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We show a method, for direct numerical simulations, to trigger and maintain turbulent
bands directly at low Reynolds numbers in channel flow. The key is to impose a moving
localised force which induces a local flow with sufficiently strong inflectional instability.
With the method, we can trigger and maintain turbulent bands at Reynolds numbers
down to Re ~ 500. More importantly, we can generate any band patterns with desired
relative position and orientation. The usual perturbation approach resorts to turbulent
fields simulated at higher Reynolds numbers, random noise, or localised vortical pertur-
bation, which neither assures a successful generation of bands at low Reynolds numbers
nor offers a control on the orientation of the generated bands. A precise control on the
position and orientation of turbulent bands is important for the investigation of all pos-
sible types of band interaction and for understanding the transition in channel flow at
low Reynolds numbers.
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1. Introduction

Since the work of|Tsukahara et al.|(2005)), it has been known that turbulence in channel
flow appears in form of turbulent bands at low Reynolds numbers, which are tilted with
respect to the streamwise direction (Tsukahara et al|2014b; Tsukahara & Kawamural
2014; [Tuckerman et al|2014} Xiong et al][2015}; [Tao et al]2018}; [Kanazawal[2018}; [Shimizu
& Manneville 2019} Xiao & Song|[2020} [Paranjape et al|[2020). Similar band patterns
were also observed in other types of shear flows at transitional Reynolds numbers (Coles
[1965; [Prigent et al|2002} [Barkley & Tuckerman|2005} [Duguet et al|2010}; [Tuckerman &
Barkley]2011; [Duguet & Schlatter] 2013} [Rolland|[2015], 2016} [Chantry ef al|2017; [ReetZ]
et al[2019} [Tuckerman et al2020). The obliqueness of turbulent bands and the sustaining
mechanism of bands in tilted periodic domains have been explained from the point of view
of the large scale flow and dynamical system approach (Duguet & Schlatter||2013} Reetz|
let al|2019; |Paranjape et al|2020). However, the mechanism underlying the specific tilt
angles and the dynamcics of fully localised turbulent bands remain poorly understood.
Latest numerical studies showed that individual turbulent bands in large channels can
be sustained at Re 2 660, and once triggered, a turbulent band can grow transversely or
split when the band length is sufficiently large (Xiong et al.[2015; Tao et al2018; |Shimizu
& Manneville 2019; [Kanazawal2018). Throughout this paper, constant-flux driven flow
is discussed about and the Reynolds number is defined as Re = U.h/v, where U, is the
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centerline velocity of the unperturbed parabolic flow, h the half gap-width and v the
kinematic viscosity of the fluid.

Regarding the sustaining mechanism of fully localised turbulent bands at low Reynolds
numbers, [Shimizu & Manneville (2019); Kanazawa, (2018]) observed that turbulent bands
are sustained by an active streak-generating downstream end (hereafter referred to as
head). [Kanazawa, (2018]) considered a damped Navier-Stokes system and proposed that
a relative periodic orbit seems to exist at the head and is responsible for the self-
sustainment of the band. Xiao & Song (2020) lately investigated the local mean flow
at the head of turbulent bands at Re = 750 and showed that the spanwise velocity
profile manifests a strong inflection. They performed linear stability analysis of the in-
flectional profile and found a linear instability. The most unstable eigenmode as well
as the nonlinear development of perturbations on top of the inflectional velocity profile
showed remarkable similarities with the wave-like streaky structure observed at the head
of turbulent bands. They also showed that streaks decay continually at the upstream
end of turbulent bands (hereafter referred to as tail). Therefore, they proposed that the
growth of fully localised turbulent bands are driven by the instability associated with
the inflectional local mean flow at the head. Similar mechanisms were proposed for the
growth mechanism of the wing tips of turbulent spots at higher Reynolds numbers in
channel flow (Henningson & Alfredsson||1987; [Henningson||1989)), in plane Couette flow
(Dauchaot & Daviaud|[1995)) and at the laminar-turbulent interface of turbulent puffs in
pipe flow (Hof et al.[2010). However, how this inflectional flow is formed and sustained
and the possible connection to the periodic orbit solution of Kanazawa| (2018) remain to
be investigated.

In the presence of multiple turbulent bands, interactions between bands may occur
and result in complex spatio-temporal intermittency (Duguet et al.| 2010 [Shimizu &
Manneville|2019). Interactions between turbulent bands in channel flow at low Reynolds
numbers have not been sufficiently investigated. It was shown that, in small tilted do-
mains, turbulence forms parallel band patterns (Tuckerman et al.|[2014); however, the
choice of the size and tilt direction of the domain restrict the turbulent bands from
taking different orientations. In non-tilted domains, Tao et al.| (2018) reported that, if
the domain is not sufficiently large, a band may decay due to the self-interaction be-
cause of the periodic boundary conditions. They argued that this is because the large
scale flow around a band is necessary for its self-sustainment, and the large scale flow
may be affected by itself in a periodic channel or potentially by a close neighbouring
band. Yet they did not explicitly study interactions between turbulent bands, especially
bands with different orientations. To our knowledge, in numerical simulations, so far only
Shimizu & Manneville| (2019) investigated interactions between multiple bands in a large
computational domain (500 x 2h x 250h in the streamwise, wall normal and spanwise
directions, respectively). The large domain with periodic boundary conditions allowed
them to observe the development of and the interactions between multiple bands for
very long times, which were O(10%) convective time units and very much out of reach
of current laboratory experiments. They concluded that at Re = 976 (higher than 830
as proposed by [Sano & Tamai (2016))), directed percolation (DP) model can be used to
model the interactions between bands and the resulting flow pattern. Before the onset
of DP, turbulent bands can still be sustained. They observed longitudinal interaction
between parallel bands and collision between bands with opposite orientations, and that
turbulent bands can only form parallel pattern instead of two-sided pattern as they do
at higher Reynolds numbers. However, more quantitative studies on the interactions be-
tween turbulent bands in this flow regime are needed to elucidate the transition scenario
at low Reynolds numbers.
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Considering the fact that turbulent bands can take opposite orientations (angles about
the streamwise direction), it is necessary to generate bands with desired positions and
orientations in order to study all possible types of interactions between bands. In nu-
merical simulations, to our knowledge, usually two methods have been used to generate
bands at low Reynolds numbers (Re < 1000). The one is to start from a fully turbulent
flow field at a higher Reynolds number (above Re ~ 1500) or random noise, and wait for
the flow to form discrete bands (Tsukahara et al.|2005, |2014a; Tuckerman et al.[2014).
The other is to start from a localised vortical perturbation such as that proposed by
Henningson & Kim| (1991)). As [Tao et al|(2018)) pointed out that random noise cannot
trigger turbulent bands at Re < 800, no matter being localised or not, and that only
perturbations with effective structures can work. In our simulations, we also found that
both methods cannot assure the generation of bands at Re < 750, regardless of the am-
plitude of the initial perturbations. At higher Reynolds numbers, even if bands can be
triggered by noisy fields or localised vortical perturbations, the tilt direction of the bands
are not known a priori using both methods and the first method even cannot predict the
number and positions of the generated bands.

