
A Kernel-based Weight Decorrelation for Regularizing

CNNs

Yanhong Zhanga,b, Fei Zhub,∗

aCollege of Healthy Science and Engineering, Tianjin University of Traditional Chinese
Medicine, China.

b Center for Applied Mathematics, Tianjin University, China.

Abstract

Recent years has witnessed the success of convolutional neural networks
(CNNs) in many machine learning and pattern recognition applications, es-
pecially in image recognition. However, due to the increasing model com-
plexity, the parameter redundancy problem arises, and greatly degrades the
performance of CNNs. To alleviate this problem, various regularization tech-
niques, such as Dropout, have been proposed and proved their effectiveness.
In this paper, we propose a novel adaptive kernel-based weight decorrela-
tion (AKWD) framework, in order to regularize CNNs for better generaliza-
tion. Different from existing works, the correlation between paring weights
is measured by the cosine distance defined in RKHS associated with a spe-
cific kernel. The case with the well-known Gaussian kernel is investigated in
detail, where the bandwidth parameter is adaptively estimated. By regular-
izing CNN models of different capacities using AKWD, better performance
is achieved on several benchmark databases for both object classification
and face verification tasks. In particular, when Dropout or BatchNorm is
present, even higher improvements are obtained using the proposed AKWD,
that demonstrates a good compatibility of the proposed regularizer with other
regularization techniques.

Keywords:
Convolutional neural networks, regularization, weight decorrelation, object
recognition, face verification

∗Corresponding author
Email address: fei.zhu@tju.edu.cn (Fei Zhu)

Preprint submitted to Neurocomputing July 7, 2020

1. Introduction

Convolutional neural networks (CNNs) [1, 2] have achieved remarkable
success in a plenty of large-scale visual recognition tasks, e.g., object recog-
nition [3, 4], scene recognition [5, 6] and face verification [7, 8, 9], to name a
few. Of particular note is the power of CNNs on image classification task, as
it even outperforms human-level performance on well-known datasets such
as ImageNet [10]. The strong representation ability of CNNs mainly benefits
from the layered learning structure, in which the features are built hier-
archically with the high-level representations generated from a cascade of
lower-level ones [11, 12].

With the increasing data volume and the improving computational capac-
ity, CNNs are getting wider and deeper to achieve better performance [13, 14].
However, large network structures contain a great number of learnable pa-
rameters, thus making CNNs prone to the overfitting problem especially
when training data is relatively limited. Worse still, even trained with an
enormous amount of data, some deep networks can be still inclined to over-
fitting [15]. To this end, many training techniques have been proposed to
prevent overfitting and to boost the performance of CNNs, including data
augmentation [3, 16], image preprocessing [17, 18, 19], parameter initializa-
tion [20, 4], learning decay policy and most importantly, the regularization
techniques. A majority of these training techniques focus on reducing the
parameter redundancy directly or un-directly to enhance the representation
power of neural networks.

Various regularization techniques have been proposed and proved to be
effective not only in mitigating overfitting, but also in improving the gen-
eralization of the trained models [11]. The first category of regularization
techniques reduces the model complexity by decreasing the parameter re-
dundancy of CNN models. The earliest regularizer weight decay applies a
`2-norm penalty on the weights, such that the model is re-parameterized with
less effective number of parameters [21]. In recent works [22, 23], sparse reg-
ularization was introduced to deep neural networks (DNN) to zero out the
redundant parameters during the process of training, and thus remove un-
necessary connections. Proposed by Hinton et al in [24], Dropout randomly
discards a subset of neuron activations in order to prevent them from co-
adapting too much. Several improvements are developed based on Dropout,

2

including Maxout [25] and Shakeout [26]. Instead of randomly dropping a
portion of activations as in Dropout, the so-called DropConnect generalizes
Dropout by randomly discarding a portion of weights [27].

An alternative category of regularization focuses on preventing overfitting
while keeping the full capacity of the model, mainly by weight (or feature)
decorrelation. As pointed out in [28], a model easy to overfit usually con-
tains high-level redundancy in their weights, tending to learn similar patterns
that generally correspond to noise in the training data. By far, a limited
variety of studies have been dedicated to alleviate the overfitting problem
from the aspect of weight decorrelation. In [29], the authors proposed two
incoherent training methods either by minimizing the coherence of weight
matrice, or by minimizing the correlation coefficients of bottleneck (BN)
features in the context of speech recognition. In [15], the so-called DeCov
regularizer attempts to decorrelate the representations by minimizing the
cross-covariance of hidden activations. However, DeCov has the shortcoming
of mass computation when features are in a high dimensional space. Dif-
ferently, Rodŕıguez et al [28] proposed to directly decorrelate the weights
by enforcing the global/local orthogonality regularizations, where the cor-
relation (or similarity) between any two weight vectors is measured by the
cosine angle between them. However, the use of the conventional cosine angle
as weight correlation measurement is obviously not always the best choice,
due to its insensitivity w.r.t the magnitudes of input vectors, as to be shown
later. Worse still, a direct use of cosine-based decorrelation as in [28] leads to
a global weight regularization term that jointly penalizes both the positively
and negatively correlated weight pairs, although the latter ones contribute
to competitive learning and self-organization [30].

Kernel machines shed light on extending the linear algorithms to the
nonlinear scope [31, 32, 33]. By exploiting some nonlinear function, the
original data is transformed from the input space to a reproducing kernel
Hilbert space (RKHS), namely feature space H. Implicitly determined by
a specific kernel, the resulting feature space is usually of high-dimension,
where existing linear methods can be performed on the mapped data [34].
For example, the feature space associated with the Gaussian kernel is an
infinite-dimensional space. The primary merit of kernel method is that, it
allows to easily compute the inner product between any pair of transformed
data in H, by only using the kernel function, without explicit knowledge on
neither the nonlinear mapping function nor the feature space.

In this paper, we propose a generalized weight decorrelation regulariza-

3

tion framework based on kernel machines, enhance the representation ability
of CNN models. When linear kernel is adopted, the proposed method is
reduced to the global weight regularization in [28]. Specifically, the weight
regularization with Gaussian kernel is investigated in detail. The resulting
method, referred as adaptive kernel-based weight decorrelation (AKWD),
essentially corresponds to a local weight decorrelation, that exclusively reg-
ularizes the correlated weight pairs whose angles are within a certain region,
its range being controlled by the bandwidth parameter in the kernel. To ap-
propriately set this parameter, an adaptive bandwidth tuning scheme is also
presented. The generalization of the proposed method is verified by extensive
experiments performed using CNNs of different capacities, for both object
recognition and face verification tasks. The compatibility of the proposed
method with other regularization techniques, e.g., Dropout and BatchNorm,
is also studied.

The contributions of this paper are summarized as follows:

• A novel adaptive kernel-based weight decorrelation framework is pro-
posed, which mitigates the overfitting issue and improves the perfor-
mance of CNNs.

