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Résumé. Renz [13] has established a rate of convergence 1/
√

n in the central limit theorem for
martingales with some restrictive conditions. In the present paper a modification of the methods,
developed by Bolthausen [2] and Grama and Haeusler [6], is applied for obtaining the same
convergence rate for a class of more general martingales. An application to linear processes is
discussed.
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Version française abrégée
Renz [13] a établi un taux de convergence 1/

√
n dans le théorème de la limite centrale pour les

martingales avec certaines conditions restrictives. Dans le présent article, une modification
des méthodes, développées par Bolthausen [2] et Grama et Haeusler [6], est appliquée pour
obtenir le même taux de convergence pour une classe de martingales plus générales. Une
application aux processus linéaires est discutée.

1. Introduction and main result
For n ∈ N, let (ξi,Fi)i=0,...,n be a finite sequence of martingale differences defined on some
probability space (Ω,F ,P), where ξ0 = 0 and {∅,Ω} = F0 ⊆ ... ⊆ Fn ⊆ F are increasing
σ-fields. Denote

X0 = 0, Xk =
k∑
i=1

ξi, k = 1, ..., n.
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Then X = (Xk,Fk)k=0,...,n is a martingale. Denote by 〈X〉 the conditional variance of X:

〈X〉0 = 0, 〈X〉k =
k∑
i=1

E
[
ξ2
i

∣∣Fi−1
]
, k = 1, ..., n.

Define
D(Xn) = sup

x∈R

∣∣∣P(Xn ≤ x)− Φ(x)
∣∣∣,

where Φ(x) is the distribution function of the standard normal random variable. Denote
by P→ the convergence in probability as n → ∞. According to the martingale central limit
theorem, the “conditional Lindeberg condition"

n∑
i=1

E
[
ξ2
i 1{|ξi|≥ε}

∣∣Fi−1
] P→ 0, for each ε > 0,

and the “conditional normalizing condition” 〈X〉n
P→ 1 together implies asymptotic normal-

ity of Xn, that is, D(Xn)→ 0 as n→∞.
The convergence rate of D(Xn) has attracted a lot of attentions. For instance, Bolthausen

[2] proved that if |ξi| ≤ εn for a number εn and 〈X〉n = 1 a.s., then D(Xn) ≤ cε3nn logn,
where, here and after, c is an absolute constant not depending on εn and n. El Machkouri
and Ouchti [3] improved the factor ε3nn logn in Bolthausen’s bound to εn logn under the
following more general condition

E
[
|ξi|3

∣∣Fi−1
]
≤ εnE

[
ξ2
i

∣∣Fi−1
]

a.s. for all i = 1, 2, ..., n.
For more related results, we refer to Ouchti [12] and Mourrat [11]. Recently, Fan [4] proved
that if there exist a positive constant ρ and a number εn, such that

E
[
|ξi|2+ρ∣∣Fi−1

]
≤ ερnE

[
ξ2
i

∣∣Fi−1
]

a.s. for all i = 1, 2, ..., n,
and 〈X〉n = 1 a.s., then D(Xn) ≤ cρε̂n, where

ε̂n =
{
ερn, if ρ ∈ (0, 1),
εn| log εn|, if ρ ≥ 1,

and cρ is a constant depending only on ρ. Fan [4] also showed that this Berry-Esseen bound
is optimal. In particular, if εn � 1/

√
n, then we have εn| log εn| � (logn)/

√
n. Thus, we

cannot obtain the classical convergence rate 1/
√
n for general martingales.

However, the convergence rate 1/
√
n for martingales is possible to be attained with some

additional restrictive conditions. For instance, Renz [13] proved that if there exists a constant
ρ > 0 such that

E[ξ2
i |Fi−1] = 1/n, E[ξ3

i |Fi−1] = 0 and E
[
|ξi|3+ρ∣∣Fi−1

]
≤ cn−(3+ρ)/2, a.s., (1)

then it holds
D(Xn) = O

(
1√
n

)
. (2)

He also showed that this result is not true for ρ = 0. More martingale Berry-Esseen bounds
of convergence rate 1/

√
n can be found in Bolthausen [2] and Kir’yanova and Rotar [10].

In this paper we are interested in extending (2) to a class of more general martingales.
The following theorem is our main result.

