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Abstract

In this work we consider an energy subcritical semi-linear wave equation (3 < p < 5)
∂2
t u−∆u = φ(x)|u|p−1u, (x, t) ∈ R3 × R;

u|t=0 = u0 ∈ Ḣsp(R3);

∂tu|t=0 = u1 ∈ Ḣsp−1(R3);

where sp = 3/2− 2/(p− 1) and the function φ : R3 → [−1, 1] is a radial continuous function
with a limit at infinity. We prove that unless the elliptic equation −∆W = φ(x)|W |p−1W
has a nonzero radial solution W ∈ C2(R3) ∩ Ḣsp(R3), any radial solution u with a finite
uniform upper bound on the critical Sobolev norm ‖(u(·, t), ∂tu(·, t))‖Ḣsp×Ḣsp (R3) for all t
in the maximal lifespan must be a global solution in time and scatter.

1 Introduction

1.1 Background: Pure Power-type Nonlinearity

The nonlinear wave equation (sp = 3
2 −

2
p−1 )

∂2
t u−∆u = ζ|u|p−1u, (x, t) ∈ R3 × R;

u|t=0 = u0 ∈ Ḣsp(R3);

∂tu|t=0 = u1 ∈ Ḣsp−1(R3);

(CP0)

has been extensively studied in a lot of previous works. There are two different cases: the
defocusing one with ζ = −1 and the focusing one with ζ = 1. The latter case is usually more
complicated and difficult to deal with.

Local theory Local theory usually follows a combination of suitable Strichartz estimates and
a fixed-point argument. An almost complete version of Strichartz estimates can be found in [19].
Some of the endpoint cases are discussed in [25]. There are also Stichartz estimates that hold
only in the radial case. Please see [33, 50], for instance. A fixed-point argument then gives a
local theory for initial data in the critical Sobolev space Ḣsp × Ḣsp−1. More details of local
theory can be found in [17, 24, 39].

Small initial data If the initial data are small, the sign of ζ does not play an important role.
For example, if p > 1 +

√
2, global existence, well-posedness and scattering of solutions with

small initial data was discussed in the papers [4, 15, 16, 34, 43]. Some of these works deal with
even worse nonlinear term |u|p. By scattering we mean that the solution approaches a solution
to the homogeneous linear wave equation as t tends to infinity.
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Energy critical case The behaviour of solutions in the focusing case is much different from
the one in the defocusing case if the initial data are large. For example, if the nonlinear term is
energy critical (p = 5), any solution with a finite energy always exists for all time t and scatters
in the defocusing case, see [20, 21, 46, 47]. On the other hand, the energy critical, focusing
equation has a family of stationary radial solutions (called ground states)

±λ1/2

(
1 +

λ2|x|2

3

)−1/2

, λ ∈ R+.

The solutions with a smaller energy than ground states either scatter in both two time directions
or blow up in finite time, as shown in [27]. Solutions with an energy at most slightly more than
the ground states and away from them are discussed in [35, 36]. Global behaviour of solutions
with a very large energy is more difficult to understand. People are particularly interested in
type II blow-up solutions, i.e. non-scattering solutions whose data remain bounded in Ḣ1 × L2

within its whole lifespan. Please see [10, 12, 13] and citation therein.

Super and subcritical case There are also lots of works on the energy subcritical case
(p < 5) or the energy supercritical case (p > 5). For example, please see [9, 30, 40, 41] for blow-
up behaviour of solutions to the focusing equation, [3] for self-similar solutions in the conformal
case (p = 3), and [11, 28, 31] for conditional scattering theory in energy supercritical case. We
are particularly interested in the following conditional scattering result1 in the subcritical case,
since this is most relevant to the topics of this work.

Theorem 1.1 (See [8] for 1 +
√

2 < p ≤ 3 and [48] for 3 < p < 5). Assume 1 +
√

2 < p < 5.
Let u be a radial solution to the equation (CP0) with a maximal lifespan (−T−, T+) satisfying a
uniform boundedness condition

sup
t∈[0,T+)

‖(u(·, t), ∂tu(·, t))‖Ḣsp×Ḣsp−1(R3) <∞.

Then T+ = +∞ and u scatters in the positive time direction.

Please note that recently Dodson-Lawrie-Mendelson-Murphy [7] proved that this result still holds
for non-radial solutions if 3 < p < 5. Dodson [5, 6] proved the global existence and scattering of
solutions to the defocusing equation with 3 ≤ p < 5 whenever initial data are radial and in the
critical Sobolev space Ḣsp × Ḣsp−1(R3). Scattering theory based on conformal conservation law
[18, 22] works in the non-radial case but only for initial data of higher regularity and stronger
decay at infinity. We also have conditional scattering results similar to Theorem 1.1 in higher
dimensions. See, for instance, [32, 45].

1.2 Topic and Result of this Work

We consider a semi-linear wave equation with an more general energy subcritical nonlinearity
(3 < p < 5) and radial data.

∂2
t u−∆u = φ(x)|u|p−1u, (x, t) ∈ R3 × R;

u|t=0 = u0 ∈ Ḣsp(R3);

∂tu|t=0 = u1 ∈ Ḣsp−1(R3);

(CP1)

Here sp = 3/2− 2/(p− 1) and the function φ : R3 → [−1, 1] is a radial continuous function with
a well-defined limit

lim
|x|→∞

φ(x) = φ(∞).

1This is slightly different than the original result, as its uniform boundedness condition is only concerning the
positive time direction. But a careful review on the proof reveals that this different version of theorem still holds.
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The study of this equation may helps us understand the global behaviour of radial solutions to
nonlinear wave equation in curved spaces. For example, if v is a suitable radial solution to the
shifted wave equation in the hyperbolic space H3

∂2
t v − (∆H3 + 1)v = ±|v|p−1v, (x, t) ∈ H3 × R,

which has been discussed in [1, 14, 51], then u = Tv is a solution to

∂2
t u−∆u = ±

(
|x|

sinh |x|

)p−1

|u|p−1u, (x, t) ∈ R3 × R.

Here the transformation T is defined by (see also [44])

(Tv)(r,Θ) =
sinh r

r
v(r,Θ), (r,Θ) ∈ R+ × S2,

with (r,Θ) being the polar coordinates in both spaces R3 and H3.

Remark 1.2. The assumption φ(x) ∈ [−1, 1] is not essential. Because a continuous function
φ(x) with a limit at infinity must be bounded. If u solves ∂2

t u−∆u = φ(x)|u|p−1u, then v = cu
satisfies the equation ∂2

t v −∆v = c−(p−1)φ(x)|v|p−1v. We have |c−(p−1)φ(x)| ≤ 1 as long as the
constant c is sufficiently large.

Main Result We introduce our main result of this work.

Theorem 1.3. Any radial solution u to (CP1) with a maximal lifespan (−T−, T+) satisfying

sup
t∈[0,T+)

‖(u(·, t), ∂tu(·, t))‖Ḣsp×Ḣsp−1(R3) <∞ (1)

must scatter in the positive time direction, unless the elliptic equation

−∆W = φ(x)|W |p−1W

has a nonzero radial solution W0 ∈ C2(R3) ∩ Ḣsp(R3).

Remark 1.4. A similar result holds for the negative time direction as well, because the wave
equation is time-reversible.

Remark 1.5. This is clear that if the elliptic equation does have a nonzero radial C2 solution
W0(x) in Ḣsp(R3), then u(x, t) = W0(x) is a solution to the wave equation (CP1) independent of
tine t. Its critical Sobolev norm remains the same for all time but it definitely does not scatter.
Thus the assumption about the elliptic equation in Theorem 1.3 is not only a sufficient condition
but also a necessary one. This kind of solutions are usually called solitons. According to Remark
7.4, a solution W0(x) as given above always comes with a nonzero limit

lim
|x|→∞

|x|W0(x).

Remark 1.6. The existence of nontrivial radial C2(R3) ∩ Ḣsp(R3) solutions to the elliptic
equation −∆W = φ(x)|W |p−1W can be determined if φ(x) satisfies some additional assumptions.
For example, if φ(x) ≤ 0 for all x ∈ R3, then such solutions do not exist. In fact we may multiply
both sides of the elliptic equation by W , integrate by parts in a ball B(0, R), and obtain∫

B(0,R)

|∇W |2dx− 1

2

∫
|x|=R

d

dr
(|W |2)dS =

∫
B(0,R)

φ(x)|W |p+1dx ≤ 0.

Since W ∈ Ḣsp(R3) is radial, we have |W (x)| → 0 as |x| → ∞ by Lemma 2.15. Thus there
exists a sequence Rk →∞ so that ∂r(|W |2) ≤ 0 when r = Rk. Let R = Rk in the equation above
we obtain ∇W ≡ 0 thus W ≡ 0. The case φ(x) > 0 has also been considered in some previous
works such as [42, 52]. In particular, T. Kusano and M. Naito [38] claim that if φ : [0,∞)→ R+

satisfies
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• φ(r) ∈ C[0,∞) ∩ C1(0,∞);

• d
dr

[
r(5−p)/2φ(r)

]
is nonnegative for all t > 0 but not identically zero;

then every nonzero radial C2 solution to the elliptic equation is oscillatory, i.e. it has a zero
in any neighbourhood of infinity. Therefore none of these solutions are in the space Ḣsp(R3) by
Remark 1.5. This means the elliptic equation does not have a nontrivial radial C2(R3)∩Ḣsp(R3)
solutions under the assumptions above.

Remark 1.7. In general, the global behaviour of a solution to a non-linear wave equation as
t→ T+ may be one of the following three cases

(I) The solution scatters, i.e. it resembles the behaviour of a free wave2. More precisely,
T+ = +∞ and there exists a pair (u+

0 , u
+
1 ) ∈ Ḣsp × Ḣsp−1(R3), such that

lim
t→+∞

∥∥∥∥( u(t)
∂tu(t)

)
− SL(t)

(
u+

0

u+
1

)∥∥∥∥
Ḣsp×Ḣsp−1(R3)

= 0.

here SL(t) is the linear wave propagation operator.

(II) The critical Sobolev norm of the solution is unbounded.

lim sup
t→T+

‖(u(·, t), ∂tu(·, t))‖Ḣsp×Ḣsp−1(R3) = +∞

(III) The critical Sobolev norm of the solution is bounded but the solution does not scatter. One
typical example is a soliton as mentioned above, if it exists.

Our main theorem claims that case (III) is possible only if there is a soliton W ∈ C2(R3) ∩
Ḣsp(R3), i.e a classic solution to the elliptic equation that is also contained in the critical Sobolev
space of (CP1).

1.3 Main Idea

As in the case with φ(x) ≡ ±1, the idea is to apply the compactness-rigidity argument introduced
by Kenig-Merle [26, 27]. We outline the proof and briefly describe the most important methods
involved in the introduction here, before more details are given in later sections. The novelty
of our argument lies in the compactness part. The lack of natural dilation makes this equation
more difficult to deal with than the equation with a pure power-type nonlinearity. This problem
can be solved by observing the fact that very high or low frequency solutions to (CP1) can be
approximated by solutions to ∂2

t u−∆u = c|u|p−1u, with c ∈ {φ(0), φ(∞)} is a constant. This is
similar to the situation of profile decomposition in curved background, see [23, 37], for example.

1.3.1 Compactness

First of all, it suffices to verify that the statement Sc(A) below is true for all A > 0, whenever
a radial C2 ∩ Ḣsp soliton does not exist, in order to prove the main theorem.

Statement 1.8 (Sc(A)). If u(x, t) is a radial solution of the non-linear wave equation (CP1)
with a maximal lifespan (−T−, T+), so that

sup
t∈[0,T+)

‖(u(t), ∂tu(t))‖Ḣsp×Ḣsp−1(R3) < A,

then T+ =∞ and the solution scatters in the positive time direction.

2A free wave is a solution to the homogenous linear wave equation ∂2
t u−∆u = 0

4



By the local theory given in section 2.2, we know that Sc(A) holds for small A > 0. If
the statement Sc(A) failed for some A > 0, there would exist a positive number M , called the
break-down point, so that Sc(M) held but Sc(A) failed for each A > M . Thus we can pick up
a sequence {un} of non-scattering solutions, so that

sup
t∈[0,T+

n )

‖(un(·, t), ∂tun(·, t))‖Ḣsp×Ḣsp−1 ↘M.

We are now seeking to take a limit and obtain a “critical element” u, which is a global solution
of (CP1) and satisfies

• sup
t∈R
‖(u(·, t), ∂tu(·, t))‖Ḣsp×Ḣsp−1(R3) = M .

• The set {(u(·, t), ∂tu(·, t))|t ∈ R} is pre-compact in the space Ḣsp × Ḣsp−1(R3).

Among the key gradients of the argument are the profile decomposition and non-linear profiles
associated to it.

The profile decomposition Given a sequence of radial initial data {(u0,n, u1,n)}n∈Z+ which

are uniformly bounded in the space Ḣsp × Ḣsp−1(R3), we can always find a subsequence of it,
still denoted by {(u0,n, u1,n)}n∈Z+ , a sequence of radial free waves, denoted by {Vj(x, t)}j∈Z+ ,
and a pair (λj,n, tj,n) ∈ R+ × R for each pair (j, n) ∈ Z+ × Z+, such that

• For each integer J > 0, we can write each pair of initial data in the subsequence into a
sum of J major components plus an error term:

(u0,n, u1,n) =

J∑
j=1

(Vj,n(·, 0), ∂tVj,n(·, 0)) + (wJ0,n, w
J
0,n).

Here Vj,n is a modified version of Vj via the application of a dilation and a time translation:

(Vj,n(x, t), ∂tVj,n(x, t)) =

(
1

λ
2

p−1

Vj

(
x

λj,n
,
t− tj,n
λj,n

)
,

1

λ
2

p−1 +1
∂tVj

(
x

λj,n
,
t− tj,n
λj,n

))
; (2)

and (wJ0,n, w
J
1,n) represents an error term that gradually becomes negligible as J and n

grow.