• The proposed weight decorrelation framework improves the existing
global weight regularization [28], as the former is more flexible and
generalized. When a different nonlinear kernel is employed, the cor-
responding kernelized weight decorrelation method accordingly char-
acterizes the nonlinear correlation between weight vectors in the asso-
ciated RKHS. The case with the linear kernel reduces to the existing
cosine similarity-based weight decorrelation method.

• The weight decorrelation with the Gaussian kernel is naturally a lo-
cal method that exclusively regularizes the positively correlated weight
pairs whose angles are within a certain region. By exploring the nonlin-
ear correlation between weights, the insensitivity to the magnitudes of
the weight vectors, which is a main drawback of the cosine similarity-
based method is overcome. In addition, the bandwidth parameter in the
Gaussian kernel, that controls the local property, is adaptively learned
during updates.

• Extensive experiments are conducted on several public datasets for
both object classification and face verification tasks. The proposed

4

algorithm achieves not only higher accuracy but also comparable con-
vergence rate with the non-regularized model. Comparisons with sev-
eral common regularizations and state-of-the-art methods demonstrate
the effectiveness of the proposed regularizer, as well as its good com-
patibility with Dropout and BatchNorm.

The remainder of the paper is organized as follows. We first succinctly
review the related works in Section 2. In Section 3, the proposed kernel-
based weight decorrelation regularization framework is presented, and the
case with Gaussian kernel is studied in detail. Section 4 and 5 validate the
performance of the proposed method on two visual recognition tasks. Finally,
Section 6 provides the conclusions and future works.

2. Weight decorrelation: from global to local

Recently, Rodŕıguez et al. [28] proposed an orthogonal weight (feature)
decorrelation approach based on the cosine similarity. Before revisiting the
method, some notations are firstly given. Let W ∈ RN×M be a matrix recod-
ing the weight parameters connecting the (I − 1)-th layer to the I-th layer,
where the former consists of M neurons and the latter is composed by N
neurons {h1, h2, ...hN}. Let wi be the i-th row of W , representing the weight
vector connecting the neurons of the (I − 1)-th layer to the neuron hi. If
wi = wj when i 6= j, then hi and hj is said to be positively correlated. They
are said to be negatively correlated, if wi = −wj. To encode more informa-
tion, the output neurons are expected to be mutually dissimilar, namely the
correlation between them should be as small as possible. To this end, the
authors in [28] proposed to directly perform decorrelation on weight vectors
instead of seeking for activation independence.

In the relevant paper [28], both a global and a local weight regulariza-
tion strategies were developed. Given a pair of weight vectors wi and wj,
the corresponding weight correlation is measured by the cosine of the angle
between them, namely

cos(wi,wj) =
〈wi,wj〉
‖wi‖ · ‖wj‖

, (1)

where 〈·, ·〉 denotes the inner product of two entries.

5

Considering the correlations of all the paring weights for the l-th layer, a
global orthogonal weight regularization term is expressed by

Lglobal(W) =
N∑
i=1

N∑
j=1, j 6=i

cos2(wi,wj), (2)

which is included to the target loss function. This loss reaches its minimum
when the paring weight vectors are orthogonal to each other. It is notewor-
thy that the above formulation uniformly regularizes all kinds of correlations
between all pairs of weight vectors (wi,wj). However, there are evidences
that negative correlations should be kept, since they are advantageous to in-
hibitory connections, competitive learning and self-organization, as indicated
in [30, 28].

A local orthogonal weight decorrelation penalizes exclusively the posi-
tively correlated weight pairs whose angles are within [−π

2
, π
2
], whiling retain-

ing the negatively correlated ones. Towards this end, the authors improve (2)
by elaborating the following regularizer that penalizes the gradients for angles
smaller than π

2
, with

Llocal(W) =
N∑
i=1

N∑
j=1, j 6=i

log(1 + eλ(cos(wi,wj)−1)), (3)

where ‖wi‖ = 1, ‖wj‖ = 1, and λ is a predefined hyperparameter controlling
the minimum angle between paring weights to be regularized. In [28], λ
is empirically set to 10 such that the regularization effect approximately
vanishes for the angles over π

2
.

3. Proposed method

3.1. On the limitations of cosine-based weight (de)correlation

To represent the correlation between weight vectors by the conventional
cosine similarity, as did in [28], has several limitations. First, due to the
measure’s insensitivity against the magnitudes of the weight vectors, it lacks
discriminative ability especially when the `2-norm of the paring weight vec-
tors are of great difference. For example, as shown in Fig. 1, α < β holds,
thus cos(b2, b1) < cos(b1,a) representing that vector b1 is more correlated
and similar to vector a than to b2. However, it is more reasonable to say that

6

α
β

a

b1

b2

Fig. 1. Comparison between the conventional cosine similarity and the ker-
nelized cosine similarity of 2D weight vectors. The points with different col-
ors remark the features from different classes, concretely a = (2, 1)>, b1 =
(5, 5)>, b2 = (3, 7)>. When using the conventional cosine similarity, α < β
holds, which is less reasonable. However, the cosine similarity with Gaussian
kernel can better characterize their correlation with κ(b2, b1) > κ(b1,a).

vector b1 is more similar to vector b2 than to a, as observed from the figure.
Although such problem caused by various vector scales can be relieved by the
mean-centered normalization [35], it heavily depends on the available vectors
and does not get the root of the problem. Moreover, the cosine similarity can
merely reflect the linear correlation between weight vectors in the Euclidean
space. However, it is possible that to measure the correlation in another
nonlinear space can better reveal the intrinsic nonlinear correlation between
weight vectors. Lastly, the decorrelation based on cosine similarity in (2) es-
sentially results a global weight regularizer that penalizes both the positively
and negatively correlated weight pairs, regardless of the fact that the latter
ones are proved useful in competitive learning and self-organization [30].

3.2. General problem formulation

To overcome the aforementioned limitations of cosine-based weight decor-
relation, we propose a novel and generalized weight decorrelation framework
mainly by taking advantage of the kernel machines, where the cosine similar-
ity is defined in the reproducing kernel Hilbert space (RKHS), i.e., feature
space associated to a specific kernel.

Let ϕ(·) be a nonlinear function that transforms the weight vector wi

7

into ϕ(wi), for i = 1, . . . , N . Let κ(·, ·) represent the reproducing kernel
associated with this nonlinear map, and H be the resulting feature space.
Analogous to the cosine similarity between two weight vectors in the input
space as in (1), the kernelized cosine similarity is defined in the RKHS H,
with

kernel cosine(wi,wj) =
〈ϕ(wi), ϕ(wj)〉H

‖ϕ(wi)‖H · ‖ϕ(wj)‖H

=
κ(wi,wj)√

κ(wi,wi)
√
κ(wj,wj)

,

(4)

where 〈·, ·〉 represents the inner product in H, and ‖ · ‖H is the associated
norm. The well-known kernel trick, namely

κ(x,y) = 〈ϕ(x), ϕ(y)〉H (5)

is applied. Fig. 2 provides a schematic illustration of the kernelized simi-
larity. Compared with the conventional cosine similarity used in [28], the
kernelized cosine similarity is more flexible and generalized. For the latter,
the similarity between weight vectors is evaluated in the RKHS associated
to a specific kernel. When a different nonlinear kernel is employed, e.g. the
ones listed in Table 1, the corresponding kernelized cosine similarity is able
to accordingly characterize the nonlinear correlation between weight vectors
in the associated feature space. It is also noteworthy that the case with the
linear inner product kernel results the linear technique, i.e., the conventional
cosine angle that measures the linear correlation between weight vectors in
the Euclidean space, as in [28].