Theorem 1. Assume that there exist some numbers ρ ∈ (0,+∞), εn ∈ (0, 1
2 ] and δn ∈ [0, 1

2 ]
such that for all 1 ≤ i ≤ n, ∣∣〈X〉n − 1

∣∣ ≤ δ2
n, (3)

E
[
ξ3
i

∣∣Fi−1
]

= 0 (4)
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and

E
[
|ξi|3+ρ∣∣Fi−1

]
≤ ε1+ρ

n E
[
ξ2
i

∣∣Fi−1
]

a.s. (5)

Then
D(Xn) ≤ cρ(εn + δn),

where cρ depends only on ρ. In addition, it holds cρ = O(ρ−1), ρ→ 0.

Notice that under the conditions of Renz [13], the conditions of Theorem 1 are satisfied
with δn = 0 and εn � 1/

√
n. Thus Theorem 1 extends Renz’s result to a class of more

general martingales.
Thanks to the additional condition (4), the Berry-Esseen bound (6) improves the bound

of Fan [4] by replacing εn| log εn| with εn.
Relaxing the condition (3), we have the following analogue estimation of Fan (cf. (26) of

[4]).

Theorem 2. Assume that there exist some numbers ρ ∈ (0,+∞) and εn ∈ (0, 1
2 ] such that

for all 1 ≤ i ≤ n,
E
[
ξ3
i

∣∣Fi−1
]

= 0
and

E
[
|ξi|3+ρ∣∣Fi−1

]
≤ ε1+ρ

n E
[
ξ2
i

∣∣Fi−1
]

a.s.

Then, for all p ≥ 1,

D(Xn) ≤ cρεn + cp

(
E
[∣∣〈X〉n − 1

∣∣p]+ E
[

max
1≤i≤n

|ξi|2p
])1/(2p+1)

, (6)

where cρ and cp depend only on ρ and p, respectively.

It is easy to see that when p→∞,(
E
[∣∣〈X〉n − 1

∣∣p])1/(2p+1)
→ ||〈X〉n − 1||1/2

∞ ,

which coincides with δn of Theorem 1.

2. Application

We first extend Theorem 1 to triangular arrays with infinity many terms in each line.
For n ∈ N, let (ξn,i,Fn,i)ni=−∞ be a sequence of martingale differences defined on some
probability space (Ω,F ,P), where the adapted filtration is {∅,Ω} = F−∞ ⊂ ... ⊂ Fn,n−1 ⊂
Fn,n ⊂ F . Denote Xn,k =

∑k
i=−∞ ξn,i, k ≤ n. Then (Xn,k,Fn,k)nk=−∞ is a martingale.

Let 〈X〉n,k =
∑k
i=−∞E[ξ2

n,i|Fn,i−1], k ≤ n. In particular, denote Xn := Xn,n and
〈X〉n := 〈X〉n,n.

With some slight modification on the proof, Theorem 1 still holds in this new setting.
Now we apply Theorem 1 with this new setting to the partial sum of linear processes.
Let (εi)i∈Z be a sequence of identically distributed martingale differences adapted to the
filtration (Fi)i∈Z. We consider the causal linear process in the form

Yk =
k∑

j=−∞
ak−jεj , (7)

where the martingale differences have finite variance and the sequence of real coefficients
satisfies

∑∞
i=0 a

2
i < ∞. Without loss of generality, let the variance of the martingale
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difference to be 1. We say the linear process has long memory if
∑∞
i=0 |ai| = ∞. In

this case, we assume that a0 = 1 and

ai = `(i)i−α, i > 0, with 1/2 < α < 1. (8)

Here `(·) is a slowly varying function. On the other hand, we say the linear process has
short memory if

∑∞
i=0 |ai| < ∞ and

∑∞
i=0 ai 6= 0. The third case is

∑∞
i=0 |ai| < ∞ and∑∞

i=0 ai = 0.
The long memory linear processes covers the well-known fractional ARIMA processes (cf.

Granger and Joyeux [7]; Hosking [9]), which play an important role in financial time series
modeling and application. As a special case, let 0 < d < 1/2 and B be the backward shift
operator with Bεk = εk−1 and consider

Yk = (1−B)−dεk =
∞∑
i=0

aiεk−i, where ai = Γ(i+ d)
Γ(d)Γ(i+ 1) .

For this example we have limn→∞ an/n
d−1 = 1/Γ(d). Note that these processes have long

memory because
∑∞
j=0 |aj | =∞.