In this work, we propose a method that can effectively trigger turbulent bands directly
at low Reynolds numbers and more importantly, allows a precise control on the position
and orientation of the generated bands.

2. Methods
The non-dimensional incompressible Navier-Stokes equations
1
%—?—i—u-Vu:—Vp—e—ﬁVQu—kF,V-u:O (2.1)

with a constant volume flux for the channel geometry are solved in Cartesian coordinates
(z,y, z), where u denotes velocity, p denotes pressure, F' denotes the external force and
x, y and z represent the streamwise, wall-normal and spanwise coordinates, respectively.
Velocities are normalized by U,, length by h and time by h/U.. For all simulations in
this paper, the volume flux associated with the unperturbed parabolic flow is imposed.
No-slip boundary conditions for velocities are imposed at channel walls (i.e. at y = +1).
Periodic boundary conditions are imposed in the streamwise and spanwise directions.
A hybrid Fourier spectral-finite difference method is used to solve Egs. , with a
finite-difference method with a 9-point stencil employed for the discretisation in the wall
normal direction. Therefore, the velocity and pressure fields can be expressed as

K M
A(m,y,z,t): Z Z Ak}m(y’t)ei(ak;c-i-ﬁmz)’ (2_2)

k=—Km=—M

where k and m are the indices of the streamwise and spanwise Fourier modes, respectively,
Ay is the Fourier coefficient of the mode (k,m) and a and § are the fundamental
wave numbers in the streamwise and spanwise directions, respectively. The size of the
computational domain is L, = 27/« and L, = 2r/f. The finite difference scheme and
the parallelisation strategy of OPENPIPEFLOW (Willis|[2017)), and the time-stepping and
projection scheme of [Hugues & Randriamampianing| (1998) are employed to integrate
the incompressible system.

We performed direct numerical simulations (DNS) in the regime of Re < 750. We
considered two computational boxes with L, = L, = 120h and L, = L, = 320h, respec-
tively. For Re = 750, we used 768 Fourier modes (K = M = 384) in both streamwise and
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FIGURE 1. (a) The velocity profiles (2.3) (2.4). (b) The forces that are determined by (2.5
using the velocity profiles in (a).

spanwise directions for the small box and 2048 Fourier modes (K = M = 1024) for the
large box. For Re = 600 and 500, the number of streamwise Fourier modes is reduced to
576 for the small box and 1728 for the large box. We used 64 Chebyshev grid points for
the finite difference discretisation in the wall normal direction. These resolutions were
shown to be sufficient for the flow in this Reynolds number regime (Tao et al|[2018]). A
time-step size of At = 0.01 is used for the time integration, which is sufficiently small for
this Reynolds number regime.

2.1. The forcing

Xiao & Song (2020) showed that turbulent bands at low Reynolds numbers grow via
a streak generation mechanism at the head of the bands, i.e. an inflectional instability
associated with the local mean flow. Inspired by their study, here we aim to generate
banded streaks, as those observed in turbulent bands, via such an instability mechanism.
We propose to impose a body force that locally induces a spanwise inflectional velocity
profile. We first design a target streamwise and spanwise velocity profile that is inflec-
tionally unstable, and subsequently derive the force that can generate the profile. We use
polynomial fits of the velocity profiles that |Xiao & Song| (2020) measured at the head of
a turbulent band at Re = 750, with the parabola 1 — 3? subtracted from the streamwise
component. The profiles read

U, = —0.2478y® + 0.5390y° — 0.2768y* — 0.1250y> + 0.1106, (2.3)
U, = —0.2469y% + 0.7262y° — 0.8448y* + 0.3765y% — 0.0110, (2.4)

and Figure a) shows the y-dependence of the profiles. We derive the force f that is
needed to maintain the profile as a function of y as

L
Re
where U = (U,,0,U,). It should be noted that the force given by (2.5) is meant to

generate velocity deviations (U,,0,U,) with respect to the parabola 1 — y2. Figure b)
shows the force determined by the target profiles.

f+—VU=0, (2.5)
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F1GURE 2. The localisation factor, i.e., the part in the parentheses in Egs. [2.6] as a function of
the distance to the centre of the forcing area, \/(x —zc)?2 4 (2 — 2.)?, given R=7and B =0.2,
0.5 and 1.0.

Besides, to localise the force, we multiply the force by a tanh-function as the following

24 (2 —20)% —
V2B

where B determines the sharpness of the localisation, A, and A, are the nominal ampli-
tude of the force component f, and f,, respectively, and are adjustable independently.
R is the nominal radius and z. and z. are the streamwise and spanwise coordinates of
the center of the localised forcing area. As an example, figure [2| shows the localisation
factor as a function of the distance to the center of the forcing area in (the part
in the parentheses) for R = 7 and B = 0.2, 0.5 and 1.0. The smaller B, the steeper
the force curve at the boundary. The localisation factor falls nearly to zero at distances
considerably larger than R (e.g. larger than approximately 8 for B = 0.5).

