
2333-9403 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2020.2996751, IEEE
Transactions on Computational Imaging

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Learned Full-sampling Reconstruction from
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Weilin Cheng, Yu Wang, Hongwei Li, and Yuping Duan∗

Abstract—Sparse-view and limited-angle Computed Tomogra-
phy (CT) are very challenging problems in real applications.
Due to the high ill-posedness, both analytical and iterative
reconstruction methods may present distortions and artifacts for
such incomplete data problems. In this work, we propose a novel
reconstruction model to jointly reconstruct a high-quality image
and its corresponding high-resolution projection data. The model
is built up by deploying regularization on both CT image and
projection data, as well as by introducing a novel full-sampling
condition to fuse information from both domains. Inspired by
the success of deep learning methods in imaging, we utilize
the convolutional neural networks to embed and learn both the
interrelationship between raw data and reconstructed images and
prior information such as regularization, which is implemented
in an end-to-end training process. Numerical results demonstrate
that the proposed approach outperforms both variational and
popular learning-based reconstruction methods for the sparse-
view and limited-angle CT problems.

Index Terms—Tomography, sparse-view, limited-angle, Radon
inpainting, full-sampling condition, deep learning

I. INTRODUCTION

X -RAY computed tomography (CT) plays an important
role in the diagnostic of cancer and radiotherapy. One

major concern of CT is the radiation dose imposed on patients.
Sparse-view CT is a popular technique used to reduce the
radiation dose by decreasing the number of projections. On
the other hand, the projection data of the mobile C-arm CT
[1] and dental CT [2] are normally obtained within an angular
range less than π, which are known as the limited-angle
reconstruction problem. Image reconstruction from sparse-
view and limited-angle measurements is typical examples
of ill-posed inverse problems. Fig. 1 depicts the fan-beam
scanning geometry of sparse-view CT and limited-angle CT,
where the projection data is acquired with large scanning
angular intervals in (a) and within a limited angular range
in (b). Due to the insufficient projections, the conventional
reconstruction methods such as the filtered back-projection
(FBP) [3], algebraic reconstruction technique (ART) [4] and
simultaneous algebraic reconstruction technique (SART) [5]
may produce severe streaking artifacts and blurring artifacts.
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Fig. 1. Sketch map of fan-beam scanning geometry for CT reconstruction:
(a) Sparse-view CT Reconstruction; (b) Limited-angle CT Reconstruction. In
the figures, s denotes the X-ray source, T denotes the turntable, b denotes the
field-of-view, D denotes the detector array, o denotes the rotation center of
the X-ray source, and γ denotes the rotation angle, which is less than 180◦
plus the fan-angle for limited-angle CT.

Such inverse problems can be formulated as to estimate an
image u ∈ X from the measurement g ∈ Y

g = Au+ n, (1)

where the reconstruction space X and data space Y are
typically Hilbert spaces, A : X → Y is a linear operator
representing the forward system matrix (also named pro-
jection matrix) consisting of elements defined according to
intersection lengths between the beamlets and the pixels of
the image u, and n ∈ Y is the random noise generated
during the imaging process. Due to the lack of scanning
views, the linear operator A has a large kernel space and the
linear system (1) is sensitive to small perturbations. Numerous
regularization based algorithms have been proposed for CT
reconstruction including total variation (TV) [6], [7], [8],
nonlocal TV [9], tight frame [10], dictionary learning [11],
etc. Compared with analytical reconstruction algorithms, the
TV-based model can significantly improve the reconstruction
quality. However, there are still some drawbacks. First, it
assumes that the CT images are piecewise constant, which may
lead to unrealistic reconstruction, especially for the limited-
angle problem. Second, the iterative algorithms are usually
time-consuming and suffer from tricky parameter tuning.

Thanks to the development of deep convolutional neural
networks (CNN) in a broad range of computer vision tasks,
deep learning techniques have been actively used in the
medical imaging community [12], [13], [14]. We follow the
review work [15] to categorize the deep CNN models for CT
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reconstruction into two categories: post-processing and raw-
to-image. Post-processing is the kind of methods to enhance
the initial low-quality reconstructed image, e.g., FBP recon-
structed image, to its high-quality counterpart. Chen et al. [16]
designed a symmetrical convolutional and deconvolutional
neural network with shortcut connections to approximate the
mapping between the degraded images and clean images.
Jin et al. [17] used the U-net as a post-processing step
after the reconstruction of the FBP to mitigate noises and
artifacts. Zhang et al. [18] fed the FBP reconstruction to a
DenseNet and deconvolution based network for sparse-view
CT reconstruction. Because the post-processing methods rely
on initial reconstruction, plenty of information contained in
the raw data is ignored, which may lose effect for noisy or
incomplete data.

For raw-to-image methods, the reconstructed images are
directly estimated from the raw data in the Radon domain.
The pioneering work of Yang et al. [19] reformulated an
ADMM algorithm for compressive sensing MR imaging into
a deep network whose parameters are learned end-to-end in
the training phase. Since then, the unrolling technique has
become popular to devise various neural network architectures
for better CT reconstructions in terms of both quality and
efficiency. Adler and Öktem [20] developed a partially learned
gradient descent scheme for the solution of ill-posed inverse
problems such as (1). Kang et al. [21] constructed a deep CNN
network in the wavelet domain, which trained the wavelet
coefficients from the CT images after applying the contourlet
transform. Chen et al. [22] unfolded the field of experts (FoE)
regularized CT reconstruction model into a deep learning
network, all parameters of which can be learned from the
training process. Adler and Öktem [23] proposed a fully
learned algorithm based on the primal-dual formulation of (1)
for CT reconstruction. Gupta et al. [24] presented a novel
image reconstruction method by replacing the projector in a
projected gradient descent method with a CNN. Meinhardt
et al. [25] used the plug-and-play strategy to replace the
regularization term with a denoising neural network. Sun et al.
[26] proposed an online plug-and-play algorithm based on the
proximal gradient method with convergence analysis for image
reconstruction. Liu et al. [27] integrated a deep regularization
term into the variational model to learn the data consistency
from the observed data. Kang et al. [28] developed a deep
convolutional framelet denoising for low-dose CT via wavelet
residual network. The aforementioned methods are designed
for the general CT reconstruction problem. When dealing with
incomplete data, especially limited-angle CT, they may suffer
from artifacts such as boundary distortion, edge blurring, and
intensity biases.