The partial sum Sn =
∑n
k=1 Yk of causal linear process (7) can be written as Sn =∑n

i=−∞ bn,iεi, where bn,i =
∑n−i
j=0 aj for 0 < i ≤ n, and bn,i =

∑n−i
j=1−i aj for i ≤ 0. The

variance of Sn is B2
n = var(Sn) =

∑n
i=−∞ b2

n,i. Now let Xn,k =
∑k
i=−∞ bn,iεi/Bn. Then

Xn = Xn,n = Sn/Bn and 〈X〉n =
∑n
i=−∞ b2

n,iE[ε2
i |Fi−1]/B2

n. If we assume |〈X〉n − 1| ≤ δ2
n

for some δn ∈ [0, 1
2 ], E[ε3

i |Fi−1] = 0 and E[|εi|3+ρ|Fi−1] ≤ d1+ρ
ρ E[ε2

i |Fi−1] a.s. for all i ∈ Z
and some constant dρ, then, by Theorem 1,

sup
x∈R
|P(Sn/Bn ≤ x)− Φ(x)| ≤ cρ(εn + δn),

where εn = dρ supi≤n |bn,i|/Bn.
In the case that

∑∞
i=0 |ai| < ∞, supi≤n |bn,i| ≤

∑∞
i=0 |ai| < ∞ and it is well known

that B2
n has order n. Hence εn has order 1/

√
n in this case. In the long memory case∑∞

i=0 |ai| = ∞, if we assume (8), B2
n has order n3−2α`2(n) (e.g., Wu and Min [14]) and

supi≤n |bn,i| has order n1−α`(n) (see Beknazaryan et al. [1] for upper bound and Fortune
et al. [5] for lower bound in the case d = 1). Hence in this case εn also has order 1/

√
n.

In either case the Berry-Esseen bound has order 1/
√
n if δn = O(n−1/2). In particular, if

we in addition assume that the innovations (εi)i∈Z are independent, then δn = 0 and the
Berry-Esseen bound supx∈R |P(Sn/Bn ≤ x) − Φ(x)| has order 1/

√
n. Here the condition

E[ε3
i |Fi−1] = 0 is needed to have the Berry-Esseen bound of order 1/

√
n. We cannot have

this order from the result of Fan [4].

3. Proofs of theorems

3.1. Preliminary lemmas

In the proofs of theorems, we need the following technical lemmas. The first two lemmas
can be found in Fan [4] (cf. Lemmas 3.1 and 3.2 therein).

Lemma 3. If there exists an s > 3 such that

E[|ξi|s|Fi−1] ≤ εs−2
n E[ξ2

i |Fi−1],

then, for any t ∈ [3, s),
E[|ξi|t|Fi−1] ≤ εt−2

n E[ξ2
i |Fi−1].

Comptes Rendus. Mathématique, 1 no 0 (0000)



A Berry-Esseen bound for martingales 5

Lemma 4. If there exists an s > 3 such that

E[|ξi|s|Fi−1] ≤ εs−2
n E[ξ2

i |Fi−1],

then

E[ξ2
i |Fi−1] ≤ ε2n.

The next two technical lemmas are due to Bolthausen (cf. Lemmas 1 and 2 of [2]).

Lemma 5. Let X and Y be random variables. Then

sup
u

∣∣∣P(X ≤ u)− Φ(u)
∣∣∣ ≤ c1 sup

u

∣∣∣P(X + Y ≤ u
)
− Φ(u)

∣∣∣+ c2

∣∣∣∣∣∣E[Y 2|X]
∣∣∣∣∣∣1/2

∞
,

where c1 and c2 are two positive constants.

Lemma 6. Let G(x) be an integrable function on R of bounded variation ||G||V , X be a
random variable and a, b 6= 0 are real numbers. Then

E
[
G

(
X + a

b

)]
≤ ||G||V sup

u

∣∣∣P(X ≤ u)− Φ(u)
∣∣∣+ ||G||1|b|,

where ||G||1 is the L1(R) norm of G(x).

In the proof of Theorem 2, we also need the following lemma of El Machkouri and Ouchti
[3].

Lemma 7. Let X and Y be two random variables. Then, for p ≥ 1,

D(X + Y ) ≤ 2D(X) + 3
∥∥∥E
[
Y 2p|X

]∥∥∥1/(2p+1)

1
. (9)

3.2. Proof of Theorem 1

By Lemma 3, we only need to consider the case of ρ ∈ (0, 1].We follow the method of Grama
and Haeusler [6]. Let T = 1 + δ2

n. We introduce a modification of the conditional variance
〈X〉n as follows:

Vk = 〈X〉k1{k<n} + T1{k=n}. (10)

It is easy to see that V0 = 0, Vn = T , and that (Vk,Fk)k=0,...,n is a predictable process. Set

γ = εn + δn.

