To be specific, we
randomly selected two-dimensional T1-weighted MRI images from
the Hammersmith dataset and cropped a 150× 150 pixel region
from each image to generate the training dataset. The process is the
same for the T2- and PD-weighted MRI images.

To validate the effectiveness of the proposed model, we com-
pared it with the well-established Rician denoising algorithms, the
parameter settings of which are listed as follows

• LGTV: Locally Generalized Total Variation model [3]. We set the
exponent parameter γ as γ = 0.98 for T1- and PD-weighted MRI
data, and γ = 0.99 for T2-weighted MRI data for guaranteeing best
restoration results. The maximum number of iteration is fixed as
1000 and the error tolerance is fixed as 1e−5 for all experiments.
• CTV: Convex Total Variation based model [4]. We select different
values for the regularization parameter γ for different images and
different noise levels, the range of which is γ ∈ [0.01, 0.07]. The
step sizes in the primal-dual algorithm are defined as β = 8/γ, τ =
0.015/γ. The maximum number of iteration as 1000 and the error
parameter as 1e−5.
• ODCT: Oracle-based Discrete Cosine Transform (DCT) filter
[27]. The three-dimensional moving-window DCT hard threshold-
ing is adopted to deal with Rician noises. The only parameter of the
ODCT method is the threshold τ in the prefiltering step, which is
defined related to the noise level as τ = 2.7σ (σ denotes the noise
level) as suggested in [27].
• PRINLM: Prefiltered Rotationally Invariant NonLocal Means
filter [27]. The PRINLM method applies the three-dimensional ro-
tationally nonlocal mean filter to the preprocessed data obtained by
the ODCT model. To get a good compromise between the computa-
tional efficiency and denoising performance, the local neighborhood
of 3× 3× 3 voxels and the searching volume of 7× 7× 7 voxels
are used in the experiments.
• VST-BM3D: Variance Stabilizing Transformation-BM3D [11].
The VST-BM3D method converts the Rician noise into Gaussian
noise via the variance-stabilization transformation and implements
the BM3D algorithm to remove the noises, which is a parameter-free
method.

We use two quantitative measurements to evaluate the denois-
ing performance. One is the following Peak Signal-to-Noise Ratio
(PSNR)

PSNR = 20 log10
255

MES
,

where MES denotes the mean square error between the noise-free
image and the denoised image. The other one is the Structural
Similarity index (SSIM) [28] defined as

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
,

where µx and µy are the mean of the image x and y, c1 and c2
are two constants, σx and σy are the variances of image x and y,
respectively, and σxy is the covariance of image x and y.

4.2 Model setup

In this subsection, we discuss several issues that affect the per-
formance of our A-TNRD model, including the size of training
samples, the number of diffusion steps, and the size of filters. The A-
TNRDUN and A-TNRDND represent the A-TNRD model with the
noise adaptive function (15) and (16), respectively. We denote the

general TNRD model trained on samples with varying noise level
σ ∈ [15, 45] as TNRDG, and the TNRD model trained on specific
noise level as TNRGS.

4.2.1 The choices of training samples and diffusion steps:
Both the number of training samples and the number of diffusion
steps influence the performance of the TNRD model. We track the
PSNR of the TNRDS and our A-TNRDUN model w.r.t. different
training samples from Ns = 20 to Ns = 300, and different diffu-
sion steps from T = 2 to T = 12, the results of which are presented
in Fig. 4. Note that we evaluate the denoising performance on a test-
ing dataset containing 40 T1-weighted MRI images degenerated by
Rician noise of σ = 30. Fig. 4 (a) shows the influence of the num-
ber of training samples and diffusion stages for the TNRD30 model.
One can find that 100 images are typically enough to provide sat-
isfactory results. When the number of samples is increased to more
than 100, the improvement of the PSNR value is insignificant. There-
fore, we set the number of training samples to 100 for the TNRDS
model. And the figure on the right side in Fig. 4 (a) indicates that
10 diffusion stages are suitable for the TNRDS model to balance
the performance and computational time. Similar results of our A-
TNRDUN model are displayed in Fig. 4 (b), which show that 200
training samples and 10 diffusion stages are suitable to provide the
best trade-off between efficiency and effectiveness. It is reasonable
that more training samples are required for our A-TNRD model since
the noises vary adaptively among the samples.
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Fig. 4: The influences of the number of training samples and
diffusion stages for both TNRDS model and A-TNRDUD model.

