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Abstract. Retinex theory is introduced to show how the human visual system
perceives the color and the illumination effect such as Retinex illusions, medical

image intensity inhomogeneity and color shadow effect etc.. Many researchers
have studied this ill-posed problem based on the framework of the variation en-
ergy functional for decades. However, to the best of our knowledge, the existing
models via the sparsity of the image based on the nonconvex ℓp-quasinorm were

limited. To deal with this problem, this paper considers a TVp-HOTVq-based
retinex model with p, q ∈ (0, 1). Specially, the TVp term based on the to-
tal variation(TV) regularization can describe the reflectance efficiently, which
has the piecewise constant structure. The HOTVq term based on the high

order total variation(HOTV) regularization can penalize the smooth structure
called the illumination. Since the proposed model is non-convex, non-smooth
and non-Lipschitz, we employ the iteratively reweighed ℓ1 (IRL1) algorithm to
solve it. We also discuss some properties of our proposed model and algorith-

m. Experimental experiments on the simulated and real images illustrate the
effectiveness and the robustness of our proposed model both visually and quan-
titatively by compared with some related state-of-the-art variational models.

1. Introduction. Our vision tends to see the same color in a given image regard-
less of the light and the color of objects remains relatively constant under varying
illumination. The illusion effect is called the retinex effect. The word Retinex is
made up of two words: retina and cortex. The retinex theory was initially proposed
by Land and Mccann [27] through modeling the color perception of the human visu-
al system, which can ascertain the reflectance of a object in which both reflectance
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and illumination are unknown. In general, we would like to remove the retinex effect
to strengthen the image with the nonuniform lighting by separating the illumination
from the reflectance in the given image. However, this problem is a classic ill-posed
problem due to the lacking of some prior information and the uniqueness.

Many implementations and improvements of the retinex problem have been stud-
ied in the literature to overcome the ill-posedness. A path-based algorithm was put
forward by Land and Mccann in [27], in which they considered the reflectance at
each pixel depending on the multiplication of the ratios along random walks. There
were other algorithms based on this approach [36, 46, 8]. The major difference is
the path geometry among these path-based algorithms. Piecewise linear paths were
used in [28], while double spirals and Brownian paths were used in [8]. But these
methods need to tune a mass of parameters and are generally slow in performance.
Recursive algorithms were proposed by using a recursive matrix calculation to re-
place the path computation in [29, 38]. These algorithms are more efficient than a
path-based approach. However, it is not clear how many iterations are required in
the recursive method and the final results are strongly affected by the number of
the iteration setting. Jobson et al. in [22, 23] described the homomorphic filtering
scheme for the retinex problem, where they modeled the reflectance as a low-pass
filter. Meanwhile, a kernel-based retinex (KBR) [4] was proposed through using the
expectation value of a weighted random variable with a suitable kernel function.
This scheme can provide an analysis of the action of the KBR on contrast, produce
a two-sided contrast modification, and enhance both under- and overexposed pic-
ture. Recently, Rizzi [3] and Palma et al. [1] presented other perception based on
the color correction in the framework of variational techniques, which allow more
flexible local control of the contrast adjustment and attachment to the data.

Recently, the variation-partial differential equation (PDE) based models also got
a lot of attention in the image retinex problem, where the models depend on the
suitable energy functional space. For the PDE-based models, researchers usually
decompose the intensity of the original image into a product of the reflectance and
the illumination, where the reflectance and the illumination are usually assumed to
be the spatially smoothing and the piecewise constant respectively. With the help
of these assumptions, Morel et al. in [40] solved a Poisson equation and Horn in
[20] used the Laplacian to the sum s = l + r, where s, l, and r are respectively the
initial image, illumination, and reflectance in the logarithmic domain, and applied
threshold function to clip the peaks of |∆s| in order to get a Poisson equation. There
are some similar approaches to the work in [5, 39, 40]. However, the numerical
methods for these models severely depend on the Courant-Friedrichs-Lewy (CFL)
condition when solving the corresponding PDE.

Different to above PDE-based methods, a lot of attention was paid to the variation-
based models recently due to the flexible numerical methods and the good mathe-
matical properties based on the choosing functional spaces. Based on the assump-
tion that the illumination is smooth, Kimmel et al. [25] proposed a variational
model for explaining how the human vision system perceives colors. However, their
model did not consider the reflectance piecewise constant assumption. As one im-
provement, Ma and Osher [37] coupled the total variation (TV) with the nonlocal
TV as the regularization term to the retinex problem and then proposed the Breg-
man iteration scheme to solve it. But this model did not consider the relationship
between the illumination and the reflectance. It was highly hard to present some
theoretical analysis such as the existence and the uniqueness of the solution. In
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[42], Ng and Wang established a TV model based on the prior of the reflection
function, where some constraints are added to make the model more appropriate
and reasonable. Liang and Zhang [34] further proposed the higher order TV-based
L1 model (called the HOTVL1) for suppressing the staircase artifact generated by
the TV regularization [37, 42]. Zosso et al in [53] established a unifying model
based on the nonlocal formulation. In addition, Wang and He [50] also proposed
a variational model with barrier functionals in order to satisfy some constraints.
They solved their model by an alternating minimization and the steepest decent
method. By using the L0 quasi-norm regularization to penalize the sparsity based
on some transformations, Duan et al. [12] proposed to combine the Mumford-Shah
model with the L0 quasi-norm for the retinex problem. Gu et al in [18] recently
proposed a detail preserving variational model for simultaneously estimating the
illumination and the reflectance from an observed image without the log-transform.
However, most of the existing variational models perform a log-transform on the o-
riginal image in their models to turn the product form into the addition form. This
operation can reduce the computational complexity and simulate the human eye
perception of light intensity. Furthermore, these existing models due to the lacking
of the efficient penalty for the noise prior are not robust when the image contains
some noises. In order to overcome these drawbacks, Liu et al [32] established a new
TV-based model (called the ETV), where the data-fitting term uses the exponent
transform to replace the log-transform and one of the regularization terms is used
to describe the noise prior and their proposed model can enhance the image details.
Aiming to extend this work, this paper employs the non-convex ℓp-quasi-norm for
improving the ETV and the main contributions are summarized as follows.