Let c∗ be some positive and sufficient large constant. Define the following non-increasing
discrete time predictable process

Ak = c2
∗γ

2 + T − Vk, k = 1, ..., n. (11)

Obviously, we have A0 = c2
∗γ

2 + T and An = c2
∗γ

2. In addition, for u, x ∈ R, and y > 0,
denote

Φu(x, y) = Φ
(
u− x
√
y

)
. (12)
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Let N = N (0, 1) be a standard normal random variable, which is independent of Xn.
Using a smoothing procedure, by Lemma 5, we deduce that

sup
u

∣∣∣P(Xn ≤ u
)
− Φ(u)

∣∣∣ ≤ c1 sup
u

∣∣∣P(Xn + c∗γN ≤ u
)
− Φ(u)

∣∣∣+ c2γ

= c1 sup
u

∣∣∣E[Φu(Xn, An
)]
− Φ(u)

∣∣∣+ c2γ

≤ c1 sup
u

∣∣∣E[Φu(Xn, An
)]
−E

[
Φu
(
X0, A0

)]∣∣∣
+c1 sup

u

∣∣∣E[Φu(X0, A0
)]
− Φ(u)

∣∣∣+ c2γ

= c1 sup
u

∣∣∣E[Φu(Xn, An
)]
−E

[
Φu
(
X0, A0

)]∣∣∣
+c1 sup

u

∣∣∣∣Φ( u√
c2
∗γ

2 + T

)
− Φ(u)

∣∣∣∣+ c2γ. (13)

It is obvious that ∣∣∣∣Φ( u√
c2
∗γ

2 + T

)
− Φ(u)

∣∣∣∣ ≤ c3

∣∣∣∣ 1√
c2
∗γ

2 + T
− 1
∣∣∣∣ ≤ c4γ. (14)

Returning to (13), we get

sup
u

∣∣∣P(Xn ≤ u
)
− Φ(u)

∣∣∣ ≤ c1 sup
u

∣∣∣E[Φu(Xn, An
)]
−E

[
Φu
(
X0, A0

)]∣∣∣+ c5γ. (15)

By a simple telescoping, we know that

E
[
Φu
(
Xn, An

)]
−E

[
Φu
(
X0, A0

)]
= E

[∑n
k=1

(
Φu
(
Xk, Ak

)
− Φu

(
Xk−1, Ak−1

))]
. (16)

Taking into account the fact that

∂2

∂x2 Φu(x, y) = 2 ∂
∂y

Φu(x, y),

we get
E
[
Φu
(
Xn, An

)]
−E

[
Φu
(
X0, A0

)]
= J1 + J2 − J3, (17)

where

J1 = E
[ n∑
k=1

(
Φu(Xk, Ak)− Φu(Xk−1, Ak)− ∂

∂x
Φu(Xk−1, Ak)ξk

−1
2
∂2

∂x2 Φu(Xk−1, Ak)ξ2
k −

1
6
∂3

∂x3 Φu(Xk−1, Ak)ξ3
k

)]
, (18)

J2 = 1
2E
[ n∑
k=1

∂2

∂x2 Φu(Xk−1, Ak)
(
4 〈X〉k −4Vk

)]
, (19)

J3 = E
[ n∑
k=1

(
Φu(Xk−1, Ak−1)− Φu(Xk−1, Ak)− ∂

∂y
Φu(Xk−1, Ak)4 Vk

)]
, (20)

where 4〈X〉k = 〈X〉k − 〈X〉k−1.
Now, we need to give some estimates of J1, J2 and J3. To this end, we introduce some

notations. Denote by ϑi some random variables satisfying 0 ≤ ϑi ≤ 1, which may represent
different values at different places. For the rest of the paper, ϕ stands for the density function
of the standard normal random variable.
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Control of J1 : For convenience’s sake, let Tk−1 =
(
u−Xk−1

)
/
√
Ak, k = 1, 2, ..., n. It is

easy to see that

Bk =: Φu(Xk, Ak)− Φu(Xk−1, Ak)− ∂

∂x
Φu(Xk−1, Ak)ξk

−1
2
∂2

∂x2 Φu(Xk−1, Ak)ξ2
k −

1
6
∂3

∂x3 Φu(Xk−1, Ak)ξ3
k

= Φ
(
Tk−1 −

ξk√
Ak

)
− Φ(Tk−1) + Φ′(Tk−1) ξk√

Ak

−1
2Φ′′(Tk−1)

(
ξk√
Ak

)2
+ 1

6Φ′′′(Tk−1)
(

ξk√
Ak

)3
.