By adopting the kernelized cosine similarity in (4), the resulting corre-
lation between wi and all the other weights of the l-th layer is evaluated
by

L(wi) =
N∑

j=1, j 6=i

kernel cosine(wi,wj), (6)

and the correlations of all the paring weights for the l-th layer are expressed

8

wi

wj ϕ(wj)
ϕ(wi)

ϕ(·)

ϕ(·)X H
α

β

Fig. 2. Illustration of the kernelized cosine similarity. Kernel machines
transform the input space X (represented by the green region) to a higher-
dimensional RKHS spaceH (represented by the blue region). The conventional
cosine similarity, i.e. cosα, measures the cosine of angle between weight vec-
tors wi and wj in X . The kernelized cosine similarity, i.e. cosβ, evaluates
the cosine of angle between the mapped data ϕ(wi) and ϕ(wj) in H.

Table 1. Several common kernels and their gradients with respect to wi

Kernel k(wi,wj) ∇wi
k(wi,wj)

Linear wT
i wj wj

Polynomial (wT
i wj + c)d d(wT

i wj + c)(d−1)wj

Sigmoid tanh(γwT
i wj + c) γ

cosh2
(γwT

i wj + c)wj

R
B

F
k
er

n
el Gaussian exp

(
−‖wi−wj‖2

2σ2

)
− 1
σ2k(wi,wj)(wi −wj)

Exponential exp
(
−‖wi−wj‖

2σ2

)
− 1

2σ2k(wi,wj)sgn(wi −wj)

Laplacian exp
(
−‖wi−wj‖

σ

)
− 1
σ
k(wi,wj)sgn(wi −wj)

by

L(W) =
N∑
i=1

N∑
j=1, j 6=i

kernel cosine(wi,wj)

=
N∑
i=1

N∑
j=1, j 6=i

κ(wi,wj)√
κ(wi,wi)

√
κ(wj,wj)

.

(7)

Next, we utilize L(W) as a regularization term and derive the corre-
sponding gradient for back-propagation, by which the weight correlation of
W defined in RHKS H is expected to be suppressed. Let X be the inputs
and y be the labels. In the training process, the regularization term in (7)
will be added to the original target cost J (W ;X, y) for joint supervision,
yielding

Ĵ (W ;X, y) = J (W ;X, y) + λL(W), (8)

where λ is the hyper-parameter which controls the degree of the regulariza-
tion. Regarding back-propagation, the gradient of L(W) with respect to the

9

weight vector wi computes

∂L(W)

∂wi

=
N∑

j=1,j 6=i

1√
Kii

√
Kjj

(
∂Kij

∂wi

− ∂Kii

∂wi

Kij

2Kii

)
, (9)

where we denote Kij , κ(wi,wj) for notation simplicity. By adopting (9),

we obtain the back-propagation gradient of the new target cost Ĵ in terms
of weight vector wi with

4wi = −α
(∂J
∂wi

+ λ
∂L
∂wi

)
, (10)

where α represents the global learning rate.
It is noteworthy that the proposed kernel-based weight decorrelation is a

flexible and generalized framework suitable for different kernels. By adopting
a specific kernel function and its gradient with respect to the first entry,
explicit formulas can be easily obtained from (9) and (10). We list in Table 1
the expressions of several valid kernels and their gradients with respect to wi,
that can be brought into formulas (9) and (10) directly. For all the kernels
in Table 1, the complexity of the back-propagation update computes O(N2).
It is noteworthy that the global orthogonal weight regularization method
in [28] can be taken as a special case of the proposed framework, where the
linear kernel is applied with additional constraints ‖wi‖ = 1 and ‖wj‖ = 1.

3.3. Local weight decorrelation with Gaussian kernel

We study in detail a special case of the proposed weight deccorelation
framework with the well-known Gaussian kernel, given by

κ(wi,wj) = exp

(
−‖wi −wj‖22

2σ2

)
, (11)

where σ is the bandwidth parameter of the kernel. When Gaussian kernel
is applied, the corresponding kernelized cosine similarity (4) is simplified to
the the kernel function itself, since κ(wi,wi) = κ(wj,wj) = 1 in this case.

By integrating expression in (11) to (7), the regularization term, which
is defined as the correlations of all the paring weights for the l-th layer, is

10

given by

L(W) =
N∑
i=1

N∑
j=1, j 6=i

κ(wi,wj)

=
N∑
i=1

N∑
j=1, j 6=i

exp

(
−‖wi −wj‖22

2σ2

)
.

(12)

This regularizer will be added to the target cost function for joint supervision
during the training process. In this case, the expression of the gradient with
respect to the weight vector wi in (9) becomes

∂L(W)

∂wi

=
N∑

j=1,j 6=i

∂κ(wi,wj)

∂wi

= − 1

σ2

N∑
j=1,j 6=i

κ(wi,wj)(wi −wj),

(13)

and the back-propagation gradient in (10) becomes

4wi = −α
(∂J
∂wi

− λ

σ2

∑
j 6=i

k(wi,wj)(wi −wj)
)
, (14)

where, J is the original target loss function, λ represents the degree of the
regularization, and α is the global learning rate. In the experiments, we
empirically normalize the weight vectors at each iteration by ‖wi‖ = 1, for
i = 1, 2, ..., N .

The resulting method improves the existing weight decorrelation regu-
larization from two aspects. Firstly, compared to the conventional cosine
similarity used in [28], the cosine similarity with Gaussian kernel is more sen-
sitive to the magnitudes of the input weight vectors. Therefore, it can better
characterize the underlying nonlinear correlation between weights. Secondly,
the weight decorrelation regularizer with Gaussian kernel is naturally a local
one. Here, “local” means the regularization can exclusively punish the posi-
tively correlated weight pairs while retaining the negatively correlated ones.
In [28], the authors achieved this purpose by using an elaborately designed
correlation function, as in (3). Differently, the proposed weight decorrelation
with Gaussian kernel yields a local regularization in a straighter and simpler

11

way, thanks to the good property induced by the applied kernel. Fig. 3
illustrates the kernelized cosine similarity in terms of ε , ‖wi −wj‖2 with
Gaussian kernel, under different bandwidth σ. For a fixed σ, ε = 0 means
the strongest correlation between weight vectors, with κ(wi,wj) = 1; and
an arbitrarily large ε signifies that two weight vectors are non-correlated at
all, with κ(wi,wj) = 0. The correlation function is of relatively important
value only when the variable ε is within a small region around zero, with
the range of region being controlled by the bandwidth parameter σ. When
ε is far from zero, the function will dramatically drop to zero. Reflecting in
the back-propagation gradient, this signifies that only the highly-correlated
(or positively correlated) weight pairs will be regularized, while the over-
dissimilar (or negatively correlated) ones will be kept in the training process.