It should be noted that, in the proximity of the border of the forcing area, this localised
force does not respect the incompressibility constraint, which is however fulfilled by the
projection method when the Navier-Stokes equations are solved. We want to point out
that other velocity profiles with similar inflectional properties may be used to design the
force.

F = (F,,0,F,) = <0.5 — 0.5tanh Vi =) R) (Agfe: 0, AL L), (2.6)

2.2. Stability property of the modified base flow

Here, we briefly show the linear stability property of the modified base flow (U, + 1 —
y2,0,U,). The modal stability of this profile has been studied in Xiao & Song] (2020)). For
the ease of discussion, we reproduced the data in Figure a, b). The profile bears linear
instabilities in a wide region in the wavenumber plane (the region enclosed by a bold line
in panel (a)). The most unstable mode («, 5) = (0.32, —1.96) shows wave-like streaks
tilted with respect to the streamwise direction, see the visualisation of the streamwise
velocity in the a-z cut plane at y = —0.5 (top) and in the z-y cut plane (bottom) in
panel (b). However, |Xiao & Song] (2020) mentioned that the modal growth rate of the
most unstable mode seems smaller than the observed growth rate of the streaks at the
head of turbulent bands. In this paper, we performed a non-modal analysis and will show
that the unstable modes can actually achieve a significant and fast non-modal growth
via the Orr-mechanism at the very early stage. The adjoint-based method for non-modal
energy growth described in Barkley et al.|(2008) and |Chai & Song| (2019) is adopted for
this analysis.
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FIGURE 3. (a) Contours of the most unstable/least stable eigenvalue in the a-8 wavenumber
plane for the base flow (Uy + 1 — 42,0, U.) at Re = 750. The region circled by the bold black
line marks the linearly unstable region. (b) The streamwise velocity of the most unstable mode
(a, B) = (0.32,—1.96) is visualised in the z-z cut plane at y = —0.5 (top) and in the z-y
cross-section at = 0 (bottom). The base flow is in the positive z direction. Red color represents
higher velocity and blue represents lower velocity compared to the base flow. (c-f) Contours of
the non-modal energy growth in the a-f8 wavenumber plane at ¢t = 10, 20, 30 and 40.

The non-modal energy growth is shown as contours in the wavenumber plane at ¢ = 10,
20, 30 and 40; see Figure C—f). It can be seen that at the very early stage, the most
amplified mode is outside the linearly unstable region. Nevertheless, linearly unstable
ones quickly become the most amplified modes after approximately ¢ = 20. Already at
t = 30, the linearly unstable modes are amplified by a few hundred times in energy.

Figure a) shows the energy amplification of the mode («, 8) = (0.32,—1.96). The
flow is initialised with the optimal perturbation that is optimised at ¢ = 30 in the non-
modal analysis. The flow field is visualised in the z-y cut plane at ¢ = 0, 15 and 30 in
panel (b-d). As shown in panel (b), the initial flow field manifests flow structures that
mainly tilt against the mean shear of the spanwise flow component (see Figure [I{b)) in
the region —0.6 < y < 0.6. Quickly, only after about 15 time units, the tilt direction
of the structures is inverted by the underlying mean shear, see panel (c¢), during which
the perturbation energy is amplified by nearly 100 times, suggesting an Orr-mechanism.
After t ~ 30 the flow roughly takes the form of the most unstable mode that amplifies
exponentially at later times (see panel (d) and panel (a)). The results indicate that small
disturbances may achieve a large amplification of roughly 200 times within a short time
via the Orr-mechanism and subsequently amplify exponentially due to the underlying
modal instability. Jointly, these linear mechanisms can result in a fast and large energy
growth of nearly 1000 times within about 60 time units (see Figure [i{a)).

These properties of the spanwise inflectional velocity profile are very likely responsible
for the fast streak generation at the head of turbulent bands at low Reynolds numbers.
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FIGURE 4. (a) The energy amplification E(t)/E(0) of the optimal perturbation optimised at
t = 30 for the mode («,3) = (0.32,—1.96), which is the most unstable mode of the modal
instability analysis. E(t) denotes the kinetic energy of the disturbances integrated in the whole
domain at time ¢. (b-d) Change of the flow field of the flow described in panel (a). Contours of
the streamwise velocity in the z-y cut plane at x = 0 is plotted at ¢ = 0, 15 and 30. Red color
represents higher velocity and blue represents lower velocity compared to the base flow.

We use such velocity profiles to derive the force in order to induce local velocity profiles
of similar stability properties and consequently trigger turbulent bands.

3. Generation of a single band
3.1. Sustained-band regime

Here we show results at Re = 750, which is in the regime of sustained turbulent band
(Tao et al|[2018} |Kanazawa 2018; |Shimizu & Manneville [2019)). According to
\Song] (2020), the head of a turbulent band at Re=750 travels at the speeds of ¢, = 0.1
(in absolute value) and ¢, = 0.85. Therefore, to mimic a moving head, i.e. to maintain a
moving (convective) local inflectional instability similar to that naturally sustained at the
head of turbulent bands, the forcing area is moved at the same speeds, i.e., x, = xg + ¢t
and z, = zg + c,t, where xy and zg are the initial coordinates of the center of the forcing
area. R should be chosen such that the diameter of the forcing area is comparable with
the streamwise width of turbulent bands at the head. The localisation parameter B is
chosen such that the forcing area is sufficiently localised and at the same time the force
does not create a too steep speed variation at the boundary of the forcing area. In the
results shown in this paper, we set B = 0.5 (see Figure [2)) unless explicitly stated.
Firstly, we investigate the effects of the parameter A, i.e., the amplitude of the force.
In order to mimic a noisy flow and to speed up the transition process, the flow is ini-
tialised with a turbulent velocity field simulated at Re = 1500, with the perturbations
with respect to the parabola being scaled by a factor of 0.001 (the resulting velocity per-
turbations are O(10~%). Note that a random noise applies equally). The force is switched
on at t = 0. In the following tests, we set R = 7 and set the amplitude of the force in the
streamwise and spanwise directions, i.e. A, and A,, independently. Figure a) shows
the results. It can be seen that, for A, = 3.0, A, = 1.0 and 2.0 both fail to generate
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FIGURE 5. (a) The effect of the forcing amplitude on the generation of bands at Re = 750.
The kinetic energy of the disturbances with respect to the parabola, integrated in the whole
channel, is plotted. A, and A, denote the amplitude in the streamwise and spanwise directions,
respectively. (b) The forces are switched off at ¢t = 550 and the following development of the
flow is plotted as a thin red line. The case of A, = A, = 3.0 is considered. (c-f) Contours of the
streamwise velocity in the x-z cut plane at y = —0.5. Time instants ¢ = 200, 400, 550 and 1070
for the A, = A, = 3.0 case are shown. Flow is from left to right.