Recently, the deep learning-based CT reconstruction tech-
niques have been developed for the incomplete data recon-
struction problem. Kelly and Matthews [29] utilized the neural
network as a quasi-projection operator with a least-square
problem in an iterative way, where the CNN is trained to
encode high-level information of images being imaged. Han
and Ye [30] proposed new multi-resolution deep learning
schemes based on the frame condition to overcome the limi-
tation of U-net for sparse-view CT. Pelt et al. [31] developed

a mixed-scale dense convolutional neural network architec-
ture to improve tomography reconstruction from limited data.
Würfl et al. [32] mapped the Feldkamp-Davis-Kress (FDK)
algorithm to the neural networks by introducing a novel cone-
beam back-projection layer for limited-angle problems. Dong,
Li and Shen [33] proposed a joint spatial-Radon domain
reconstruction (JSR) model for sparse-view CT imaging and
was recently reformulated into the feed-forward deep network
for incomplete data problems [34]. Wang et al. [35] proposed
an ADMM-based deep reconstruction algorithm for limited-
angle reconstruction by replacing one part of the ADMM
method for denoising with a deep CNN. Bubba et al. [36]
developed a hybrid reconstruction framework that fuses model-
based sparse regularization with data-driven deep learning
for limited-angle computed tomography. These learning-based
methods can achieve better reconstruction results than conven-
tional reconstruction methods for incomplete data.

II. RELATED WORKS AND OUR CONTRIBUTIONS

A. Variational regularization and PD-net

Following the Bayesian approach [37], the solution of the
inverse problem (1), i.e., the posterior density, can be obtained
based on the knowledge of the measurements. The joint
probability of observing both u and g is defined as

P (u, g) = P (g|u)P (u) = P (u|g)P (g).

By re-arranging the above equation, we obtain the well-known
Bayesian formula, i.e.,

P (u|g)︸ ︷︷ ︸
a-posteriori

=

likelihood︷ ︸︸ ︷
P (g|u)

a-priori︷ ︸︸ ︷
P (u)

P (g)︸ ︷︷ ︸
normalization

. (2)

Thus, a reconstructed image providing the measurement can
be obtained by calculating the point estimates of the posterior
density such as the maximum a posteriori (MAP) estimation.
By taking the negative logarithm, we arrive at the following
minimization problem

u = arg min
u
D(Au, g) +R(u), (3)

where D(Au, g) := − log
(
P (g|u)

)
is the data fidelity term

and R(u) := − log(P (u) is the regularization term. The task
of solving (3) mainly includes: 1) how to define the data
fidelity to describe the interrelationship between g and u;
and 2) how to model the regularization according to the prior
information of u.

Adler and Öktem [23] applied the Chambolle-Pock primal-
dual algorithm [38] for the general minimization problem (3)
as follows{

pk+1 = (I + τ∂D∗)−1(pk, Auk+1, g),
uk+1 = (I + σ∂R)−1(uk, A∗pk),

(4)

where I denotes the identity operator, D∗ denotes the conju-
gate of D, A∗ represents the backward projection, p is the dual
variable of u and σ, τ are two positive parameters. Instead
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of choosing handcrafted data fidelity and regularization, the
resolvent operators are learnt by the neural networks such as{

pk+1 = Γθp(pk, Auk+1, g),
uk+1 = Λθu(uk, A∗pk),

where Γθp and Λθu are neural networks parameterized
by θp and θu, respectively. Given a set of samples
(g1, u

∗
1), . . . , (gN , u

∗
L), by minimizing the following empirical

loss

LPD(θ) =
1

L

L∑
i=1

‖ui(θ)− u∗i ‖2, (5)

the PD-net has a significant performance boost compared to
the handcrafted reconstruction models and the post-processing
methods.

B. JSR model and JSR-net

The joint spatial-Radon domain reconstruction (JSR) model
was proposed in [33] to suppress the artifacts induced by noise
and incomplete data, which is formulated as

min
u,f
F(u, f) +R(u, f) (6)

with

F(u, f) = 1

2
‖RΓc(f−g)‖22+

α

2
‖RΓ(Au−f)‖22+

β

2
‖RΓc(Au−g)‖22,

and
R(u, f) = λ1‖W1u‖1,2 + λ2‖W2f‖1,2.

Note that u and f in (6) denote the underlying CT image
and the restored projection data, respectively. The notation
RΓ is a restriction operator with Γ indicating the missing data
region and Γc indicating the complement of Γ. Besides, W1,
W2 are tight frame transforms, and α, β, λ1, λ2 are posi-
tive parameters. The minimization problem (6) is solved by
an alternative optimization algorithm, two sub-minimization
problems of which can be efficiently solved by the split
Bregman iteration. The JSR-model improves the quality of CT
reconstruction by enforcing the data consistency in the image
domain and the Radon domain simultaneously. However, two
main drawbacks limit its practical usage: 1) As reported in
[33], the computational cost of the JSR model is three times
that of the TV model; 2) The reconstruction quality of the JSR
model for the limited-angle problem is still not satisfactory as
shown by the numerical experiments in [34].

Recently, Zhang et al. [34] extended the JSR model (6) into
the JSR-net for sparse-view and limited-angle CT reconstruc-
tion, which is a feed-forward network by unrolling the iterative
scheme of the JSR model. More specifically, the JSR-net used
the CNNs to approximate not only the inverse operators but
also the thresholding operators. In the training process, the
following structure-semantic-`2 loss is used

LJSR(θ) =

L∑
i=1

(
‖ui(θ)− u∗i ‖2︸ ︷︷ ︸

LSD

+α1 ‖RΓcA(ui(θ)− u∗i )‖2︸ ︷︷ ︸
LRD

+ α2

(
1− SSIM(ui(θ), u

∗
i )
)︸ ︷︷ ︸

LSSIM

+α3 ‖sem(ui(θ))− sem(u∗i )‖2︸ ︷︷ ︸
Lsem

)
,

(7)

where LSD and LRD are the `2 loss in the spatial domain
and Radon domain, respectively. LSSIM is the error summa-
tion of the SSIM between the reconstructed image and the
ground truth over mini batches. Lsem is the `2 norm of the
difference between the level sets of the reconstructed image
and ground truth. As reported in [34], the JSR-net achieves
better reconstruction quality than the JSR model by utilizing
multi-domain image features.