Concerning the estimation of σ, an adaptive method is applied, where
the parameter is updated according to the mean distance among weight vec-
tors, as recommend in [36]. At each iteration, the bandwidth σ is adptively
estimated by

σ2 =
1

N

N∑
i=1

(wi − w̄i)
2, (15)

where w̄i = 1
M

∑M
j=1wij, N and M denote the number and the dimension-

ality of the weight vectors, respectively. Here, the parameter α controls the
minimum angle-of-influence of the regularizer and is learnable in an adap-
tive way. This is an advantage over the existing local weight decorrelation
method [28], where the hyperparameter λ in (3), which controls the minimum
angle between paring weights, should be set manually. The proposed method
is referred as the adaptive kernel-based weight decorrelation (AKWD). The
optimization steps of the proposed AKWD method with Gaussian kernel are
summarized in Algorithm 1.

4. Experiments for object classification

We investigate the effectiveness of the proposed weight decorrelation reg-
ularizer with Gaussian kernel, on two typical visual recognition tasks, namely
the object classification and the face verification. In the following, all the
experiments are implemented on TiTan-X GPUs using stochastic gradient
descent (SGD) method, and the open Caffe library is applied [37]. For each
task, the same training setting is applied to every comparing method with

12

0

0.2

0.4

0.6

0.8

1
f
(x
)

f(x) = cos2(x)

0 π/2 π−π/2−π

(a) Global loss (eq. (2))

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f
(x
)

f(x) = log(1 + eλ(cos(x)−1))

λ=5
λ=10
λ=15
λ=20

−π π/2 π
−π/2 0

(b) Local loss (eq. (3))

0

0.2

0.4

0.6

0.8

1

ǫ

f
(ǫ
)

f(ǫ) = exp
(

−

ǫ
2

2σ2

)

σ2=0.5

σ2=0.3

σ2=0.2

σ2=0.1

−π/2 π/2 π−π 0

(c) Kernelized loss (eq. (12))

Fig. 3. Comparison among the three loss functions. (a) global loss with
conventional cosine similarity, where x , 〈wi,wj〉 is the cosine angle [28]; (b)
local loss that penalizes exclusively positive correlations given for different λ
value, where x , 〈wi,wj〉 is the cosine angle [28]; (c) kernelized loss with
Gaussian kernel in terms of ε , ‖wi−wj‖2 under various bandwidth σ, which
is naturally a local one.

or without regularization, in order to keep a fair comparison. If not spe-
cially mentioned, the activation function is chosen as the commonly-used
ReLU [38], and the weight decay and the momentum are set to be 0.0005
and 0.9, respectively. More training details for each experiment will be spec-
ified in corresponding sections. For testing, the softmax classifier is utilized
for the object classification task, and the similarity score is measured by
cosine distance for the face verification task.

This section focuses on studying the effectiveness of the proposed method
on the object classification task, on three popular benchmark datasets, i.e.,
MNIST, CIFAR-10 and CIFAR-100.

13

Algorithm 1 The algorithm of the proposed AKWD with Gaussian kernel.

Require: Layer parameters W to be regularized, hyperparameters λ and
learning rate α.

1: for each iteration t = 1, 2, . . . , T do
2: normalize each row of W , s.t. ‖wi‖ = 1

3: compute σ2
t and Lt(W), then compute loss function Ĵ t = J t + λLt

4: compute the gradients ∇Ltwi
using (13)

5: update parameters by
6: wt+1

i = wt
i − α(∇J t

wi
+ λ∇Ltwi

)
7: end for

Fig. 4. Samples in MNIST.

4.1. A first study of AKWD using simple network on MNIST

In this subsection, we design a series of experiments by adopting a simple
network on MNIST dataset, in order to study the behaviors of the proposed
weight decorrelation regularizer. The MNIST dataset [1] is popular for hand-
written digit recognition, which consists of 60,000 grayscale images drawn
from 10 classes (0-9), including 50,000 training samples and 10,000 testing
samples. The digits are size-normalized and centered to an uniform size with
28×28 pixels, as shown in Fig. 4. Divided by 256, the original data are again
scaled to [0, 1] as inputs. A simple network, i.e., LeNet [1] is adopted with
slight modifications: the filter number of the first two convolutional layers
are increased from 20 and 50 to 32 and 64, respectively; the number of units
of the first fully-connected layer is expanded to 512. The resulting network
structure is detailed in Table 2. The model is trained according to the default

14

Table 2. The simple network architectures for MNIST and CIFAR-10/100

MNIST conv1 pool1 conv2 pool2 conv3 pool3 fc1
Filt Size 5× 5 2× 2 5× 5 2× 2 - - 1× 1
Num Filt 32 - 64 - - - 512
Stride 1 2 1 2 - - 1
Padding 0 - 0 - - - -

CIFAR conv1 pool1 conv2 pool2 conv3 pool3 fc1
Filt Size 5× 5 3× 3 5× 5 3× 3 5× 5 3× 3 1× 1
Num Filt 32 - 32 - 64 - 64
Stride 1 2 1 2 1 2 1
Padding 2 - 2 - 2 - -

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.5

1

1.5

2

2.5

Iteration

T
es

t e
rr

or
 (

%
)

λ = 0
λ = 0.001
λ = 0.01
λ = 0.1
λ = 1

Fig. 5. Comparison of test error rate on MNIST validation set in terms of
different values of regularization parameter λ, along with iterations.

learning rate policy and parameter initialization, and the maximum iteration
number is set as 20k.

We firstly examine the classification performance of the proposed weight
decorrelation regularizer AKWD under different levels of regularization, with
the regularization parameter λ ranging within the set [0, 0.001, 0.01, 0.1, 1].
The proposed regularizer is imposed to one convolutional layer, namely conv2.
Fig. 5 reports the classification results in terms of error rate on MNIST val-
idation set, using different values of λ. It is observed that the regularized
models with positive values of λ all yield smaller testing errors, when com-
pared to the original, un-regularized model with λ = 0. In particular, on

15

no conv1 conv2 fc1 fc2

99.15

99.2

99.25

99.3

99.35

99.4

99.45

Layer name

A
cc

ur
ac

y
(%

)

no dropout
with dropout

Fig. 6. The effectiveness of AKWD to different layers on MNIST. Blue: joint
use of dropout and AKWD at different layers. Red: single use of AKWD
without dropout at different layers.

MNIST dataset, the best classification result is achieved at the highest reg-
ularization level with λ = 1.

Next, we study the performance of the proposed regularizer on different
layers. To this end, AKWD is applied to one of the layers of the network,
namely to the layer conv1, conv2, fc1 and the final fully-connected layer fc2.
As illustrated by the red line in Fig. 6, regardless of the layer where the
regularizer is placed to, AKWD always leads to an improved testing accu-
racy when compared to the original un-regularized network. In particular,
better results are achieved when regularizing the convolutional layers than
regularizing the fully-connected layers by AKWD.