• The sequences {(λj,n, tj,n)}n∈Z+ and {(λj′,n, tj′,n)}n∈Z+ are “almost orthogonal” for j 6= j′.
More precisely we have

lim
n→∞

(
λj,n
λj′,n

+
λj′,n
λj,n

+
|tj,n − tj′,n|

λj,n

)
= +∞.

• We can also assume λj,n → λj ∈ {0, 1,∞} and −tj,n/λj,n → tj ∈ R∪ {∞,−∞} as n→∞
for each fixed j, by possibly passing to a subsequence and/or adjusting the free waves
{Vj}j∈Z+ .

The nonlinear profile In the case of a pure power-type nonlinearity, we can approximate
the solution to (CP0) with initial data (Vj,n(·, 0), ∂tVj,n(·, 0)) by a nonlinear profile Uj , which
is another solution to (CP0), up to a dilation and a time translation, and then add these ap-
proximations up to obtain an approximation of un, thanks to the almost orthogonality. The fact
that the equation (CP0) is invariant under dilations and time translations plays a crucial role in
this argument. The same argument no longer works for the equation (CP1), since the presence
of φ(x) prevents the application of dilations in this purpose. However, we can overcome this
difficulty if we allow the use of nonlinear profiles that are not necessarily solutions to (CP1) but
possibly solutions to other related equations instead. In fact, the solution to (CP1) with initial
data (Vj,n(·, 0), ∂tVj,n(·, 0)) can be approximated by a nonlinear profile Uj as described below,
up to a dilation and a time translation.
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I (Expanding Profile) If λj = ∞, then the profile spreads out in the space as n → ∞.
Eventually a given compact set won’t contain any significant part of the profile. The
combination of this fact and our assumption lim

|x|→∞
φ(x) = φ(∞) implies that the nonlinear

term φ(x)|u|p−1u works in a similar way as φ(∞)|u|p−1u. As a result, the nonlinear profile
Uj in this case is a solution to the nonlinear wave equation ∂2

t u−∆u = φ(∞)|u|p−1u.

II (Stable Profile) If λj = 1, then the profile approaches a stationary scale as n → ∞.
Therefore the nonlinear profile Uj is still a solution to (CP1).

III (Concentrating Profile) If λj = 0, then the profile concentrates around the origin as n→∞.
The nonlinear term φ(x)|u|p−1u performs in almost the same way as φ(0)|u|p−1u. As a
result, the nonlinear profile Uj is a solution to the wave equation ∂2

t u−∆u = φ(0)|u|p−1u.

1.3.2 Rigidity

In this part we need to prove the non-existence of a critical element as mentioned above unless
the equation (CP1) has a nontrivial C2 soliton in Ḣsp , i.e. a solution to the elliptic equation
−∆W = |W |p−1W in C2∩ Ḣsp(R3). This is because we can show that any critical element must
coincides with such a soliton. The argument is similar to the one we used for the equation (CP0)
and consists of three steps

(I) We first show that the critical element u must be more regular than we have assumed.
More precisely, it is in the space Ḣ1 × L2(R3 \ B(0, R)) for all R > 0 and its behaviour
near infinity is similar to that of A/|x|, where A is a constant independent of t.

(II) We then construct a solution W to the equation −∆W = φ(x)|W |p−1W , whose behaviour
near infinity is similar to that of u. Please note that this can be done even if the elliptic
equation does not have a nontrivial C2 solution in Ḣsp(R3). The function W is typically
outside the space Ḣsp(R3) when A 6= 0, sometimes defined only for large x, or identically
zero if A = 0. However, if the elliptic equation does have a radial solution in C2∩Ḣsp(R3),
this solution can always be constructed via our method.

(II) By applying “channel of energy” method, we show that u must be exactly the same as
W . This gives a contradiction if the elliptic equation does not have a nonzero radial
C2 ∩ Ḣsp solution. Because under our assumption W is either outside the space Ḣsp(R3)
or identically zero, which is definitely different from u.

1.4 Structure of this Paper

In section 2 we introduce notations, local theory, and already-known results as a preparation for
the proof of the main theorem. The first part of the proof comes with two sections: In section
3 we make a review on the profile decomposition, introduce non-linear profiles and prove some
properties of the non-linear profiles. Next we carry on the compactness procedure and extract
a critical element in section 4. The second part of proof consists of three sections: We show
the additional regularity of the critical element in section 5, then consider the solutions to the
elliptic equation −∆W = φ(x)|W |p−1W in section 6, and finally finish the proof in section 7 via
the “channel of energy” method. Please note that the methods used in section 5 and section
7 are similar to our previous argument for the equation (CP0). Therefore we skip most details
and merely give most important statements and ideas in these two sections.
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2 Preliminary Results

2.1 Notations

Definition 2.1. The notation A . B means that there exists a constant c so that the inequality
A ≤ cB holds. We may also add a subscript to the symbol . to indicate that the implicit constant
c depends on the parameter(s) mentioned in the subscript but nothing else.

Definition 2.2. The function F is defined by F (u) = |u|p−1u throughout this paper unless
otherwise specified.

Definition 2.3. We define Tλ to be the dilation operator

Tλ (u0, u1) (x) =

(
1

λ3/2−sp
u0

(x
λ

)
,

1

λ5/2−sp
u1

(x
λ

))
;

Here x is the spatial variable of functions.

Definition 2.4. Let SL(t) be the linear wave propagation operator. More precisely, if u is the
solution to linear wave equation ∂2

t u−∆u = 0 with initial data (u, ∂tu)|t=0 = (u0, u1), then we
define

SL(t0)(u0, u1) = (u(·, t0), ut(·, t0)) , SL(t0)

(
u0

u1

)
=

(
u(·, t0)
ut(·, t0)

)
.

In addition, we use the notation SL,0(u0, u1) for the first component u(·, t0) of the vector above.

2.2 Local Theory

We start by the Strichartz estimates, as they are the basis of our local theory.

Proposition 2.5 (Generalized Strichartz Inequalities). (Please see Proposition 3.1 of [19], here
we use the Sobolev version in R3) Let 2 ≤ q1, q2 ≤ ∞, 2 ≤ r1, r2 <∞ and ρ1, ρ2, s ∈ R with

1/qi + 1/ri ≤ 1/2; i = 1, 2;

1/q1 + 3/r1 = 3/2− s+ ρ1;

1/q2 + 3/r2 = 1/2 + s+ ρ2.

Let u be the solution of the following linear wave equation
∂2
t u−∆u = F1(x, t), (x, t) ∈ R3 × R;

u|t=0 = u0 ∈ Ḣs(R3);

∂tu|t=0 = u1 ∈ Ḣs−1(R3).

(3)

Then we have (1/q2 + 1/q̄2 = 1, 1/r2 + 1/r̄2 = 1)

sup
t∈[0,T ]

‖(u(·, t), ∂tu(·, t))‖
Ḣs × Ḣs−1(R3)

+ ‖Dρ1
x u‖Lq1Lr1([0, T ]× R3)

≤ C
(
‖(u0, u1)‖

Ḣs × Ḣs−1(R3)
+ ‖D−ρ2x F1(x, t)‖

Lq̄2Lr̄2([0, T ]× R3)

)
.

The constant C does not depend on T .

Definition 2.6. If I is a time interval, we define the following norms

‖(u0, u1)‖H = ‖(u0, u1)‖Ḣsp×Ḣsp−1(R3);

‖u(x, t)‖Y (I) = ‖u(x, t)‖
L

2p
1+sp L

2p
2−sp (I×R3)

;

‖v(x, t)‖Z(I) = ‖u(x, t)‖
L

2
1+sp L

2
2−sp (I×R3)

.
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Here the space-time norm is defined in a standard way:

‖u(x, t)‖LqLr(I×R3) =

(∫
I

(∫
R3

|u(x, t)|r dx
)q/r

dt

)1/q

.

If V is a free wave, then the norm ‖(V (·, t), ∂tV (·, t)‖H is independent of t. Thus we may use
the notation ‖V ‖H instead for simplicity.

The fixed-point argument If u is a solution to (3) on a time interval I containing 0, then
we have the Strichartz estimates

sup
t∈I
‖(u(t), ∂tu(t))‖H + ‖u‖Y (I) ≤ C

[
‖(u0, u1)‖H + ‖F1‖Z(I)

]
.

Combining this with the inequalities

‖φF (u)‖Z(I) ≤ ‖u‖pY (I);

‖φF (u1)− φF (u2)‖Z(I) ≤ Cp‖u1 − u2‖Y (I)

[
‖u1‖p−1

Y (I) + ‖u2‖p−1
Y (I)

]
;

and applying a fixed-point argument, we obtain a local theory as below. Since our argument is
similar to those in a lot of earlier papers, we only give important statements but omit most of
the proof here. Please see, for instance, [24, 39] for more details.

Definition 2.7 (Solutions). We say that u is a solution of (CP1) in the time interval I, if
(u(·, t), ∂tu(·, t)) ∈ C(I; Ḣsp × Ḣsp−1(R3)), with a finite norm ‖u‖Y (J) for any bounded closed
interval J ⊆ I so that the integral equation

u(·, t) = SL,0(t)(u0, u1) +

∫ t

0

sin((t− τ)
√
−∆)√

−∆
[φF (u(·, τ))]dτ

holds for all time t ∈ I.

Theorem 2.8 (Local solution). For any initial data (u0, u1) ∈ Ḣsp× Ḣsp−1, there is a maximal
interval (−T−(u0, u1), T+(u0, u1)) in which the equation has a unique solution.

Theorem 2.9 (Scattering with small data). There exists δ = δ(p) > 0 such that if the norm of
the initial data ‖(u0, u1)‖Ḣsp×Ḣsp−1 < δ, then the Cauchy problem (CP1) has a global-in-time
solution u with ‖u‖Y (−∞,+∞) ≤ Cp‖(u0, u1)‖Ḣsp×Ḣsp−1 . Here both the constants δ(p) and Cp
can be chosen independent of the coefficient function |φ(x)| ≤ 1.

Corollary 2.10. There exists a function η : R+ → R+, such that if ‖(u0, u1)‖Ḣsp×Ḣsp−1 ≥
C1 > 0, then the solution u to (CP1) with the initial data (u0, u1) satisfies

inf
t∈(−T−,T+)

‖(u(·, t), ∂tu(·, t)‖Ḣsp×Ḣsp−1(R3) ≥ η(C1),

Lemma 2.11 (Standard finite-time blow-up criterion). If T+ <∞, then ‖u‖Y ([0,T+)) =∞.

Theorem 2.12 (Perturbation theory). Fix 3 < p < 5. Let M be a positive constant. There
exists a constant ε0 = ε0(M,p) > 0, such that if an approximation solution ũ defined on R3 × I
(0 ∈ I) and a pair of initial data (u0, u1) ∈ Ḣsp × Ḣsp−1 satisfy

(∂2
t −∆)(ũ)− φF (ũ) = e(x, t), (x, t) ∈ R3 × I;

‖ũ‖Y (I) < M ; ‖(ũ(·, 0), ∂tũ(·, 0))‖Ḣsp×Ḣsp−1 <∞;

ε
.
= ‖e(x, t)‖Z(I) + ‖SL,0(t)(u0 − ũ(·, 0), u1 − ∂tũ(·, 0))‖Y (I) < ε0;
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there exists a solution u(x, t) of (CP1) defined in the interval I with the initial data (u0, u1) and
satisfying

‖u(x, t)− ũ(x, t)‖Y (I) < C(M,p)ε.

sup
t∈I

∥∥∥∥( u(t)
∂tu(t)

)
−
(
ũ(t)
∂tũ(t)

)
− SL(t)

(
u0 − ũ(0)
u1 − ∂tũ(0)

)∥∥∥∥
Ḣsp×Ḣsp−1

< C(M,p)ε.

Proof. Let us first prove the perturbation theory when M is sufficiently small. Let I1 be the
maximal lifespan of the solution u(x, t) to the Cauchy problem (CP1) with the given initial data
(u0, u1) and assume [0, T ] ⊆ I ∩ I1. By the Strichartz estimates, we have

‖ũ− u‖Y ([0,T ]) ≤ ‖SL,0(t)(u0 − ũ(0), u1 − ũ(0))‖Y ([0,T ]) + Cp‖e+ φF (ũ)− φF (u)‖Z([0,T ])

≤ ε+ Cp‖e‖Z([0,T ]) + Cp‖F (ũ)− F (u)‖Z([0,T ])

≤ ε+ Cpε+ Cp‖ũ− u‖Y ([0,T ])

(
‖ũ‖p−1

Y ([0,T ]) + ‖ũ− u‖p−1
Y ([0,T ])

)
≤ Cpε+ Cp‖ũ− u‖Y ([0,T ])

(
Mp−1 + ‖ũ− u‖p−1

Y ([0,T ])

)
.

Here the notation Cp may represent different constants at different places. By a continuity
argument in T , there exist M0 = M0(p) > 0 and ε0 = ε0(p) > 0, such that if M ≤ M0 and
ε < ε0, we have

‖ũ− u‖Y ([0,T ]) ≤ Cpε.

Observing that the estimate above is independent of time T and works as well for an interval
[T, 0] if T < 0, we are actually able to conclude I ⊆ I1 by the finite-time blow-up criterion and
obtain

‖ũ− u‖Y (I) ≤ Cpε.

In addition, by the Strichartz estimate we have

sup
t∈I

∥∥∥∥( u(t)
∂tu(t)

)
−
(
ũ(t)
∂tũ(t)

)
− SL(t)

(
u0 − ũ(0)
u1 − ∂tũ(0)

)∥∥∥∥
Ḣsp×Ḣsp−1

≤ Cp‖φF (u)− φF (ũ)− e‖Z(I)

≤ Cp
(
‖e‖Z(I) + ‖F (u)− F (ũ)‖Z(I)

)
≤ Cp

[
ε+ ‖u− ũ‖Y (I)

(
‖ũ‖p−1

Y (I) + ‖u− ũ‖p−1
Y (I)

)]
≤ Cpε.