To estimate the right hand side of the last equality, we distinguish two cases.
Case 1: |ξk/

√
Ak| ≤ 2 + |Tk−1|/2. By a four-term Taylor expansion, it is obvious that if

|ξk/
√
Ak| ≤ 1, then

∣∣∣∣Bk∣∣∣∣ =
∣∣∣∣ 1
24Φ(4)

(
Tk−1 − ϑ

ξk√
Ak

)∣∣∣∣ ξk√
Ak

∣∣∣∣4∣∣∣∣
≤
∣∣∣∣Φ(4)

(
Tk−1 − ϑ

ξk√
Ak

)∣∣∣∣∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
.

If |ξk/
√
Ak| > 1, by a three-term Taylor expansion, then

∣∣∣∣Bk∣∣∣∣ ≤ 1
2

(∣∣∣∣Φ′′′(Tk−1 − ϑ
ξk√
Ak

)∣∣∣∣+
∣∣∣∣Φ′′′(Tk−1)

∣∣∣∣)∣∣∣∣ ξk√
Ak

∣∣∣∣3
≤
∣∣∣∣Φ′′′(Tk−1 − ϑ′

ξk√
Ak

)∣∣∣∣∣∣∣∣ ξk√
Ak

∣∣∣∣3
≤
∣∣∣∣Φ′′′(Tk−1 − ϑ′

ξk√
Ak

)∣∣∣∣∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
,

where

ϑ′ =
{
ϑ, if

∣∣Φ′′′(Tk−1 − ϑ ξk√
Ak

)∣∣ ≥ |Φ′′′(Tk−1)|,
0, if

∣∣Φ′′′(Tk−1 − ϑ ξk√
Ak

)∣∣ < |Φ′′′(Tk−1)|.

Using the inequality max{|Φ′′′(t)|, |Φ′′′′(t)|} ≤ ϕ(t)(2 + t4), we find that

∣∣∣Bk1{|ξk/√Ak|≤2+|Tk−1|/2}

∣∣∣ ≤ ϕ

(
Tk−1 − ϑ1

ξk√
Ak

)(
2 +

(
Tk−1 − ϑ1

ξk√
Ak

)4
)∣∣∣ ξk√

Ak

∣∣∣3+ρ

≤ g1(Tk−1)
∣∣∣ ξk√
Ak

∣∣∣3+ρ
, (21)

where

g1(z) = sup
|t−z|≤2+|z|/2

ϕ(t)(2 + t4).

Comptes Rendus. Mathématique, 1 no 0 (0000)



8 Songqi Wu, Xiaohui Ma, Hailin Sang and Xiequan Fan

Case 2: |ξk/
√
Ak| > 2 + |Tk−1|/2. It is obvious that, for | 4 x| > 1 + |x|/2,∣∣∣Φ(x−4x)− Φ(x) + Φ′(x)4 x− 1

2Φ′′(x)(4x)2 + 1
6Φ′′′(x)(4x)3

∣∣∣
≤
(∣∣∣∣Φ(x−4x)− Φ(x)

| 4 x|3

∣∣∣∣+ |Φ′(x)|+ |Φ′′(x)|+ |Φ′′′(x)|
)
| 4 x|3

≤
(

8
∣∣∣∣Φ(x−4x)− Φ(x)

(2 + |x|)3

∣∣∣∣+ |Φ′(x)|+ |Φ′′(x)|+ |Φ′′′(x)|
)
| 4 x|3

≤
(

c̃

(2 + |x|)3 + |Φ′(x)|+ |Φ′′(x)|+ |Φ′′′(x)|
)
| 4 x|3

≤ ĉ

(2 + |x|)3 | 4 x|3

≤ ĉ

(2 + |x|)3 | 4 x|3+ρ.

Hence, we have ∣∣∣Bk1{|ξk/√Ak|>2+|Tk−1|/2}

∣∣∣ ≤ g2(Tk−1)
∣∣∣ ξk√
Ak

∣∣∣3+ρ
, (22)

where

g2(z) = ĉ

(2 + |z|)3 .

Denote
G(z) = g1(z) + g2(z).

Combining (21) and (22) together, we get

|Bk| ≤ G(Tk−1)
∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ
. (23)

Therefore, ∣∣∣∣J1

∣∣∣∣ =
∣∣∣∣E[ n∑

k=1
Bk

]∣∣∣∣ ≤ E
[ n∑
k=1

G(Tk−1)
∣∣∣∣ ξk√
Ak

∣∣∣∣3+ρ]
. (24)