4.2.2 The choices of the size of filters and Gaussian RBFs:
Another issue is how to select the size of the filter and the number of
Gaussian RBFs. In principle, we can exploit the filters of any size,
but in practice, to balance the trade-off between computational ef-
ficiency and image quality, we use the filters of size 5× 5 and set
the number of the filters to 24. We adopt 63 Gaussian RBFs with
equidistant centers at [−310 : 10 : 310] and set the scaling parame-
ter γ = 10, which are the same as [16]. Unless otherwise specified,
our training models use the same RBFs, filter size, and the number
of filters.

Here, we evaluate the differences in between the weights of the
influence functions obtained by the TNRDG, A-TNRDUD, and A-
TNRDND model. The weights wi,j of the RBFs for generating the
influence function φi of the last stage for the three models are dis-
played in Fig. 5, where the same stage, filter size, and Gaussian RBFs
are used in the three TNRD models. As shown, the distributions of
the weights obtained by our A-TNRD models are more dispersed
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(a) TNRDG model
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(b) A-TNRDUD model
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(c) A-TNRDND model

Fig. 5: The learned weights wi,j , i = 1, 2 · · · , 24 , j = 1, 2 · · · , 63 of the TNRDG, A-TNRDUD and A-TNRDND model on the last stage.

than the one obtained on the TNRDG model, especially the weights
trained followed the uniform distribution prior. The comparison il-
lustrates that our A-TNRD models use more RBFs to approximate
the influence functions to deal with the images corrupted by mixed
noise levels, which can somehow explain why our model works
better than the TNRDG model.

In summary, the size of parameters Θ =
{
{λt, cti, w

t
i,j}
}t=T−1
t=0

in our TNRD model are cti (24× 24), wti,j (24× 63) and one λt

in each stage, which means that our models have 2089 parameters
on each stage and 20890 parameters totally. On the other hand, the
parameter sets of the CNN models [21, 22] are more than 20 times
and 120 times larger compared to our model.

5 Experimental Results

5.1 TNRD models on Rician denoising

In this subsection, we evaluate the advantages of the Rician
data fidelity and the adaptive FoE regularizer in dealing with noisy
images degenerated by different levels of Rician noise.

5.1.1 Comparison with VST-TNRD model: We compare the
TNRDS model with the VST-TNRD model, which converts the
Rician noise to Gaussian noise by the variance stabilizing trans-
formation and uses the TNRD model trained for Gaussian noise to
remove noise. Note that the VST-TNRD models are trained on noisy
images corrupted by a specific level of Gaussian noise as done in
[16]. We list both the PSNR and SSIM in Table 1, which are the av-
erage values obtained on 40 T1-weighted MRI images corrupted by
Rician noise with noise levels 20, 30 and 40, respectively. As can
be observed, the TNRD model with reaction force derived by Ri-
cian data fidelity always provides better restoration results than the
VST-TNRD model.

Table 1 The average PSNR(dB) and SSIM results on 40 T1-weighted
images from IXI-Hammersmith dataset corrupted by different levels Rician
noise.

Methods 20 30 40

PSNR SSIM PSNR SSIM PSNR SSIM

VST-TNRD 31.5612 0.8846 29.2389 0.8486 27.4808 0.8069
TNRDS 31.8682 0.9073 29.6326 0.8654 27.9441 0.8321

5.1.2 The comparison between TNRD models for Rician de-
noising: To demonstrate the advantage of our adaptive FoE prior in
processing images with unknown noise levels, we train four TNRD
models for general Rician noise removal problem, i.e., the TNRD30
model trained on samples with noise level σ = 30, the general
TNRDG model and the other two A-TNRD models trained on mix
noise levels of σ ∈ [15, 45]. All models are evaluated on a testing
dataset containing 40 T1-weighted MRI images, which are corrupted

by Rician noises with noise level σ = 15, 18, 21, 24, 27, 30, 33, 36,
39, 42 and 45, respectively.

As shown in Table 2, although the data fidelity term of Rician
noise is dependent on the noise level σ, the TNRD30 model fails to
handle with noise changing. The TNRDG model can achieve better
restoration results than TNRD30 except for the noise levels σ = 30,
27, and 24, which illustrate that the general model is more suit-
able to deal with images of unknown noise levels. Moreover, we
observe that our adaptive TNRD model outperforms the TNRDG
model such that TNRDUD gives a 2 dB and a 1 dB higher PSNR
than the TNRDG model for σ = 15 and σ = 45, respectively. The
A-TNRDND also outperforms TNRDG with clear superiority. The
results demonstrate that our model can learn more efficient priors
from the training samples with varying noise levels. Besides, we also
observe that the performance of the A-TNRDND model is better than
the A-TNRDUD model when the noise level is around σ = 30, and
drops its advantages as the noise level becomes far from σ = 30,
i.e., σ < 25 and σ > 35. Thus, g(σ) with the uniform distribution
assumption is more suitable for removing noises with σ varying in
a large interval. In the following experiments, we simply use the
A-TNRDUD model for evaluation unless otherwise specified.