• We propose a new image retinex model based on the nonconvex total-variation
(TV)-type regularization, where the data fitting term and one of regulariza-
tion terms based on the exponent-transform are used to describe image details
efficiently, one regularization term based on the nonconvex total variation ℓp-
quasinorm to penalize the sparsity of the piecewise constants and one regular-
ization term based on the nonconvex high-order total variation ℓq-quasinorm
to penalize the piecewise smoothing regions.

• Since the proposed model is nonconvex, non-smooth and non-Lipschitz, we
employ the alternating minimization method, where the iteratively reweighted
ℓ1 algorithm and the alternating direction method of multipliers are used in
the sub-minimization problems. We also give some theoretical analysises of
the proposed model and the numerical algorithm.

• Numerical comparisons demonstrate that our proposed model achieves com-
petitive results for the image retinex problem with the different types.

The rest of this paper is organized as follows. In section 2, we introduce the
iteratively reweighed ℓ1 algorithm. In section 3, we present the proposed model
and some theoretical analysis about the existence of the solution. The efficient
numerical methods are proposed to solve the proposed model in this section. Section
4 presents some numerical results to demonstrate the effectiveness of the proposed
method compared with some state-of-the-art retinex methods. Finally, we conclude
our paper in Section 5.
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Notations. For simplification, we set a gray image f ∈ X. Here X =: RM×N is
equipped with the inner product and the norm as

⟨x,y⟩ =
M∑
i=1

N∑
j=1

xi,jyi,j and ∥x∥2 =

√√√√ M∑
i=1

N∑
j=1

x2
i,j ,

where x,y ∈ X. Let Y := X× X, the discrete gradient operator ∇(·) : X → Y is
defined by

∇ui,j = (D+
x ui,j , D

+
y ui,j).

Here the forward difference operator D+ specifically denotes as

D+
x ui,j =

{
ui+1,j − ui,j , if 1 ≤ i < M, 1 ≤ j ≤ N,

u1,j − ui,j , if i = M, 1 ≤ j ≤ N,

D+
y ui,j =

{
ui,j+1 − ui,j , if 1 ≤ i ≤ M, 1 ≤ j < N,

ui,1 − ui,j , if 1 ≤ i ≤ M, j = N.

Similarly, we can define the backward difference operator as

D−
x ui,j =

{
ui,j − ui−1,j , if 1 < i ≤ M, 1 ≤ j ≤ N,

ui,j − uM,j , if i = 1, 1 ≤ j ≤ N,

D−
y ui,j =

{
ui,j − ui,j−1, if 1 ≤ i ≤ M, 1 < j ≤ N,

ui,j − ui,N , if 1 ≤ i ≤ M, j = 1.

Using above symbols, we get the discrete version of the Hessian operator as

∇2ui,j = (D−
x (D

+
x ui,j), D

−
x (D

+
y ui,j);D

−
y (D

+
x ui,j), D

−
y (D

+
y ui,j)).

In addition, ∀ x := (x1,x2) ∈ Y and ∀ y := (y1,y2) ∈ Y, we define their inner
product

⟨x,y⟩ = ⟨x1,y1⟩+ ⟨x2,y2⟩.
Then the ℓ1 norm and the ℓ2-norm are defined in the space Y as

∥x∥2,1 =
M∑
i=1

N∑
j=1

√
(x1,i,j)2 + (x2,i,j)2 and ∥x∥2,2 =

√
⟨x,x⟩.

For the simplification, we set ∥ · ∥2,2 as ∥ · ∥2 in the following. As an extension, the
ℓp-quasinorm is defined by

∥x∥p2,p =
M∑
i=1

N∑
j=1

(
(x1,i,j)

2 + (x2,i,j)
2
) p

2

for p ∈ (0, 1). Let Z := Y×Y and ∀ ρ = (ρ11, ρ12; ρ21, ρ22) ∈ Z, the ℓq-quasinorm
based on the space Z is defined by

∥ρ∥qF,q =

M∑
i=1

N∑
j=1

(
(ρ11,i,j)

2 + (ρ12,i,j)
2 + (ρ21,i,j)

2 + (ρ22,i,j)
2
) q

2

for q ∈ (0, 1). Here F denotes the Frobenius norm. Let div and div2 to denote the
adjoint operators of ∇ and ∇2 respectively, based on the divergence theorem

⟨−divx, u⟩X = ⟨x,∇u⟩Y and ⟨div2ρ, u⟩X = ⟨ρ,∇2u⟩Z,
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we have

divxi,j = D−
x x1,i,j +D−

y x2,i,j ,

div2ρi,j = D−
x

(
D+

x ρ11,i,j

)
+D−

x

(
D+

y ρ12,i,j

)
+D−

y

(
D+

x ρ21,i,j

)
+D−

y

(
D+

y ρ22,i,j

)
.

2. Iteratively reweighted l1 algorithm. This section recalls some numerical
methods related to our proposed model and the numerical algorithm.

2.1. The ℓ2 − ℓp proximal problem. During last decades, how to solve the ℓ2 −
ℓp proximal problem, as one subproblem used in the field of compressed sensing,
pattern recognition and image restoration, has attracted great attention [7, 9, 54,
33, 31]. Formally, this problem can be written as

min
x

τ

2
∥x− y∥2X + ∥x∥pX,p, (1)

where p ∈ (0, 1) and X depends on some spaces such as Y and Z. That is to say,
we set X := 2 if x ∈ X and set X := F if y ∈ Y. Since the numerical method based
on a different space in X is similar, we in the following consider the case of x ∈ X
as

min
x

τ

2
∥x− y∥22 + ∥x∥p2,p. (2)

To solve the problem (2), there are some great challenges for the theoretical analy-
sis and the numerical implementation due to its non-convexity, non-smoothing and
non-Lipschitz. Many schemes have been proposed to overcome these drawbacks
such as the smoothing approximation method [9], the general iterative shrinkage-
thresholding algorithm [54, 31], the active set method [15] and the iterative reweighed
ℓ1 minimization algorithm (IRLA) [7, 26, 35]. Here we mainly use the latter to solve
the problem (2).