This finishes the proof as M is sufficiently small. To deal with the general case, we can separate
the time interval I into finite number of subintervals {Ij}, so that ‖ũ‖Y (Ij) < M0, and then
iterate our argument above.

Remark 2.13. If K is a compact subset of the space Ḣsp × Ḣsp−1(R3), then there exists T =
T (K) > 0 such that for any (u0, u1) ∈ K, T+(u0, u1) > T (K). This is a direct corollary from
the perturbation theory.

2.3 Known Results for a Constant φ

In this subsection we make a review on the already-known results concerning radial solutions to
the equation 

∂2
t u−∆u = c|u|p−1u;

u|t=0 = u0 ∈ Ḣsp(R3);

∂tu|t=0 = u1 ∈ Ḣsp−1(R3);

(4)

Here c is a constant. The case with c = ±1, namely the equation (CP0), has been discussed in
the author’s previous work [48], whose main result has been mentioned in the introduction as
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Theorem 1.1. The case c = 0 is trivial, since u becomes a solution to linear wave equation. If
u is a solution to (4) with c /∈ {−1, 0, 1}, then |c|1/(p−1)u is a solution to (CP0); and vice versa.
This transformation immediately gives

Proposition 2.14. Let u be a radial solution to the equation (4) with a maximal lifespan
(−T−, T+) and a uniform boundedness condition

sup
t∈[0,T+)

‖(u(·, t), ∂tu(·, t))‖Ḣsp×Ḣsp−1(R3) <∞.

Then T+ =∞ and u scatters in the positive time direction.

2.4 Properties of Radial Ḣs Functions

Lemma 2.15. (Please see lemma 3.2 of [28]) Let 1/2 < s < 3/2. Any radial Ḣs(R3) function
u satisfies the inequality

|u(x)| .s
‖u‖Ḣs(R3)

|x| 32−s
.

Remark 2.16. This actually means that a radial Ḣs function is uniformly continuous in R3 \
B(0, R) if R > 0.

Lemma 2.17. Let K be a compact subset of Ḣs(R3), 1/2 < s < 3/2. Then we have

sup
|x|>R,u∈K

|x| 32−s|u(x)| → 0, as R→ +∞;

sup
|x|<r,u∈K

|x| 32−s|u(x)| → 0, as r → 0+

Proof. A Combination of the compactness with Lemma 2.15 shows that it suffices to prove this
lemma when K contains a single element. Please see Appendix of [48] for a proof of this special
case.

3 Profile Decomposition

3.1 Linear Profile Decomposition

Theorem 3.1 (Profile Decomposition). Let A be a constant. Given a sequence of radial ini-
tial data {(u0,n, u1,n)}n∈Z+ so that ‖(u0,n, u1,n)‖H ≤ A, there exist a subsequence of it, still
denoted by (u0,n, u1,n); a sequence of radial free waves Vj(x, t) = SL(t)(vj,0, vj,1), j ∈ Z+; a pair
(λj,n, tj,n) ∈ R+ × R for each pair (j, n) ∈ Z+ × Z+; such that

(i) Given a positive integer J , each pair of initial data in the subsequence can be expressed as
a sum of the first J major components plus an error term

(u0,n, u1,n) =

J∑
j=1

(
1

λ
3/2−sp
j,n

Vj

(
·

λj,n
,
−tj,n
λj,n

)
,

1

λ
5/2−sp
j,n

∂tVj

(
·

λj,n
,
−tj,n
λj,n

))
+ (wJ0,n, w

J
1,n)

=

J∑
j=1

SL(−tj,n)Tλj,n(v0,j , v1,j) + (wJ0,n, w
J
1,n);

(ii) If j 6= j′, then the sequences {(λj,n, tj,n)}n∈Z+ and {(λj′,n, tj′,n)}n∈Z+ are “almost orthog-
onal”, i.e. we have the limit

lim
n→∞

(
λj′,n
λj,n

+
λj,n
λj′,n

+
|tj,n − tj′,n|

λj,n

)
= +∞.
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(iii) lim sup
n→∞

∥∥SL(t)(wJ0,n, w
J
1,n)
∥∥
Y (R)

→ 0 as J →∞.

(iv) For each given J ≥ 1, we have

‖(u0,n, u1,n)‖2H =

J∑
j=1

‖Vj‖2H +
∥∥(wJ0,n, w

J
1,n)
∥∥2

H
+ oJ,n(1).

Here oJ,n(1)→ 0 as n→∞.

(v) We have the limits λj,n → λj ∈ {0, 1,∞} and −tj,n/λj,n → tj ∈ [−∞,∞] as n → ∞ for
each j.

Please see [2] for the proof. There are a few remarks.

• This original paper deals with the energy critical case sp = 1. But the same argument
works for all 1/2 < sp < 1 as well.

• The original paper works for non-radial initial data as well. In this work we only consider
the radial case.

• The original theorem is proved under an additional assumption labelled (1.6) there. But
this condition can be eliminated according to Remark 5 on Page 159 of that paper. The
elimination of this condition also implies that λj , the limit of the sequence λj,n as n→∞,
may converge to 1 or +∞, besides 0, as given in part (v) above.

We need to prove a few lemmata before the introduction of the non-linear profiles.

Lemma 3.2. If j 6= j′, then we have the almost orthogonality

lim
n→∞

〈
SL(−tj,n)Tλj,n

(v0,j , v1,j),SL(−tj′,n)Tλj′,n(v0,j′ , v1,j′)
〉
H

= 0.

Proof. We first rewrite the dot product into〈
SL(−tj,n)Tλj,n

(v0,j , v1,j),SL(−tj′,n)Tλj′,n(v0,j′ , v1,j′)
〉
H

=

〈
Tλj,n/λj′,n

(v0,j , v1,j),SL

(
tj,n − tj′,n
λj′,n

)
(v0,j′ , v1,j′)

〉
H

.

We can immediately finish the proof by the almost orthogonal condition (ii) and Fourier analysis.

Lemma 3.3. Let {(w0,n, w1,n)}n∈Z+ be a bounded sequence in H, i.e. ‖(w0,n, w1,n)‖H ≤ A so
that ‖SL,0(t)(w0,n, w1,n)‖Y (R) → 0. Then we have the weak limit (w0,n, w1,n) ⇀ 0 in H.

Proof. If the weak limit (w0,n, w1,n) ⇀ 0 were false, we could assume (w0,n, w1,n) ⇀ (w0, w1) 6= 0
in H by possibly passing to a subsequence. Because the map (u0, u1) → SL,0(t)(u0, u1) is a
bounded linear operator from the space H to Y (R) by the Strichartz estimates, we also have a
weak limit SL,0(t)(w0,n, w1,n) ⇀ SL,0(t)(w0, w1) in the space Y (R). On the other hand, the same
sequence SL,0(t)(w0,n, w1,n) has a strong limit zero in the space Y (R) by the given conditions.
As a result, we have SL,0(t)(w0, w1) = 0 =⇒ (w0, w1) = 0. This is a contradiction.

Lemma 3.4. Assume ‖(w0,n, w1,n)‖H ≤ A and ‖SL,0(t)(w0,n, w1,n)‖Y (R) → 0. Let I be a closed
time interval and (U0(x, t), U1(x, t)) ∈ C(I;H). If I contains a neighbourhood of ∞ or −∞, we
also assume

lim
t→±∞

∥∥∥∥(U0(·, t)
U1(·, t)

)
− SL(t)

(
u±0
u±1

)∥∥∥∥
H

= 0

for some pair(s) (u±0 , u
±
1 ) ∈ H. Then for any two sequences {λn : λn > 0}n∈Z+ and {tn : tn ∈

I}n∈Z+ , we have the limit

〈Tλn
(U0(·, tn), U1(·, tn)), (w0,n, w1,n)〉H → 0.
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Proof. First of all, we can rewrite the pairing into

〈Tλn
(U0(·, tn), U1(·, tn)), (w0,n, w1,n)〉H

=〈(U0(·, tn), U1(·, tn)),T1/λn
(w0,n, w1,n)〉H

=〈SL(−tn)(U0(·, tn), U1(·, tn)),SL(−tn)T1/λn
(w0,n, w1,n)〉H .

According to the conditions given, we have

• The set {SL(−t)(U0(·, t), U1(·, t))|t ∈ I} is pre-compact in H.

• The sequence SL(−tn)T1/λn
(w0,n, w1,n) is bounded and converges weakly to 0 in the space

H, by Lemma 3.3 and∥∥SL(−tn)T1/λn
(w0,n, w1,n)

∥∥
H

= ‖(w0,n, w1,n)‖H ≤ A;∥∥SL,0(t)SL(−tn)T1/λn
(w0,n, w1,n)

∥∥
Y (R)

= ‖SL,0(t)(w0,n, w1,n)‖Y (R) → 0.

Therefore the pairing converges to zero.

3.2 Nonlinear Profiles

In this subsection we introduce the nonlinear profiles and prove some properties of them. Recall
the notation F (u) = |u|p−1u.

Definition 3.5 (A nonlinear profile). Fix φ̃ to be either the function φ or a constant function
c. Let V (x, t) = SL,0(t)(v0, v1) be a free wave and t̃ ∈ [−∞,∞] be a time. We say that U(x, t) is

a nonlinear profile associated to (V, φ̃, t̃) if U(x, t) is a solution to the nonlinear wave equation

∂2
t u−∆u = φ̃F (u) (5)

with a maximal timespan I so that I contains a neighbourhood3 of t̃ and

lim
t→t̃
‖(U(·, t), ∂tU(·, t))− (V (·, t), ∂tV (·, t))‖H = 0.

Remark 3.6. Given a triple (V, φ̃, t̃) as above, one can show there is always a unique nonlin-
ear profile. Please see Remark 2.13 in [26] for the idea of proof. In particular, if t̃ is finite,
then the nonlinear profile U is simply the solution to the equation (5) with the initial data
(U(·, t̃), ∂tU(·, t̃)) = (V (·, t̃), ∂tV (·, t̃)). We will also use the fact that the nonlinear profile auto-
matically scatters in the positive time direction if t̃ = +∞.

Definition 3.7 (Nonlinear Profiles). For each linear profile Vj in a profile decomposition as
given in Theorem 3.1, we assign a nonlinear profile Uj to it in the following way

• If λj = 0, then Uj is chosen as the nonlinear profile associated to (Vj , φ(0), tj);

• If λj = 1, then Uj is chosen as the nonlinear profile associated to (Vj , φ, tj);

• If λj =∞, then Uj is chosen as the nonlinear profile associated to (Vj , φ(∞), tj).

In either case, we use the notation Ij for the maximal lifespan of Uj and define

Uj,n(x, t)
.
=

1

λ
3/2−sp
j,n

Uj

(
x

λj,n
,
t− tj,n
λj,n

)
.

3A neighbourhood of infinity is (M,+∞), if t̃ = +∞; or (−∞,M), if t̃ = −∞.
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Remark 3.8. By the definition of nonlinear profile, for each j we have the limit

lim
n→∞

‖(Uj,n(·, 0), ∂tUj,n(·, 0))− SL(−tj,n)Tλj,n
(v0,j , v1,j)‖H = 0.

Lemma 3.9. If j 6= j′, then we have the following almost orthogonality.

lim
n→∞

〈(Uj,n(·, 0), ∂tUj,n(·, 0)), (Uj′,n(·, 0), ∂tUj′,n(·, 0))〉H = 0.

Proof. This is a direct corollary of Remark 3.8 and Lemma 3.2.

Lemma 3.10 (Almost Orthogonality of Uj,n). Assume ‖Ũj‖Y (I′j) < ∞ for j = 1, 2. Let

{(λ1,n, t1,n)}n∈Z+ and {(λ2,n, t2,n)}n∈Z+ be two “almost orthogonal” sequences of pairs, i.e.

lim
n→+∞

(
λ2,n

λ1,n
+
λ1,n

λ2,n
+
|t1,n − t2,n|

λ1,n

)
= +∞.

If {Jn} is a sequence of time intervals, such that Jn ⊆ (t1,n + λ1,nI
′
1) ∩ (t2,n + λ2,nI

′
2) holds for

all sufficiently large positive integers n, then we have

N(n) =
∥∥∥Ũ1,nŨ2,n

∥∥∥
L

p
1+sp
t L

p
2−sp
x (Jn×R3)

→ 0, as n→∞.

Here Ũj,n is defined as usual

Ũj,n(x, t) =
1

λ
3/2−sp
j,n

Ũj

(
x

λj,n
,
t− tj,n
λj,n

)
.

Proof. (See also Lemma 2.7 in [29]) First of all, by defining Ũj(x, t) = 0 for t /∈ I ′j , we can always
assume I ′j = R and Jn = R. Observing the continuity of the map

Φ : Y (R)× Y (R)→ l∞, Φ(Ũ1, Ũ2) =

{∥∥∥Ũ1,nŨ2,n

∥∥∥
L

p
1+sp
t L

p
2−sp
x (R×R3)

}
n∈Z+

;

we can also assume, without loss of generality, that∣∣∣Ũj(x, t)∣∣∣ ≤Mj , for any (x, t) ∈ R3 × R; Supp(Ũj) ⊆ {(x, t) : |x|, |t| < Rj}

for each j = 1, 2 and some constants Mj and Rj , since the functions satisfying these conditions
are dense in the space Y (R). If the conclusion were false, we would find a sequence n1 < n2 <
n3 < · · · and a positive constant ε0 such that N(nk) ≥ ε0. There are three cases

(I) lim sup
k→∞

λ1,nk
/λ2,nk

= ∞. In this case the product Ũ1,nk
Ũ2,nk

is supported in the (3 + 1)-

dimensional circular cylinder centred at (0, t2,nk
) with radius λ2,nk

R2 and height 2λ2,nk
R2

since Ũ2,nk
is supported in this cylinder. On the other hand, we also have∣∣∣Ũ1,nk

Ũ2,nk

∣∣∣ ≤ λ−3/2+sp
1,nk

λ
−3/2+sp
2,nk

M1M2.