5.2 Comparison with the-state-of-the-art methods

We further evaluate our A-TNRD model by comparing it with
other well-known Rician denoising methods on T1-, T2- and PD-
weighted MRI data.

(a) T1.1 (b) T1.2 (c) T1.3

Fig. 6: Three images of the clean T1-weighted MRI data.

5.2.1 Results on T1-weighted dataset: In the first place, we
apply our proposed adaptive TNRD model as well as other de-
noising methods on three T1-weighted brain images as illustrated
in Fig. 6 and a three-dimensional T1-weighted data from the IXI-
Hammersmith dataset. Both the PSNR and SSIM are summarized
in Table 3, where the best two results are highlighted in red and
blue colors, respectively. As shown, the TNRDS model presents the
most robust performance compared to all other methods in terms of
PSNR and SSIM, followed by our proposed A-TNRD model. Pay
attention that three TNRDS models need to be trained to achieve
such good restoration results, while our A-TNRD model only needs
to be trained once and can deal with images corrupted by different
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Table 2 The average PSNR(dB) and SSIM results obtained by the TNRD models on 40 T1-weighted images from IXI-Hammersmith dataset
corrupted by different levels Rician noise, where the best two results are highlighted in red and blue color, respectively.

Methods 15 18 21 24 27 30 33 36 39 42 45

PSNR TNRD30 28.5308 30.3736 30.2329 30.1785 30.0334 29.6326 27.9078 25.8152 24.0499 22.5548 21.2520
TNRDG 30.2859 31.4313 30.4320 30.0732 29.7608 29.2604 28.7732 28.2263 27.3877 26.1288 24.7001
A-TNRDUD 32.6792 31.9520 31.2680 30.6270 30.0217 29.4598 28.9274 28.4126 27.8898 27.3128 26.5108
A-TNRDND 32.2579 31.7876 31.2217 30.6263 30.0715 29.5277 28.9638 28.3813 27.6836 26.6988 25.4509

SSIM TNRD30 0.6608 0.7752 0.8670 0.8640 0.8614 0.8654 0.6524 0.5918 0.5589 0.5335 0.5100
TNRDG 0.8693 0.8782 0.7425 0.7713 0.8579 0.8532 0.8410 0.8155 0.6948 0.6017 0.5547
A-TNRDUD 0.9062 0.9032 0.8956 0.8856 0.8736 0.8599 0.8426 0.8252 0.8091 0.7972 0.7786
A-TNRDND 0.9037 0.9003 0.8950 0.8815 0.8753 0.8668 0.8539 0.8395 0.8198 0.7833 0.7372

noise levels. Actually, it is more reasonable to compare our A-TNRD
model with the TNRDG model, which is trained on the same dataset
as ours. It can be seen that our A-TNRD model produces much bet-
ter restoration results than the TNRDG model in terms of PSNR and
SSIM. Thus, the A-TNRD model is a better choice for Rician noise
removal problems with different noise levels.

(a) Noisy (b) ODCT (c) PRINLM

(d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 7: The noisy image and recovery results obtained by ODCT,
PRINLM, VST-BM3D, TNRDG and A-TNRD model on the image
T1.1 corrupted by Rician noise of σ = 20.

Fig. 7 presents the recovery results of image T1.1 with Rician
noise σ = 20, the magnified part of which can illustrate the su-
periority of learnable methods in recovering edges and structures
of the brain image. We show the recovery results of image T1.2
with Rician noise σ = 30 in Fig. 8. Similarly, our A-TNRD model
gives the restoration result with the best visual quality, which pro-
vides more details than other methods. The recovered images and
the difference images of image T1.3 with Rician noise σ = 40 are
presented in Fig. 9 and Fig. 10, respectively. The difference images
demonstrate that our A-TNRD model gives the recovery result with
a clean background. Although the performance of the PRINLM and
ODCT method seems acceptable in the brain regions, the results of
the background reveal that their results are not as homogeneous as
ours.

Although our model is a typical 2D approach, we apply the
trained model on a 3D T1-weighted volume data using the slice
by slice strategy and compare the results with other comparison
algorithms. Table 4 tabulates the PSNR and SSIM obtained by dif-
ferent methods, where our model gives the best restoration results
with an average 0.5 dB higher PSNR than the VST-BM3D model.
Besides, we make a run time comparison of the comparative algo-
rithms in Table 5. We see that our A-TNRD model is faster than the
VST-BM3D and variational methods. Currently, our TNRD model
consumes more computational time than the ODCT and PRINLM

(a) Noisy image (b) ODCT (c) PRINLM

(d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 8: The noisy image and recovery results obtained by ODCT,
PRINLM, VST-BM3D, TNRDG and A-TNRD model on the image
T1.2 corrupted by Rician noise of σ = 30.