The IRLA was first proposed by Candes et al. [7] to slove the problem (2). This
algorithm consists of solving a sequence of the weighted ℓ1-minimization problem-
s, where the weighted parameter used for the next iteration are computed from
the value of the current solution. Specifically, solving the original problem (2) is
approximately replaced by

xk+1
i,j = argmin

xi,j

τ

2
∥xi,j − yi,j∥22 + Tp(x

k
i,j , η

k)∥xi,j∥2,1︸ ︷︷ ︸
G(xi,j ,xk

i,j ,η
k)

(3)

for i = 1 · · ·M and j = 1 · · ·N , where xi,j := (x1,i,j , x2,i,j) and Tp

(
xk
i,j , η

k
)
:=(∥∥xk

i,j

∥∥
2,1

+ ηk
)p−1

. It is obvious that this problem is the classical ℓ2 − ℓ1 problem

and the closed-form solution can be obtained by using the soft shrinkage scheme

xk+1
i,j = shrink

(
yi,j ,

Tp

(
xk
i,j , η

k
)

τ

)
:= max

{
∥yi,j∥2,1 −

Tp

(
xk
i,j , η

k
)

τ
, 0

}
yi,j

∥yi,j∥2,1
.

In the following, we summarize the IRLA to solve the problem (2) as Algorithm 1.
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Algorithm 1: Iteratively Reweighed l1 Algorithm for the problem (2)

1. Parameter: ε > 0 and τ > 0;
2. for k = 1, 2, · · · · · · , doxk+1

i,j = shrink

(
yi,j ,

T(xk
i,j ,η

k,p)
τ

)
;

ηk+1 = ρηk

for i = 1 · · ·M , i = 1 · · ·N and ρ ∈ (0, 1).
3. End while the stopping conditions are satisfied.

If setting ρ = 1 in Algorithm 1, that is to say, we use the fixed smooth parameter
η in the approximated problem (3), the convergence analysis has been discussed in
[10]. However, the generated sequence {xk} only converges to the solution of the
smooth problem (3) rather than the solution of the original problem (2). In order
to give the convergence analysis of Algorithm 1, we need to show the existence of
the solution for the problem (2).

Theorem 2.1. ∀ x,y ∈ X and set τ > 0, the problem (2) exists one solution.

In fact, the objective function in the problem (2) is bounded from below and
coercive, it is easy to deduce the existence of the solution in the problem (2) as done
in [15]. Now we consider the convergence of Algorithm 1 related to the framework
in [24].

Theorem 2.2. The sequence {xn} generated by Algorithm 1 converges to one so-
lution of the problem (2).

Proof. Since the problem (2) is separable, we only consider the case at the pixel
point (i, j). Based on the problem (3), we can deduce that

G
(
xk+1
i,j ,xk

i,j , η
k
)
≤ G

(
xk
i,j ,x

k
i,j , η

k
)
. (4)

Omitting the iteration superscript in the problem (3), we can rewrite G (xi,j ,xi,j , η)
as

G (xi,j ,xi,j , η) =
τ

2
∥xi,j − yi,j∥22 + Tp(xi,j , η)∥xi,j∥2,1

=
τ

2
∥xi,j − yi,j∥22 + p(∥xi,j∥2,1 + η)Tp(xi,j , η) + (1− p)Tp(xi,j , η)

p
p−1 .

Set xi,j := xk+1
i,j in the norm ∥ · ∥2 and η := ηk in above equation, it is easy to get

xk+1
i,j = argmin

xi,j

G
(
xk+1
i,j ,xi,j , η

k
)
.

Combining it with the inequation (4), we have

G
(
xk+1
i,j ,xk+1

i,j , ηk
)
≤ G

(
xk+1
i,j ,xk

i,j , η
k
)
≤ G

(
xk
i,j ,x

k
i,j , η

k
)
. (5)

In addition, since ηk+1 ≤ η, we deduce

Tp(x
k+1
i,j , ηk+1) ≤ Tp(x

k+1
i,j , ηk).

and then obtain that

G
(
xk+1
i,j ,xk+1

i,j , ηk+1
)
≤ G

(
xk+1
i,j ,xk+1

i,j , ηk
)
≤ G

(
xk+1
i,j ,xk

i,j , η
k
)
≤ G

(
xk
i,j ,x

k
i,j , η

k
)
.



IMAGE RETINEX BASED ON THE NONCONVEX TV-TYPE REGULARIZATION 7

This result illustrates that the sequence
{
G
(
xk
i,j ,x

k
i,j , η

k
)}

is non-increasing. Based

on the bounded blow of the problem (3) and ηk → 0 as k → ∞, we can conclude
that the sequence

{
G
(
xk
i,j ,x

k
i,j , η

k
)}

has a accumulation as

lim
k→+∞

G
(
xk
i,j ,x

k
i,j , η

k
)
= G(x̄i,j , x̄i,j , 0).

for x̄k
i,j → x̄i,j as k → ∞ 1 Now we only want to show that x̄i,j is one solution of

the problem (3). In fact, we plug the point (x̄i,j , x̄i,j , 0) in the problem (4), it is
easy to find that the problem (4) is equivalent to the problem (3) for i = 1, · · · · · ·M
and j = 1, · · · · · ·N .

Recently, Ochs et al. [43] extended it to solve various kinds of iteratively reweighed
algorithms for the computer vision problems.

3. Total variation model. In this section, we first introduce our proposed model
to the retinex problem and then give an efficient numerical method to solve it.