A basic computation shows

N(nk) =
∥∥∥Ũ1,nk

Ũ2,nk

∥∥∥
L

p
1+sp
t L

p
2−sp
x (R×R3)

≤ C(p)M1M2R
3−2sp
2

(
λ2,nk

λ1,nk

)3/2−sp
.

This upper bound tends to zero as λ1,nk
/λ2,nk

→∞. Thus we have a contradiction.
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(II) lim sup
k→∞

λ2,nk
/λ1,nk

=∞. This can be handled in the same way as case (I).

(III) λ1,nk
' λ2,nk

. By the “almost orthogonality” of the sequences of pairs, we also have

|t1,nk
− t2,nk

|
λ1,nk

→∞.

This implies Supp(Ũ1,nk
) ∩ Supp(Ũ2,nk

) = ∅ when k is sufficiently large thus gives a
contradiction.

Lemma 3.11. Let I ′j ⊆ Ij with ‖Uj(x, t)‖Y (I′j) < ∞. Suppose that {Jn} is a sequence of time

intervals, so that given J ∈ Z+ we have Jn ⊆ ∩Jj=1(tj,n + λj,nI
′
j) for sufficiently large n. Then

for each J ∈ Z+ the following limits hold.

lim
n→∞

∥∥∥∥∥∥F
 J∑
j=1

Uj,n

− J∑
j=1

F (Uj,n)

∥∥∥∥∥∥
Z(Jn)

= 0.

lim sup
n→∞

∥∥∥∥∥∥
J∑
j=1

Uj,n

∥∥∥∥∥∥
Y (Jn)

≤

 J∑
j=1

‖Uj‖pY (I′j)

1/p

.

Proof We use an induction

lim sup
n→∞

∥∥∥∥∥∥F
 J∑
j=1

Uj,n

− F
J−1∑
j=1

Uj,n

− F (UJ,n)

∥∥∥∥∥∥
Z(Jn)

= lim sup
n→∞

∥∥∥∥∥∥
UJ,n ∫ 1

0

F ′

τUJ,n +

J−1∑
j=1

Uj,n

 dτ

− [UJ,n ∫ 1

0

F ′(τUJ,n)dτ

]∥∥∥∥∥∥
Z(Jn)

= lim sup
n→∞

∥∥∥∥∥∥
UJ,n J−1∑

j=1

Uj,n

∫ 1

0

∫ 1

0

F ′′

τUJ,n + τ̃

J−1∑
j=1

Uj,n

 dτ̃dτ

∥∥∥∥∥∥
Z(Jn)

≤ lim sup
n→∞

Cp

J−1∑
j=1

‖UJ,nUj,n‖
L

p
1+sp L

p
2−sp (Jn×R3)

 J∑
j=1

‖Uj,n‖Y (Jn)

p−2

≤ lim sup
n→∞

Cp

J−1∑
j=1

‖UJ,nUj,n‖
L

p
1+sp L

p
2−sp (Jn×R3)

 J∑
j=1

‖Uj‖Y (I′j)

p−2

= 0.
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In the last step we use Lemma 3.10. This finishes the proof of the first limit. The second limit
is a corollary:

lim sup
n→∞

∥∥∥∥∥∥
J∑
j=1

Uj,n

∥∥∥∥∥∥
p

Y (Jn)

= lim sup
n→∞

∥∥∥∥∥∥F
 J∑
j=1

Uj,n

∥∥∥∥∥∥
Z(Jn)

≤ lim sup
n→∞

 J∑
j=1

‖F (Uj,n)‖Z(Jn)


≤ lim sup

n→∞

 J∑
j=1

‖Uj,n‖pY (Jn)


≤

J∑
j=1

‖Uj‖pY (I′j).

Remark 3.12. The same result still holds if we arbitrarily select a few profiles from Uj’s. More
precisely, if the inequality ‖Ujk‖Y (I′jk

) < ∞ holds for each positive integers j1 < j2 < · · · < jm,

then we have

lim
n→∞

∥∥∥∥∥F
(

m∑
k=1

Ujk,n

)
−

m∑
k=1

F (Ujk,n)

∥∥∥∥∥
Z(Jn)

= 0;

lim sup
n→∞

∥∥∥∥∥
m∑
k=1

Ujk,n

∥∥∥∥∥
Y (Jn)

≤

(
m∑
k=1

‖Ujk‖
p
Y (I′jk

)

)1/p

;

as long as Jn ⊆ ∩mk=1(tjk,n + λjk,nI
′
jk

) holds for all sufficiently large n.

Lemma 3.13 (Commutator Estimate). Assume I ′j ⊆ Ij so that ‖Uj‖Y (I′j) < ∞. If we define

the error term
ej,n = (∂2

t −∆)Uj,n − φF (Uj,n),

then we have lim
n→∞

‖ej,n‖Z(λj,nI′j+tj,n) = 0.

Proof. First of all, applying a space-time dilation we have

∂2
tUj −∆Uj = φ̃(x)F (Uj) =⇒ (∂2

t −∆)Uj,n = φ̃

(
x

λj,n

)
F (Uj,n).

Here φ̃(x) is chosen as in Definition 3.7. Thus we have

‖ej,n‖Z(λj,nI′j+tj,n) =

∥∥∥∥(φ̃( x

λj,n

)
− φ(x)

)
F (Un,j)

∥∥∥∥
Z(λj,nI′j+tj,n)

=
∥∥∥(φ̃ (x)− φ(λj,nx)

)
F (Uj)

∥∥∥
Z(I′j)

→ 0

by the dominated convergence theorem and the (almost everywhere) point-wise limit φ(λj,nx)→
φ̃(x).

4 Compactness Procedure

In this section we prove the existence of a critical element and its compactness properties.
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Theorem 4.1. If Sc(A) breaks down at A = M , then there exists a radial critical element u,
also called a minimal blow-up4 solution, such that it satisfies

(i) Its maximal lifespan is R;

(ii) It fails to scatter in both time directions with ‖u‖Y ([0,∞)) = ‖u‖Y ((−∞,0]) = +∞.

(iii) The upper bound of its critical Sobolev norm is equal to M .

sup
t∈R
‖(u(·, t), ∂tu(·, t))‖Ḣsp×Ḣsp−1(R3) = M.

(iv) The set {(u(·, t), ∂tu(·, t))|t ∈ R} is pre-compact in the space Ḣsp × Ḣsp−1(R3).

Remark 4.2. Theorem 4.1 also holds in non-radial case. In the non-radial case we need to
consider spatial translations in the profile decomposition as well, i.e. we introduce additional
parameters xj,n ∈ R3 and substitute x by x − xj,n in (2). The way to deal with these addition
parameters xj,n can be found in [49], which discusses energy critical wave equation with a similar
nonlinearity. We also need to apply the non-radial version of Theorem 1.1 in this argument. Our
rigidity argument in this work, however, only works for radial solutions.

4.1 Setup

Now let us assume that the statement Sc(A) breaks down at A = M . We spend the rest of
this section to show the existence of a critical element. First of all, we can take a sequence of
non-scattering radial solutions vn(x, t) with maximal lifespans (−T̃−n , T̃+

n ) so that

‖vn‖Y ([0,T̃+
n )) = +∞; sup

t∈[0,T̃+
n )

‖(vn(·, t), ∂tvn(·, t))‖H < M + 2−n.

Using the first condition above, we can find a time t̃n ∈ [0, T̃+
n ) for each n, such that ‖vn‖Y ([0,t̃n]) =

2n. Time translations then give a sequence of new solutions to (CP1) by the formula un(x, t)
.
=

vn(x, t+ t̃n). These solutions {un} satisfy:

(i) Each solution un blows up in the positive time direction, i.e ‖un‖Y ([0,T+
n )) = +∞.

(ii) ‖un‖Y ((−T−n ,0]) > 2n.

(iii) The inequality ‖(un(·, t), ∂tun(·, t)‖H < M + 2−n holds for each t ∈ [0, T+
n ) and for each

t < 0 that satisfies ‖un‖Y ([t,0]) ≤ 2n.

Here the notation (−T−n , T+
n ) represents the maximal lifespan of un. We apply the profile de-

composition (Theorem 3.1) on the sequence of initial data {(u0,n, u1,n)} = {(un(·, 0), ∂tun(·, 0))},
introduce the nonlinear profiles Uj and then define the approximation solutions Uj,n as described
in Section 3. The conclusion (iv) of the profile decomposition gives

∞∑
j=1

‖Vj‖2H =

∞∑
j=1

‖(vj,0, vj,1)‖2H ≤M2. (6)

This implies that ‖(Uj(·, tj), ∂tUj(·, tj))‖H → 0 as j → ∞ since the definition of the nonlinear
profiles implies (if tj = ±∞, the left hand below is in the sense of limit as t→ tj)

‖(Uj(·, tj), ∂tUj(·, tj))‖H = ‖Vj‖H .

According to Theorem 2.9, it follows that Uj scatters in both time directions when j > J0 for
some sufficiently large J0. In addition, we have

‖Uj‖Y (R) .p ‖(Uj(·, tj), ∂tUj(·, tj))‖H = ‖Vj‖H , if j > J0 =⇒
∞∑

j=J0+1

‖Uj‖pY (R) <∞. (7)

4Blow-up here simply means non-scattering. The solution does not necessarily blow up in finite time.
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4.2 A Single Profile May Survive

In this subsection we show all but one profile must be zero. Let us suppose that there were at
least two nonzero profiles, say U1 and U2. This implies

ε0 = min {‖V1‖H , ‖V2‖H} = min {‖(v1,0, v1,1)‖H , ‖(v2,0, v2,1)‖H} > 0. (8)

According to (6), we can always assume

∞∑
j=J0+1

‖Vj‖2H =

∞∑
j=J0+1

‖(vj,0, vj,1)‖2H <
ε2

0

9
, (9)

by possibly raising the value of J0.

Lemma 4.3. Given any J > J0, we have

lim sup
n→∞

∥∥∥∥∥∥
J∑

j=J0+1

(Uj,n(·, 0), ∂tUj,n(·, 0))

∥∥∥∥∥∥
H

<
ε0

3
.

Proof. By Remark 3.8 and Lemma 3.2, we have

lim sup
n→∞

∥∥∥∥∥∥
J∑

j=J0+1

(Uj,n(·, 0), ∂tUj,n(·, 0))

∥∥∥∥∥∥
2

H

= lim sup
n→∞

∥∥∥∥∥∥
J∑

j=J0+1

SL(−tj,n)Tλj,n
(v0,j , v1,j)

∥∥∥∥∥∥
2

H

= lim sup
n→∞

J∑
j=J0+1

∥∥SL(−tj,n)Tλj,n
(v0,j , v1,j)

∥∥2

H

= lim sup
n→∞

J∑
j=J0+1

‖Vj‖2H <
ε2

0

9
.

Remark 4.4. A similar argument as above shows that if j1 < j2 < · · · < jm are positive integers,
then we have

lim
n→∞

∥∥∥∥∥
m∑
k=1

(Ujk,n(·, 0), ∂tUjk,n(·, 0))

∥∥∥∥∥
2

H

=

m∑
k=1

‖Vjk‖2H .

Asymptotic behaviour If j > J0, then we have already shown that the nonlinear profile
Uj scatters. We always choose I ′j = R in this case. Otherwise, if j ≤ J0, let us consider the
behaviour of Uj(x, t) as t goes to +∞. There are two cases:

(I) Uj scatters in the positive time direction. Let us choose a time interval

I ′j = [t−j ,+∞) =


[t−j ,+∞), if − tj,n/λj,n → tj ∈ R, here we fix t−j ∈ (−∞, tj) ∩ Ij ;
(−∞,+∞), if − tj,n/λj,n → −∞;
[t−j ,+∞), if − tj,n/λj,n → +∞, here we fix t−j ∈ Ij .

(II) Uj does not scatter with a maximal lifespan (−T−j , T
+
j ), thus tj < +∞. By our assumption

on M (if λj = 1) or Proposition 2.14 (if λj ∈ {0,+∞}), we always have

sup
t∈(tj ,T

+
j )

‖(Uj(·, t), ∂tUj(·, t))‖H ≥M.
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As a result, we can find a time Tj ∈ (tj , T
+
j ) so that

‖(Uj(·, Tj), ∂tUj(·, Tj))‖H >

√
M2 − 1

2
[η(ε0/2)]2, (10)

where the function η is the one given in Corollary 2.10, and choose

I ′j = [t−j , Tj ] =

{
[t−j , Tj ], if − tj,n/λj,n → tj ∈ R, here we fix t−j ∈ (−∞, tj) ∩ Ij ;
(−∞, Tj ], if − tj,n/λj,n → −∞.

In summary, we always have ‖Uj‖Y (I′j) < ∞. If n is sufficiently large, we have −tj,n/λj,n is

contained in the interior of I ′j for all j. Without loss of generality, we can assume that this
happens for all j, n.

Approximation Solutions Now let us define

t̄n = sup
{
t > 0

∣∣∣t ∈ ∩J0j=1

(
tj,n + λj,nI

′
j

)}
.

This is either a positive number or undefined. The second case may happen only if all profiles Uj
scatter in the positive time direction. In this case we interpret t̄n ≡ ∞. The definition actually
implies

[0, t̄n] ⊆ ∩∞j=1

(
tj,n + λj,nI

′
j

)
.