(a) Noisy (b) ODCT (c) PRINLM

(d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 9: The noisy image and recovery results obtained by ODCT,
PRINLM, VST-BM3D, TNRDG and A-TNRD model on the image
T1.3 corrupted by Rician noise of σ = 40.

model, the efficiency of which can be improved by exploring the
parallel computing power of GPU devices.

For the T1-weighted MR images, the regularization parameter
γ in the CTV model are set as γ = 0.03, 0.02, 0.018 for image
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Table 3 Denoising results comparison for T1-weighted MR images corrupted by different levels of Rician noise in terms of
PSNR and SSIM, where the best two results are highlighted in red and blue color, respectively.

Images Methods 20 30 40

PSNR SSIM PSNR SSIM PSNR SSIM

T1.1 Original 20.6852 0.4268 17.0899 0.3116 14.5588 0.2317
LGTV 26.1562 0.6247 24.4429 0.5640 23.5159 0.5330
CTV 28.1364 0.8173 26.1322 0.7228 25.0478 0.7063
ODCT 31.1060 0.8079 28.4823 0.7229 26.9545 0.6748
PRINLM 30.9743 0.8033 28.6256 0.7343 27.3902 0.7287
VST-BM3D 30.7771 0.8543 28.7359 0.8164 27.3165 0.7785
TNRDS 31.7257 0.8986 29.5784 0.8550 27.9690 0.8196
TNRDG 31.1352 0.8314 29.2210 0.8359 26.9769 0.6654
A-TNRD 31.3988 0.8890 29.5062 0.8530 27.8478 0.8062

T1.2 Original 20.6460 0.4499 17.0479 0.3415 14.5131 0.2625
LGTV 25.0421 0.6389 24.0134 0.6042 22.4302 0.5206
CTV 28.9826 0.8409 26.8260 0.8211 25.1489 0.7768
ODCT 30.8346 0.7996 28.4587 0.7153 26.9709 0.6697
PRINLM 30.6762 0.7832 28.4568 0.7187 27.1044 0.7121
VST-BM3D 30.3998 0.8614 28.3968 0.8276 26.9499 0.7996
TNRDS 31.3309 0.9072 29.2015 0.8684 27.6095 0.8384
TNRDG 30.4597 0.7886 28.7612 0.8458 26.6239 0.6718
A-TNRD 30.9694 0.8973 29.0962 0.8634 27.5031 0.8343

T1.3 Original 20.5262 0.4297 16.79550 0.3289 14.4316 0.2532
LGTV 25.9284 0.5818 23.6895 0.5249 21.4891 0.4620
CTV 27.4578 0.8208 25.9555 0.7833 24.6723 0.7309
ODCT 31.2044 0.7937 28.6281 0.6976 26.2431 0.6066
PRINLM 31.0309 0.7801 28.7065 0.7409 26.0620 0.6184
VST-BM3D 31.1352 0.8314 29.0794 0.7780 27.4743 0.7220
TNRDS 31.6203 0.9175 29.4363 0.8781 27.8003 0.8488
TNRDG 30.4221 0.7536 29.0005 0.8765 26.8018 0.6326
A-TNRD 31.3307 0.9092 29.3327 0.8727 27.6195 0.8258

Table 5 Time consumption (in second) of different algorithms on T1-weighted MRI experiment.

Methods LGTV CTV ODCT PRINLM VST-BM3D TNRDS TNRDG A-TNRD

Single image 4.79 2.20 - - 0.65 0.39 0.40 0.40
3D volume 1235.54 849.87 43.71 55.48 147.52 113.96 115.72 117.60
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Fig. 10: The absolute difference images between the ground-truth
and the restoration of ODCT, PRINLM, VST-BM3D, TNRDG, A-
TNRD in Fig. 9.

T1.1 of noise level σ = 20, 30, 40; γ = 0.03, 0.025, 0.022 for im-
age T1.2 of σ = 20, 30, 40; γ = 0.03, 0.025, 0.02 for image T1.3 of
σ = 20, 30, 40 and γ = 0.03, 0.025, 0.02 for the 3D T1-weighted
volume of σ = 20, 20, 40, respectively.

5.2.2 Results on T2-weighted dataset: Similarly, we train the
A-TNRD model on the T2-weighted MR images corrupted by Rician
noises σ ∈ [15, 45] and apply it to a three-dimensional T2-weighted
MRI data corrupted by Rician noise of different noise levels. The

Table 4 The PSRN (dB) and SSIM of different methods on a three-
dimensional T1-weighted MRI data with different levels of Rician noises,
where the best two results are highlighted in red and blue color, respectively.