C. Our contributions

In this paper, we propose a novel, end-to-end trainable
approach for sparse-view and limited-angle CT reconstruction
by utilizing prior information in both the image domain and
the Radon domain. We extend our previous work [39] in
terms of both model development and evaluation. The current
model is derived by minimizing the data fidelity and two
regularization terms on the reconstructed image and its high-
resolution projection data, respectively. Besides, we introduce
a data consistency term as the constraint to the minimization
problem by employing the full-sampling condition. Both the
penalty method and the primal-dual method are applied in
designing the alternating minimization algorithm, where all
resolvent operators are replaced by the convolutional neural
networks. To fully exploit the advantages of our full-sampling
reconstruction network (FSR-net), a joint mean square error
of the reconstructed image and projection data is introduced
as the loss function for training the network. We evaluate the
performance of the proposed model on both synthetic ellipse
dataset and AAPM human phantom dataset, which shows
improved image quality especially on the preservation of tissue
textures.

The differences between our FSR-net and the two relevant
works, i.e., PD-net and JSR-net, can be clarified as follows.
Compared with PD-net, we solve a different minimization
problem, where both the image and the corresponding full
projection data are unknown variables. Although both methods
use the unrolled iterative learning scheme, the employed
algorithms are different such that the PD-net is the recon-
struction subproblem in our algorithm. The Radon domain
inpainting was introduced in [33] in a variational formulation
and extended to JSR-net in [34]. The main difference between
JSR-net and our model lies in the data fidelity, where ours
is designed using the prior knowledge on the relationship
between the CT image and the full-sampling projection data
while JSR-net depends on the regularization term on acquired
projection data. Relying on the stronger data consistency and a
better choice to encode the priors existing between the image
domain and the Radon domain, our model can significantly
improve the reconstruction quality.

III. LEARNED FULL-SAMPLING RECONSTRUCTION

A. The full-sampling reconstruction

For sparse-view and limited-angle reconstruction problems,
either only a few number of projections are acquired by
equally sampling the scanning angular range or only the pro-
jections in a limited scanning angular range are acquired. Both
cases result in insufficient sampling such that the information
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contained in g is far from being enough. In such conditions, the
system matrix A has much fewer rows than columns, which
means that the linear inverse problem (1) has infinitely many
solutions. Thus, it is crucial to select the optimal solution from
the solution set.

We develop a new model to simultaneously reconstruct the
CT image and its corresponding higher resolution projection
data. Instead of solely relying on the regularization of acquired
projection data, we introduce the following full-sampling con-
dition. Assume AF : X → Z to be the full-sampling system
matrix defined on the full angular range, i.e., 2π. Observing
that the high-resolution projection data f and the reconstructed
image u should satisfy the following full-sampling condition

AFu = f, (8)

we consider the following constrained minimization problem
by jointly reconstructing the spatial and Radon domain data

min
u,f
D(Au, g) +R(u) + F(f)

s.t., AFu = f,
(9)

where R(u) and F(f) represent the regularization term for
the reconstructed image u and projection data f , respectively.
The merits of the full-sampling condition (8) are twofold:

• Because the full-sampling system matrix AF has much
more rows than A, the full-sampling condition can ef-
ficiently reduce the size of the solution set such that
the optimal solution of the reconstruction problem (9)
becomes easier to track;

• The full-sampling condition can bind the projection data
and the image tighter. When involved in the convolutional
neural networks, it helps to squeeze and encode as
much as possible the priors regarding the relationship
between images and their projection data in the training
process, i.e., the mapping from the projection data to their
reconstructions could be better modeled and learned.

The constrained minimization problem (9) can be further re-
formulated into an unconstrained minimization problem using
the penalty method as follows

min
u,f
D(Au, g) +R(u) +

1

2µ
‖AFu− f‖2 + F(f), (10)

where µ is a positive regularization parameter. The functional
R(·) and F(·) can be chosen according to prior knowledge
on u and f such as TV regularization and tight frame, and
the functional D(·, ·) can be explicitly defined based on noise
distribution in the observed data, e.g., L2 norm for Gaussian
noise. In our work, we use the CNNs to learn not only the
prior information of u and f , but also the interrelationship
between g and u.

B. Learned alternating direction algorithm

Because all terms in (10) contain the variable u, we in-
troduce a new variable ũ and rewrite it as the following
minimization problem

min
u,f,ũ

D(Aũ, g)+R(ũ)+
1

2r
‖ũ−u‖2+

1

2µ
‖AFu−f‖2+F(f),

(11)

where r is a positive parameter. The main advantage is that
we decouple the minimization problem (10) into the recon-
struction step and consistency step such that the alternating
direction method can be used to solve the multi-variable
optimization problem (11). Starting from an initial guess u0,
we compute a sequence of iterates

ũ1, (u1, f1), ũ2, (u2, f2), . . . , ũk, (uk, fk),

where k ∈ {1, 2 . . . , I} denotes the kth iteration and I denotes
the total number of the iteration. The variables ũk and (uk, fk)
can be estimated from the following minimization problems,
respectively{

Reconstruction: min
ũ
D(Aũ, g) +R(ũ) + 1

2r‖ũ− u
k−1‖2,

Consistency: min
u,f
F(f) + 1

2µ‖AFu− f‖
2 + 1

2r‖ũ
k − u‖2.