3.1. The proposed model. The intensity in the observed image is determined
by two parts: the intensity of the illumination received at this point and the ratio
of the illumination reflected from this point [21]. Assuming that the illumination
of one object is inhomogeneous, it is natural to model the observation through
inducing the varying illumination [30]. The varying illumination may have many
different sources such as the varying distance based on a point lighting source,
the uneven thickness of clouds via filtering sun lights, or the biased magnetic field
generated in an MRI machine. Regardless of the sources, we furthermore assume
that the illumination should vary smoothly. For simplification, this paper studies
and discusses our proposed model based on a single channel-like gray-level image.
Specially, the observation image f can be modeled by:

f = R⊙ L+ η (6)

where ⊙ denotes the entrywise multiplication and η denotes the additive noise. Here
we need two assumptions, which include that the source reflectance R ∈ (0, 1) is
the piecewise constant and the illumination L ∈ (0,∞) is the spatially smoothing.

In the model (6), the multiplication operation leads to many numerical difficulties
to obtain R and L. One efficient method is of decoupling with them by using the
logarithm transformation as

v = r + l,

where r = log(R) and l = log(L). With this manipulation, the model (6) can be
rewritten as

f = er+l + η. (7)

The problem (7) is the classic additive model and many schemes were proposed to
deal with it based on some prior assumptions. Here we assume that η is the white
Gaussian noise and then consider the following retinex model

min
v,r,l

F(v, r, l) =
1

2
∥f − ev∥22 + α ∥∇ev∥2,1 + β∥∇r∥p2,p + γ

∥∥∇2l
∥∥q
F,q

+
µ

2
∥v − r − l∥22 +

θ

2
∥l∥22, (8)

1Since the sequence
{
G
(
xk
i,j ,x

k
i,j , η

k
)}

has a accumulation, we only set xi,j = x̄i,j to get the

value of this accumulation for the functional G(·).
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where α, β and γ are the positive regularization parameter, µ is the penalty param-
eter. The term ∥f − ev∥22 is used for the fidelity, ∥∇ev∥1, ∥∇r∥p2,p and ∥∇2l∥qFF,q

are the regularization term, and ∥v − r − l∥22 is the penalty term. The last term
here is to ensure the well-posedness of the model, where θ can be taken to be very
small.

We remark the difference between the ETV used in [32] and the proposed model
(8). It is obvious that the model (8) is the ETV if setting p = q = 1. However, as is
well known that the image structure will be sparse based on some transformations
such as the gradient-based operators and the wavelet-based operators. So it is more
reasonable for restricting parameters p, q ∈ (0, 1) in order to preserve the sparsity
when proposing the reconstruction model as done in (8). This fact can be observed
that our proposed model (8) can give better results in the quality of the solution
compared with the ETV from the numerical comparisons.

Theorem 3.1. Let the parameters α, β, γ, µ and θ to be positive, then the problem
(8) exists one solution in the space BV(X)× BVp(X)×HBVq(X)2.

Proof. Since F(v, r, l) is bounded from below, the existence can be followed from its
continuity and coercivity. Let w := (v, r, l) =

(
s1v̄, s2r̄, s3 l̄

)
∈ BV(X)× BVp(X)×

HBVq(X) such that si > 0 and ∥v̄∥2 = 1, ∥r̄∥2 = 1,
∥∥l̄∥∥

2
= 1. We first notice that

F (w) ≥ βs1∥∇r̄∥p2,p + γs2
∥∥∇2 l̄

∥∥q
F,q

+ s3
θ

2
∥l̄∥22 → ∞

when w → ∞, that is to say, si → +∞ for i = 1, 2, 3. So F(w) is coercive and
then the minimizing sequence

{
wk
}
for the functional F

(
wk
)
must be bounded.

Boundary of the sequence in the space X implies the existence of a convergence
subsequence of

{
wkt

}
. Using the continuity of the function F(w) in the closed

image domain, above assertion is held.

3.2. The alternating minimization algorithm. The problem (8) is a multi-
variable optimization problem, where the variables v, r, l are coupled together. In
order to decouple with them, one efficient method is of using the alternating min-
imization method to transforming it into some easy and solvable subproblems. In
general, the alternating minimization (AM) method, which is a rather old and fun-
damental algorithm, is attractive due to its simplicity and efficiency. This method is
widely used in the linearly constrained optimization problems such as the machine
learning, the image and signal processing, as well as other fields [17]. Specially, we
can summarize this method as Algorithm 2 in the following.

Algorithm 2: Alternating minimization algorithm for the problem (8)

1. Initialization: Set v0 = r0 = log(f) and parameters α, β, γ, µ, θ;
2. Iterations:

vn+1 = argmin
v

1

2
∥f − ev∥22 + α∥∇ev∥2,1 +

µ

2
∥v − rn − ln∥22; (9)

rn+1 = argmin
r

β∥∇r∥p2,p +
µ

2
∥vn+1 − r − ln∥22; (10)

ln+1 = argmin
l

γ∥∇2l∥qF,q +
µ

2
∥vn+1 − rn+1 − l∥22 +

θ

2
∥l∥22; (11)

2 ∀w ∈ X, the bounded TV-type spaces are defined by BV(X) := {w|∥∇w∥2,1} ≤ ∞,

BVp(X) :=
{
w|∥∇w∥p2,p

}
≤ ∞, HBVq(X) :=

{
w|

∥∥∇2w
∥∥q
F,q

}
≤ ∞
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3. End till the stopping criterion meets:

max(R(rn, ln)) ≤ 10−5 or n ≥ 5× 103,

where the R(rn, ln) is defined in Section 4.

Based on Algorithm 2, we can find that the minimization sequence {F (vn, rn, ln)}
is monotonous and nonincreasing. Then we can deduce that there exists a subse-
quence of {F (vn, rn, ln)} to converge to an accumulation point of the problem (8).
In the following, we consider how to solve every subproblem in Algorithm 2.