Methods 20 30 40

PSNR SSIM PSNR SSIM PSNR SSIM

Original 20.3358 0.3203 16.7770 0.2226 14.2561 0.1590
LGTV 26.6416 0.4988 24.7620 0.4352 23.3374 0.3679
CTV 29.2136 0.7473 28.6148 0.7172 25.8081 0.6410
ODCT 31.4025 0.7067 28.8157 0.5863 26.5359 0.4830
PRINLM 30.8705 0.6777 28.6967 0.6207 26.1385 0.4889
VST-BM3D 31.1352 0.8314 29.0794 0.7780 27.4743 0.7220
TNRDS 31.8978 0.8501 29.7162 0.7923 28.1165 0.7521
TNRDG 29.8986 0.6515 29.2570 0.7741 26.9589 0.4975
A-TNRD 31.5864 0.8370 29.7008 0.7887 27.9949 0.7267

quantitative comparison results are presented in Table 6, where both
average PSNR and SSIM of our proposal are better than other meth-
ods except for TNRDS. Especially, our A-TNRD model shows a
significant advantage over the TNRDG model, which demonstrates
the noise adaption function can significantly improve the denoising
performance. Fig. 11 and Fig. 12 provide one slice of restoration
images corrupted by Rician noise with σ = 40 and the difference im-
ages between the ground truth and the restored images, respectively.
Because Rician noise is signal-dependent, there exists structure in-
formation in the difference images for all the methods. As shown,
fewer signals are left in the difference image of our A-TNRD model,
which can demonstrate the effectiveness of the proposed model in
recovering fine structures and details. The comparison between our
model and TNRDG model also certificates the superiority of the
noise adaption function in dealing with Rician noises of the unknown
noise level.

For the three-dimensional T2-weighted MR volume, we set the
regularization parameter γ in the CTV model as γ = 0.07, 0.04,
0.03, 0.025, 0.035, 0.035, 0.03 for noise level σ = 15, 20, 25, 30,
35, 40, 45, respectively.
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(a) Noisy image (b) ODCT (c) PRINLM (d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 11: The noisy image and recovery results obtained by ODCT, PRINLM, VST-BM3D, TNRDG and A-TNRD on one slice of the T2-
weighted MRI data corrupted by Rician noise of σ = 40.
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Fig. 12: The difference images between the ground truth and the restoration of ODCT, PRINLM, VST-BM3D, TNRDG, A-TNRD in Fig. 11.

Table 6 PSRN(dB) and SSIM of different methods on a three-dimensional T2-weighted MRI data with Rician noise of
different levels, where the best two results are highlighted in red and blue color, respectively.

Methods 15 20 25 30 35 40 45

PSNR Original 22.8260 20.2510 18.2619 16.6404 15.2702 14.0825 13.0333
LGTV 28.4066 27.8411 27.3937 26.4809 25.6296 24.8370 24.1310
CTV 32.0357 31.0110 29.7173 28.6148 27.2634 26.0315 25.7385
ODCT 34.0581 32.2916 30.4283 29.1546 27.8695 27.2088 26.4645
PRINLM 33.6890 31.9685 30.0645 28.6351 27.3965 27.1046 26.7606
VST-BM3D 34.1138 32.4017 31.0543 29.9390 28.9766 28.0942 27.2909
TNRDS 35.0459 33.5466 32.4142 31.4641 30.5942 29.7400 29.0090
TNRDG 30.6964 31.0235 31.7659 30.9948 29.1405 26.0617 23.3561
A-TNRD 34.5974 33.4041 32.3610 31.4374 30.5593 29.6531 28.5642

SSIM Original 0.3159 0.2510 0.2051 0.1763 0.1436 0.1220 0.1043
LGTV 0.6965 0.6576 0.6041 0.5652 0.5116 0.4795 0.4662
CTV 0.8353 0.7992 0.7573 0.7172 0.6789 0.6551 0.6005
ODCT 0.8059 0.7483 0.6354 0.5871 0.5265 0.5076 0.4760
PRINLM 0.7935 0.7553 0.6409 0.5775 0.5227 0.5493 0.5568
VST-BM3D 0.8088 0.7615 0.7231 0.6926 0.6669 0.6422 0.6193
TNRDS 0.8649 0.8388 0.8184 0.7982 0.7614 0.7341 0.7067
TNRDG 0.6501 0.6012 0.7560 0.7767 0.5818 0.4374 0.4096
A-TNRD 0.8528 0.8379 0.8180 0.7945 0.7613 0.7245 0.6807

(a) Noisy image (b) ODCT (c) PRINLM (d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 13: The noisy image and recovery results obtained by ODCT, PRINLM, VST-BM3D, TNRDG and A-TNRD on one slice of the PD-
weighted MRI data corrupted by Rician noise of σ = 20.