Next, we consider conditional expectation of |ξk|3+ρ. By condition (5), we get

E
[
|ξk|3+ρ∣∣Fk−1

]
≤ ε1+ρ

n 4 〈X〉k, (25)

where 4〈X〉k = 〈X〉k − 〈X〉k−1 and we know that

4 〈X〉k = 4Vk = Vk − Vk−1, 1 ≤ k < n, 4〈X〉n ≤ 4Vn, (26)

then
E
[
|ξk|3+ρ∣∣Fk−1

]
≤ ε1+ρ

n 4 Vk. (27)

By (24) and (27), we obtain

|J1| ≤ R1 := ε1+ρ
n

[ n∑
k=1

G(Tk−1)
A

(3+ρ)/2
k

4 Vk

]
. (28)

To estimate R1, we introduce the time change τt as follow: for any real t ∈ [0, T ],

τt = min{k ≤ n : Vk ≥ t}, where min ∅ = n. (29)
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Obviously, for any t ∈ [0, T ], the stopping time τt is predictable. In addition,
(σk)k=1,...,n+1(with σ1 = 0) stands for the increasing sequence of moments when the increas-
ing and stepwise function τt, t ∈ [0, T ], has jumps. It is easy to see that 4Vk =

∫
[σk,σk+1) dt,

and that k = τt for t ∈ [σk, σk+1). Since τT = n, we have
n∑
k=1

G(Tk−1)
A

(3+ρ)/2
k

4 Vk =
n∑
k=1

∫
[σk,σk+1)

G(Tτt−1)
A

(3+ρ)/2
τt

dt =
∫ T

0

G(Tτt−1)
A

(3+ρ)/2
τt

dt. (30)

Let at = c2
∗γ

2 + T − t. Because of 4Vτt ≤ 2ε2n + 2δ2
n (cf. Lemma 4), we know that

t ≤ Vτt = Vτt−1 +4Vτt ≤ t+ 2ε2n + 2δ2
n, t ∈ [0, T ]. (31)

Assume c∗ ≥ 2, then we have
1
2at ≤ Aτt = c2

∗γ
2 + T − Vτt ≤ at, t ∈ [0, T ]. (32)

Note that G(z) is symmetric and is non-increasing in z ≥ 0. The last bound implies that

R1 ≤ 2(3+ρ)/2ε1+ρ
n

∫ T

0

1
a

(3+ρ)/2
t

E
[
G
(u−Xτt−1

a
1/2
t

)]
dt. (33)

Note also that G(z) is a symmetric integrable function of bounded variation. By Lemma 6,
it is obvious that

E
[
G
(u−Xτt−1

a
1/2
t

)]
≤ c6 sup

z

∣∣∣P(Xτt−1 ≤ z
)
− Φ(z)

∣∣∣+ c7
√
at. (34)

Because of c∗ ≥ 2, Vτt−1 = Vτt −4Vτt , Vτt ≥ t and 4Vτt ≤ 2ε2n + 2δ2
n, we obtain

Vn − Vτt−1 = Vn − Vτt +4Vτt ≤ 2ε2n + 2δ2
n + T − t ≤ at. (35)

Therefore

E
[(
Xn −Xτt−1

)2
∣∣∣Fτt−1

]
= E

[ n∑
k=τt

E
[
ξ2
k

∣∣Fk−1
]∣∣∣∣Fτt−1

]
= E

[
〈X〉n − 〈X〉τt−1

∣∣Fτt−1
]

≤ E[Vn − Vτt−1|Fτt−1]
≤ at.

Then, by Lemma 5, we deduce that for any t ∈ [0, T ],
sup
z

∣∣P(Xτt−1 ≤ z
)
− Φ(z)

∣∣ ≤ c8 sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ c9
√
at. (36)

Combining (28), (33), (34) and (36) together, we get

|J1| ≤ c10ε
1+ρ
n

∫ T

0

1
a

(3+ρ)/2
t

dt sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ c11ε
1+ρ
n

∫ T

0

1
a

1+ρ/2
t

dt. (37)

Taking some elementary computations, it follows that∫ T

0

1
a

(3+ρ)/2
t

dt =
∫ T

0

1
(c2
∗γ

2 + T − t)(3+ρ)/2 dt ≤
2

c1+ρ
∗ (1 + ρ)γ1+ρ

(38)

and ∫ T

0

1
a

1+ρ/2
t

dt =
∫ T

0

1
(c2
∗γ

2 + T − t)1+ρ/2 dt ≤
2

cρ∗ργρ
. (39)

This yields ∣∣J1
∣∣ ≤ c12

c1+ρ
∗

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ cρ,1εn
ρ

. (40)
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Control of J2 : Since 0 ≤ 4Vk −4〈X〉k ≤ 2δ21{k=n}, we have

|J2| ≤ E
[ 1

2An
∣∣ϕ′(Tn−1)(4Vn −4〈X〉n)

∣∣].
Denote G̃(z) = sup|z−t|≤1 |ϕ′(t)|, and then |ϕ′(z)| ≤ G̃(z) for any real z. Since An = c2

∗γ
2,

then we get the following estimation:

|J2| ≤
1
c2
∗

E
[
G̃(Tn−1)

]
.