3.2.1. Subproblem (9). This subproblem is nonconvex and nonsmooth due to the
existence of the nonlinear function ev and the ℓ1-norm. One efficient method is of
using the alternating direction method of multipliers (ADMM) through introducing
some auxiliary variables to break the original problem into smaller pieces, each of
which are then easier to be handled [17, 2, 13, 11, 6, 16, 47, 51]. If the original
problem is convex, the ADMM is closely related to many other methods such as the
dual decomposition, the method of multipliers, Douglas-Rachford splitting, Spin-
garns method of partial inverses, Dykstras alternating projections; see for the work
in [17]. To this end, we need to first introduce two auxiliary variables u, b and then
transform the problem (9) into an equivalent form asmin

v,u,b

1

2
∥f − u∥22 + α∥b∥2,1 +

µ

2
∥v − rn − ln∥22

s.t. u = ev, b = ∇u.
(12)

Based on the framework of the augmented Lagrangian method, we need to rewrite
(12) as the equivalent unconstrained optimization problem

max
Λ1,Λ2

min
v,u,b

1

2
∥f − u∥22 + α∥b∥2,1 +

µ

2
∥v − rn − ln∥22 + ⟨Λ1, u− ev⟩

+
r1
2
∥u− ev∥22 + ⟨Λ2,b−∇u⟩+ r2

2
∥b−∇u∥22, (13)

where Λ1 and Λ2 are the Lagrange multiplier, r1 and r2 are the positive penalty
parameter. Using the ADMM, we can solve the saddle point problem (13) by the
following Gaussian-Seidel iteration scheme

vk+1 = argmin
v

µ

2
∥v − rn − ln∥22 − ⟨Λk

1 , e
v⟩+ r1

2
∥uk − ev∥22, (14)

uk+1 = argmin
u

1

2
∥f − u∥22 + ⟨Λk

1 , u⟩+
r1
2
∥u− ev

k+1

∥22

−⟨Λk
2,∇u⟩+ r2

2
∥bk −∇u∥22, (15)

bk+1 = argmin
b

α∥b∥2,1 + ⟨Λk
2,b⟩+

r2
2
∥b−∇uk+1∥22, (16)

Λk+1
1 = Λk

1 + r1

(
uk+1 − ev

k+1
)
, (17)

Λk+1
2 = Λk

2 + r2

(
bk+1 −∇uk+1

)
. (18)

In the iteration scheme (14)-(18), it is not easy to solve the subproblem (14)
since the nonlinear function ev makes the objective function be nonconvex. So
we either use an approximate solution as a substitute in the update which might
cause divergence, or solve the subproblems by numerical algorithms which can bring
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computational burden. One efficient method is of using the Taylor linearizations
around and then adds a proximal term as

vk+1 = argmin
v

µ

2
∥v − rn − ln∥22 +

(
r1e

vk
(
ev

k

− uk
)
− ev

k

Λk
1

)
v +

τ

2

∥∥v − vk
∥∥2
2
.

This is a smooth and convex optimization problem, the optimal condition of which
can be obtained by

(τ + µ)vk+1 = τvk + ev
k

Λk
1 − r1e

vk
(
ev

k

− uk
)
+ µ(rn + ln).

Furthermore, we have

vk+1 =
τvk + ev

k

Λk
1 − r1e

vk
(
ev

k − uk
)
+ µ(rn + ln)

τ + µ
(19)

To the subproblem (15), it is a convex and smooth. With the help of the varia-
tional method and simultaneously choosing the Neumann boundary condition, we
can get the corresponding Euler-Lagrangian equation as follows

((1 + r1)I − r2∆)u = f − Λk
1 + r1e

vk+1

− divΛk
2 − r2divb

k, (20)

where I is the identity operator and ∆ is the Laplace operator. This problem is
of solving the linear equation, and the numerical method depends on the boundary
condition [52]. This paper mainly uses the periodic boundary condition. So the
matrix operator (1 + r1)I − r2∆ is a circulant matrix and the solution can be
obtained by using the fast Fourier transform (FFT):

uk+1 = F−1

F
(
f − Λk

1 + r1e
vk+1

)
−F(divΛk

2)− r2F(divbk)

(1 + r1)F(I)− r2F(∆)

 , (21)

where F denotes the Fourier transform and F−1 denotes its inverse transform.
To solve the subproblem (16), it corresponds to the classical ℓ2− ℓ1 problem and

the closed-form solution can be obtained by using the soft-shrinkage operator as

bk+1 = argmin
b

α∥b∥2,1 +
r2
2

∥∥∥∥b−
(
∇uk+1 − Λk

2

r2

)∥∥∥∥2
2

= shrink

(
∇uk+1 − Λk

2

r2
,
α

r2

)
.

3.2.2. Subproblem (10). It is not easy to solve this problem due to its noncon-
vexity, nonsmoothing and non-Lipschitz. In order to overcome these numerical dif-
ficulties, we need to use the operator splitting scheme by introducing an auxiliary
variable w := ∇r and then obtain a constrained optimization problemmin

r,w

µ

2

∥∥vn+1 − r − ln
∥∥2
2
+ β∥w∥p2,p,

s.t. w = ∇r,

where vn+1 := vk+1. Here vk+1 denotes the outputting of the inner iteration related
to the subproblem (9). Using the augmented Lagrangian method, we can obtain a
saddle point problem as

max
Λ3

min
r,w

µ

2

∥∥vn+1 − r − ln
∥∥2
2
+ β∥w∥p2,p + ⟨Λ3,w−∇r⟩+ r3

2
∥w−∇r∥22, (22)
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where Λ3 is a Lagrange multiplier, and r3 is a positive penalty parameter. Based on
the ADMM, we can solve the problem (22) through the following iteration scheme

rκ+1 = argmin
r

µ

2
∥vn+1 − r − ln∥22 − ⟨Λκ

3,∇r⟩+ r3
2
∥wκ −∇r∥22 , (23)

wκ+1 = argmin
w

β∥w∥p2,p + ⟨Λκ
3,w⟩+ r3

2

∥∥w−∇rκ+1
∥∥2
2
, (24)

Λκ+1
3 = Λκ

3 + r3
(
wκ+1 −∇rκ+1

)
. (25)

Now we consider to solve the smooth subproblem (23), the optimal condition of
which can be written as

(µI − r3∆)r = µ
(
vn+1 − ln

)
− r3divw

κ − divΛκ
3. (26)

Based on the assumption of the periodic boundary condition again, the solution

rκ+1 = F−1

(
µF

(
vn+1 − ln

)
−F(divΛκ

3)− r3F (divwκ)

µF(I)− r3F(∆)

)
(27)

of this problem can be obtained by using the FFT.
To the problem (24), we rewrite it as

min
w

β∥w∥p2,p +
r3
2

∥∥∥∥w−
(
∇rκ+1 − Λκ

3

r3

)∥∥∥∥2
2

(28)

and then employ Algorithm 1 to solve it by setting

y := ∇rκ+1 − Λκ
3

r3
and τ =

r3
β

in the problem (1).