5.2.3 Results on PD-weighted dataset: Last but not least,
we also train the TNRD models for the PD-weighted images de-
graded by Rician noise, where training samples are with noise levels
σ ∈ [15, 45] for our A-TNRD and TNRDG model. Table 7 shows

both average PSNR and SSIM obtained by the comparative algo-
rithms on a three-dimensional PD-weighted MRI volume from the
IXI-Hammersmith dataset. Thanks to the three-dimensional patch
similarities, the ODCT and PRINLM give better restoration results
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Fig. 14: The difference images between the ground truth and the restoration of ODCT, PRINLM, VST-BM3D, TNRDG, A-TNRD in Fig. 13.

Table 7 PSRN(dB) and SSIM of different methods on a three-dimensional PD-weighted MRI data with Rician noise of
different levels, where the best two results are highlighted in red and blue color, respectively.

Methods 15 20 25 30 35 40 45

PSNR Original 22.6617 20.1030 18.1257 16.5145 15.1554 13.9805 12.9459
LGTV 27.2522 26.5239 25.2996 24.7906 24.4195 24.2255 23.2747
CTV 32.0496 30.5474 29.7112 28.9564 27.7776 27.4726 26.6218
ODCT 35.5010 33.5483 31.9526 30.8450 29.5191 28.5394 27.6130
PRINLM 35.3556 33.6749 32.2363 31.0563 30.1177 29.1720 28.5084
VST-BM3D 34.5948 32.9271 31.6307 30.5704 29.6633 28.8753 28.1693
TNRDS 35.8634 34.4205 33.2431 32.2455 31.4418 30.6946 30.0366
TNRDG 31.6452 32.4333 31.7947 31.7997 31.0813 29.0094 25.6817
A-TNRD 35.1981 34.0922 33.0898 32.2014 31.3931 30.6087 29.7758

SSIM Original 0.2964 0.2396 0.1989 0.1678 0.1432 0.1231 0.1065
LGTV 0.6292 0.5545 0.5274 0.4884 0.4496 0.4081 0.3532
CTV 0.8059 0.7813 0.7109 0.7062 0.6748 0.6282 0.5955
ODCT 0.8359 0.7488 0.6786 0.6481 0.5752 0.5361 0.4960
PRINLM 0.8503 0.8043 0.7562 0.7168 0.6833 0.6550 0.6335
VST-BM3D 0.8150 0.7773 0.7489 0.7253 0.7066 0.6903 0.6767
TNRDS 0.8892 0.8745 0.8534 0.8328 0.8184 0.7931 0.7710
TNRDG 0.8130 0.7936 0.7187 0.8178 0.7987 0.5454 0.4029
A-TNRD 0.8729 0.8642 0.8502 0.8319 0.8139 0.7895 0.7659

(a) Noisy (b) ODCT (c) PRINLM (d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 15: The noisy image and recovery results of ODCT, PRINLM, VST-BM3D, TNRDG and A-TNRD of a real noisy MR image with the
estimated noise level σ = 10.0497.
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Fig. 16: The residual images between the restoration of ODCT, PRINLM, VST-BM3D, TNRDG, A-TNRD and the noisy image in Fig. 15.

than our A-TNRD for noise level σ = 15. However, the restoration
results of the ODCT and PRINLM method lack spatial dependency
due to the point-to-point estimation. Therefore, the SSIM of ODCT
and PRINLM are still inferior to our A-TNRD model. We observe
that our A-TNRD model provides the overall best restoration results,
the PSNR values of which triumph over both ODCT and PRINLM

for all other noise levels. Fig. 13 and Fig. 14 illustrate the visual re-
sults of an image corrupted by Rician noise of σ = 20. We can see
that better visual results are achieved by our A-TNRD model with
fine details in the brain region and fewer outliers in the background.

For the three-dimensional PD-weighted MR volume, we set the
regularization parameter γ in the CTV model as γ = 0.07, 0.05,
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(a) Noisy (b) ODCT (c) PRINLM (d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 17: The noisy image and recovery results of ODCT, PRINLM, VST-BM3D, TNRDG and A-TNRD of a tumor lesion MR image with the
estimated noise level σ = 13.7254.
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Fig. 18: The residual images between the restoration of ODCT, PRINLM, VST-BM3D, TNRDG, A-TNRD and the noisy image in Fig. 17.