bands within 1200 time units, while A, = 3.0 succeeds (see the fast increase in the kinetic
energy of disturbances after ¢ ~ 300). For A, = 3.0, A, = 1.0, 2.0 and 3.0 all successfully
generate a turbulent band. The larger A, is, the earlier the turbulent band is generated.
We also tested A, = A, = 2.0 and found it fail to trigger a band. The results indicate
that sufficiently strong forces are needed for the generation of turbulent bands and the
stronger the force, the faster a band can be triggered, just as expected. The spanwise
force, equivalently the spanwise velocity profile, seems to play a more important role than
the streamwise one, which is consistent with our argument that the spanwise inflection
plays a central role in the streak generation at the head. It should be noted that different
velocity profiles (e.g. different A, and A, result in different velocity profiles) can be used
to trigger instabilities and generate turbulent bands, as long as the profiles bear proper
inflectional instability.

For the case of A, = A, = 3.0, we switched off the forcing at ¢ = 550 and the
band generated by the forcing continues to grow, as indicated by the growing kinetic
energy of the velocity field in Figure (b) This indicates that the band generated by the
forcing can be self-sustained even if the forcing is deactivated. Figure c-e) visualises the
development of the flow under the forcing. We can see the locally deformed flow (see the
yellow spot) at ¢ = 200 in panel (c). At ¢ = 400, tilted wavy structures (alternating high-
and low-speed streaks) are generated by the instability of the forced local flow (see panel
(d)) and the kinetic energy monotonically grows as more wavy streaks are generated.
At t = 550, a short band structure is generated with a streak-generating head at the
downstream end (the right-bottom end) and a rather weak tail at the upstream end (the
left-top end), which are the key characteristics of a turbulent band in channel flow at low
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FIGURE 6. (a) The kinetic energy of a forcing case without initial background noise. Re = 750
and A, = A, = 3.0. (b) The streamwise velocity u, (with the parabola excluded) at the center
of the moving forcing area, monitored at the position of y = —0.5.
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FIGURE 7. The effect of the forcing on the base flow. Re = 750 and A, = A, = 3.0. (a) The
maximum velocity deviation from the basic parabolic flow, max, \/ (ue — 14+ 92)2 + u2 + u2,
plotted in the x — z plane. The black circle marks the forcing area at this time instant. The
red line marks the level of 0.02. (b-d) The velocity deviation profiles at the position marked
by the cyan triangle (b), by the blue cross (c¢) and that averaged in the forcing area (inside
the black circle) (d), i.e. Nip > tq,-(y), where N, is the number of grid points that satisfy

(x—zc)® 4 (2 — 2¢)® < R2.

Reynolds numbers (Tao et al|2018} |Shimizu & Manneville][2019; Kanazawal2018). After
the force is deactivated, the band structure keeps growing and becomes self-sustained,
indicated by the increasing kinetic energy of the flow. The flow at ¢t = 1070 is visualised
in Figure f), which shows a well-developed turbulent band with a head, a tail and a
wave-like elongated bulk.

To further evidence that the turbulent band is generated by the inflectional instability,
we next show the effects of the forcing on the base flow for the A, = A, = 3.0 case.
To allow the base flow to develop sufficiently before the transition occurs, we performed
a simulation without initial background noise, see Figure [6] and [7]] Comparing with the
case with background noise (Figure (a)), it takes approximately twice the time, roughly
600 time units, for the transition to occur. At ¢ = 400, at which the base flow seems
to have stabilised under the forcing, we plotted the maximum velocity deviation with
respect to the parabolic flow in the = — 2z plane, see figure El(a), in which the forcing
area is moving downward and to the right, and the black circle in the figure marks the
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FIGURE 8. The effects of different deactivation of the force on the flow at Re = 750. (a)
The strength function of the sharp deactivation (thin red) and gradual deactivation (green) of
the force tested in our study. (b) Deactivate the force according to (a) before the transition to
turbulence occurs. (c¢) The streamwise velocity at the center of the forcing area in the simulations
shown in (b). In panels (b,c), the bold black lines are taken from Figure @(aﬂ)) and the sharp
deactivation is at ¢ = 400. (d) Deactivate the force after the transition to turbulence occurs.
The bold black line is the same as the one in Figure [5{b). Note that the deactivation in (d) is
the same as that in (b, c¢) except for a 150-time-unit delay (the sharp one is at ¢t = 550).