Furthermore, the compatibility of the proposed AKWD with other regu-
larization techniques is explored, and the well-known dropout is considered as
representative. To this end, we apply dropout after the first fully-connected
layer with the drop radio set to 0.5 by default. Again, AKWD is applied to
one of the layers, namely to conv1, conv2, fc1 and fc2. The effectiveness of
combining dropout and AKWD at different layers is presented in Fig. 6 by
the blue line. We observe that, the accuracy improvements obtained by a
joint use of dropout and AKWD at different layers (blue line) are consistent
with that obtained by using AKWD solely (red line). More importantly,
the combined use of dropout and AKWD always leads to larger margins of
improvement over its baseline model (the case where Layer name being
no), when compared to the case with single use of AKWD. It demonstrates
that the proposed AKWD has a good compatibility with dropout, as the
combined regularization scheme can further boost the classification perfor-
mance than the single use of AKWD. Also, Table 3 reports the averaged test

16

Table 3. The averaged recognition error rate (%) over five runs on MNIST
dataset

Method Error Rate

Baseline 0.83
OrthoReg 0.79
AKWD 0.76

Baseline + Dropout 0.71
OrthoReg + Dropout 0.63
AKWD + Dropout 0.58

error rate obtained by using the baseline model, the regularized model by
OrthoReg [28], and the regularized model by the proposed AKWD. For each
model, two cases are considered, namely adding dropout or not. It is ob-
served that whether dropout is present or not, AKWD outperforms both the
baseline and the OrthoReg. And it is the joint use of dropout and AKWD
that achieves the best classification performance with the lowest recognition
error rate.

Lastly, we investigate the relationship between weight decorrelation and
overfitting. To this end, Fig. 7 traces the performance gap between train-
ing and testing over iteration, using the the baseline model, the regularized
model by OrthoReg, and the regularized model by AKWD. It is noticed that
the model regularized by AKWD has the lowest level of overfitting among
the three comparing methods, as it generally provides the lowest train-test
accuracy gap. In addition, both OrthoReg and AKWD lead to lower lev-
els of overfitting than the un-regularized baseline model, indicating that the
regularization effect brought by weight decorrelation helps to reduce the over-
fitting.

4.2. Evaluation on CIFAR-10

On CIFAR-10 dataset, the generalization of the proposed method is ver-
ified by using two networks of different capacities. The CIFAR-10 dataset
[39] contains 60,000 32× 32 RGB images from 10 object classes, with 6,000
images per class. It consists of a training set of 50,000 images and a testing
set of 10,000 images. Fig. 8 shows the examples from every object class.

Experiments are carried out using two types of CNNs: a shallow network
and a deeper one. The shallow CNN network is chosen as CIFAR-10 network

17

20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iteration

T
ra

in
 a

cc
. −

 T
es

t a
cc

. (
%

)

Baseline
OrthoReg
AKWD

Fig. 7. The overfitting of different models.

Fig. 8. Samples in CIFAR-10/100.

built in Caffe library, with the network structure given in Table 2. For this
model, we start the training with a learning rate of 0.001, which is divided
by 10 at 8k and 14k iterations. The maximum iteration number is set to
20k. The input data are preprocessed by a per-pixel mean subtraction, and
no data augmentation is applied. The deeper CNN network is chosen as
WRN-28-10 in [40] with slight differences. The input data is preprocessed
by simple mean/std normalization. Also, we follow the standard data aug-
mentation for training: four pixels are padded on each side and a 32 × 32
crop is randomly sampled from the padded image or its horizontal flipping,
as in [19]. This model is trained with the mini-batch size of 128 using two
GPUs, and 64 in parenthesis. The learning rate is initially set to 0.1, and
reduces by multiplying 0.2 at 24k, 48k and 64k iterations. The maximum
iteration number is set to 80k. Different to training, only the single view

18

of the original 32 × 32 image is used for testing. In the following, the shal-
low network and the deeper one are referred as [S] and [D], respectively, for
simplicity. According to the experimental results analysis in MNIST, the
proposed AKWD is applied to regularize only the last convolutional layer on
both networks, with the regularization parameter λ set to 1.

For each type of CNN, comparative study is carried out among the base-
line model, the regularized model by OrthoReg and the regularized model
by AKWD. As data augmentation, image preprocessing and parameter ini-
tialization techniques also reduce the overfitting effect, the comparison with
these three strategies is performed using the shallow CNN. Specifically, the
data augmentation as in [19] is applied, and image preprocessing is carried on
by randomly adjusting brightness and contrast with whitening subsequently.
Regarding parameter initialization, the “Xavier” initialization is considered
for comparison. The combined group and exclusive sparsity regularization
(CGES) in [22] is also compared using the shallow network. Moreover, other
six state-of-the-art methods, namely Maxout [25], DropConnect [27], High-
way Network [41], ELU-Network [42], LSUV [43] and All-CNN [44], are com-
pared. The recognition results of all the comparing methods are listed in
Table 4, where DA and PP are abbreviations for data augmentation and
image preprocessing, respectively.

It is observed that on the shallow networks, the proposed AKWD achieves
best accuracy among all the comparing methods. Of particular note is the
image preprocessing with whitening operation, which has both regularization
and decorrelation effects but is surpassed by AKWD. On both shallow and
deeper networks, the regularized model by AKWD provides smaller test error
over the original model and the regularized model by OrthoReg. Among
all the comparing methods, it is the regularized deeper CNN model with
AKWD (AKWD[D]) that yields the best classification result, demonstrating
the effectiveness of the proposed approach in improving the generalization
of deep CNNs. As BatchNorm is used in WRN-28-10, the results also imply
that our regularizer has good compatibility with BatchNorm.

4.3. Evaluation on CIFAR-100

The CIFAR-100 dataset [39] has the same size and format as CIFAR-10,
except that it has 100 classes with 600 images per class. For each class, there
are 500 training images and 100 testing images. Similar as the experiments
on CIFAR-10, the aforementioned shallow and deeper CNNs are adopted.
Meanwhile, all the training and testing setups also follow the settings on

19

Table 4. Recognition error rate (%) on CIFAR-10

Method Error Rate

Maxout [25] 11.68
DropConnect [27] 9.41

Highway Network [41] 7.60
ELU-Network [42] 6.55

LSUV [43] 5.84
All-CNN [44] 4.41

Baseline [S] 23.37
DA [S] 22.90
PP [S] 22.57

Xavier [S] 22.49
CGES [S] 22.40

OrthoReg [S] 22.31
AKWD [S] 22.07

Baseline [D] 4.30
OrthoReg [D] 4.15
AKWD [D] 3.95

CIFAR-10. Again, the proposed AKWD is applied to regularize only the last
convolutional layer, on both networks. The testing results are presented in
Table 5. As observed, similar results are obtained as on CIFAR-10. For both
CNNs, the regularized model by AKWD outperforms the baseline model
and all the regularized models, namely OrthoReg, CGES, and the models
using different training techniques. Among all the comparing methods, the
regularized deeper CNN model with AKWD (AKWD[D]) leads to the best
classification performance.