(a) Noisy (b) ODCT (c) PRINLM (d) VST-BM3D (e) TNRDG (f) A-TNRD

Fig. 19: The noisy image and recovery results of ODCT, PRINLM, VST-BM3D, TNRDG and A-TNRD of a tumor lesion MR image with the
estimated noise level σ = 8.3647.
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Fig. 20: The residual images between the restoration of ODCT, PRINLM, VST-BM3D, TNRDG, A-TNRD and the noisy image in Fig. 19.

0.045, 0.04, 0.035, 0.03, 0.025 for noise level σ = 15, 20, 25, 30,
35, 40, 45, respectively.

5.3 Denoising performance on real data

To show the effectiveness of our proposal, we applied the A-
TNRD model on real-world noisy MRI data in this subsection.
Because the noise levels are unknown, we adopt the method pro-
posed in [29] to estimate the noise levels of the noisy images shown
in Fig. 15(a), Fig. 17(a) and Fig. 19(a), which are σ = 10.4097,
13.7254 and 8.3647, respectively. Thus, we train both A-TNRD and

TNRDG models on samples with noise levels σ ∈ [1, 15]. The re-
stored images and residual images obtained by the ODCT, PRINLM,
VST-BM3D, TNRDG, and A-TNRD model are shown in Fig. 15
and Fig. 16, respectively. As can be seen, our A-TNRD model can
achieve better denoising results compared to other algorithms such
that less information is exhibited in the residual images, especially
the region inside the rectangle box.

Another two examples of tumor MRI images are shown in Fig.
17 - 20, which demonstrate that all the denoising methods can re-
move the Rician noises quite well. The comparisons between the
residual images illustrate that the VST-BM3D model is not very
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Table 8 The mean PSRN (dB) and SSIM of T1-weighted MR images with different levels of Gaussian noise.

Methods 15 20 25 30 35 40 45

PSNR Original 24.5732 22.0745 20.1363 18.5526 17.2137 16.0539 15.0308
TNRDG 31.9491 31.2710 30.4546 29.5375 28.7648 27.9784 27.4424
A-TNRD 33.1149 31.8675 30.8015 29.8940 29.1012 28.3488 27.7587

SSIM Original 0.5330 0.4467 0.3819 0.3306 0.2887 0.2539 0.2246
TNRDG 0.9128 0.9003 0.8886 0.8561 0.8511 0.8215 0.8076
A-TNRD 0.9276 0.9113 0.8950 0.8781 0.8606 0.8413 0.8122

Table 9 The mean PSRN(dB) and SSIM of T1-weighted MR images with different levels of Laplace noise.

Methods 15 20 25 30 35 40 45

PSNR Original 24.6331 22.1343 20.1961 18.6125 17.2736 16.1137 15.0907
TNRDG 31.4705 30.6995 29.9500 29.1998 28.4557 27.6986 26.8468
A-TNRD 32.9158 31.5213 30.6983 29.7306 29.0374 28.3357 27.1439

SSIM Original 0.5405 0.4551 0.3908 0.3397 0.2980 0.2631 0.2337
TNRDG 0.8960 0.8834 0.8678 0.8508 0.8326 0.8101 0.7817
A-TNRD 0.9213 0.9076 0.8948 0.8802 0.8643 0.8331 0.7886

good at processing homogeneous background, while the ODCT and
PRINLM methods remove certain structural information of the im-
ages. Both TNRD models work well on the two MR images with
tumors and our A-TNRD model outperforms the TNRDG model
since less information is left in the residual images.

5.4 Extension to other denoising problems

In this subsection, we apply our proposal to the T1-weighted MRI
images corrupted by Gaussian noises and Laplace noises to further
investigate the effectiveness of our noise adaptive FoE regularization
technique.

5.4.1 Gaussian noises removal: In order to deal with addi-
tive Gaussian noises, we minimize the energy functional combined
with the noise adaptive FoE regularizer and the L2 data fidelity term,
which gives

min
u

Nk∑
i=1

N∑
p=1

ρi

((
g(σ)(ki ∗ u)

)
p

)
+
λ

2
‖u− f‖22. (19)

The diffusion process can be derived from (19) as follow

ut = ut−1 −
Nk∑
i=1

g(σ)k̄ti ∗ φ
t
i

(
g(σ)(kti ∗ ut−1)

)
− λt(ut−1 − f).

We train both TNRDG and A-TNRD model for additive Gaussian
noises removal on a training dataset with 100 image samples cor-
rupted by the noise levels σ ∈ [15, 45]. The number of unrolling
stages is fixed as 10 for both TNRD models. We evaluate both mod-
els on a testing dataset with 40 T1-weighted images, the mean PSNR
and SSIM of which are listed in Table 8. It can be seen that our
A-TNRD model always achieves better restoration results than the
TNRDG model in terms of both PSNR and SSIM. More specifi-
cally, when noise level is small, e.g., σ = 15, our model gains a 1
dB higher PSNR than the TNRDG model.