forcing area at this time instant. Large velocity deviation is seen in the upper half and
right shoulder of the forcing area. Although the velocity deviation is not limited in the
forcing area, the region that the force significantly affects is not much larger than the
forcing area (see the level of 0.02 marked in the figure), which means that the effect of the
force is sufficiently localised and does not significantly influence the bulk and tail of the
generated turbulent band. Panels (b) and (c) show the velocity profiles at the position
of (x,z) = (65,65) (marked by a cyan triangle in panel (a)), where the largest deviation
is located, and at the center of the forcing area (x, z) = (60,60) (marked by a blue cross
in panel (a)), respectively. Panel (d) shows the velocity profile averaged over = and z
directions within the forcing area. Clearly, the force generates significant inflection in the
local velocity profiles, which qualitatively resemble the velocity profile shown in Figure
It should be noted that the forcing itself does not bring in turbulent fluctuations, see the
stationary kinetic energy between ¢t = 200 and 600 in Figure @(a) and the nearly constant
streamwise velocity at the center of the moving forcing area shown in panel (b). Besides,
the magnitude of the velocity deviation induced by the force is much smaller than that of
turbulent fluctuations inside turbulent bands. Figure [7] shows that the former is overall
smaller than 0.1, whereas the maximum of the latter is no less than 0.3 in the cut plane
at y = —0.5, see Figure d—e), and can be as large as around 0.5 in the whole domain,
see Figure b,c). Roughly, it can be estimated that the kinetic energy density directly
injected by the force is roughly one order of magnitude smaller than that associated with
the generated turbulence. Therefore, the turbulent band is not directly fed by the force,
instead, by the instability of the local flow induced by the force, see the wave-like streaks
in Figure c—e), which locally resemble the unstable waves shown in the linear analysis
(Figure [3|(b)).

In the results shown before, the force is turned off sharply. We also studied the effects
of different deactivation of the force on the flow, see Figure [§] We compared a sharp
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deactivation and a gradual deactivation with the strength given by a tanh function,
0.5 —0.5tanh((t —to)/25), where ¢ is time and ¢ is the nominal deactivation time instant,
i.e. the instant when the strength halves. With this strength function, the force decreases
smoothly to zero in approximately 100 time units. The sharp deactivation is at t = 400
and the smooth one is at tg = 450 in panel (a). These two deactivation are applied to the
simulation we have shown in Figure [6]to show the effect on the base flow. Panel (b) shows
the kinetic energy of the flow, which immediately decreases after the force is removed
or reduced without any sign of turbulent fluctuations. Panel (¢) shows the streamwise
velocity at the center of the forcing area in the z — z cut plane of y = —0.5. Similarly,
there is no sign of turbulent fluctuations induced by the deactivation. Therefore, the
results indicate that the deactivation, no matter being sharp or gradual, does not cause
any instabilities or turbulent velocity fluctuations, and therefore does not contribute to
the generation of bands. Besides, we also tested the two deactivation after a short band
has been generated. The simulation shown in Figure b) was considered. The sharp
deactivation is at t = 550, at which the short band generated by the force is visualised
in Figure [f[(e). The smooth deactivation is at ¢ty = 600 and the force starts to decrease
approximately at ¢ = 550. Panel (d) shows the kinetic energy of the flow and that the
band continue to grow in both deactivation cases. Therefore, these tests suggest that the
deactivation of the force does not introduce instabilities and velocity fluctuations, and
that the specific deactivation process does not significantly affect the band generation,
as long as the band has sufficiently developed under the forcing. However, it can be
noticed that the gradual deactivation slightly delays the growth of the band in terms of
kinetic energy compared to the sharp deactivation case, see panel (d). A possible reason
is that, the force does not contribute to the instability anymore as the strength gradually
reduces, whereas it might slightly affect the formation of a natural local instability, or a
natural head, that is needed for the turbulent band to grow. Therefore, we recommend
a sharp deactivation for simplicity.

To sum up, it is shown in this section that the forcing method we proposed generates
local velocity profiles with similar properties as the target velocity profile ,
which indeed can cause instability and trigger turbulent bands.

3.2. Transient-band regime

In the previous section we showed that our method can generate turbulent bands at
Re = 750, which is in the sustained turbulent band regime. The band can sustain itself
and grow even if the force is switched off. Here, we show results at Re=600 and 500, at
which it has been shown that turbulent bands are unsustained (Tao et al.|2018; Kanazawa,
2018; [Shimizu & Manneville |2019).

We first performed simulations at Re = 600 in the small box (L, = L, = 120),
and set R = 10.0 and A, = A, = 3.0. Figure [J] shows the kinetic energy of the flow
(panel (a)) and the development of the turbulent band under the forcing (panel (b-e)).
Clearly, the force successfully generates a turbulent band and sustains the band until it
grows to the size of the computational domain (see panel (¢)). We did not continue the
simulation when the two ends of the turbulent band meet and the head starts moving
into the band. However, starting from the flow field at ¢ = 500 (see panel (c)) and 1000
(see panel (d)), with the force deactivated, the turbulent band cannot sustain itself and
eventually decays, indicated by the monotonically decreasing kinetic energy as shown
by the red and blue thinner lines in panel (a). This indicates that turbulent bands are
indeed unsustained at Re = 600, in agreement with (Tao et al.|(2018); Kanazawa) (2018));
Shimizu & Manneville| (2019). Nonetheless, the result seems to suggest that the band
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FIGURE 9. (a) The kinetic energy of the velocity fields (with the parabola excluded) for R = 10.0
and A, = A, = 3.0 at Re = 600. (b-¢) Contours of the streamwise velocity in the z-z cut plane
at y = —0.5. Snapshots at time instants ¢ = 200, 500, 1000 and 1750 are shown (marked by red
circles in panel (a)). Flow is from left to right.

could be sustained if a turbulence-generating head, with a sufficiently strong spanwise
inflection, could be maintained.