Based on the above results on MNIST and CIFAR-10/100, we summa-
rize that the proposed regularizer performs better than other regulariza-
tions, including Xavier initialization, data augmentation, image preprocess-
ing, CGES, and OrthoReg for the object recognition task. To illustrate the
regularization effect of our method, the training and testing curves are shown
in Fig. 9 for CIFAR-10, and in Fig. 10 for CIFAR-100. From the training
curve, it can be observed that the convergence rate of our method is compa-
rable with the original model and other regularizations. This confirms that
our method can be optimized easily, coinciding with the theoretical analysis.

20

Table 5. Recognition accuracy (%) on CIFAR-100

Method Accuracy

Maxout [25] 61.43
All-CNN [44] 66.29

Highway Network [41] 67.76
LSUV [43] 70.04

ELU-Network [42] 75.72

Baseline [S] 43.66
DA [S] 45.18
PP [S] 45.06

Xavier [S] 44.83
CGES[S] 44.02

OrthoReg [S] 46.59
AKWD [S] 47.68

Baseline [D] 80.41
OrthoReg [D] 80.71
AKWD [D] 80.96

Unfortunately, the method takes more training time than the non-regularized
model, especially for the deep models. We also observe that the proposed
AKWD regularizer is more stable with less fluctuations than OrthoReg at
the training stage, especially on CIFAR-100. Considering the accuracy gap
between training and testing in Fig. 9 and Fig. 10, it can be seen that
AKWD can mitigate the overfitting problem of the baseline model and the
instable training of OrthoReg.

5. Experiments for Face verification

Face verification task determines whether two face images are from the
same person, by comparing the feature similarity between them and the
threshold, as illustrated in Fig. 11. In this section, the evaluation of our
approach on face verification task is conducted on two typical benchmarks:
the LFW dataset and the YTF dataset.

5.1. Experimental settings

In this experiment, the models are trained on the widely used public
CASIA-WebFace dataset [45], and evaluated on LFW [46] and YTF [47].

21

Table 6. The network architectures for face verification. Block(3, 3) consists
of two stacked convolutional layers with kernel size of 3× 3

Layer Block Type Output Size Param
conv1 3× 3, stride 1 110× 94× 32 0.86K
conv2 3× 3, stride 1 108× 92× 64 18.4K

max-pool1 2× 2, stride 2 54× 46× 64 –
resblock1 Block(3, 3) 54× 46× 64 73.7K

conv3 3× 3, stride 1 52× 44× 128 73.7K
max-pool2 2× 2, stride 2 26× 22× 128 –
resblock2 Block(3, 3) 26× 22× 128 294.9K
resblock3 Block(3, 3) 26× 22× 128 294.9K

conv4 3× 3, stride 1 24× 20× 256 294.9K
max-pool3 2× 2, stride 2 12× 10× 256 –
resblock4 Block(3, 3) 12× 10× 256 1179.6K
resblock5 Block(3, 3) 12× 10× 256 1179.6K
resblock6 Block(3, 3) 12× 10× 256 1179.6K
resblock7 Block(3, 3) 12× 10× 256 1179.6K
resblock8 Block(3, 3) 12× 10× 256 1179.6K

conv5 3× 3, stride 1 10× 8× 512 1179.6K
max-pool4 2× 2, stride 2 5× 4× 512 –
resblock9 Block(3, 3) 5× 4× 512 4718.5K
resblock10 Block(3, 3) 5× 4× 512 4718.5K
resblock11 Block(3, 3) 5× 4× 512 4718.5K

fc1 – 1× 1× 512 5242.8K

Some face images from the three datasets are shown in Fig. 12. The CASIA-
WebFace dataset is a typical training set for the optimization of neural net-
work parameters in the field of face recognition. It contains 10,575 subjects
with 494,414 face images of celebrities from the web. After removing the
mislabeled and false detected face images, the remaining 437,633 images of
10,575 subjects are used for training. Before training, the faces of all the
images are firstly detected as in [48], and then aligned by similarity transfor-
mation according to the five detected key landmarks. 1 After that, the face

1The detection and alignment tools are available at:
https://github.com/seetaface/SeetaFaceEngine.

22

Table 7. Recognition accuracy (%) on LFW and YTF

Method Train. Images Networks LFW YTF

DeepFace [18] 4.4M 7 97.35 91.40
WebFace [45] 0.4M 1 97.73 92.24
Web-Scale [49] 4.5M 4 98.37 -
DeepID2 [50] - 25 98.97 -
DeepID2+ [51] 0.3M 25 99.47 93.20
FaceNet [52] 200M 1 99.63 95.10

Baseline 0.4M 1 98.88 93.82
OrthoReg 0.4M 1 98.88 93.72
AKWD 0.4M 1 99.08 94.04

images are cropped to 112× 96 RGB images, and normalized by subtracting
127.5 and then dividing by 128. Again, we flip the input images horizontally
to augment data.

A reduced version of ResNet [19] is used as the baseline for face verifi-
cation, which contains 27 convolutional layers. The detailed network archi-
tectures are given in Table 6. The activation function PReLU [4] is applied
after every convolutional layer. Specifically, the network is trained by joint
supervision of the softmax loss and the center loss [7], and the weight of
center loss is set to 0.008. The training is started with a initial learning rate
of 0.1 and a batch-size of 128. The learning rate is decreased by 10% at 16k
and 24k iterations, and the maximum iteration number is set to 28k. Analo-
gous to the experimental settings in object recognition task, the regularized
model by AKWD consists of regularizing only the last convolutional layer of
the network, with the regularization hyperparameter λ = 1. At the testing
stage, the features of both the original image and its horizontally flipped
version are firstly extracted using the learned model, and then concatenated
together for testing. Specifically, the feature similarity of face pairs is mea-
sured by the cosine distance matrix after transforming the representation by
PCA [7]. In the following, the effectiveness of the proposed method will be
verified on LFW and YTF from several aspects.

5.2. Evaluation on LFW

LFW (the Labeled Faces in the Wild) is an acknowledged challenging
dataset for studying the problem of unconstrained face recognition. It con-

23

tains 13,233 face images of 5,749 people collected from websites. Every face
is taken under an unconstrained environment and is labeled with the name
of the person pictured. In this dataset, 1,680 people have two or more photos
and 4,096 people have only one photo. Following the standard protocol of
unrestricted with labeled outside data, we test on the provided 6,000 face
pairs consisting of 3,000 genuine matches and 3,000 impostor matches (see
Fig. 12(b)). To be specific, the testing pairs are split into 10-fold, where
nine splits are randomly chosen to train a classifier, and the tenth is used to
perform the classification decision. Repeating the experiment ten times, the
mean classification accuracy is estimated as the final decision. The effective-
ness of the proposed AKWD regularizer on face verification is compared with
the baseline model, the regularized model by OrthoReg, and six state-of-the-
art methods, i.e., DeepFace [18], WebFace [45] , Web-Scale[49], DeepID2 [50],
DeepID2+ [51] and FaceNet [52].