5.4.2 Laplace noises removal: According to the Bayesian
statistics, we adopt the L1 data term for dealing with the ad-
ditive Laplace noises [30]. Therefore, we consider the following
minimization problem for Laplace noise removal

min
u

Nk∑
i=1

N∑
p=1

ρi

((
g(σ)(ki ∗ u)

)
p

)
+ λ‖u− f‖1.

Similarly, the diffusion process can be obtained with the following
form

ut =ut−1−
Nk∑
i=1

g(σ)k̄ti ∗ φti
(
g(σ)(kti ∗ ut−1)

)
−λt(

ut−1 − f√
ut−1 − f2 + ε2

),

where we define ‖u− f‖1 =
√

(u− f)2 + ε2 with ε = 0.01 to
avoid the singularity.

Numerically, we train both TNRDG and A-TNRD model on a
training dataset with 100 samples corrupted by the additive Laplace
noises with the noise level σ ∈ [15, 45]. We list the mean value of
PSNR and SSIM of a testing dataset composing of 40 T1-weighted
MR images in Table 9. As can be seen, the results of our model
are consistently better than the TNRDG model, especially for noise
level σ = 15, which are also in accord with Rician and Gaussian
denoising problems.

6 Discussion and Conclusion

Although we provided the PSNR and SSIM of the TNRDS model
trained on each specific noise level as the reference in Table 3, 4,
6, and 7, it is indeed unfair to compare our model with TNRDS.
The TNRDS was trained on 100 samples with the same noise level,
while our A-TNRD model was trained on 200 samples with varying
noise levels σ ∈ [15, 45]. Obviously, the number of samples aver-
aged to each noise level of our model is much smaller than the
specific model. The unfairness in the training stage results in the dif-
ferences of the PSNR and SSIM between the A-TNRD model and
TNRDS. The performance of our A-TNRD model can be further
improved by increasing the size of training samples and the number
of stages. In the following, we train another two A-TNRD models,
i.e., A-TNRD300 and A-TNRD400, which were trained on 300 train-
ing samples with 15 training stages and 400 training samples with
20 training stages, respectively. The mean values of the PSNR and
SSIM on a test dataset with 40 T1-weighted MRI images are dis-
played in Table 10. We can find out that the performance of the
A-TNRD model has been improved compared to the A-TNRD200

model. Besides, both PSNR and SSIM of A-TNRD200 are inferior
to TNRDS for all noise levels, while almost all PSNR and SSIM
of A-TNRD400 are higher than TNRDS. Thus, we can improve the
performance of our A-TNRD model by increasing the number of
training samples and training stages in practice.

Table 10 The average PSNR (dB) and SSIM results on 40 T1-weighted
images corrupted by different levels of Rician noise.

Methods 20 30 40

PSNR SSIM PSNR SSIM PSNR SSIM

TNRDS 31.8682 0.9073 29.6326 0.8654 27.9441 0.8321
A-TNRD200 31.4914 0.8985 29.4598 0.8599 27.7094 0.8048
A-TNRD300 31.6570 0.9037 29.6862 0.8697 28.0468 0.8225
A-TNRD400 31.7204 0.9081 29.7620 0.8724 28.1388 0.8385
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In the end, we conclude the paper as follows. We developed a
noise adapted field of experts image prior, which can learn effec-
tive prior information from training data utilizing a noise adaption
function. The proposed FoE regularized model was solved by the
trainable nonlinear diffusion process by learning all the parameters
from the training dataset through a loss-based approach. The main
advantage of the proposed TNRD model is that it can deal with
Rician denoising problems with unknown noise levels. Compared
to the general TNRD model trained with the same noisy samples,
our model can achieve significantly better restoration results on both
two- and three-dimensional data of different modality types includ-
ing T1-, T2- and PD-weighted MRI data. Besides, the proposed
model also outperforms other established Rician denoising meth-
ods such as VST-BM3D and PRINLM. Moreover, apart from Rician
noises, consistent results were obtained by the proposed A-TNRD
model for images corrupted by additive Gaussian noises and Laplace
noises.

Our future works include improving the effectiveness and effi-
ciency of our A-TNRD model on three-dimensional data by using
the three-dimensional FoE prior and GPU programming. Another
direction is to work on developing efficient learning-based models
for blind denoising problems, where images are corrupted by noises
of mixed distributions and diverse intensities.
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