Note that G̃ is non-increasing in z ≥ 0, and thus it has bounded variation on R. By Lemma
6, we get

|J2| ≤
c13

c2
∗

sup
z

∣∣P(Xn−1 ≤ z
)
− Φ(z)

∣∣+ c∗,2(εn + δn). (41)

Then, by Lemma 5, we deduce that

sup
z

∣∣P(Xn−1 ≤ z
)
− Φ(z)

∣∣ ≤ c14 sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ c15εn. (42)

This yields
|J2| ≤

c16

c2
∗

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ cρ,2(εn + δn). (43)

Control of J3. By a two-term Taylor expansion, it follows that

|J3| =
1
8E
[ n∑
k=1

1
(Ak − ϑk 4Ak)2ϕ

′′′
(

u−Xk−1√
Ak − ϑk 4Ak

)
(4Ak)2

]
.

Note that c∗ ≥ 2,4Ak ≤ 0 and, by Lemma 4, | 4Ak| = 4Vk ≤ 2ε2n + 2δ2
n. We obtain

Ak ≤ Ak − ϑk 4Ak ≤ c2
∗γ

2 + T − Vk + 2ε2n + 2δ2
n ≤ 2Ak. (44)

Denote Ĝ(z) = sup|t−z|≤2 |ϕ′′′(t)|. Then Ĝ(z) is symmetric, and is non-increasing in z ≥ 0.
Using (44), we get

|J3| ≤ (2ε2n + 2δ2
n)E

[
n∑
k=1

1
A2
k

Ĝ

(
Tk−1√

2

)
4 Vk

]
. (45)

By an argument similar to that of (40), we get

|J3| ≤
c17(2ε2n + 2δ2

n)
c2
∗γ

2 sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ 2c18(2ε2n + 2δ2
n)

c∗γ

≤ c19

c2
∗

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ 4c18(εn + δn)2

c∗γ

≤ c19

c2
∗

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ cρ,3(εn + δn). (46)

Combining (17), (40), (43) and (46) together, we get∣∣∣E[Φu(Xn, An
)]
−E

[
Φu
(
X0, A0

)]∣∣∣ ≤ c20

c1+ρ
∗

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ ĉρ
ρ

(εn + δn),

By (15), we know that

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣ ≤ c21

c1+ρ
∗

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣+ c̃ρ
ρ

(εn + δn),

from which, choosing c1+ρ
∗ = max {2c21, 21+ρ}, we get

sup
z

∣∣P(Xn ≤ z
)
− Φ(z)

∣∣ ≤ 2c̃ρ(εn + δn)
ρ

. (47)
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3.3. Proof of Theorem 2

Following the method of Bolthausen [2], we enlarge the sequence (ξi,Fi)1≤i≤n to(
ξ̂i, F̂i

)
1≤i≤N such that

〈
X̂
〉
N

:=
∑N
i=1 E

[
ξ̂2
i |F̂i−1

]
= 1 a.s., and then apply Theorem 1

to the enlarged sequence. Consider the stopping time

τ = sup{k ≤ n : 〈X〉k ≤ 1}. (48)

Assume that 0 ≤ ε ≤ εn. Let r =
⌊

1−〈X〉τ
ε2

⌋
, where bxc denotes the “integer part" of x. It

is easy to see that r ≤
⌊

1
ε2

⌋
. Set N = n + r + 1. Let (ζi)i≥1 be a sequence of independent

Rademacher random variables, which is independent of the martingale differences (ξi)1≤i≤n.
Consider the random variables

(
ξ̂i, F̂i

)
1≤i≤N defined as follows:

ξ̂i =


ξi a.s., if i ≤ τ,
εζi a.s., if τ + 1 ≤ i ≤ τ + r,(
1− 〈X〉τ − rε2)1/2

ζi a.s., if i = τ + r + 1,
0 a.s., if τ + r + 1 ≤ i ≤ N,

and F̂i = σ
(
ξ̂1, ξ̂2, ..., ξ̂i

)
.

Clearly,
(
ξ̂i, F̂i

)
1≤i≤N still forms a martingale difference sequence with respect to the

enlarged filtration. Then X̂k =
∑k
i=1 ξ̂i, k = 0, ..., N , with X̂0 = 0, is also a martingale.