According to the profile decomposition and Remark 3.8, we can write

(u0,n, u1,n) =

J∑
j=1

(Uj,n(·, 0), ∂tUj,n(·, 0)) + (wJ0,n, w
J
1,n). (11)

with

lim sup
n→∞

∥∥(wJ0,n, w
J
1,n)
∥∥
H
≤M ; lim sup

n→∞

∥∥SL,0(t)(wJ0,n, w
J
1,n)
∥∥
Y (R)

→ 0 as J → 0. (12)

Please note that this new error term (wJ0,n, w
J
1,n) is different from the one given in the linear

profile decomposition. It also covers the error created by the substitution of the linear profiles by
their nonlinear counterparts. In addition, we have that the sum SJ,n

.
=
∑J
j=1 Uj,n is a solution

of the equation
∂2
t u−∆u = φF (u) + ErrJ,n (13)

in the time interval [0, t̄n]. Here the error term ErrJ,n is defined by

ErrJ,n = −φF

 J∑
j=1

Uj,n

+

J∑
j=1

φF (Uj,n) +

J∑
j=1

[
∂2
tUj,n −∆Uj,n − φF (Uj,n)

]
.

By Lemma 3.11, Lemma 3.13 and the inequality (7), we have

lim
n→∞

‖ErrJ,n‖Z([0,t̄n]) = 0; (14)

lim sup
n→∞

‖SJ,n‖pY ([0,t̄n]) ≤
J∑
j=1

‖Uj‖pY (I′j) ≤
J0∑
j=1

‖Uj‖pY (I′j) +

∞∑
j=J0+1

‖Uj‖pY (R) <∞. (15)

The upper bound in the second line above is independent of J .

Proposition 4.5. Let Uj be non-linear profiles introduced in Subsection 4.1. The exists at least
one profile Uj so that it does not scatter at the positive direction.
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Proof. If it were false, then we would have t̄n = ∞ for all n ∈ Z+. We can choose a sequence
{Jk, nk}k∈Z+ , such that

lim
k→∞

∥∥∥SL,0(t)(wJk0,nk
, wJk1,nk

)
∥∥∥
Y (R)

= 0;

lim
k→∞

‖ErrJk,nk
‖Z([0,∞)) = 0;

‖SJk,nk
‖pY ([0,∞)) ≤

J0∑
j=1

‖Uj‖pY (I′j) +

∞∑
j=J0+1

‖Uj‖pY (R) + 1 <∞.

Observing equation (11) and (13), we can apply the long-time perturbation theory on the ap-
proximation solutions SJk,nk

, the initial data (u0,nk
, u1,nk

) as well as the time interval [0,∞)
and finally obtain that unk

scatters in the positive time direction if k is sufficiently large. This
is a contradiction.

Now we know t̄n ∈ (0,∞). In addition, for each large n, there is a j ≤ J0 such that Uj does
not scatter in the positive time direction with t̄n = λj,nTj + tj,n. By passing to a subsequence,
we can assume that the same j = j0 works for all sufficiently large n.

Proposition 4.6. The pairs (Uj0,n(·, t̄n), ∂tUj0,n(·, t̄n)) and (Uj,n(·, t̄n), ∂tUj,n(·, t̄n)) are almost

orthogonal in the space H = Ḣsp × Ḣsp−1 if j 6= j0. Namely, we have

lim
n→∞

〈(Uj0,n(·, t̄n), ∂tUj0,n(·, t̄n)) , (Uj,n(·, t̄n), ∂tUj,n(·, t̄n))〉H = 0.

Proof. We have

(Uj0,n(t̄n), ∂tUj0,n(t̄n)) =

(
1

λ
3/2−sp
j0,n

Uj0

(
x

λj0,n
, Tj0

)
,

1

λ
5/2−sp
j,n

∂tUj0

(
x

λj0,n
, Tj0

))
;

(Uj,n(t̄n), ∂tUj,n(t̄n)) =

(
1

λ
3/2−sp
j,n

Uj

(
x

λj,n
,
t̄n − tj,n
λj,n

)
,

1

λ
5/2−sp
j,n

∂tUj

(
x

λj,n
,
t̄n − tj,n
λj,n

))
.

Since the dot product is dilation-invariant, we can rewrite the dot product in question into〈
(Uj0(x, Tj0), ∂tUj0(x, Tj0)) ,

((
λj0,n
λj,n

) 3
2−sp

Uj

(
λj0,nx

λj,n
, t′n

)
,

(
λj0,n
λj,n

) 5
2−sp

∂tUj

(
λj0,nx

λj,n
, t′n

))〉
.

Here t′n =
t̄n − tj,n
λj,n

=
Tj0λj0,n + tj0,n − tj,n

λj,n
∈ I ′j . By the inequality |t′n| ≥ −

λj0,n
λj,n

|Tj0 | +

|tj0,n − tj,n|
λj,n

and the almost orthogonal condition, we have

lim
n→∞

λj0,n
λj,n

+
λj,n
λj0,n

+ |t′n| = +∞.

By the fact that Uj(t) always scatters in the corresponding time direction whenever I ′j contains
a neighbourhood of ∞ or −∞, the limit above implies that the second factor in the dot product
above converges weakly to zero in H, this finishes the proof.

Approximation Solutions without Uj0,n Now let us define (J ≥ J0)

S′J,n =
∑

1≤j≤J,j 6=j0

Uj,n.
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The function S′J,n is the solution to

∂2
t u−∆u = φF (u) + Err′J,n (16)

The error term is given by

Err′J,n = −φF
(
S′J,n

)
+

∑
1≤j≤J,j 6=j0

φF (Uj,n) +
∑

1≤j≤J,j 6=j0

[
∂2
tUj,n −∆Uj,n − φF (Uj,n)

]
.

By Remark 3.12, and Lemma 3.13, we have

lim
n→∞

‖Err′J,n‖Z([0,t̄n]) = 0; (17)

lim sup
n→∞

∥∥S′J,n∥∥pY ([0,t̄n])
≤

∑
1≤j≤J,j 6=j0

‖Uj‖pY (I′j) ≤
J0∑
j=1

‖Uj‖pY (I′j) +

∞∑
j=J0+1

‖Uj‖pY (R) <∞. (18)

Choice of n(J) For each J > J0, we can choose a large positive integer n(J) so that (See (12),
(14), (15), (17), (18), Lemma 4.3 and Lemma 4.6)

n(J) > J ; (19)

∥∥SJ,n(J)

∥∥
Y ([0,t̄n(J)])

≤

 J0∑
j=1

‖Uj‖pY (I′j) +
∞∑

j=J0+1

‖Uj‖pY (R) + 1

1/p

; (20)

‖S′J,n(J)‖Y ([0,t̄n(J)]) ≤

 J0∑
j=1

‖Uj‖pY (I′j) +

∞∑
j=J0+1

‖Uj‖pY (R) + 1

1/p

; (21)

∥∥∥∥∥∥
J∑

j=J0+1

(
Uj,n(J)(·, 0), ∂tUj,n(J)(·, 0)

)∥∥∥∥∥∥
H

≤ ε0

3
; (22)

‖ErrJ,n(J)‖Z([0,t̄n(J)]) ≤ 2−J ; (23)

‖Err′J,n(J)‖Z([0,t̄n(J)]) ≤ 2−J ; (24)∣∣∣∣〈( Uj0,n(J)(t̄n(J))
∂tUj0,n(J)(t̄n(J))

)
,

(
Uj,n(J)(t̄n(J))
∂tUj,n(J)(t̄n(J))

)〉
H

∣∣∣∣ ≤ 2−J

J
, if 1 ≤ j ≤ J, j 6= j0; (25)

lim
J→∞

∥∥∥SL,0(t)(wJ0,n(J), w
J
1,n(J))

∥∥∥
Y (R)

= 0; (26)∥∥∥(wJ0,n(J), w
J
1,n(J))

∥∥∥
H
≤M + 1. (27)

Combining the equation (11), (13) and the inequalities (20), (23), (26), (27), we can apply long-
time perturbation theory on the approximation solution SJ,n(J), the initial data (u0,n(J), u1,n(J))
as well as the time interval [0, t̄n(J)], conclude t̄n(J) is in the maximal lifespan of un(J) and obtain

lim
J→∞

∥∥un(J) − SJ,n(J)

∥∥
Y ([0,t̄n(J)])

= 0.

lim
J→∞

∥∥∥∥∥
(
un(J)(·, t̄n(J))
∂tun(J)(·, t̄n(J))

)
−
(
SJ,n(J)(·, t̄n(J))
∂tSJ,n(J)(·, t̄n(J))

)
− SL(t̄n(J))

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
H

= 0,

if J is sufficiently large. Therefore we have

lim sup
J→∞

∥∥(un(J)(·, t̄n(J)), ∂tun(J)(·, t̄n(J))
)∥∥
H

= lim sup
J→∞

∥∥∥∥∥
(
SJ,n(J)(·, t̄n(J))
∂tSJ,n(J)(·, t̄n(J))

)
+ SL(t̄n(J))

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
H

. (28)
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By (26), (27), Lemma 3.4 and the identity(
Uj0,n(J)(·, t̄n(J))
∂tUj0,n(J)(·, t̄n(J))

)
= Tλj0,n(J)

(
Uj0 (·, Tj0)
∂tUj0 (·, Tj0)

)
,

We have

lim
J→∞

〈(
Uj0,n(J)(·, t̄n(J))
∂tUj0,n(J)(·, t̄n(J))

)
,SL(t̄n(J))

(
wJ0,n(J)

wJ1,n(J)

)〉
H

= 0.

Combining this with (25) and (28), we obtain

lim sup
J→∞

∥∥(un(J)(·, t̄n(J)), ∂tun(J)(·, t̄n(J))
)∥∥2

H

= lim sup
J→∞

∥∥∥∥( Uj0,n(J)(·, t̄n(J))
∂tUj0,n(J)(·, t̄n(J))

)∥∥∥∥2

H

+

∥∥∥∥∥
(
S′J,n(J)(·, t̄n(J))

∂tS
′
J,n(J)(·, t̄n(J))

)
+ SL(t̄n(J))

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
2

H


=

∥∥∥∥( Uj0 (·, Tj0)
∂tUj0 (·, Tj0)

)∥∥∥∥2

H

+ lim sup
J→∞

∥∥∥∥∥
(
S′J,n(J)(·, t̄n(J))

∂tS
′
J,n(J)(·, t̄n(J))

)
+ SL(t̄n(J))

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
2

H

. (29)

Now let us find a lower bound on the second term above. First of all, by (22) we have∥∥∥∥∥
(
S′J,n(J)(·, 0)

∂tS
′
J,n(J)(·, 0)

)
+

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
H

≥

∥∥∥∥∥
(
S′J0,n(J)(·, 0)

∂tS
′
J0,n(J)(·, 0)

)
+

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
H

− ε0

3
. (30)

By (26), (27) and the identity
(
−tj,n(J)

λj,n(J)
∈ I ′j

)
(
S′J0,n(J)(·, 0)

∂tS
′
J0,n(J)(·, 0)

)
=

∑
1≤j≤J0,j 6=j0

Tλj,n(J)

 Uj

(
·, −tj,n(J)

λj,n(J)

)
∂tUj

(
·, −tj,n(J)

λj,n(J)

) ,

we can apply Lemma 3.4 and obtain

lim
J→∞

〈(
S′J0,n(J)(·, 0)

∂tS
′
J0,n(J)(·, 0)

)
,

(
wJ0,n(J)

wJ1,n(J)

)〉
H

= 0.

Using this limit, Remark 4.4 and the lower bound (8), we have

lim inf
J→∞

∥∥∥∥∥
(
S′J0,n(J)(·, 0)

∂tS
′
J0,n(J)(·, 0)

)
+

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
2

H

≥ lim inf
J→∞

∥∥∥∥∥
(
S′J0,n(J)(·, 0)

∂tS
′
J0,n(J)(·, 0)

)∥∥∥∥∥
2

H

=
∑

1≤j≤J0,j 6=j0

‖Vj‖2H ≥ ε2
0.

Combining this estimate with (30), we have an estimate on the norm of(
u′0,J
u′1,J

)
.
=

(
S′J,n(J)(·, 0)

∂tS
′
J,n(J)(·, 0)

)
+

(
wJ0,n(J)

wJ1,n(J)

)
(31)

given by

lim inf
J→∞

‖(u′0,J , u′1,J)‖H ≥
2ε0

3
. (32)

Let u′J be the solution to (CP1) with the initial data (u′0,J , u
′
1,J). By equation (16), identity (31),

estimates (21), (24), (26), we can apply the long-time perturbation theory on the approximation
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solution S′J,n(J), the initial data (u′0,J , u
′
1,J) as well as the time interval [0, t̄n(J)], thus conclude

that t̄n(J) is contained in the maximal lifespan of u′J for large J with

lim
J→∞

∥∥∥∥∥
(
u′J(·, t̄n(J))
∂tu
′
J(·, t̄n(J))

)
−

(
S′J,n(J)(·, t̄n(J))

∂tS
′
J,n(J)(·, t̄n(J))

)
− SL(t̄n(J))

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
H

= 0, (33)

This implies

lim sup
J→∞

∥∥∥∥∥
(
S′J,n(J)(·, t̄n(J))

∂tS
′
J,n(J)(·, t̄n(J))

)
+ SL(t̄n(J))

(
wJ0,n(J)

wJ1,n(J)

)∥∥∥∥∥
2

H

= lim sup
J→∞

∥∥∥∥( u′J(·, t̄n(J))
∂tu
′
J(·, t̄n(J))

)∥∥∥∥2

H

≥ [η(ε0/2)]2.

In the last step above, we use the lower bound on the initial data (32) and Corollary 2.10.
Combining this with (10) and (29), we obtain

lim sup
J→∞

∥∥(un(J)(·, t̄n(J)), ∂tun(J)(·, t̄n(J))
)∥∥2

H
≥M2 − 1

2
[η(ε0/2)]2 + [η(ε0/2)]2 > M2.

This contradicts with our assumption (iii) on un.