3.2.3. Subproblem (11). The method for solving this problem is similar to solving
the problem (10). So we similarly introduce an auxiliary variable z := ∇2l and use
the ADMM to solve it as follows.

lν+1 = argmin
l

µ

2
∥vn+1 − rn+1 − l∥22 +

θ

2
∥l∥22 − ⟨Λν

4,∇2l⟩+ r4
2
∥zν −∇2l∥22,(29)

zν+1 = argmin
z

γ∥z∥qF,q + ⟨Λν
4, z⟩+

r4
2
∥z−∇2lν+1∥22, (30)

Λν+1
4 = Λν

4 + r4
(
zν+1 −∇2lν+1

)
. (31)

where vn+1 := vk+1 and rn+1 := rκ+1. Here vk+1 and rκ+1 denote the outputting
of the inner iteration related to the subproblem (9) and (10).

In the iteration scheme (29)-(31), the subproblem (29) is smooth and convex.
Then the optimization condition can be written as(

(µ+ θ)I + r4div
2∇2

)
l = µ

(
vn+1 − rn+1

)
+ r4div

2zω + div2Λω
4 .

Using the assumption of the periodic boundary condition, the solution can be ob-
tained by using the FFT through

lω+1 = F−1

(
ωF

(
vn+1 − rn+1

)
+ F

(
div2Λω

4

)
+ r4F

(
div2zω

)
(µ+ θ)F(I) + r4F

(
div2∇2

) )
. (32)

Similarly, the subproblem (30) can be written as

min
z

γ∥z∥qF,q +
r4
2

∥∥∥∥z− (∇2lω+1 − Λω
4

r4

)∥∥∥∥2
2

, (33)
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which is the ℓ2 − ℓq problem. Then we still use Algorithm 1 to solve it by setting

y := ∇2lω+1 − Λω
4

r4
and τ =

r4
γ

in the problem (1).

Remark 1. To Algorithm 2, there include some inner iterations to solve the sub-
problem (9)-(11). Specifically, we use the ADMM to solve them respectively. In
general, more exact solution can be obtained when increasing the number of itera-
tion. However, we notice that a better decomposition result can be still obtained
by setting the inner iteration to be one. So we choose it as the stopping condition
for all of the inner iterations in the numerical implementation when solving our
proposed model.

4. Numerical experiments. To demonstrate the performance of our proposed
model (8), this section presents a series of numerical implementations to remove
the different illusions and noisy levels of the different kind of the images. To this
end, we choose some state-of-the art models such as the TVH1 [42], the HOTVL1
[34], the L0MS [12] and the ETV [32] compared with our proposed model (8).

As is well known, choosing suitable parameter in the proposed model is essential
for obtaining a good correction and the reconstruction result. For the numeri-
cal algorithm, the suitable parameters can improve the convergence rate and the
numerical stability. However, there involve more than two parameters such as the
regularization parameters α, β and γ, the penalty parameters µ, p and q. In general,
three ways can be proposed for how to select them. One is of trying on some values
for providing satisfactory results and then keeping it to be the fixed outputting.
The second way is by using Game theory to reformulate the optimization problem
so that the dimension of the parameters’ space is much reduced, as is done in [48].
The third approach is of choosing them by using some rules based on the prior
statistical characteristic such as the L-curve method [19], the generalized cross val-
idation (GCV) [14, 49], the discrepancy principle [41, 45], or the variational Bayes
approach [44]. In our experiments, we choose the former approach. Specifically, we
set α ∈ [0.01, 0.04] according to the severity of noises, β ∈ [0.001, 0.02] depending
on the illusion, µ ∈ [0.7, 1.2] and p ∈ [0.9, 0.97] based on the image structure. In
addition, we fix γ = 0.08, τ = 1e − 5, q = 0.85 in the numerical implementation.
In addition, in order to quantitate the performance, we adopt the Peak Signal to
Noise Ratio (PSNR) and the Mean Structural Similarity (MSSIM) to evaluate the
effectiveness of the used models. All comparison algorithms are implemented and
tested in Matalb R2018a under Windows OS on a laptop computer equipped with
Intel Core i7 2.7GHz.

4.1. Synthetic Images. We first start with reconstructing two synthetic images
degraded by the white Gaussian noise with σ = 0.001 and a suitable bias field as
shown in Figure 1. From the values of the PSNR and the MSSIM in Table 1, we
can conclude that our method demonstrates competitive score. Since humans are
involved in evaluating the quality of the reconstructed result, it absolutely becomes
essential to provide visual quality of the reconstructed images. As shown in Figure 2,
we can observe that the recovered reflectance and illumination images generated by
our proposed model are less noise effects and artifacts than other models. Especially,
some noises can be found in Figure 2 (a), (b) and (c) and some piecewise constants
can be found in Figure 2 (b).
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PSNR MSSIM

TVH1 30.9323 0.9812

Shape1 L0MS 31.7962 0.9837
HOTVL 18.9389 0.9374
ETV 36.2657 0.9967
OUR 36.8019 0.9973

TVH1 31.5509 0.9514

Shape2 L0MS 31.6024 0.9463
HoTVL1 15.6438 0.8137
ETV 36.6105 0.9972

OUR 37.6838 0.9975

Table 1. PSNR and MSSIM of the reconstructed synthetic images.

(a) Shape1 (b) Shape2

Figure 1. Two synthetic testing images.