In the small domain, the band grows to the length of the diagonal of the domain
under the forcing, which is approximately 170. In order to see if a turbulent band can
persistently grow in length at such a low Reynolds number, if the restriction of the domain
size is relieved, we also performed simulations in the large domain with L, = L, = 320.
Figure shows the development of the flow under the forcing. The simulation was
performed up to 5700 time units and a turbulent band can grow to a length of around
200h, see the length of the band calculated using the method of Tao et al. (2018) in panel
(b) and the band at t=3100 in panel (f) and at 5250 in panel (h). However, the maximum
length is not much larger than the final length of the band simulated in the small domain.
The length shows large excursions (see panel (b)) due to that a long patch of the band at
the tail decays continually (see Figure f—h)), similar to the tail of sustained turbulent
bands in large domains at Re = 660 (Kanazawa/2018)) and at Re = 750 (Xiao & Song
2020)). Our results seem to suggest that there is an upper bound for the length of the
band at Re = 600 (see the trend in Figure [L0|b)), subject to the decay of the tail when
the length of the band is sufficiently long, which is approximately 200k based on our data.
The competition between the streaks generation at the head and the decay of the streaks
at the tail should determine the length of the band. Unfortunately, it is too expensive
to obtain statistics of the length of the band considering the very large computational
domain and long observation time needed.

Figure [11f(a) shows the tilt angle of the band shown in Figure [0} which fluctuates
around 42°, excluding the large fluctuations at the early stage (¢t < 2000). [Kanazawa
(2018)) reported that the average tilt angle of bands at Re = 660 is approximately 41°,
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panel (a)). Flow is from left to right.

which is very close to what we found for Re = 600. Panel (b) shows the flow structure
between the two walls in a plane cutting through the band along its length, in which
streamwise velocity is plotted as the colormap. Turbulent band is shown on the left hand
side and the laminar region on the right hand side, and the head of the band is placed
at around 110. We can see low speed streaks close to the channel center and high speed
streaks close to the wall in the band. We chose the x — z cut plane at y = —0.5 in our
other figures because a plane too close to the channel center or too close to the wall
would only cut through low speed or high speed streaks. For comparison, the same plot
for a sustained band at Re = 750 is plotted in panel (¢). The structures in the bulk of
the two bands (between 70 and 90) show high resemblance and that at the heads are also
very similar even if the force is on for the Re = 600 case while is absent for the Re = 750
case. This wave-like alternating low and high-speed streaks pattern was also shown for
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FIGURE 11. The flow structure of the band at Re = 600 as shown in Figure (a) The tilt
angle of the band calculated using the method proposed by , b) The contours
of streamwise velocity plotted in a cut plane along the band shown in Figure [10(d), in which s
denotes the coordinate along the band and y is the wall-normal coordinate. Turbulent band is
on the left hand side and laminar region is on the right hand side. The length in y direction is
stretched by a factor of 2 for a better display. (c) The same contour plot as in panel (b) for the
sustained band at Re = 750 shown in Figure f).

a band at Re = 660 by Kanazawal (2018) (see Figure 5.2 in there) and was shown to be
underlain by banded nonlinear exact solutions of the Navier-Stokes equations in channel
geometry (Paranjape et al.[2020)). The similar tilt angles and flow structures between the
band at Re = 600 and the sustained ones at Re = 660 and 750 suggest that the band
we obtained in the transitional regime is not an artifact. A turbulent band could form
and sustain if the inflectional instability mechanism at the head could be sustained. In
other words, below Re < 660, turbulent bands are not sustained because the lacking of
a sustained instability at the head.

We went to further lower Reynolds numbers and performed simulations at Re = 500.
We chose the small computational domain and A, = A, = 3.0 and R = 10 for the
force. Figure [12] shows that our method can still generate and sustain a band even at
this low Reynolds number. Unlike the Re = 600 case, the turbulent band only grows to
a length of about 100k and the fast decay of the generated streaks strongly limits the
length of the band. Like the Re = 600 case in the large domain, the band also undergoes
a grow-shrink-grow cycle (see panel (b-e) in Figure . As this small domain seems large
enough for this Reynolds number, we did not consider the large domain.

3.3. Effects of the size, steepness and speed of the forcing region

The effect of the size of the forcing region was also briefly studied, see Figure [13[(a). We
tested R = 7, 10 and 15 and found that a larger forcing area can generate turbulent
bands faster, given the same level of initial noisy perturbation (on the order of O(107%)).
This is expected because, on the one hand, the base flow within the moving forcing region
is exposed to the force for a longer time such that the inflectional velocity profile can
develop more, and on the other hand, unstable waves can undergo a longer growth time,
given the same moving speeds. We did not consider further larger sizes as we intended to
keep the size of the forcing area comparable with the width of the turbulent band. Fixing
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FIGURE 12. (a) The kinetic energy of the velocity field (with the parabola excluded) for R = 10.0
and A, = A, = 3.0 at Re = 500. (b-e) Contours of the streamwise velocity in the x-z cut plane
at y = —0.5. Time instants ¢t = 1500, 1750, 2600 and 3100 are shown.

A, =A, =3.0and R =7, we also tested the localisation factors B = 0.2, 0.5 and 1.0.
The results show that B = 1.0 triggers the transition later than B = 0.2 and 0.5, this is
consistent with the effect of the size of the forcing region, because a smaller B gives a
steeper force curve at the boundary, which effectively gives a larger forcing area and can
be clearly seen in Figure 2l However, as B becomes small, the size of the forcing area is
largely determined by R and different B’s will give very similar results, as the B = 0.2
and 0.5 cases show in Figure b). However, we don’t recommend very small B because
it may pose a strict restriction on the grid size.

In all the previous tests, the speed of the forcing area is set to be the natural speed of
the head of turbulent bands at Re = 750. In the following, we investigated the effect of the
moving speed on the generation of turbulent bands. We changed one of the two speeds,
i.e. streamwise and spanwise speeds, while keeping the other fixed, and considered the
parameter settings of (c;,c,) = (0.85,—0.05), (0.85,—0.1), (0.85,—0.125), (0.65,—0.1)
and (1.0,—0.1). The results are shown in Figure [14] Panels (a) and (b) show the kinetic
energy of the velocity deviations with respect to the parabolic flow at Re = 750 and 600,
respectively. The bold black line in the figure shows the baseline case with (cg,c,) =
(0.85,—0.1) as shown before in Figure [5] and [9]