In the reconstruction step, we need to solve a minimization
problem similar to the regularization model (3). Thus, we
apply the learned primal-dual algorithm as follows{

pk+1 = arg min
p
D∗(p, g)− 〈Aũk, p〉+ 1

2τ ‖p− p
k‖22,

ũk+1 = arg min
ũ
R(ũ) + 〈Aũ, pk+1〉+ 1

2r‖ũ− u
k‖22,

with τ being a positive parameter. The consistency step is
to reconstruct both the image data and full Radon domain
data by fitting with the image generated in the reconstruction
step, which is also a minimization problem involving multiple
variables and can be efficiently solved by the alternating
minimization algorithm as follows{

fk+1 = arg min
f
F(f) + 1

2µ‖AFu
k − f‖2 + 1

2σ‖f − f
k‖22,

uk+1 = arg min
u

1
2µ‖AFu− f

k+1‖2 + 1
2r‖u− ũ

k+1‖22,

with σ being a positive parameter. Consequently, we use the
neural networks to learn the solutions to the variables in each
iteration, which gives

pk+1 = (I + τ∂D∗)−1(pk, τAũ, g),
ũk+1 = (I + r∂R)−1(uk, rA∗pk+1),

fk+1 =
(
(σ + µ)I + σµ∂F

)−1
(µfk, σAFu

k),
uk+1 = (I + rA∗

FAF )−1(rA∗
F f

k+1 + µũk+1),

(12)

with A∗ and A∗
F representing the backward projections.

In our implementations, the following techniques are uti-
lized for better efficiency:

• Following the PD-net, we extend the function spaces of
the variables to allow the algorithm to memorize between
iterations, e.g.,

u = [u(1), u(2), . . . , u(Nu)].

• Instead of using artificial variables τ , r, σ, and µ, we
allow the networks to learn how to combine the operators
and the variables. In this way, the resolvent operators can
vary with iterations, which can help to further improve
the reconstruction quality.

• Although the subproblem concerning uk+1 in the consis-
tency step can be solved by conventional reconstruction
algorithms, we use the learned resolvent operator to save
computations.
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Fig. 2. The data flow graph of the FSR-net to solve the tomography problem. According to Algorithm 1, there are four variables in each stage which are
computed sequentially corresponding to DFB (data fidelity block), IRB (image domain regularization block), RRB (radon domain regularization block), and
DCB (data consistency block). As shown, each block has the same architecture with three conv-layers.

• We assume the constraint ũ = u holds unconditionally
during the iterations process. Therefore, fk+1 is calcu-
lated based on AF ũ

k+1 rather than AFu
k as ũk+1 has

been already updated in the previous step.
Now, we are ready to summarize the unrolled alternating

direction algorithm for solving the full-sampling reconstruc-
tion problem (11) as Algorithm 1. Henceforth, we call it the
Learned Full-Sampling Reconstruction Network (FSR-net).

Algorithm 1 Learned full-sampling reconstruction algorithm

1: Initialize u0, f0, p0

2: for k = 0, . . . , I, do
3: pk+1 ← Γθp(pk, Auk, g);
4: ũk+1 ← Λθũ(uk, A∗pk+1);
5: fk+1 ← Πθf (fk, AF ũ

k+1);
6: uk+1 ← Ξθu(ũk+1, A∗

F f
k+1);

7: return uI , f I

IV. IMPLEMENTATION

Our FSR-net is generated based on the full-sampling recon-
struction model (11), which is implemented in Python using
Operator Discretization Library (ODL), the ASTRA Toolbox
and Tensorflow 1.8.0 on a Tesla P100 GPU. Tensorflow is
an end-to-end open-source platform for machine learning,
ASTRA toolbox is a MATLAB and Python toolbox of high-
performance GPU primitives for 2D and 3D tomography, and
the ODL is a Python library for fast prototyping focusing on
inverse problems.

A. Network architecture

The unrolling strategy is a discriminative learning method
by unrolling an iterative optimization algorithm into a hierar-
chical architecture. Fig. 2 depicts the network structures of the
kth and (k + 1)th stages. In each stage, there are four blocks
are corresponding to the four variables, i.e., the data fidelity
block (DFB) w.r.t. p, image domain regularization block (IRB)
w.r.t. ũ, Radon domain regularization block (RRB) w.r.t. f and
data consistency block (DCB) w.r.t. u. The networks take three
inputs: the incomplete projection data g, the system matrix A,
and the full-sampling system matrix AF . We also illustrate
the detailed structures of each block, which involves a 3-
layer network. The total depth of the network depends on
the number of the stages contained in the network, which is
chosen to balance the receptive fields and the total number
of parameters. For all the four variables in Algorithm 1, the
learned resolvent operators have the same form as

Id + Ww3,b3 ◦ PRc2 ◦Ww2,b2 ◦ PRc1 ◦Ww1,b1 ,

where Id is the identity operator to make the network similar
to a residual network [40]. The merit of the residual structure
is that the network is easy to be trained as each update just
need to learn a small offset from the identity operator. The
operator Wwj ,bj is the convolution operator including both
weights wj and biases bj , j = 1, 2, 3, i.e.,

Wwj ,bj : Xn → Xm,
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the k-th component of which is given by[
Wwj ,bj

(
[u(1), ..., u(n)]

)](k)

= b
(k)
j +

n∑
i=1

w
(i,k)
j ∗ u(i)

with bj ∈ Xm, wj ∈ Xn×m, and m,n denoting the dimen-
sions. We adopt the parametric rectified linear units (PReLU)
as the activation function, i.e.,

PRcj (u) =

 u, for u ≥ 0,

−cju, for u < 0,
(13)

where cj is automatically calculated by network feedback, and
each channel uses a different cj .

It is well-known that too few channels will weaken the
expression ability of the network, while too many channels
will increase the difficulties in training. We set the initial
channels of the variables in each stage as Nu = Nũ = 6
and Np = Nf = 7. We use the convolution kernel of size
3 × 3 and set the numbers of channels in each stage as
9 → 32 → 32 → 7 for p, 7 → 32 → 32 → 6 for ũ and
u, and 8 → 32 → 32 → 7 for f , where the differences in
numbers are due to the inputs.

Moreover, we choose the Xavier initialization scheme for
the convolution parameters and the zero initialization for all
biases. The convolution stride is set as 1 and the padding
strategy is chosen as ‘SAME’ in the network.