4.1.1. Various Gaussian noises. In the medical imaging, the obtained images
may be corrupted by the bias field due to non-uniform illuminations or the parallel
magnetic resonance imaging (MRI)3. The correction of the bias field is similar to
the retinex problem where we need to remove the light effect caused by the illu-
mination. Here, we use two slices of T1-weighted brain MR image as examples,
which are contaminated the white Gaussian noise with different standard deviation
as 0.03, 0.05, 0.07, 0.09 and the intensity non-uniformity as 40%. The quantitative
comparisons as shown in Table 2 indicate that our proposed model achieves the
best results in terms of the PSNR and the MSSIM.

To show the effectiveness via the visual quality of the retinex images, Figure 3
shows the related comparisons between our proposed model and other models. It is
easy to observe that all models can provide visual preferable results compared with
the original images. Specially, removing the noise by using our proposed model and
the ETV is more robust than other models. In order to show the robustness of our
proposed model, we zoom a part of the retinex image degraded by the noise with the
standard deviation as 0.09 as an example and then plot them in the bottom column
of Figure 3. Again, we still observe that the ETV and our proposed model can
reconstruct more reasonable images. The important difference is that our proposed
model gives more natural structures such edges and the piecewise constant regions.

4.1.2. Intensity inhomogenous images. Here we select one slice from the T1-
weighted brain volume and then generate ten degraded images by adding the white
Gaussian noise with the standard deviation σ = 0.001 and the different intensity
inhomogeneities. The PSNR and the MSSIM for the reconstructed images by using

3The MRIs can be downloaded from the website: http://www.bic.mni.mcgill.ca/brainweb/.
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(a) TVH1 (b) L0MS (c) HOTVL1 (d) ETV (e) OUR

Figure 2. Reconstruction images based on the different model.
The first and third rows: recovered reflectance r by five methods.
The second and fourth rows: illumination l by five methods.

0.03 0.05 0.07 0.09
PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

TVH1 26.8509 0.9436 25.3513 0.9176 24.5925 0.8939 23.4850 0.8642
Test HoTVL1 30.2055 0.9515 27.7438 0.9288 26.4877 0.9069 24.7440 0.8774

Image1 L0MS 29.7718 0.9227 27.8711 0.9088 26.1986 0.8936 24.3809 0.8649
ETV 32.6699 0.9904 31.1178 0.9844 29.1294 0.9767 28.4238 0.9686
OUR 33.0513 0.9909 31.2246 0.9846 30.1037 0.9781 28.4666 0.9686

TVH1 27.4061 0.9230 26.5258 0.8935 25.5879 0.8661 24.0629 0.8348

Test HoTVL1 30.0791 0.9317 29.0495 0.9065 27.0113 0.8795 25.1211 0.8481
Image2 L0MS 32.0987 0.9246 29.0807 0.9016 27.1344 0.8760 24.9108 0.8382

ETV 33.4363 0.9911 31.4108 0.9842 29.8199 0.9764 28.6496 0.9698
OUR 33.9694 0.9916 31.4609 0.9841 29.8766 0.9760 29.0947 0.9703

Table 2. PSNR and MSSIM of T1-weighted brain MRIs with dif-
ferent levels of Gaussian white noises.

different methods can be found in Figure 4. It obviously concludes that our pro-
posed model outperforms other four models based on these quantitative criterions.
Meanwhile, it can be observed that our proposed model is more stable than other
models. That is to say the change of the intensity inhomogeneities can not serious-
ly effect the reconstruction effectiveness of our proposed model due to the gentle
change of the PSNR and the MSSIM as shown in Figure 4.
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(a) Input (b) TVH1 (c) L0MS (d) HOTVL1 (e) ETV (f) OUR

Figure 3. Comparison of five methods on T1-weighted brain MRIs
with different levels of noises.

In general, the coefficient of variation (CV) is a standardized measure of the
dispersion of the probability or frequency distribution. Then the CV can be used to
estimate the effectiveness of the different method for reconstructing the degraded
image. Formally, the CV of each tissue T defined by

CV(T) =
σ(T)

µ(T)
× 100%,

where σ(T) and µ(T) are the standard deviation and the mean of the intensities in
the tissue T. Here we employ it for evaluating the White Matter (WM), the Gray
Matter (GM) and the Cerebrospinal Fluid (CSF) on the bias corrected images.
The related boxplots are shown in Figure 5. It is similarly observed that the CV
values based on our proposed model outperform other models, which implies that
our proposed model can effectively deal with noises and intensity inhomogeneities
again.

Now we consider to compare the visualization through choosing three degraded
images as shown in Figure 6. The reconstructed images and the different images
between the clean images and the restored images are shown in Figure 7. We can
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Figure 4. Comparison among five models in terms of the PSNR
and the MSSIM. Here the x-axis denotes the the serial number of
the image.

find that all methods can remove the noises and different intensity inhomogeneities
efficiently. Especially, we can observe the colorbars of the different images based
on our proposed method more dark and less structural information compared with
other models, which implies the effectiveness of our proposed method. In addition,
since the relative error between the clean images f and the restored images f1

R(f, f1) =
∥f − f1∥2

∥f∥2
can also display the effectiveness of the different model, we still use three images
in Figure 6 as examples and then plot these curves of R(f, f1) as shown in Figure
8. It is obvious that R(f, f1) based on our proposed model is smaller than other
methods. These illustrate the advantage and effectiveness of our proposed model
again.

TVH1 HoTVL1 L0MS ETV OUR

8
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16
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Gray Matter (GM)
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11

White Matter (WM)

TVH1 HoTVL1 L0MS ETV OUR

28
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32

34

36

38

Cerebrospinal Fluid (CSF)

Figure 5. Comparison of the performance in terms of CV(%).