4.3 Extraction of a Critical Element

Now there is only one nonzero profile U1 with a maximal lifespan I1. The profile decomposition
can be rewritten into

(u0,n, u1,n) = (U1,n (·, 0) , ∂tU1,n (·, 0)) + (w0,n, w1,n) (34)

=

(
1

λ
3/2−sp
1,n

U1

(
·

λ1,n
,
−t1,n
λ1,n

)
,

1

λ
5/2−sp
1,n

∂tU1

(
·

λ1,n
,
−t1,n
λ1,n

))
+ (w0,n, w1,n)

Here U1,n is defined for all t ∈ t1,n + λ1,nI1 and satisfies the equation

∂2
t u−∆u = φF (u) + Err1,n, (35)

so that if I ′1 ⊆ I1 is any time interval such that ‖U1‖Y (I′1) <∞, then we have the identity

‖U1,n‖Y (t1,n+λ1,nI′1) = ‖U1‖Y (I′1) <∞, (36)

and limits

lim sup
n→∞

‖(w0,n, w1,n)‖H ≤M ; (37)

lim
n→∞

‖SL,0(t)(w0,n, w1,n)‖Y (R) = 0; (38)

lim
n→∞

‖Err1,n‖Z(t1,n+λ1,nI′1) = 0; (39)

lim
t→t1
‖(U1(·, t), ∂tU1(·, t))‖H = ‖V1‖H ≤M. (40)

We have already shown that U1 does not scatter in the positive time direction by Proposition
4.5, thus here −t1,n/λ1,n → t1 < +∞.

U1 fails to scatter in the negative direction Let us do the negative direction by a contra-
diction. If U1 scatters in the negative time direction, we can choose an interval I ′1 = (−∞, t+1 ],
where t+1 > t1 is a fixed time in I1, so that ‖U1‖Y (I′1) < ∞. By the profile decomposition (34),
the fact that U1,n satisfies equation (35), inequality (36), limits (38), (39) and the fact that
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(−∞, 0] ⊆ t1,n + λ1,nI
′
1 holds for large n, we are able to apply the long-time perturbation the-

ory on the approximation solution U1,n, the initial data (u0,n, u1,n) as well as the time interval
(−∞, 0], thus to conclude that (−∞, 0] is contained in the maximal lifespan of un if n is large
with

lim
n→∞

‖un − U1,n‖Y ((−∞,0]) = 0.

This means that lim sup
n→∞

‖un‖Y ((−∞,0]) ≤ ‖U1‖Y (I′1) <∞. This contradicts with our assumption

(ii) on {un}. One direct corollary is that t1 is finite.

Upper bound on the norm of U1 Since t1 is finite, we have ‖(U1(·, t1), ∂tU1(·, t1))‖H ≤M
by (40). Now we claim

sup
t∈I1
‖(U1(·, t), ∂tU1(·, t))‖H ≤M. (41)

If this were false, we would have T1 ∈ I1 \ {t1} such that ‖(U1(·, T1), ∂tU1(·, T1))‖H > M . A
Contradiction can be found immediately by the following lemma.

Lemma 4.7. Assume T ∈ I1 \ {t1}. If we define t̄n = t1,n + λ1,nT and

Jn =

{
[t̄n, 0] if T < t1;
[0, t̄n] if T > t1;

then for sufficiently large n we have

(i) t̄n is contained in the maximal lifespan of un;

(ii) lim sup
n→∞

‖un‖Y (Jn) <∞;

(iii) lim sup
n→∞

∥∥∥∥( un(·, t̄n)
∂tun(·, t̄n)

)∥∥∥∥2

H

≥
∥∥∥∥( U1(·, T )
∂tU1(·, T )

)∥∥∥∥2

H

+ lim sup
n→∞

∥∥∥∥(w0,n

w1,n

)∥∥∥∥2

H

.

Proof. Without loss of generality we can assume T < t1. Let us pick up a real number t+1 ∈
(t1,∞) ∩ I1 and choose I ′1 = [T, t+1 ] ⊂ I1. Thus we have ‖U1‖Y (I′1) < ∞. One can also check
that t̄n < 0 and [t̄n, 0] ⊆ t1,n + λ1,nI

′
1 hold if n is sufficiently large. As a result, we have

‖U1,n‖Y ([t̄n,0]) ≤ ‖U1‖Y (I′1) <∞. (42)

Now we are able to apply the long-time perturbation theory on approximation solution U1,n,
initial data (u0,n, u1,n) and the interval [t̄n, 0] if n is large by using the profile decomposition
(34), the approximation equation (35), limits (37), (38), (39) and the uniform upper bound (42).
We conclude that [t̄n, 0] is contained in the lifespan of un if n is large and

lim
n→∞

‖un − U1,n‖Y ([t̄n,0]) = 0; (43)

lim
n→∞

∥∥∥∥( un(·, t̄n)
∂tun(·, t̄n)

)
−
(
U1,n(·, t̄n)
∂tU1,n(·, t̄n)

)
− SL(t̄n)

(
w0,n

w1,n

)∥∥∥∥
H

= 0. (44)

Thus the conclusion (ii) can be proved by using inequality (42) and limit (43):

lim sup
n→∞

‖un‖Y ([t̄n,0]) = lim sup
n→∞

‖U1,n‖Y ([t̄n,0]) ≤ ‖U1‖Y (I′1) <∞.
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Furthermore, limit (44) gives us

lim sup
n→∞

∥∥∥∥( un(·, t̄n)
∂tun(·, t̄n)

)∥∥∥∥2

H

= lim sup
n→∞

∥∥∥∥( U1,n(·, t̄n)
∂tU1,n(·, t̄n)

)
+ SL(t̄n)

(
w0,n

w1,n

)∥∥∥∥2

H

= lim sup
n→∞

∥∥∥∥Tλ1,n

(
U1(·, T )
∂tU1(·, T )

)
+ SL(t̄n)

(
w0,n

w1,n

)∥∥∥∥2

H

≥ lim
n→∞

∥∥∥∥Tλ1,n

(
U1(·, T )
∂tU1(·, T )

)∥∥∥∥2

H

+ lim sup
n→∞

∥∥∥∥SL(t̄n)

(
w0,n

w1,n

)∥∥∥∥2

H

=

∥∥∥∥( U1(·, T )
∂tU1(·, T )

)∥∥∥∥2

H

+ lim sup
n→∞

∥∥∥∥(w0,n

w1,n

)∥∥∥∥2

H

.

Here we use (37), (38) and apply Lemma 3.4. This finishes the proof of conclusion (iii).

The nonlinear profile is a critical element Now we can conclude that U1 is a solution
to ∂2

t u − ∆u = φF (u). This is equivalent to saying λ1,n → λ1 = 1. If this were false, we
would have that U1 is a solution to ∂2

t u −∆u = cF (u), where c is a constant. Using (41) and
applying Proposition 2.14, we conclude that U1 scatters in both two time directions. This is a
contradiction.

The least upper bound of H norm Finally we can conclude

sup
t∈I1
‖(U1(·, t), ∂tU1(·, t))‖H = M. (45)

According to (41), we only to show the upper bounds above can not be smaller than M . This
is trivial since we have assumed that Sc(M) holds and we have shown that U1 fails to scatter in
both two time directions.

Summary Now we have extracted a critical element U1. It blows up in both time directions
and satisfies (45). In order to finish the proof of Theorem 4.1, we still need to show that the
maximal lifespan I1 = R and the pre-compactness of the set {(U1(·, t), ∂tU1(·, t))|t ∈ R}. This
will be done in Subsection 4.4.

4.4 Almost Periodicity

We start by proving some further properties concerning the single-profile representation (34).

Proposition 4.8. The sequence of error terms (w0,n, w1,n) in (34) converges to zero strongly
in the space H. Namely, we have

lim
n→∞

‖(w0,n, w1,n)‖H = 0.

Proof. By (45), we can pick up a sequence Tk ∈ I1 \{t1}, such that ‖(U1(·, Tk), ∂tU1(·, Tk))‖H >
M − 2−k. Applying Lemma 4.7 with T = Tk, we obtain

lim sup
n→∞

‖(w0,n, w1,n)‖2H ≤M
2 − (M − 2−k)2

by its conclusion (ii), (iii) and our assumption (iii) on {un}. We can finish the proof by making
k →∞.
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Compactness of initial data Now we can give a compactness result.

Proposition 4.9. Let {(u0,n, u1,n)}n∈Z+ be a sequence of radial initial data and {un} be their
corresponding solutions to (CP1), so that {un} satisfies the conditions (i), (ii) and (iii) listed
at the beginning of Subsection 4.1. Then there exists a subsequence of the initial data, so that it
converges strongly in the space Ḣsp × Ḣsp−1(R3).

Proof. We have already found a subsequence, still denoted {(u0,n, u1,n)}, so that the single-
profile representation (34) holds. Combining the facts λ1,n → λ1 = 1, −t1,n/λ1,n → t1 ∈ I1,

(U1(·, t), ∂tU1(·, t)) ∈ C(I1; Ḣsp × Ḣsp−1) and Proposition 4.8, we have the strong limit

(u0,n, u1,n)→ (U1(·, t1), ∂tU1(·, t1)) in Ḣsp × Ḣsp−1(R3).

Almost periodicity of the critical element Now we are able to conclude the set

{(u(·, t), ∂tu(·, t)|t ∈ I1}

is pre-compact in the space Ḣsp × Ḣsp−1(R3). In fact, if {tn}n∈Z+ is a sequence of time in
I1, then the time-translated solutions U1(t+ tn) solve (CP1) and satisfy the conditions (i), (ii),
(iii) listed at the beginning of Subsection 4.1, with initial data (U1(·, tn), ∂tU1(·, tn)). Now we
can apply Proposition 4.9, conclude that the sequence {(U1(·, tn), ∂tU1(·, tn))} has a convergent
subsequence and thus finish the proof.

4.5 Global Existence and Completion of the Proof

According to Remark 2.13, the compactness result above implies that there exists a positive
constant ε, such that

t0 ∈ I1 =⇒ [t0 − ε, t0 + ε] ⊆ I1.

This means that I1 = R. Collecting all information about U1, finally we are able to finish the
proof of Theorem 4.1.

5 Further Properties of the Critical Element

In this section we show that the critical element has to satisfy further regularity conditions. The
argument is similar to the one we used for the special case φ(x) ≡ ±1. The radial assumption
plays an important role in this argument. If u(x, t) is a radial function, then we use the notation
u(r, t) for the value u(x, t) when |x| = r. The main idea is that if u is a radial solution to

∂2
t u−∆u = F1(|x|, t),

then the function w(r, t)
.
= ru(r, t) is a solution to the one-dimensional wave equation

∂2
tw − ∂2

rw = rF1(r, t).

A direct calculation shows

Lemma 5.1. Let (u(x, t0), ∂tu(x, t0)) be radial and in the energy space Ḣ1×L2 locally (possibly
away from the origin), then for any 0 < a < b <∞, we have the identity

1

4π

∫
a<|x|<b

(|∇u|2 + |∂tu|2)dx =

(∫ b

a

[(∂rw)2 + (∂tw)2]dr

)
+
(
au2(a)− bu2(b)

)
holds. Here we take the value of the functions at time t0.
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Higher regularity First of all, we claim that u is always more regular away from the origin.

Proposition 5.2. Assume 3 < p < 5. Let u be a radial solution to the wave equation

∂2
t u−∆u = F1(|x|, t),

defined for all t ∈ R so that

• The set {(u(·, t), ∂tu(·, t))|t ∈ R} is pre-compact in the space Ḣsp × Ḣsp−1(R3).

• The function F1(|x|, t) is in the space Z(I) for any bounded time interval I and satisfies

the inequality |F1(|x|, t)| ≤ C0|x|−
2p

p−1 for all (x, t) ∈ (R3 \ {0})× R.

Then (u(·, t), ∂tu(·, t)) ∈ C(R; Ḣ1 × L2(R3 \B(0, R))) with∫
R<|x|<4R

(
|∇u(x, t)|2 + |∂tu(x, t)|2

)
dx ≤ C1R

−2(1−sp). (46)

Here the constant C1 is independent of t and R.

Proof. A similar result has been proved in the author’s previous work [48], where we considered
a special case F1(|x|, t) = |u|p−1u. This general case can be proved in exactly the same way. In
general, we define w(r, t) = ru(r, t), then prove ∂rw(·, t), ∂tw(·, t) ∈ C(Rt;L2([R,∞))) for R > 0
with∫ 4R

R

[
(∂rw(r, t))2 + (∂tw(r, t))2

]
dr

≤ 1

2

∫ 4R

R

[(∫ ∞
0

(r + t′)F1(r + t′, t− t′)dt′
)2

+

(∫ ∞
0

(r + t′)F1(r + t′, t+ t′)dt′
)2
]
dr (47)

≤ C2R
−2(1−sp).

More details can be found in Section 4 of the work mentioned above. The main ingredients
of the proof include the transformation u → w as given above, the characteristic line method
of one-dimensional wave equation, Duhamel’s formula, strong Huygens’ principle and smooth
approximation techniques.

Behaviour near infinity Next we consider the behaviour of u(x, t) as |x| → +∞

Proposition 5.3. Assume 3 < p < 5. Let u be a radial solution to the wave equation

∂2
t u−∆u = F (|x|, u, t),

defined on all t ∈ R so that

• The set {(u(·, t), ∂tu(·, t))|t ∈ R} is pre-compact in the space Ḣsp × Ḣsp−1(R3).

• The function F (r, u, t) satisfies |F (r, u, t)| ≤ |u|p.