The classification accuracies of all the comparing approaches are reported
in Table 7. It is observed that our approach achieves a verification accuracy
of 99.08% on the LFW dataset, surpassing the result of the baseline model
by 0.2%. Of particular note is that, as the baseline model has very low
overfitting issue with relatively good performance, even a small margin of
improvement in accuracy demonstrates the effectiveness of our method. This
is further confirmed by the observation that OrthoReg seems to have no effect
on improving the baseline model.

Furthermore, we interpret the proposed regularizer from the perspective
of the neural responses. Fig. 13 compares the neural responses of the regu-
larized model by AKWD and the baseline model on both the positive testing
pair and negative testing pair. For illustration, 32 neurons are subsampled
from the total 512 neurons from the output of the top hidden layer (fc1).
Regarding the case for positive pair (top), we observe that AKWD is able
to capture more similar activation patterns for the same person than the
baseline model. As for the negative pair (bottom), AKWD yields more dif-
ferent activated neurons for a pair of different persons, when compared to
the baseline model. The above observations demonstrate that AKWD can
help to improve the generalization of CNN models.

5.3. Evaluation on YTF

We also evaluate our method on the YTF (YouTube Faces) dataset. The
YTF dataset contains 3,425 videos of 1,595 different subjects downloaded
from YouTube. Each subject has several videos with various sizes of frames

24

ranging from 48 to 6,070. Besides, the frames of YTF have various face
variations and poor resolutions. Consequently, it is regarded as a more chal-
lenging testing benchmark for face verification. As for LFW, we also follow
the standard protocol of unrestricted with labeled outside data, and take a
10-fold cross validation on the provided 5,000 testing video pairs ten times.
The only difference is that we use the average accuracy of the randomly se-
lected 100 pairs of frames per video to estimate the similarity score of a test
video pair.

As in LFW, the same comparing methods are involved for comparison,
and the testing results are given in Table 7. It is observed that OrthoReg
is not applicable for face verification on the YTF dataset, as it leads to a
slight decrease in accuracy compared to the un-regularized baseline model.
On the contrary, the proposed AKWD regularizer obtains the verification
accuracy of 94.04%, improving the result of the baseline model by 0.22% and
comparable with the most recent state-of-the-art.

Fig. 14 visualizes the first convolutional parameters for the cases without
and with the AKWD regularization, where the regularization effect of AKWD
on the parameters can be observed. Clearly, the original model has many
very similar even “dead” convolution filters, whereas the parameters of the
regularized model by AKWD contains more highlight parts, that capture
more different patterns and encode more information. This coincides with
the basic idea of decorrelation and reflects the regularization effect of AKWD.

6. Conclusion

In this paper, we proposed a kernel-based weight decorrelation frame-
work to regularize the CNN models for better model generalization. Different
from the existing works, the correlation between paring weights is measured
by the cosine distance defined in RKHS. In particular, we investigated the
case with Gaussian kernel in detail. This yields a local weight decorrelation
strategy that can effectively avoid the insensitivity of the cosine similarity
to magnitude of data. The bandwidth parameter of the kernel is set by an
adaptive estimation. On both object classification and large-scale face verifi-
cation tasks, the proposed regularization method showed its effectiveness on
several public benchmarks by comparing with the state-of-the-art methods.
Extensive experiments also showed the ability of the proposed AKWD in
improving the generalization of CNNs of different capacities, as well as the

25

good compatibility with other regularization techniques, such as Dropout
and BatchNorm. In the light of the performance of the combination of ker-
nel method and deep learning, future works will concentrate on enhancing
the discriminate ability of the deeply learned features in this direction.

Acknowledgment

This work was supported by the National Natural Science Foundation of
China under Grant 61701337, the Natural Science Foundation of Tianjin City
under Grand 18JCQNJC01600, the Major Science and Technology Project
of Tianjin under Grand 18ZXRHSY00160 and the AI Key Project of Tianjin
under Grand 19ZXZNGX0050.

References

[1] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[2] M. D. Zeiler, R. Fergus, Visualizing and understanding convolutional
networks, Eur. Conf. Comput. Vis. (ECCV) (8689) (2014) 818–833.

[3] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with
deep convolutional neural networks, in: Proc. Conf. Adv. Neural Inf.
Process. Syst. (NIPS), Lake Tahoe, Nevada, United States, 2012, pp.
1097–1105.

[4] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into recti-
fiers: Surpassing human-level performance on imagenet classification,
in: IEEE Int. Conf. Comput. Vis. (ICCV), 2015, pp. 1026–1034.
doi:10.1109/ICCV.2015.123.

[5] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, Learning deep
features for scene recognition using places database, in: Proc. Conf. Adv.
Neural Inf. Process. Syst. (NIPS), Montreal, Quebec, Canada, 2014, pp.
487–495.

[6] L. Herranz, S. Jiang, X. Li, Scene recognition with cnns: Objects, scales
and dataset bias, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2016, pp. 571–579.

26

[7] Y. Wen, K. Zhang, Z. Li, Y. Qiao, A discriminative feature learning
approach for deep face recognition, Eur. Conf. Comput. Vis. (ECCV)
(2016) 499–515.

[8] G. Hu, X. Peng, Y. Yang, T. M. Hospedales, J. Verbeek, Frankenstein:
Learning deep face representations using small data, IEEE Trans. Image
Process. 27 (1) (2018) 293–303. doi:10.1109/TIP.2017.2756450.

[9] H. Yao, S. Zhang, R. Hong, Y. Zhang, C. Xu, Q. Tian, Deep represen-
tation learning with part loss for person re-identification, IEEE Trans.
Image Process. (2019) 1–1doi:10.1109/TIP.2019.2891888.

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, et al., Imagenet
large scale visual recognition challenge, Int. J. Comput. Vis. 115 (3)
(2015) 211–252.

[11] Y. Lecun, Y. Bengio, G. E. Hinton, Deep learning, Nature 521 (7553)
(2015) 436–444.

[12] G. Hu, Y. Yang, D. Yi, J. Kittler, W. J. Christmas, S. Z. Li, T. M.
Hospedales, When face recognition meets with deep learning: An
evaluation of convolutional neural networks for face recognition, in:
IEEE Int. Conf. Comput. Vis. Workshop (ICCVW), 2015, pp. 384–392.
doi:10.1109/ICCVW.2015.58.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in:
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015, pp.
1–9.

[14] H. Lee, H. Kwon, Going deeper with contextual cnn for hyperspectral
image classification, IEEE Trans. Image Process. 26 (10) (2017) 4843–
4855. doi:10.1109/TIP.2017.2725580.

[15] M. Cogswell, F. Ahmed, R. B. Girshick, L. Zitnick, D. Batra, Reducing
overfitting in deep networks by decorrelating representations, Int. Conf.
Learn. Represent. (ICLR) (2016).

27

[16] A. G. Howard, Some improvements on deep convolutional neural net-
work based image classification, Int. Conf. Learn. Represent. (ICLR)
(2014).

[17] T. Hastie, R. Tibshirani, J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction, Math. Intell. 27 (2)
(2005) 83–85.

[18] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the
gap to human-level performance in face verification, in: Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2014, pp. 1701–1708.
doi:10.1109/CVPR.2014.220.

[19] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-
nition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
2016, pp. 770–778.