Moreover, it holds that
〈
X̂
〉
N

= 1, E
[
ξ̂3
i

∣∣F̂i−1
]

= 0 and

E
[∣∣ξ̂i∣∣3+ρ∣∣F̂i−1

]
≤ ε1+ρ

n E
[
ξ̂2
i

∣∣F̂i−1
]
, a.s.

By Theorem 1, we have
D
(
X̂N

)
≤ cρεn

ρ
. (49)

Using Lemma 7, we obtain that

D(Xn) ≤ 2D
(
X̂N

)
+ 3
∥∥∥E
[∣∣Xn − X̂N

∣∣2p∣∣X̂N

]∥∥∥1/(2p+1)

1

≤ 2cρεn
ρ

+ 3
(

E
[∣∣X̂N −Xn

∣∣2p])1/(2p+1)
. (50)

Since τ is a stopping time and

X̂N −Xn =
N∑

i=τ+1

(
ξ̂i − ξi

)
, where put ξi = 0 for i > n, (51)

(ξ̂i − ξi, F̂i)i≥τ+1 still forms a martingale difference sequence. Applying Theorem 2.11 of
Hall and Heyde [8], we get

E
[∣∣X̂N −Xn

∣∣2p] ≤ E
[

max
τ+1≤i≤N

∣∣X̂i −Xi

∣∣2p]
≤ cp

(
E
[∣∣ N∑
i=τ+1

E
[(
ξ̂i − ξi

)2∣∣F̂i−1
]∣∣p ]+ E

[
max

τ+1≤i≤N

∣∣ξ̂i − ξi∣∣2p]). (52)
As E[ξiξ̂i|F̂i−1] = 0 for all i ≥ τ + 1, we have

N∑
i=τ+1

E
[(
ξ̂i − ξi

)2∣∣F̂i−1
]

=
N∑

i=τ+1
E
[
ξ̂2
i

∣∣F̂i−1
]

+
n∑

i=τ+1
E
[
ξ2
i

∣∣F̂i−1
]

= 1− 2〈X〉τ + 〈X〉n.
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Noting that 1 − E[ξ2
τ+1|Fτ ] ≤ 〈X〉τ . Consequently, using the inequality |a + b|p ≤

2p−1 (|a|p + |b|p) , p ≥ 1, and Jensen’s inequality, we derive that∣∣∣ N∑
i=τ+1

E
[(
ξ̂i − ξi

)2∣∣F̂i−1
]∣∣∣p ≤ ∣∣∣〈X〉n − 1 + 2E

[
ξ2
τ+1
∣∣Fτ ]∣∣∣p

≤ 22p−1
(∣∣〈X〉n − 1

∣∣p +
∣∣∣E[ξ2

τ+1
∣∣Fτ ]∣∣∣p)

≤ 22p−1
(∣∣〈X〉n − 1

∣∣p + E
[
|ξτ+1|2p

∣∣Fτ ]). (53)

Taking expectations on both sides of the last inequality, we deduce that

E
[∣∣∣ N∑
i=τ+1

E
[(
ξ̂i − ξi

)2∣∣F̂i−1
]∣∣∣p ] ≤ 22p−1

(
E
[∣∣〈X〉n − 1

∣∣p]+ E
[
|ξτ+1|2p

])
≤ 22p−1

(
E
[∣∣〈X〉n − 1

∣∣p]+ E
[

max
1≤i≤n

|ξi|2p
])
. (54)

Similarly, using the inequality |a+ b|p ≤ 2p−1 (|a|p + |b|p) , p ≥ 1,

E
[

max
τ+1≤i≤N

∣∣∣ξ̂i − ξi∣∣∣2p] ≤ 22p−1E
[

max
τ+1≤i≤N

(
|ξi|2p +

∣∣ξ̂i∣∣2p)]
≤ 22p−1

(
E
[

max
1≤i≤n

|ξi|2p
]

+ ε2p
)
. (55)

Combining (52), (54) and (55) together, we obtain

E
[∣∣X̂N −Xn

∣∣2p] ≤ ĉp(E
[∣∣〈X〉n − 1

∣∣p]+ E
[

max
1≤i≤n

|ξi|2p
]

+ ε2p
)
. (56)

Finally, applying the last inequality to (50) and let ε→ 0, then we have

D(Xn) ≤ c̃ρ
εn
ρ

+ c̃p

(
E
[∣∣〈X〉n − 1

∣∣p]+ E
[

max
1≤i≤n

|ξi|2p
])1/(2p+1)

.

This completes the proof of Theorem 2.
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