Then we have constants A ∈ R, C3, C4, C5 > 0 independent of t, r and x, such that

• The solution satisfies

|u(x, t)| ≤ C3

|x|
,

∣∣∣∣u(x, t)− A

|x|

∣∣∣∣ ≤ C4

|x|p−2
;

• We have an estimate on the local energy∫
r<|x|<4r

(
|∇u(x, t)|2 + |∂tu(x, t)|2

)
dx ≤ C5r

−1.
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Proof. Let us briefly outline the proof. More details of this argument can be found in Section 7
of [48]. Since w = ru solves one-dimensional wave equation ∂2

tw − ∆w = rF (r, u, t), we recall
d’Alembert formula and write

w(r, t0) =
1

2

[
w
(r

2
, t0 −

r

2

)
+ w

(
3r

2
, t0 −

r

2

)]
+

1

2

∫ 3r/2

r/2

∂tw
(
s, t0 −

r

2

)
ds

+
1

2

∫ r/2

0

∫ 3r
2 −t

r
2 +t

sF
(
s, u

(
s, t0 −

r

2
+ t
)
, t0 −

r

2
+ t
)
ds dt. (48)

Let us fix β0 = 3
2 − sp. For each β ∈ [β0, 1) we define a function

fβ(r) = sup
t∈R,|x|≥r

|x|β |u(x, t)|,

which helps us compare the decay rate of u with that of |x|−β as |x| → ∞. Let us assume
fβ(r) → 0 as r → ∞, which is true at least for β = β0, thanks to Lemma 2.17. Now we use
the assumption |F (r, u, t)| ≤ |u|p, the upper bound |u(r, t)| ≤ r−βf(r) ≤ r−βf(r/2) and the
inequality (47) with F1(r, t) = F (r, u, t) on the right hand of (48), divide both sides by r1−β and
finally obtain

rβ |u(r, t0)| ≤
[
g(β) + Cpf

p−1
β

(r
2

)
r2−(p−1)β

]
fβ

(r
2

)
. (49)

Here

g(β) =
1

2

[(
3

2

)1−β

+

(
1

2

)1−β
]
< 1,

We observe that the right hand side of (49) is a non-increasing function of r, take the least upper
bound on both sides for all r > r0 and obtain

fβ(r0) ≤
[
g(β) + Cpf

p−1
β

(r0

2

)
r

2−(p−1)β
0

]
fβ

(r0

2

)
.

Since 2− (p− 1)β ≤ 0 and lim
r0→∞

fβ(r0/2) = 0, we have

fβ(r) ≤ g(β) + 1

2
fβ(r/2)

when r is sufficiently large. This implies that fβ decays at a rate at least comparable to that of
a small negative power of r. As a result, we can increase the value of β, iterate the argument
above and conclude that given any β ∈ [β0, 1), we have |u(r, t)| .β r−β for sufficiently large r.
Next we fix β = β(p) so that pβ − 3 > 0, then plug |F1(r, t)| = |F (r, u, t)| ≤ |u(r, t)|p . r−pβ in
inequality (47) and obtain the following estimates for large R:∫ 4R

R

[
(∂rw(r, t))2 + (∂tw(r, t))2

]
dr . R5−2pβ ⇒

∫ ∞
R

|∂rw(r, t)|dr . R3−pβ .

This implies that the limit of w(r, t) as r → ∞ always exists for any given t since 3 − pβ < 0.
Furthermore, the limit does not depend on t by the L2([R, 4R]) estimate of ∂tw(r, t) above. This
limit is the constant A. Next we may combine the L1([R,∞)) estimate of |∂rw| above with the
compactness assumption of (u, ∂tu) to conclude |w(r, t)| is uniformly bounded for all r, t. This
proves the inequality |u(x, t)| ≤ C3/|x|. Finally we plug |F1(r, t)| = |F (r, u, t)| ≤ |u(r, t)|p ≤
Cp3r

−p in inequality (47) and conclude∫ 4R

R

[
(∂rw(r, t))2 + (∂tw(r, t))2

]
dr . R5−2p ⇒

∫ ∞
R

|∂rw(r, t)|dr . R3−p.
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This immediately gives |w(r, t)−A| ≤ C4r
3−p ⇒ |u(x, t)−A/|x|| ≤ C4|x|2−p. Finally we apply

Lemma 5.1 and obtain∫
R<|x|<4R

(
|∇u(x, t)|2 + |∂tu(x, t)|2

)
dx . R−1. R > 1.

We combine this estimate (for R > 1) with Proposition 5.2 (for R ≤ 1) to finish the proof.

6 Stationary Solutions

In this section we construct a stationary solution to (CP1), i.e. a solution to the elliptic equation
−∆W = φ(x)|W |p−1W with a similar asymptotic behaviour to a critical element u when |x| is
large. More precisely, we prove

Proposition 6.1. Given any constant A, there exists a unique radial C2 solution W (x) =
WA,φ(x) to the elliptic equation −∆W = φ(x)|W |p−1W so that∣∣∣∣W (x)− A

|x|

∣∣∣∣ . 1

|x|p−2
, |∇W (x)| . 1

|x|2
, if |x| � 1.

In addition, the solution W and its maximal domain 5 Ω satisfy either of the following

(I) Ω = {x ∈ R3 : |x| > RW } and lim sup
|x|→R+

W

|W (x)| = +∞. Here RW > 0 is a constant.

(II) Ω = R3 \ {0} and W /∈ Ḣsp(R3). In this case RW = 0.

(III) Ω = R3 and W ∈ Ḣsp(R3). In this case we also define RW = 0.

Remark 6.2. If A = 0, then we always have W (x) ≡ 0.

6.1 Existence and Uniqueness

Proposition 6.3. Given any constant A, there exists a unique radial C2 solution W (x) to the
elliptic equation −∆W = φ(x)|W |p−1W so that∣∣∣∣W (x)− A

|x|

∣∣∣∣ . 1

|x|p−2
, |∇W (x)| . 1

|x|2
, if |x| � 1.

In addition, if W has a maximal domain {x ∈ R3 : |x| > RW } with a radius RW > 0, then
lim sup
|x|→R+

W

|W (x)| = +∞.

Proof. Let us rewrite W (x) into the form W (x) =
A+ ρ(|x|)
|x|

. Here ρ is a C2 function defined for

large positive real numbers r. The asymptotic behaviour of W near infinity implies ρ(r), ρ′(r)→
0 as r →∞. The elliptic equation −∆W = φ(x)|W |p−1W can be rewritten in term of ρ:

ρ′′(r) = −φ(r)F (ρ(r) +A)

rp−1
, F (u) = |u|p−1u. (50)

The first step is to show this equation has a unique solution defined on the interval [R1,∞) via
a fixed-point argument, where R1 is a large radius to be determined later. We define a complete
metric space

X =

{
ρ : ρ ∈ C([R1,∞); [−1, 1]), lim

r→+∞
ρ(r) = 0

}
5The maximal domain Ω means that W ∈ C2(Ω) solves the elliptic equation but we can not extend f to a C2

solution in a larger radially symmetric and connected region in R3. Here Ω is assumed to contain a neighbourhood
of infinity.
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with the distance d(ρ1, ρ2) = sup
r∈[R1,∞)

|ρ1(r)− ρ2(r)| and a map

(Lρ) (r) =

∫ ∞
r

∫ ∞
s

(
−φ(t)F (ρ(t) +A)

tp−1

)
dt ds.

Since the absolute value of the integrand never exceeds (1 + |A|)p/tp−1, this integral defines a
continuous function on [R1,∞). In addition, we have

|(Lρ) (r)| ≤
∫ ∞
r

∫ ∞
s

(1 + |A|)p

tp−1
dt ds ≤ Cp(1 + |A|)p

rp−3
; (51)

|(Lρ1) (r)− (Lρ2) (r)| ≤
∫ ∞
r

∫ ∞
s

p(1 + |A|)p−1d(ρ1, ρ2)

tp−1
dt ds ≤ Cp(1 + |A|)p−1

rp−3
d(ρ1, ρ2).

As a result, if we choose a sufficiently large R1 = R1(A, p), then the map L is a contraction map
on the space X. This enables us to apply a fixed-point argument and find a solution ρ to the
equation (50) defined on [R1,∞). Furthermore, we have an estimate on ρ′(r) when r ≥ R1:

|ρ′(r)| =
∣∣∣∣∫ ∞
r

(
φ(t)F (ρ(t) +A)

tp−1

)
dt

∣∣∣∣ ≤ Cp(1 + |A|)p

rp−2
.

Combing this upper bound on ρ′(r) with the upper bound (51) on ρ(r), we obtain the behaviour
of W (x) as |x| is large: ∣∣∣∣W (x)− A

|x|

∣∣∣∣ =
|ρ(|x|)|
|x|

.p,A
1

|x|p−2
;

|∇W (x)| =
∣∣∣∣ρ′(|x|)|x|

− A+ ρ(|x|)
|x|2

∣∣∣∣ .p,A 1

|x|2
.

The second step is to extend the solution ρ(r) to its maximal interval of existence (RW ,∞).
Basic theory of ordinary differential equations guarantees that the solution ρ (thus W in its
maximal domain) is unique in its maximal interval of existence. We still need to prove

lim sup
|x|→R+

W

|W (x)| = +∞

if RW > 0. This is equivalent to saying the upper limit of |ρ(r)| as r → R+
W is infinity. If this

were false, then we could assume |ρ(r)| ≤ M for all r > RW . But this implies that both ρ′′(r)
and ρ′(r) are also bounded when r is close to the blow-up point RW , according to equation (50).
This contradicts with basic theory of ordinary differential equations.

6.2 Classification of Solutions

In the subsection we consider the classification of solutions W obtained via Proposition 6.3 thus
finish the proof of Proposition 6.1. There are three kinds of solutions:

(I) The solution W is only defined for points away from the origin, i.e. RW > 0. Proposition
6.3 guarantees that W (x) is unbounded when |x| → R+

W . Therefore W is not in the space

Ḣsp(R3), thanks to Lemma 2.15. More precisely, it is impossible to find a radial function
u ∈ Ḣsp(R3), such that u(x) = W (x) for all x with |x| > RW .

(II) The solution W is well-defined everywhere except for at the origin . But we have

lim sup
|x|→0+

|x| 32−sp |W (x)| > 0.

Thus it is impossible to define W at the origin so that W ∈ C2(R3). According to Lemma
2.17, we know W /∈ Ḣsp(R3). Examples of this type of solution are given by the case
φ(x) ≡ 1. Please see Section 9 of [48] for more details.
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(III) The solution W is well-defined for all x ∈ R3 \ {0}, and satisfies

lim
|x|→0+

|x| 32−sp |W (x)| = 0.

It turns out that this solution satisfies W ∈ C2(R3), as shown in the Proposition 6.5 below.
A Combination of this C2 smoothness with the decay rate of the gradient ∇W near infinity
guarantees that W ∈ Ẇ 1,q for all q > 3/2. By Sobolev embedding we have W ∈ Ḣs(R3)
for all s ∈ (1/2, 1], in particular for s = sp. One example in this case can be given explicitly
by the function

W (x) =
3√

3|x|2 + 1
,

which solves the elliptic equation −∆W = (1/9)W 5. As a result, it also solves the elliptic
equation −∆W = φp(x)|W |p−1W if we choose

φp(x) = (1/9)|W (x)|5−p = 33−p(3|x|2 + 1)(p−5)/2.

Next we prove a solution W in category (III) above must satisfy W ∈ C2(R3). We start by a
technical lemma.

Lemma 6.4. Let W ∈ C2(B(0, r0) \ {0}) be a radial solution to the elliptic equation −∆W =
q(|x|)W , where q(r) is a continuous function defined on (0, r0) satisfying lim

r→0+
r2q(r) = 0. In

addition, there is a constant ε ∈ (0, 1/2), such that lim
|x|→0+

|x|1−εW (x) = 0. Then there exist

two constants r1 ∈ (0, r0) and C1 > 0, such that the inequality |W (x)| ≤ C1|x|−ε holds for all
0 < |x| < r1.

Proof. This is trivial if W ≡ 0, thus we assume that W is not identically zero in any neighbour-
hood of the origin. First of all, we define a new function v : (0, r0)→ R by v(|x|) = |x|1−εW (x).
According to the assumption on W we have v(r)→ 0 as r → 0+. A basic calculation shows that
v satisfies the equation

v′′(r) +
2ε

r
v′(r) = η(r)v(r) (52)

Here η(r) =
ε(1− ε)
r2

− q(r). By the assumption on q(r), there exists a small positive number

r1 ∈ (0, r0), such that η(r) > 0 for all r ∈ (0, r1].

Step 1 We claim that v(r) has neither a positive local maximum nor a negative local minimum
on (0, r1). If v(r) had a positive local maximum at r = r2 ∈ (0, r1), then we would have
v′′(r2) ≤ 0, v′(r2) = 0 and η(r2)v(r2) > 0. This violates the equation (52). The same argument
rules out the existence of any negative local minimum.

Step 2 The function v is never zero in the interval (0, r1]. If this were false, then we would
find a number r2 ∈ (0, r1], so that v(r2) = 0. Since v(r) is a nontrivial C2 function defined on
(0, r2] with lim

r→0+
v(r) = 0 and v(r2) = 0, it must have either a local positive maximum or a local

negative minimum in the interval (0, r2). This is a contradiction. A direct corollary follows that
v(r) is either always positive or always negative in the interval (0, r1]. Without loss of generality,
we assume v(r) > 0 for all r ∈ (0, r1].

Step 3 The derivative v′(r) > 0 for all r ∈ (0, r1]. In fact, a negative derivative v′(r2) < 0 at
a point r2 ∈ (0, r1] would imply the existence of a positive local maximum in the interval (0, r2),
since we have v(r) > 0 for r ∈ (0, r1] and v(r)→ 0 as r → 0. Therefore we have v′(r) ≥ 0 for all
r ∈ (0, r1]. Furthermore, if v′(r2) = 0 at a point r2 ∈ (0, r1], then v′′(r2) ≤ 0 because we always
have v′(r) ≥ 0 for r ∈ (0, r2). Again this contradicts with equation (52), since we have already
shown v(r2) > 0.
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Step 4 Now in the interval (0, r1) we can rewrite (52) into an inequality

v′′(r) +
2ε

r
v′(r) > 0 =⇒ d

dr
{ln[v′(r)]} > −2ε

r

Integrating this from r to r1, we obtain

ln[v′(r1)]− ln[v′(r)] > −2ε ln r1 + 2ε ln r =⇒ v′(r) < Cr−2ε, if 0 < r < r1.