B. The full-sampling system matrix

Suppose the dimension of the system matrix A be M ×N2

for the circular fan-beam CT such that the image array is of
the size N × N . The number of ray integrations M can be
defined as

M = Nviews ×Nbins, (14)

where Nviews denotes the number of views and Nbins denotes
the number of bins on the detector. To be specific, the scanning
arc, either 2π for sparse-view CT or γ for limited-angle CT, is
divided into Nviews equally spaced angular intervals, while the
detector D is equally divided into Nbins units. In the following,
we determine our full-sampling system matrix according to
the pioneering work [41] by deploying either its invertibility
or numerical stability property.

• Invertible Full-Sampling (IFS) system matrix
To guarantee the invertibility of the system matrix, AF should
have more rows than columns in case there are linearly
dependent rows, i.e.,

Nviews ×Nbins ≥ N2,

where Nviews is used to equally divide the 2π arc.
• Stable Full-Sampling (SFS) system matrix

Alternatively, we can define the full-sampling system matrix
to guarantee the numerical stability by requiring the condition
number of AF as small as possible, which can be realized by
using 2N samples in both the view and bin directions, i.e.,

Nviews = Nbins = 2N.

(a) Ellipse (b) Forbild head (Fh) (c) Human phantom

(d) Ellipse sinogram (e) Fh sinogram (f) Human sinogram

Fig. 3. Examples of data which are used for training and validation.
Left: randomly generated ellipses. Middle: validation data generated by the
modified Forbild head phantom. Right: validation data generated from the
human phantoms.

It should be noted that instead of generating and storing
the full-sampling matrix AF , we compute the matrix-vector
products involving AF and A∗

F on the fly in our code im-
plementations, to avoid possible huge memory consumption.
More specifically, we use the function ‘FanFlatGeometry’ with
‘astra−cuda’ in the ODL to construct an operator, which acts
as the forward projection operator to obtain the Radon domain
data with GPU implementation. Besides, we use the function
‘as−tensorflow−layer’ in ODL to ensure the operator can act
on tensors and generate tensors in our neural network. The
backward projection is implemented in the same way.

C. Network loss and optimization

Let Θ = {θp, θũ, θf , θu} be the parameters in the network
and L be the number of training samples. We use the following
joint mean squared error (JMSE) as the loss function for our
FSR-net

L(Θ) =
1

2L

L∑
i=1

(∥∥ui(Θ)− u∗i
∥∥2

2
+ α

∥∥fi(Θ)−AFu∗i
∥∥2

2

)
,

(15)
where ui(Θ) and fi(Θ) denote the i-th reconstructed image
and Radon domain data, u∗ denotes the reference image, and
α is the trade-off parameter. In the numerical experiments, we
fix α = 1 for all applications. The gradient of our loss function
is computed by Tensorflow automatically and applied to the
network by the back propagation.

For a fair comparison, most experimental parameters are
set as the same as the PD-net in [23]. We adopt the adaptive
moment estimation (Adam) [42] to optimize the learning rate
by setting the parameter β2 = 0.99 and other parameters to
their default values. The learning rate schedule is set according
to cosine annealing [43] to improve training stability such that

ηt =
η0

2

(
1 + cos

(
π

t

tmax

))
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Fig. 4. The values of loss function, PSNR and SSIM with respect to different numbers of stages and numbers of epochs in our network, where red line is
obtained using 5 stages, green line is obtained by 10 stages, and the blue line is obtained by 15 stages. All curves are evaluated on the Forbild head phantom
with noiseless 60 views.

with the initial learning rate being η0 = 10−3 for all exper-
iments. To further improve the training stability, the global
gradient norm clipping is performed by limiting the gradient
norm to 1. Besides, the batch size is set to 1 for both the
ellipse data and human phantom data.

V. NUMERICAL RESULTS

In this section, we evaluate our FSR-net on both sparse-
view and limited-angle reconstruction problems using both
analytical phantom and human phantom datasets.

A. Datasets and settings

The examples of the two datasets used in our numerical
experiments are exhibited in Fig. 3. More details about the
datasets are described below.

1) Ellipse phantom: The training dataset includes 2000
randomly generated ellipse images of size 512×512 as shown
in Fig. 3(a). We use the fan-beam geometry to generate the
projection data and choose the Forbild head phantom [44]
as the testing image, where the display window is set as
[0,1] for the Forbild head phantom as shown in Fig. 3(b).
In order to meet the requirement of being the IFS and
SFS system matrices, we set Nviews = Nbins = 512 and
Nviews = Nbins = 1024, respectively.

2) Human phantom: We use the clinical data “The 2016
NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge”
[45], which contains 10 full-dose scans of the ACR CT
accreditation phantom. We use 9 data as the training profile
and leave 1 data for the evaluation, resulting in 2164 images
of size 512 × 512 for training and 214 images for testing.
The two-dimensional fan-beam geometry is adopted with
geometrical parameters displayed in TABLE I. For limited-
angle reconstruction, we set the scanning angular interval as
1 degree.

B. Comparison algorithms

We compare our FSR-net with several state-of-the-art al-
gorithms including both the variational method and learning
based methods, i.e.,

TABLE I
RECONSTRUCTION PARAMETERS OF HUMAN PHANTOM.

Parameters Value
Scanning type Fan-beam scan
Reconstructed image size 512× 512

Number of detector units 736
X-ray source to axis distance 500 mm
Axis to detector distance 500 mm

• TV model: the TV regularized reconstruction model in
[7]. We tuned the balance parameter λ ∈ [0.03, 0.09],
the step size for the primal value τ ∈ [0.5, 0.9] and the
step size for the dual value σ ∈ [0.2, 0.5] for different
experiments.

• FBP-Unet: the FBP-Unet reconstruction in [17]1. It is a
method combining the FBP reconstruction with the Unet
as the postprocessing to improve image quality. We use
the Xavier to initialize the network parameters. And the
loss function is the mean squared loss of the reconstructed
image and the ground truth.

• JSR-net: the Joint Spatial-Radon domain reconstruction
in [34]2. It is a feed-forward network by unrolling the
iterative scheme of the JSR model. We use the Xavier
initialization and define the loss function as L = LSD +
α1LRD + α2Lsem with α1 = 0.01 and α2 = 100 for all
experiments. Note that Lsem is not used in JSR-net to
guarantee a fair comparison.