With the smaller spanwise speed (in absolute value) of ¢, = —0.05, it is found that a
band can still be triggered for both Reynolds numbers, see panels (¢) and (f) in the figure.
However, the forcing area moves more slowly than the band in the spanwise direction
and gradually drifts away, see the black circles in panels (c¢) and (f). At Re = 750, the
band is sustained and continues to grow and the forcing area attempts to trigger another
band when it is sufficiently far from the original band, see panel (c¢). However, a band is
not sustained at Re = 600 as we showed before. Indeed, the generated band gradually
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FIGURE 13. (a) The effect of the size of the forcing area for the Re = 750, A, = A. = 3.0
and B = 0.5 case. The kinetic energy of the velocity fields (with the parabola excluded) for
R =17.0,10.0 and 15.0 is plotted. (b) The effect of the steepness parameter B for the Re = 750,
A, = A, =3.0and R =7 case.

decays after the forcing area has drifted away for a certain time, see panels (f) and (g)
which are separated by 300 time units as marked by the green triangles in panel (b).
Presumably this generation-decay process will repeat if the simulation continues further.

With the smaller streamwise speed of ¢, = 0.65, the force fails to trigger a turbulent
band, although it still generates wave-like streaks, see panels (d) and (h) for Re = 750
and 600, respectively. It can be seen that the wave-like streaks are mostly located outside
the forcing area on the right hand side, suggesting that these structures are generated by
the force but moves faster in the streamwise direction than the forcing area. The force
generates a rather broad area of streaks which however do not develop into a band, see
the saturated kinetic energy over a large time window shown by the red dotted line in
panels (a, b). Besides, it is interesting to note that the instability occurs sooner with
either smaller streamwise or spanwise speeds compared to the baseline case, see the
earlier rapid increase in the kinetic energy shown by the red dotted and green thin lines
in panels (a, b).

With either the larger streamwise speed of ¢, = 1.0 or spanwise speed of ¢, = —0.125
(in absolute value), the force fails to trigger a band regardless of the Reynolds number,
see the kinetic energy shown in panel (a) and (b). The visualisation of the case of Re =
750 and (cgz,c,) = (1.0,—0.1) in panel (e) suggests that the force does not trigger an
instability, at least not a sufficiently strong one, because no wave-like structures can be
observed. There are two possible reasons. Firstly, the base flow does not have enough
time to develop, therefore, cannot cause sufficiently strong instability, if the force moves
too fast. Secondly, large mismatch between the speeds of the unstable waves and of the
forcing region strongly limits the time window of the growth of the waves. Note that the
wave-like streaky structures necessarily move slower than the natural speed of the head
of the band, in both streamwise and spanwise directions, which can be inferred from
the tilt direction of turbulent bands. This might also explain why sooner and significant
instability can be triggered if the streamwise or spanwise speed of the force is smaller
than the baseline case. However, we did not intend to investigate comprehensively the
effect of all possible moving speeds. Instead, we propose the natural speeds we measured
for Re = 750 (the baseline speeds) as a protocol for cleanly generating a single band at
low Reynolds numbers. In sustained band regime, a smaller spanwise speed may be used
to speed up the formation of a turbulent band (see the green thin line in panel (a) and
the baseline case). However, the force should be switched off at a proper time in order to
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avoid the forcing area drifting away and creating another band. In transient band regime,
the baseline speeds are recommended if one wants to sustain a band for long times.

4. Generation of pre-defined band patterns

We show how to use the forcing strategy to generate a pre-defined band pattern pre-
cisely and then study various interactions between bands. The former results only showed
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forces 1-3, ¢, = —0.1 and for forces 4-6, ¢, = 0.1, whereas ¢, = 0.85 for all forces.

a single tilt direction of the band. In fact, with our method, one can easily generate a
band with the opposite tilt direction. The only thing one needs to do is to reverse the
sign of the spanwise force and the sign of the spanwise speed of the moving forcing area,
i.e., f, and c,. With a precise control on the tilt direction and position of the band, we
can study complex interactions of turbulent bands at low Reynolds numbers.

For this study, we considered the large domain. Figure shows the initial positions
and moving directions of the forces. With six forces, we aimed to generate six turbulent
bands. Bands generated by forces 1-3 (referred to as bands 1-3 hereafter) move in the
same direction and have the same orientation with respect to the streamwise direction
and bands 4-6 move towards bands 1-3 with the opposite orientation compared to bands
1-3. These two groups of forces are separated by a distance of 280 in the spanwise direction
(for detailed positions of the forces, see Figure , which offers sufficient time for the
bands to form under the forcing. With this forcing pattern, we wanted to investigate
at least two types of interaction between turbulent bands at the same time. One is the
longitudinal interaction when two parallel bands are located closely, such as the band
pairs (2, 3) and (5, 6), and the other is the collision of two bands when two bands with
opposite orientations intersect, which is expected to happen between band pairs (1, 4),
(1,5), (5, 2) etc.

Figure shows the kinetic energy of velocity fluctuations and visualises the devel-
opment of the flow. Panel (b) shows that six bands, though still short, are successfully
triggered at t = 610 with our forces. Subsequently, the forces are deactivated and the
bands are sustained at this Reynolds number and continue to grow. The bands visu-
alised in panel (c¢) at ¢ = 750 show that they have the characteristics of typical turbulent
bands at low Reynolds numbers, i.e., an active streak generating head at the downstream
end (see the red wave-like streaks at the downstream end) and a weak diffusive tail at
the upstream end. This indicates that the bands are not artifacts due to the forces but
actually self-sustained. It can be seen that bands 5 and 6 nearly overlap due to the
small separation, so do bands 2 and 3 but with seemingly weaker interaction. As the
flow develops, band 5 and 6 strongly interact which results in the decay of band 5, see
panel (d) at ¢ = 1000. As Tao et al| (2018) proposed, a band relies on the large scale
secondary flow surrounding the band, and a close neighbour may affect this secondary
flow and eliminate the band. Xiao & Song| (2020) speculated that the inflectional mean
flow at the head of the band is sustained by this secondary flow. Alternatively, Kanazawal
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FIGURE 16. (a) The kinetic energy of the velocity field (with the parabola excluded) at Re = 750.
Forces with R = 7.0 and A, = A, = 3.0 are imposed until ¢ = 610. (b-e¢) Contours of streamwise
velocity in the x-z cut plane at y = —0.5. Time instants ¢t = 610, 750, 1000, 1565, 2000 and 2250
are shown (marked by red circles in panel (a)). Bands generated by forces are labeled according
to the label of forces as shown in Figure