Here C = r2ε
1 v
′(r1) > 0. Combining this inequality with lim

r→0+
v(r) = 0, we obtain that if

0 < r = |x| < r1, then

0 < v(r) < C1r
1−2ε =⇒ |W (x)| < C1|x|−ε.

Here C1 = C/(1− 2ε).

Proposition 6.5. Let W ∈ C2(R3 \ {0}) be a radial solution to the elliptic equation −∆W =
φ(x)|W |p−1W so that

lim
|x|→0+

|x| 32−sp |W (x)| = 0.

Then we can extend the domain of W to the whole space R3 by continuity so that W ∈ C2(R3)
gives a classic solution to the elliptic equation above.

Proof. Let us define y : R+ → R by y(|x|) = W (x) and choose a small constant 0 < ε <
min{1/p, 1 − 2

p−1}. Applying Lemma 6.4 with q(r) = φ(r)|y(r)|p−1, we obtain an estimate

|y(r)| ≤ C1r
−ε for small r ∈ (0, r1). In addition, a basic calculation shows that y satisfies the

equation
(ry)′′ + rφ(r)|y|p−1y = 0.

By the upper bound |y(r)| ≤ C1r
−ε and our assumption pε < 1, we have that |(ry)′′| =

r|φ(r)||y|p < Cp1 is bounded for all 0 < r < min{r1, 1}. Therefore the limit

lim
r→0+

(ry)′ = C2

exists with |(ry)′ − C2| ≤ Cp1r. Basic integration immediately shows (recall ry → 0 as r → 0+)

|ry(r)− C2r| ≤
Cp1
2
r2 =⇒ |y(r)− C2| ≤

Cp1
2
r.

Therefore the function W extends to a continuous function on R3. Since the right hand of
−∆W = φ(x)|W |p−1W is continuous, we can gain two derivatives and conclude W ∈ C2(R3) by
basic knowledge in Laplace’s equation.

7 Non-existence of Critical Element

The following theorem shows that critical element may not exist unless there exists a soliton
W ∈ C2(R3) ∩ Ḣsp(R3).

Theorem 7.1. If u(x, t) is a radial solution to (CP1) defined for all t ∈ R so that its trajectory
{(u(·, t), ∂tu(·, t)) : t ∈ R} is pre-compact in Ḣsp × Ḣsp−1, then there exists a radial C2 solution
W to the elliptic equation −∆W = φ(x)|W |p−1W , along with a radius RW ≥ 0, both of which
are given in Proposition 6.1, so that u(x, t) = W (x) holds for all (x, t) with |x| > RW .
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Proof of main theorem We first temporarily assume Theorem 7.1 and prove the main the-
orem, then go back to the proof of this theorem. Let us assume that the elliptic equation
−∆W = φ(x)|W |p−1W does not have a nonzero radial solution W ∈ C2(R3) ∩ Ḣsp(R3). If the
main theorem failed, then Sc(A) would break down at A = M for a positive number M . We
then obtain a critical element u by Theorem 4.1. Next we apply theorem 7.1 to conclude that u
coincides with a solution W to the elliptic equation for all (x, t) with |x| > RW . The solution
W and radius RW here are given by Proposition 6.1 and satisfy either of the three conditions
(I), (II) or (III) there. The case (I) and (II) can not happen because these solutions can not be
extended to an Ḣsp(R3) function u. Thus W satisfies condition (III), i.e. W ∈ C2(R3)∩Ḣsp(R3)
and RW = 0. We have assumed that such a solution must be zero, thus the critical element u is
also zero. This is a contradiction.

Idea to prove Theorem 7.1 The rest of this section is devoted to the proof of Theorem 7.1.
We first give a brief idea. According to Proposition 5.3, there exists a constant A so that we have
u(x, t) ∼ A/|x| when |x| is large. Proposition 6.1 then gives a solution W (x) ∈ C2({x ∈ R3 :
|x| > RW }) to the elliptic equation −∆W = φ(x)|W |p−1W , so that its behaviour near infinity
is close to that of the critical element u. More precisely we have

|u(x, t)−W (x)| . 1

|x|p−2
, |x| � 1.

We need to show that u(x, t) = W (x) as long as |x| > RW . The argument consists of two steps.
In the first step we show the identity holds for very large x. Then in the second step we prove
that the identity has to hold for all (x, t) with |x| > RW , otherwise we can obtain a contradiction.
Each step is summarized into a proposition, which works for a more general nonlinear term as
well. Both propositions are proved via the “channel of energy” method in exactly the same way
as in the special case φ(x) ≡ 1. Thus in Subsection 7.1 we only give the statements of these
two propositions and omit the details of proof. More details can be found in [13, 48]. Finally
we combine all the ingredients mentioned above and give a proof of Theorem 7.1 in the final
subsection.

7.1 Abstract Theory

Assumptions Assume 3 < p < 5. Let W ∈ C2({x ∈ R3 : |x| > RW }) be a radial solution to
the elliptic equation

−∆W = F (|x|,W ),

where F : [0,∞)× R→ R is a continuous function satisfying

|F (r, u)| ≤ |u|p;
|F (r, u1)− F (r, u2)| ≤ C6 |u1 − u2|

(
|u1|p−1 + |u2|p−1

)
;

so that the inequalities |W (x)| . 1

|x|
, |∇W (x)| . 1

|x|2
hold when |x| is large. We say u(x, t)

is a solution to the equation ∂2
t u −∆u = F (|x|, u) in the time interval I, if (u(·, t), ∂tu(·, t)) ∈

C(I; Ḣsp × Ḣsp−1(R3)), with finite norm ‖u‖Y (J) < ∞ for any closed bounded interval J ⊆ I,
so that the integral equation

u(·, t) = SL,0(t)(u(·, t0), ∂tu(·, t0)) +

∫ t

t0

sin[(t− τ)
√
−∆]√

−∆
F (·, u(·, τ))dτ

holds for all t, t0 ∈ I.

Proposition 7.2. Let W (x) and F (r, u) be as above . Suppose that u(x, t) is a radial solution
of the equation

∂2
t u−∆u = F (|x|, u)
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defined for all t ∈ R so that (the implicit constant in the inequalities does not depend on t)

(I) We have u(x, t) and W (x) are very close to each other as |x| is large

|u(x, t)−W (x)| . 1

|x|p−2
, t ∈ R, |x| > R.

(II) The following inequality holds for each t ∈ R and r > 0.∫
r<|x|<4r

(
|∇u(x, t)|2 + |∂tu(x, t)|2

)
dx . r−1.

Then there exists a constant R0 > RW independent of t such that

u(x, t)−W (x) = 0, ∂tu(x, t) = 0

hold for all t ∈ R and |x| > R0.

Essential Radius of Support If the pair (u(x, t), u1(x, t)) coincide with (W (x), 0) for large
x, we can define the essential radius of support for their difference by

R(t) = min{R ≥ RW : (u(x, t)−W (x), ∂tu(x, t)) = (0, 0) holds for |x| > R}.

Theorem 7.3 (Behavior of “compactly supported” solutions). Let W (x), F (r, u) be as above
and I be a time interval containing a neighbourhood of t0. Suppose u(x, t) is a radial solution of
the equation

∂2
t u−∆u = F (|x|, u)

on the time interval I satisfying

(I) (u(x, t), ∂tu(x, t)) ∈ C(I; Ḣ1 × L2(R3 \B(0, R))) for each R > 0.

(II) The pair (u(x, t0) − W (x), ∂tu(x, t0)) is compactly supported with an essential radius of
support R(t0) > R1 > RW .

Then there exists a constant τ = τ(p,R1, C6,W ) > 0, such that the essential radius of support
defined above satisfies the identity

R(t) = R(t0) + |t− t0|

for each t ∈ [t0, t0 + τ ] ∩ I or for each t ∈ [t0 − τ, t0] ∩ I.

7.2 Proof of Proposition 7.1

Preparation Let u(x, t) be a radial solution to (CP1) defined for all t ∈ R so that the trajectory
{(u(·, t), ∂tu(·, t)) : t ∈ R} is pre-compact in Ḣsp×Ḣsp−1. First of all, we may apply Proposition
5.3 and obtain three constants A,C4, C5 so that∣∣∣∣u(x, t)− A

|x|

∣∣∣∣ ≤ C4

|x|p−2
;

∫
r<|x|<4r

(
|∇u(x, t)|2 + |∂tu(x, t)|2

)
dx ≤ C5r

−1. (53)

Proposition 6.1 then gives a radial solution W to the elliptic equation −∆W = −|W |p−1W along
with a radius RW so that W ∈ C2({x ∈ R3 : |x| > RW }) and∣∣∣∣W (x)− A

|x|

∣∣∣∣ . 1

|x|p−2
, |∇W (x)| . 1

|x|2
, if |x| � 1.
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Step 1 Now we can apply Proposition 7.2 on the solution u and W (x) given above to conclude
that there exists a radius R0 > RW independent of t so that

(u(x, t), ∂tu(x, t)) = (W (x), 0) , for |x| > R0.

As a result, we know the essential radius of supportR(t) for the difference (u(x, t)−W (x), ∂tu(x, t))
is well-defined and satisfies the inequalityR(t) ≤ R0 for all t.

Step 2 Now we can prove u(x, t) = W (x) for all time t and |x| > RW . If this were false,
we could find a time, say t = 0, so that R(t) > RW and deduce a contradiction. We start by
choosing R1 = [R(0) + RW ]/2 and applying Proposition 7.3 with I = R and t0 = 0. Without
loss of generality, we assume the radius of support R(t) increases in the positive time direction.
More precisely we have

R(t) = R(0) + t, for t ∈ [0, τ ].

Since R(τ) > R(0) > R1, we are able to apply Proposition 7.3 at time t0 = τ again with the
same constant R1. Our conclusion is that R(t) has to increase in a linear manner in at least one
time direction for the same time period τ . This must be the positive time direction since we
have assumed that R(t) decreases in the negative time direction at time t0 = τ . Therefore we
obtain

R(t) = R(0) + t, for t ∈ [0, 2τ ].

Repeating this argument, we have R(t) = R(0) + t for all t > 0. This contradicts with the
uniform upper bound R(t) ≤ R0.

Remark 7.4. Given any nonzero radial solution to (CP1) defined for all t ∈ R with a pre-
compact trajectory, we claim that the well-defined limit (see (53) above)

A = lim
|x|→∞

|x|u(x, t)

is alway nonzero. Otherwise we would choose W (x) ≡ 0 and RW = 0 in the proof above and
finally conclude that u(x, t) = W (x) = 0.

Acknowledgement

The author is financially supported by National Natural Science Foundation of China Projects
11601374, 11771325. The author would like to thank anonymous reviewers for their helpful
comments and suggestions.

References

[1] J-P. Anker, V. Pierfelice, and M. Vallarino. “The wave equation on hyperbolic spaces”
Journal of Differential Equations 252(2012): 5613-5661.

[2] H. Bahouri, and P. Gérard. “High frequency approximation of solutions to critical nonlinear
equations.” American Journal of Mathematics 121(1999): 131-175.

[3] P. Bizon, P. Breitenlohner, D. Maison, and A. Wasserman “Self-similar solutions of the
cubic wave equation.” Nonlinearity 23(2010), no 2: 225-236.

[4] P. D́Ancona, V. Georgiev, and H. Kubo. “Weighted decay estimates for the wave equation”
Journal of Differential Equations 177(2001): 146-208.

[5] B. Dodson. “Global well-posedness and scattering for the radial, defocusing, cubic nonlinear
wave equation.” arXiv Preprint 1809.08284.

34



[6] B. Dodson. “Global well-posedness for the radial, defocusing nonlinear wave equation for
3 < p < 5.” arXiv Preprint 1810.02879.

[7] B. Dodson, A. Lawrie, D. Mendelson, J. Murphy “Scattering for defocusing energy subcrit-
ical nonlinear wave equations”, arXiv Preprint 1810.03182.

[8] B. Dodson and A. Lawrie. “Scattering for the radial 3d cubic wave equation.” Analysis and
PDE, 8(2015): 467-497.

[9] R. Donninger, and B. Schörkhuber. “Stable blow up dynamics for energy supercritical wave
equations” transactions of the American Mathematical Society 366(2014): 2167-2189.

[10] T. Duyckaerts, H. Jia and C.E.Kenig “Soliton resolution along a sequence of times for
the focusing energy critical wave equation”, Geometric and Functional Analysis 27(2017):
798-862.

[11] T. Duyckaerts, C.E. Kenig, and F. Merle. “Scattering for radial, bounded solutions of
focusing supercritical wave equations.” International Mathematics Research Notices 2014:
224-258.

[12] T. Duyckaerts, C.E. Kenig and F. Merle. “Profiles of bounded radial solutions of the focus-
ing, energy-critical wave equation”, Geometric and Functional Analysis 22(2012): 639-698.

[13] T. Duyckaerts, C.E. Kenig, and F. Merle. “Classification of radial solutions of the focusing,
energy-critical wave equation.” Cambridge Journal of Mathematics 1(2013): 75-144.

[14] J. Fontaine. “A semilinear wave equation on hyperbolic spaces” Communications in Partial
Differential Equations 22(1997): 633-659.

[15] V. Georgiev. Semilinear hyperbolic equations, MSJ Memoirs 7, Tokyo: Mathematical Soci-
ety of Japan, 2000.

[16] V. Georgiev, H. Lindblad, and C. Sogge “Weighted Strichartz estimates and global existence
for semilinear wave equations”, American Journal of Mathematics 119(1997): 1291-1319.

[17] J. Ginibre, A. Soffer and G. Velo. “The global Cauchy problem for the critical nonlinear
wave equation” Journal of Functional Analysis 110(1992): 96-130.

[18] J. Ginibre, and G. Velo. “Conformal invariance and time decay for nonlinear wave equa-
tions.” Annales de l’institut Henri Poincaré (A) Physique théorique 47(1987), 221-276.
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