• PD-net: the Leaned Primal-Dual network in [23]3. The
network is a deep unrolled neural network with 10 stages.
The number of initialization channels for primal values
and dual values is set to 5. The Xavier initialization and
the mean squared loss of the reconstructed image and the
ground truth are used in all experiments.

1https://github.com/panakino/FBPConvNet
2http://bicmr.pku.edu.cn/ dongbin/Publications.html
3https://github.com/adler-j/learned primal dual
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(a) Clean (b) TV (c) FBP-Unet (d) JSR-net (e) PD-net (f) FSR-net

Fig. 5. From row one to row two are reconstruction comparison on the Forbild head phantom with 60 views and 45 views, where the results of the FSR-net
is obtained using the SFS system matrix.

C. Parameter behavior
In the first place, we test the impact of the stage number

in our learnable algorithm by using the number of stages
k = 5, 10, 15 to construct our FSR-net on the ellipse dataset.
Considering the sparse-view problem with Nviews = 60, a total
of 20 epochs are used in the training stage and the Forbild head
phantom image is used as the testing image. The values of the
loss function, PSNR, and SSIM are tracked and plotted in
Fig. 4, which show that three models with 5, 10 and 15 stages
all converge to steady states within 10 epochs in the training
process. More importantly, the network’s learning capacity is
improved as the stage number increases from k = 5 to k = 10,
while the improvement of both PSNR and SSIM is negligible
by further increasing the stage number to k = 15. Therefore,
we fix the stage number as k = 10 and the number of the
epoch as 10 in the following experiments.

Because each stage in our model involves four 3-layer
networks, our model has a total of 120 convolution layers,
which gives 4.9×105 parameters. The parameters of the JSR-
net and PD-net are about 2.4 × 105 in their original papers.
For a fair comparison, we double the number of stages in the
JSR-net and PD-net in our evaluation. TABLE II summarizes
the number of parameters contained in the learning-based
algorithms, where the FBP-Unet has the largest amount of
parameters.

TABLE II
COMPARISON OF MODEL PARAMETERS IN LEARNING BASED METHODS.

Learning based models Number of parameters
FBP-Unet 107

JSR-net 4.9× 105

PD-net 4.9× 105

FSR-net 4.9× 105

D. Sparse-view CT reconstruction
In this subsection, we evaluate the performance of our FSR-

net as well as the comparison methods on sparse-view CT

TABLE III
COMPARISON OF RECONSTRUCTION METHODS ON THE FORBILD HEAD

PHANTOM IN TERMS OF PSNR, SSIM AND RUNTIME (MS).

AF Nviews Methods PSNR SSIM time

IFS

60

FBP 11.6544 0.4958 402
TV 23.8021 0.8167 52683
FBP-Unet 22.8821 0.7216 883
JSR-net 30.2901 0.9562 986
PD-net 31.0141 0.9799 922
FSR-net 32.5733 0.9817 1160

45

FBP 11.5491 0.3642 240
TV 23.2326 0.7587 51255
FBP-Unet 22.3061 0.7206 843
JSR-net 29.7891 0.9539 953
PD-net 30.2281 0.9755 846
FSR-net 31.1191 0.9761 1107

SFS

60

FBP 11.6549 0.4984 418
TV 25.2022 0.8504 54713
FBP-Unet 24.1667 0.7247 1053
JSR-net 34.2271 0.9578 1153
PD-net 36.0857 0.9818 1122
FSR-net 37.9404 0.9819 1453

45

FBP 11.5876 0.4431 265
TV 23.5966 0.7717 53000
FBP-Unet 23.0098 0.7244 1051
JSR-net 32.6525 0.9564 1135
PD-net 34.0341 0.9778 1029
FSR-net 35.1258 0.9781 1407

reconstruction problems.
1) Results on ellipses: Both Nviews = 60 and Nviews = 45

are considered as representatives of the sparse-view problem.
We tabulate the PSNR and SSIM in TABLE III, which clearly
shows that our FSR-net produces the best reconstruction
results with both IFS and SFS system matrices. Obviously,
the advantage of our FSR-net is more prevalent when the SFS
condition is satisfied, which gives a 1.8 dB and 1.0 dB higher
PSNR than the PD-net on 60 views and 45 views projection
data, respectively. From the perspective of computational ef-
ficiency, it is clear that the FBP method is the fastest and
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(a) Clean image (b) TV (c) FBP-Unet

(d) JSR-net (e) PD-net (f) FSR-net

Fig. 6. Sparse-view reconstruction experiment on a human phantom data with 60 projections, where the reconstruction of FSR-net is obtained by the SFS
system matrix.

our model performs slightly slower than other learning-based
methods due to the computations on full-sampling system ma-
trices. We display the reconstruction results with 60 views and
45 views projection data in Fig. 5. As shown, obvious artifacts
can be observed in the reconstructed images of the TV model
and FBP-Unet, while the JSR-net, PD-net, and our FSR-net
can preserve geometric structures and keep the homogeneity
in the smooth regions. More importantly, we can find out that
fewer artifacts are presented in the reconstructed images by
our method, which are consistent with the quantitative results
in TABLE III.

2) Results on human phantom data: We further evaluate
the performance of sparse-view reconstruction on the AAPM
human phantom dataset. Both 60 views and 45 views are used
for the validation. The PSNR, SSIM and CPU time of all
comparison methods on the noiseless and noisy (5% white
Gaussian noise) Radon domain data are displayed in TABLE
IV, where the IFSR-net and SFSR-net denote the reconstruc-
tion using the IFS and SFS system matrix, respectively. Note
that because the number of bins is fixed as Nbins = 736, we
approximate the SFS system matrix by increasing the number
of projections to Nviews = 1425 such that the dimension of AF

is around 4N2. Similar to the experiment on the ellipse dataset,
all the deep unrolling algorithms offer significant gain in terms
of PSNR and SSIM over the TV model and post-processing
method FBP-Unet. Among the three unrolled learning-based
methods, the FSR-net produces the best PSNR values while
the PD-net achieves the second place. Besides, we also have
the following two observations based on TABLE IV:

TABLE IV
COMPARISON OF SPARSE-VIEW RECONSTRUCTION METHODS FOR THE

HUMAN PHANTOM IN TERMS OF PSNR, SSIM AND RUNTIME(MS).