proposed that the head of turbulent bands is locally self-sustained and does not
depend on the bulk of the band. In either senario, the secondary surrounding flow of a
close band may affect the head such that the instability is weakened or even eliminated,
leading to the decay of the band. However, the exact self-sustaining mechanism of the
head of turbulent bands is still poorly understood. Resolving this mechanism is the key
to unravelling the parallel interaction between bands. The rest of bands keep growing
and at around ¢ = 1565 (panel (e)), bands 6 and 2 collide and the streak generating head
of band 6 is also destroyed. Bands (1, 4), bands (2, 4) and bands (1, 6) are also close to
a collision. It should be noted that band 3 has already started to decay because of the
interaction with band 2, which is indicated by the disappearance of a streak generating
head (to compare with other bands) at the downstream end, similar to what happened
between band 5 and 6. Later, as collisions occur, the total kinetic energy of the flow field
starts to quickly decrease, see panel (a). This indicates that once the streak-generating
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head is lost, turbulent bands cannot be sustained and will decay. The results support the
conclusion of [Kanazawal (2018)), [Shimizu & Manneville| (2019) and Xiao & Song| (2020)
that turbulent bands at low Reynolds numbers are driven by a streak-generating end.
At t = 2000, band 2 and 3 have nearly completely disappeared. Band 1, 4 and 6 are
also decaying due to the collision. All bands have nearly decayed at t = 2250 and the
flow continues to relaminarise without any recovery of turbulence, see the kinetic energy
shown in panel (a). Similar parallel elimination and annihilation upon collision between
bands were also reported by |[Shimizu & Manneville| (2019).

5. Discussion and conclusion

Inspired by the recent work of [Xiao & Song| (2020) which proposed that turbulence
generation at the head of turbulent bands is driven by a spanwise inflectional local
mean flow via a linear instability, we developed a perturbation method which can trigger
turbulent bands directly at very low Reynolds numbers. This method features imposing
a body force that induces a local flow with a sufficiently strong spanwise inflection. The
force is designed using a fit of the velocity profile locally measured at the head of a
turbulent band at Re = 750 by |Xiao & Song| (2020]). We revisited the stability properties
of the profile and showed fast non-modal growth associated with the profile. The non-
modal growth analysis shown here complements the modal analysis of Xiao & Song
(2020) and reinforces our belief that a turbulent band is driven by a local mean flow with
a strong spanwise inflection via linear mechanisms.

The moving force method can effectively trigger an instability which subsequently
generates turbulent bands at low Reynolds numbers. In the sustained band regime, the
force can be switched off once the band has sufficiently developed. In the unsustained
band regime below Re =~ 660, we can also trigger and maintain turbulent bands without
switching off the force. Our simulation at Re = 600 shows that turbulent bands can grow
to a length up to around 200h under the forcing at the head. When the band reaches
this length, the decay of the tail of the band seems to balance the streak generation
at the head, and this dynamic balance keeps the band from growing further longer.
That turbulent bands do not grow persistently in length at low Reynolds numbers has
also been reported in the sustained band regime by Kanazawa (2018), who showed an
average length of roughly 300k for a sustained band at Re = 660. In contrast, if the
forcing is deactivated, as shown in Figure [0} a turbulent band cannot sustain itself and
decays. These results suggest that, if the local mean flow at the head could maintain a
sufficiently strong spanwise inflection, the band could be sustained even at Re = 600,
and turbulent bands are not sustained at Re < 660 because of the lacking of a naturally
sustained inflectional instability at the head. The results at Re = 500 are similar, but
turbulent bands cannot grow very long due to the very fast decay of streaks at the tail.
The successful generation of bands at very low Reynolds numbers using the method in
turn supports the turbulence generation mechanism of turbulent bands that we proposed
here and in Xiao & Song| (2020).

An important feature of this method is that it enables to generate turbulent bands
with pre-defined positions and orientations in numerical simulations. According to our
knowledge, there have been no such methods reported in the literature. As shown in
Figure we designed such a case at Re = 750. We indeed observed very interesting
annihilation of bands when collisions between bands with opposite orientations occur
and elimination when two parallel bands are located closely to each other, see Figure
Very interestingly, the six bands eventually all decay due to the special initial positions
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and orientations. Our study clearly showed that once the head of a band is destroyed,
the band cannot sustain and decays even in the sustained band regime.

Similar interactions between bands were reported by Shimizu & Manneville (2019)). The
authors showed that the interaction determines the final flow pattern at the equilibrium
state. At low Reynolds numbers, turbulence cannot form two-sided band pattern but can
only form parallel turbulent bands. Our results agree with their finding. Further, they
speculated that the directed percolation-like behaviour only starts to emerge when the
two-sided band state is reached. However, further quantitative studies on various types of
interaction between bands are need to elucidate the transition at low Reynolds numbers,
prior to the onset of directed percolation. We believe that a precise control on relative
positions and orientations of turbulent bands is important for relevant studies.

So far we have only shown the interactions between turbulent bands in a periodic chan-
nel without side walls. However, in laboratory experiments, periodic boundary conditions
cannot be realised and the spanwise motion of turbulent bands means that they have to
meet channel side walls, if sufficiently long observation time is desired. When a turbulent
band gets close to the side wall, certainly the interaction between the band and the side
wall will occur. Considering the important role that the streak-generating head of the
band plays in the self-sustaiment of the band, the interaction between the head and the
wall could significantly affect the self-sustainment of the band, which would certainly be
interesting for experimental studies and will be our further study.
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