4.1.3. Convergence analysis. Since our proposed model (8) is nonconvex and
non-Lipschitz, it is not easy to prove the convergence of the proposed algorithm.
In order to show the convergence from the numerical implementation, we need to
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(a) Brain1 (b) Brain2 (c) Brain3

Figure 6. T1-weighted brain images with different intensity in-
homogeneities and noises.

visually analyze the relative error of the solution rn and ln

R(rn, ln) =
(∥rn − rn−1∥22

∥rn∥22
,
∥ln − ln−1∥22

∥ln∥22

)
and the energy of the objective function in the problem (8). In general, R(rn, ln)
tending to zero implies the convergence of the numerical algorithm. Here we only
use the third image as shown in Figure 6 as an example. As we can see from Figure 9
that R(rn, ln) and the numerical energy decay when increasing the iteration, which
demonstrates that our proposed algorithm converges well numerically.

4.2. Real MRIs. In this experiment, we present to reconstruct some real MRIs
such as the bladder and brains as shown in Figure 10, and the heads as shown
in Figure 13, where these real MRIs are obviously corrupted by the noise and the
bias field. The reconstructed results presented in Figure 11 demonstrate that our
proposed model can well recover the real intensities and improve the quality of
the original MRIs. In addition, in order to show the reconstruction effectiveness,
we select a slice of each image which locations are shown in Figure 10, and then
plot their gray value curves as shown in Figure 12. Based on Figure 12(a), we
can observe that the TVH1 and the HOTVL1 can not remove the bias field very
well and the L0MS model makes the image too smooth. In contrast, our proposed
model and the ETV can remove bias field and noises effectively. Furthermore, by
the careful observation, the distribution of the gray values based on our proposed
model is relatively closer to the original image than the ETV. That is to say, the
reconstructed results generated by the ETV reduce the contrast of the images. In
other words, our proposed model outperforms other models. Meanwhile, we can get
similar conclusion from Figure 12(b) and (c).

Compared with the MRIs as shown in Figure 10, the MRIs of the head as shown
in Figure 13 have more structure information. By observing the contour images of
the original MRIs from the bottom of Figure 13, it is not easy to find the detailed
information due to some effects of the bias field and the noise. These effects can
reduce the effectiveness of the subsequent image processing such as the image seg-
mentation and the image identification. Hence, it is very important to correct the
bias field and the noise. In the following, we consider to reconstruct these MRIs.
The reconstructed images and their contour images are respectively shown in Figure
14 and Figure 15. Figure 14 shows that the reconstructed comparisons generated by
the different models can present visually preferable results compared with the origi-
nal images. To intuitively observe the reconstructed results, we display the contours
of the reconstructed results as shown in Figure 15. It is easy to observe some facts
as follows. The TVH1 is able to remove non-uniform illuminations effectively, but it
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Figure 7. Performances of five methods on T1-weighted brain im-
ages with different intensity inhomogeneities for the first, third and
fifth rows; Colorbar to different between the clean images and re-
stored images for the second, fourth and sixth rows.

can break the background. The L0MS cannot recover the bottom of the corrupted
images well. Compared with the HOTVL1 and the ETV, our proposed model not
only removes the bias field more robust, but also preserves the details of the images.

4.3. Illusion images. To further demonstrate the superiority of our proposed
model, we carry out the experiment by using two typical test images such as the
Adelson’s checkerboard shadow image and the Logvinenko’s cube shadow image as
examples. The degraded images are added to the white Gaussian noise with the
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Figure 8. The relative errors of the original images and the re-
stored images in Figure 6.(a) First image, (b) Second image and
(c) Third image
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Figure 9. The relative errors of r and l and numerical energy of
our model for the third image in Figure 6.

(a) Bladder (b) Brain1 (c) Brain2

Figure 10. MRIs with noises and bias field.

standard deviation σ = 0.001 as shown in Figure 16. For the Adelson’s checker-
board shadow image, though visually region B is brighter than region A, they are
of the same intensity value. From the comparative results in Table 3, it can be
observed that all of the PSNR and the MSSIM of the proposed model are higher
than other models. In addition, the reflectance component R and the illumination
component L obtained by different models are displayed in Figure 17. The visual
results demonstrate that our proposed model can well decompose the reflectance
and the illumination.
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(a) TVH1 (b) L0MS (c) HOTVL1 (d) ETV (e) OUR

Figure 11. Bias field correction for the different MRIs.
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(b) Brain1
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(c) Brain2

Figure 12. The gray values of underlined part with five methods.

(a) Head1 (b) Head2 (c) Head3

(d) Contour1 (e) Contour2 (f) Contour3

Figure 13. Original corrupted images and the corresponding con-
tour images.

5. Conclusion. In this paper, we presented an efficient model to decompose the
reflectance and the illumination based on the TVp-HOTVq regularization. Since the
proposed model is non-convex, non-smoothing and non-Lipschitz, we employ the
iteratively reweighed ℓ1 algorithm based on the alternating minimization algorithm
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(a) TVH1 (b) L0MS (c) HOTVL1 (d) ETV (e) OUR

Figure 14. Comparisons of restored images with five methods.
The head 1 for the first row, the head 2 for the second row and the
head 3 for the third row.

(a) TVH1 (b) L0MS (c) HOTVL1 (d) ETV (e) OUR

Figure 15. FIGURE 14 corresponding contour images. The head
1 for the first row, the head 2 for the second row and the head 3
for the third row.

to solve it. Some mathematics properties of the proposed model and the numerical
method were discussed. Various numerical results were implemented to demonstrate
the advantages of our proposed model over some state-of-the-art retinex methods.
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(a) Checkerboard (b) Cube

Figure 16. Two test images for the illusion problem. (a) Adel-
sons checkerboard shadow image. (b) Logvinenkos cube shadow
image.

PSNR MSSIM

TVH1 31.7514 0.8887
Checkboard L0MS 33.1312 0.9602

HOTVL1 29.5090 0.8725
ETV 38.7053 0.9936
OUR 39.2105 0.9934

TVH1 30.7779 0.9799

L0MS 30.0935 0.9774
Cube HOTVL1 27.9950 0.9692

ETV 29.6898 0.9866
OUR 33.3660 0.9896

Table 3. PSNR and MSSIM of Retinex illusion images.
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