Noise Nviews Methods PSNR SSIM time

0

60

FBP 14.2361 0.6414 400
TV 29.4829 0.9082 53512
FBP-Unet 27.3711 0.8458 1053
JSR-net 35.4462 0.9647 1152
PD-net 35.9844 0.9693 1065
IFSR-net 36.6895 0.9733 1296
SFSR-net 37.2069 0.9752 1486

45

FBP 14.1802 0.6066 242
TV 28.0876 0.8827 52120
FBP-Unet 25.3767 0.8171 1021
JSR-net 33.4384 0.9542 1106
PD-net 34.6781 0.9639 1023
IFSR-net 35.3797 0.9672 1235
SFSR-net 36.1099 0.9706 1396

5%

60

FBP 14.0922 0.4989 400
TV 27.0301 0.8548 53523
FBP-Unet 26.0313 0.8261 1046
JSR-net 29.8641 0.9217 1156
PD-net 30.0261 0.9237 1076
IFSR-net 30.4563 0.9321 1253
SFSR-net 30.4681 0.9331 1486

45

FBP 13.9732 0.4389 242
TV 25.7201 0.8183 52126
FBP-Unet 24.7362 0.7983 1023
JSR-net 28.5931 0.9048 1103
PD-net 29.1028 0.9135 1001
IFSR-net 29.6814 0.9253 1205
SFSR-net 29.7915 0.9263 1396
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TABLE V
COMPARISON OF LIMITED-ANGLE RECONSTRUCTION METHODS FOR THE

HUMAN PHANTOM IN TERMS OF PSNR, SSIM AND RUNTIME(MS).

Noise Nviews Methods PSNR SSIM time

0

150◦

FBP 13.6239 0.5128 775
TV 30.4607 0.9278 56523
FBP-Unet 24.5191 0.9192 1046
JSR-net 32.8648 0.9638 1256
PD-net 34.3603 0.9723 1116
IFSR-net 34.8423 0.9733 1453
SFSR-net 35.6669 0.9764 1586

120◦

FBP 13.4822 0.4689 602
TV 27.5898 0.9196 60026
FBP-Unet 22.3886 0.8846 1023
JSR-net 28.2803 0.9376 1273
PD-net 29.5207 0.9452 1131
IFSR-net 30.0843 0.9454 1415
SFSR-net 30.8151 0.9499 1556

90◦

FBP 13.0982 0.4662 422
TV 23.4676 0.8681 54926
FBP-Unet 20.0601 0.8221 1013
JSR-net 23.9463 0.8794 1243
PD-net 24.2297 0.8837 1091
IFSR-net 25.4361 0.9033 1385
SFSR-net 25.8551 0.9084 1526

5%

150◦

FBP 13.5911 0.4854 776
TV 25.8815 0.8091 56532
FBP-Unet 23.8923 0.8703 1033
JSR-net 28.7462 0.9059 1285
PD-net 30.3766 0.9301 1113
IFSR-net 30.8763 0.9303 1429
SFSR-net 30.9411 0.9324 1582

120◦

FBP 13.4418 0.4008 602
TV 23.5852 0.7891 60032
FBP-Unet 21.1637 0.8072 1023
JSR-net 25.3458 0.8555 1278
PD-net 27.1539 0.9037 1132
IFSR-net 27.7241 0.9079 1417
SFSR-net 27.7293 0.9103 1551

90◦

FBP 13.0314 0.3881 430
TV 19.9501 0.6918 54917
FBP-Unet 18.5181 0.7481 1015
JSR-net 20.2241 0.7971 1241
PD-net 22.6047 0.8612 1099
IFSR-net 23.9399 0.8744 1382
SFSR-net 24.2494 0.8761 1525

• The comparison between the results on the noiseless and
noisy projection data shows that the superiority of our
FSR-net is more prevalent with the noiseless projection
data.

• The comparison between the results of IFSR-net and
SFSR-net illustrates that the reconstruction quality can be
improved by enlarging the dimension of the full-sampling
system matrix.

Fig. 6 displays the original image and the reconstruction
results of TV, FBP-Unet, JSR-net, PD-net, and SFSR-net on
noiseless 60 views projection data, which provides the visual
inspection on the advantageous of our FSR-net. Both the
reconstruction results of the TV model and FBP-Unet present
artifacts and the TV model produces better quality than the
FBP-Unet, which illustrates that the post-processing methods
are more sensitive to the deterioration in the projection data.

As shown, three deep unrolling models work quite well on
the 60 views projection data. By examining the zoomed-in
regions, it can be found out that fine structures and features
are better preserved by our FSR-net.

E. Limited-angle CT reconstructions

In this subsection, we conduct a series of experiments on
the limited-angle problem using the AAPM human phantom
dataset. The experiments are set up as follows: the observed
data g is generated with the scanning angular range [0, 150◦],
[0, 120◦] and [0, 90◦] without noise or with 5% white Gaussian
noise.

We tabulate both the PSNR and SSIM of our model and the
comparison methods in TABLE V. As can be seen, the values
of both PSNR and SSIM obtained by all competing methods
drop when either the scanning angular range shrinks from 150◦

to 90◦ or the noises are introduced into the projection data.
The results of limited-angle reconstruction concur with the
sparse-view reconstruction. For different combinations of the
scanning angular range (i.e., 150◦, 120◦ and 90◦) and the noise
level (i.e., 0% or 5%), our FSR-net consistently outperforms
the other reconstruction methods. The advantage of our model
is more prevalent when the SFR system matrix is used in
which case about 1.5 dB improvement is achieved in PSNR
over the PD-net for noiseless reconstruction problems.