[20] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feed-
forward neural networks, in: Proc. Int. Conf. Artif. Intell. Stats. (AIS-
TATS), Sardinia, Italy, 2010, pp. 249–256.

[21] A. Krogh, J. A. Hertz, A simple weight decay can improve generaliza-
tion, in: Proc. Conf. Adv. Neural Inf. Process. Syst. (NIPS), Denver,
Colorado, USA, 1991, pp. 950–957.

[22] J. Yoon, S. J. Hwang, Combined group and exclusive sparsity for deep
neural networks, Int. Conf. Mach. Learn. (ICML) (2017) 3958–3966.

[23] R. Ma, J. Miao, L. Niu, P. Zhang, Transformed l1 regularization for
learning sparse deep neural networks, Neural Networks 119 (2019) 286
– 298. doi:https://doi.org/10.1016/j.neunet.2019.08.015.

[24] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdi-
nov, Dropout: a simple way to prevent neural networks from overfitting,
J. Mach. Learn. Research 15 (1) (2014) 1929–1958.

[25] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, Y. Bengio,
Maxout networks, Int. Conf. Mach. Learn. (ICML) (2013) 1319–1327.

[26] G. Kang, J. Li, D. Tao, Shakeout: A new approach to regularized deep
neural network training, IEEE Trans. Pattern Anal. Mach. Intell. 40 (5)
(2018) 1245–1258.

28

[27] L. Wan, M. D. Zeiler, S. Zhang, Y. L. Cun, R. Fergus, Regularization
of neural networks using dropconnect, Int. Conf. Mach. Learn. (ICML)
(2013) 1058–1066.

[28] P. Rodriguez, J. Gonzalez, G. Cucurull, J. M. Gonfaus, F. X. Roca, Reg-
ularizing cnns with locally constrained decorrelations, Int. Conf. Learn.
Represent. (ICLR) (2017).

[29] Y. Bao, H. Jiang, L. Dai, C. Liu, Incoherent training of deep neural
networks to de-correlate bottleneck features for speech recognition, in:
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), 2013, pp.
6980–6984.

[30] M. I. Chelaru, V. Dragoi, Negative correlations in visual cortical net-
works, Cereb. Cortex 26 (1) (2016) 246–256.

[31] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,
New York, NY, USA, 1995.

[32] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as
a kernel eigenvalue problem, Neural computation 10 (5) (1998) 1299–
1319.

[33] R. Jenssen, Kernel entropy component analysis, IEEE Transactions
on Pattern Analysis and Machine Intelligence 32 (5) (2010) 847–860.
doi:10.1109/TPAMI.2009.100.

[34] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,
Cambridge University Press, Cambridge, UK, 2004.

[35] S. Badrul, K. George, K. Joseph, Item-based collaborative filtering rec-
ommendation algorithms, Int. World Wide Web Conf. (WWW) (2001).

[36] N. Heidenreich, A. Schindler, S. Sperlich, Bandwidth selection for kernel
density estimation: a review of fully automatic selectors, ASTA-Adv.
Stat. Anal. 97 (4) (2013) 403–433.

[37] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick,
S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast
feature embedding, ACM Multimedia (2014) 675–678.

29

[38] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltz-
mann machines, Int. Conf. Mach. Learn. (ICML) (2010) 807–814.

[39] A. Krizhevsky, Learning multiple layers of features from tiny images,
Technical Report, University of Toronto (2009).

[40] S. Zagoruyko, N. Komodakis, Wide residual networks, in: Proc. Br.
Mach. Vis. Conf. (BMVC), York, UK, 2016.

[41] R. K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks,
in: Proc. Conf. Adv. Neural Inf. Process. Syst. (NIPS), Montreal, Que-
bec, Canada, 2015, pp. 2377–2385.

[42] D. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep net-
work learning by exponential linear units (elus), Int. Conf. Learn. Rep-
resent. (ICLR) (2016).

[43] D. Mishkin, J. Matas, All you need is a good init, Int. Conf. Learn.
Represent. (ICLR) (2016).

[44] J. T. Springenberg, A. Dosovitskiy, T. Brox, M. A. Riedmiller, Striving
for simplicity: The all convolutional net, Int. Conf. Learn. Represent.
(ICLR) (2014).

[45] D. Yi, Z. Lei, S. Liao, S. Z. Li, Learning face representation from
scratch., arXiv preprint arXiv: 1411.7923 (2014).

[46] G. B. H. E. Learned-Miller, Labeled faces in the wild: Updates and
new reporting procedures, Tech. Rep. UM-CS-2014-003, University of
Massachusetts, Amherst (May 2014).

[47] L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos
with matched background similarity, in: Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2011, pp. 529–534.

[48] J. Zhang, S. Shan, M. Kan, X. Chen, Coarse-to-fine auto-encoder net-
works (cfan) for real-time face alignment, Eur. Conf. Comput. Vis.
(ECCV) (2014) 1–16.

[49] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Web-scale training for face
identification, in: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2015, pp. 2746–2754.

30

[50] Y. Sun, X. Wang, X. Tang, Deep learning face representation by joint
identification-verification, in: Proc. Conf. Adv. Neural Inf. Process. Syst.
(NIPS), Vol. 27, Montreal, Quebec, Canada, 2014, pp. 1988–1996.

[51] Y. Sun, X. Wang, X. Tang, Deeply learned face representations are
sparse, selective, and robust, in: Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2015, pp. 2892–2900.

[52] F. Schroff, D. Kalenichenko, J. Philbin, Facenet: A unified embedding
for face recognition and clustering, in: Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), 2015, pp. 815–823.

31

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iteration 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ra
in

 a
c
c
u
ra

c
y

AKWD

OrthoReg

CGES

Xavier

PP

DA

Baseline

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iteration 104

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

T
e
s
t
a
c
c
u
ra

c
y

AKWD

OrthoReg

CGES

Xavier

PP

DA

Baseline

(b)

Fig. 9. Accuracy vs. iteration curves with different methods for the shallow
networks on CIFAR-10.

32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iteration 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ra
in

 a
c
c
u

ra
c
y

AKWD

OrthoReg

CGES

Xavier

PP

DA

Baseline

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iteration 104

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
e
s
t
a
c
c
u
ra

c
y

AKWD

OrthoReg

CGES

Xavier

PP

DA

Baseline

(b)

Fig. 10. Accuracy vs. iteration curves with different methods for the shallow
networks on CIFAR-100.

33

Fig. 11. The flow of face verification by CNN.

(a) CASIA-WebFace (b) LFW

(c) YTF

Fig. 12. Face samples of the three face benchmarks.

34

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

Fig. 13. Left: the testing image pairs on LFW, where the top two are for the
positive pair and the bottom two are for the negative pair. Middle: neural
responses of AKWD regularized model. Right: neural responses of the un-
regularized model. All the 32 neurons are subsampled from the 512 neurons
in the top hidden layer for illustration.

35

weight num:32

(a) Without AKWD

weight num:32

(b) With AKWD

Fig. 14. Visualization of the first convolutional parameters for the cases
without and with the AKWD regularization.

36