The original image and the reconstructed images from dif-
ferent methodologies with scanning angular range of 120◦ are
displayed in Fig. 7. It can be seen that both the TV model and
FBP-Unet suffer from severe streak artifacts and distortions.
The comparison between FBP-Unet and other deep unrolling
methods shows that the iterative algorithms (i.e., JSR-net, PD-
net, and SFSR-net) outperform the post-processing methods
as no obvious distortions are presented in the reconstructed
images of the iterative methods. By further comparing the
reconstruction results of the JSR-net, PD-net, and our FSR-net,
it can be found out that our model can better preserve image
details than the other two algorithms, e.g., no obvious steak
artifacts existing in the zoomed-in region. Both the quantitative
and qualitative results confirm that projection data can be filled
up in the missing angular range due to the use of the full-
sampling system matrix.

VI. DISCUSSION

Both JSR-net and FSR-net aim to enhance the resolution of
the projection data in the Radon domain for CT reconstruction
from incomplete data. The results in TABLE III, IV, and
V show that the reconstruction results of JSR-net are no
better than PD-net, while our FSR-net always produces better
reconstruction than PD-net. We believe that the reasons are
threefold: 1) From model-wise, we explore stronger prior
knowledge on the high-resolution projection data such that
the relationship between the image and projection data is
explicitly defined through the full-sampling system matrix;
2) In algorithm design, we allow the network to learn how
to combine the variables while JSR-net uses the fixed forms
for some variables; 3) The loss function used in our model
also differs from the JSR-net. We minimize the `2 norm of
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(a) Clean image (b) TV (c) FBP-Unet

(d) JSR-net (e) PD-net (f) FSR-net

Fig. 7. Limited-angle reconstruction experiment of a human phantom with 120◦ scanning angular range, where the reconstruction of FSR-net is obtained by
the SFS system matrix.

image difference and projection data difference, while the
loss function of JSR-net is derived solely based on the image
function.

Since our algorithm simultaneously reconstructs the image
and the high-resolution projection data, we compare the FBP
result of the observed data g and the reconstructed projection
data f in TABLE VI. As shown, the values of PSNR obtained
by f are consistently higher than ones obtained by g, which
demonstrates that our model works well for both sparse-view
and limited-angle problems. We notice that the advantage of
the reconstructed projection data decreases as the observed
data becomes very insufficient such as the limited-angle
problem with angular range 90◦. For severely degenerated
projection data, e.g., scanning angular range of 90◦, we may
need stronger data fidelity to further improve the quality of
the projection data.

TABLE VI
COMPARISON BETWEEN THE FBP OF THE GIVEN AND RECONSTRUCTED

PROJECTION DATA, WHERE FBP-W-F DENOTES THE FBP OF f .

Methods
Settings sparse-view limited-angle

60 view 45 view 150◦ 120◦ 90◦

FBP 14.0922 13.9732 13.5911 13.4418 13.0314
FBP-w-f 19.8017 19.0803 20.4825 18.5719 15.9486

As the number of bins is given as Nbins = 736 for the
AAMP phantom dataset, we approximate the SFS system
matrix by increasing the number of projections such that the

dimension of AF is guaranteed to be the same as the SFS sys-
tem matrix. To evaluate the accuracy of such an approximation,
we compare the reconstruction results with the ones obtained
by the SFS system matrix with Nbins = Nviews = 2N .
As shown in TABLE VII, higher PSNR values are always
achieved by the full-sampling system matrix with Nbins = 2N ,
which means that the number of bins is also an important
factor for controlling the reconstruction quality.

TABLE VII
COMPARISON ON THE AAPM DATASET BETWEEN THE SFSR-NET AND

SFS SYSTEM MATRICES.

Nviews × Nbins

Settings sparse-view limited-angle
60 view 45 view 150◦ 120◦ 90◦

1425× 736 37.2069 36.1099 30.9411 27.7293 24.2494
1024× 1024 37.3099 36.5921 31.2032 27.7353 24.2539

Last but not least, we visualize the iterates to see how the
iterative algorithm works. The limited-angle experiment with
scanning angular range 120◦ is used as an example, for which
both the reconstructed image u and the inpainted projection
data f at the selected stages are displayed in Fig. 8. As
the iteration number increases, we observe that the artifacts
contained in the reconstructed image get less and less, and
the information in projection data becomes richer and richer.
It indicates that the joint reconstruction of the image u and
its projection data f can promote each other, which coincides
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Fig. 8. The FBP reconstruction, observed projection data, reconstructed image and projection data together with the ground truth image and the full-sampling
projection data of the limited-angle reconstruction experiment with 120◦ angular scanning range, where windows are selected to cover most of the range of
the values.

with our expectations.

VII. CONCLUSION AND FUTURE WORKS

We proposed a novel iterative reconstruction model by
fitting the reconstructed image with its corresponding mea-
surements in the Radon domain through the full-sampling
condition. The deep unrolling algorithm was developed by
replacing the proximal operators with learned operators, which
can reconstruct the CT images directly from the raw projection
data. The applications on the sparse-view and limited-angle CT
reconstruction problems demonstrate that our learned FSR-net
achieves state-of-the-art results.

In this work, we mainly focus on the fan-beam CT recon-
struction. The basic idea, however, can be generally applied to
other system matrix classes with appropriate parameter setting
according to [46], [47]. Although our FSR-net outperforms
other reconstruction schemes for limited-angle reconstruction,
for the very challenging case with 90◦ scanning angular range,
however, the results of our method are still not close to diag-
nostic quality. One of the reasons is that we use the images to
generate the ground truth full-sampling projection data, which
may limit the potential of our FSR-net in learning the full-
sampling Radon domain data. Indeed, it is more reasonable
to use the ground truth of the full-sampling Radon data in
the loss function to enable the network to learn better priors.
Also, our FSR-net is trained based on the joint mean squared
norm (15) for a fair comparison, which may also lead to over-
smoothing in the results. More advanced loss functions such as
the structure-semantic-`2 loss [34], perceptual loss [48] might
help to further improve the performance of our FSR-net. As
observed, the FSR-net outperforms other algorithms on noisy
projection data, but the advantage has declined compared to
the noiseless case. Therefore, we plan to incorporate denoising
networks into our FSR-net as future work to investigate
additional mechanisms for further improvement.
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