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The TVp Regularized Mumford-Shah Model for
Image Labeling and Segmentation

Yutong Li, Chunlin Wu, and Yuping Duan∗

Abstract—The Mumford-Shah model [1] is an important tool
for image labeling and segmentation, which pursues a piecewise
smooth approximation of the original image and the bound-
aries with the shortest length. In contrast to previous efforts,
which use the total variation regularization to measure the
total length of the boundaries, we build up a novel piecewise
smooth Mumford-Shah model by utilizing a non-convex `p

regularity term for p ∈ (0, 1), which can well preserve sharp
edges and eliminate geometric staircasing effects. We present
optimization algorithms with convergence verification, where all
subproblems can be solved by either the closed-form solution
or fast Fourier transform (FFT). The method is compared to
piecewise constant labeling algorithm and several state-of-the-
art piecewise smooth Mumford-Shah models based on image
decomposition approximations. Both labeling and segmentation
results on synthetic and real images confirm the robustness and
efficiency of the proposed method.

Index Terms—Image labeling, segmentation, piecewise smooth,
Mumford-Shah model, `p quasi-norm.

I. INTRODUCTION

IMAGE labeling and segmentation are fundamental tasks
in computer vision and pattern recognition, both of which

aim to find a partition of an image into disjoint regions.
Suppose that the image domain Ω is decomposed into L
disjoint connected open subsets Ωk each one with a piecewise
smooth boundary and a union of boundaries of Ωk inside Ω,
such that

Ω = Ω1 ∪ . . . ∪ ΩL ∪ Γ. (1)

Mumford and Shah proposed the following minimization
problem for image segmentation by penalizing the total length
of the edges/boundaries of objects in an image

min
u,Γ

λ

2

∫
Ω

(I − u)2dx+

∫
Ω\Γ
|∇u|2dx+ α|Γ|, (2)

where I : Ω → R is the input image, u ∈ H1(Ω\Γ)
(Sobolev space H1 can be referred to [2]) is a nearly piecewise
smooth approximation of I and |Γ| stands for the length of
1-dimensional closed subsets Γ ⊂ Ω. Since the Mumford-
Shah functional is non-convex and the integral regions of the
last two terms are discontinuous, finding the minimizers is
not straightforward and may trap into local minima. Ambrosio
and Tortorelli [3] proposed variational approximations of the
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Mumford-Shah functional by Γ-convergence and solved it by
alternate minimizations.

Many variants have been proposed for efficient implemen-
tation of the MS model. Chan and Vese [4] sought for a
binary approximation of the given image through a level set
formulation [5], which has also been extended for multi-phase
segmentation in [6]. Lie et al. [7] proposed the piecewise
constant level set method to identify the boundaries and sep-
arate the image into different regions. Such kind of piecewise
constant (PC) Mumford-Shah models can be formulated with
respect to subregions Ωk, k = 1, . . . , L, as follows

min
c,{Ωk}Lk=1

λ

2

L∑
k=1

∫
Ωk

(I − ck)2dx+
L∑
k=1

|∂Ωk|. (3)

In fact, when c = {c1, . . . , cL} is fixed, the PC Mumford-
Shah model becomes a special case of the Potts model [8] for
image labeling

min
{Ωk}Lk=1

λ

2

L∑
k=1

∫
Ωk

fk(x)dx+

L∑
k=1

|∂Ωk|, (4)

where fk, k = 1, . . . , L, are given to evaluate the performance
of label assignment at each partition Ωk. Due to the non-
convex formulation of the level set methods, they may also
get stuck into local minima. Chan et al. [9] reformulated
the CV model into an equivalent convex minimization, which
makes convex optimization techniques be applicable for image
labeling problems. Lellmann and Schnörr [10] proposed a
globally convergent Douglas-Rachford scheme for multiclass
labeling problem. Bae et al. [11] developed a dual model for
labeling problem, which proved that the global optimal of the
Potts model can be achieved. Chan et al. [12] considered
a specially designed non-convex regularization term which
adapts spatially the image structures for better control of
segmentation boundary. However, because such PC models ap-
proximate the image domain by a set of homogeneous regions,
they fail in segmenting images with intensity inhomogeneity,
that intensity varies for the same tissue within an image.

Piecewise smooth (PS) models are capable to deal with im-
ages with intensity inhomogeneous, the study of which can be
traced back to almost twenty years ago [13], [14]. According
to (1), the Mumford-Shah model (2) can be reformulated as

min
{uk,Ωk}Lk=1

L∑
k=1

(λ
2

∫
Ωk

(I−uk)2dx+

∫
Ωk

|∇uk|2dx+α|∂Ωk|
)
,

(5)
where u = {u1, . . . , uL} : Ω → RL is the labeling function
to classify each pixel x ∈ Ω into one out of L classes, subject
to uk ∈ {0, 1} and

∑L
k=1 uk = 1. Based on the alternative
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TABLE I
COMPARISON OF PIECEWISE SMOOTH MUMFORD-SHAH MODELS.

Method Year Decomposition Multi-phase Local estimation Constant regularizer Smooth regularizer

Tsai et al. [13] 2001 no yes no N.A. gradient

Vese and Chan [14] 2002 no yes no TV gradient

Le and Vese [15] 2007 additive no no TV Hessian

Li et al. [16] 2007 no no yes TV N.A.

Bresson et al. [17] 2007 no no no TV gradient

Li et al. [18] 2008 multiplicative yes yes TV no

Li et al. [19] 2010 multiplicative yes no TV gradient

Zhang et al. [20] 2010 no no yes TV N.A.

Li et al. [21] 2011 multiplicative yes yes TV no

Gu et al. [22] 2013 additive yes no TV gradient

Duan et al. [23] 2015 multiplicative yes yes TV0 gradient

Zhang et al. [24] 2016 multiplicative yes yes TV N.A.

Chang et al. [25] 2017 multiplicative yes no TV0 Hessian

Gu et al. [26] 2017 no yes yes TV N.A.

Jung et al. [27] 2017 additive yes no TV gradient

Our proposal 2020 additive yes no TVp Laplacian

minimization and PDE techniques [26], we can obtain an
equivalent minimization problem of (5) as follows

min
{uk,Ωk}Lk=1

L∑
k=1

(λ
2

∫∫
Ωk

G(x−y)(I(x)−uk(y))2dydx+|∂Ωk|
)
,

where G is a kernel function with a localization property. The
two-phase segmentation and multi-phase segmentation have
been well studied in [16] and [28], respectively. Interested
readers can read the references therein or [26] for more details.

Another kind of approaches assume that a piecewise smooth
function can be approximated by a combination of a piecewise
constant function and a smooth function. A straight-forward
way is in a multiplicative intrinsic [29], [30]

g(x) = b(x)
L∑
k=1

ckuk(x) + n(x), (6)

where b(x) : Ω→ R is a spatially smooth function, and n(x)
denotes the random noises. Relying on (6), Li, Ng and Li
[19] reformulated the Mumford-Shah model by using fuzzy
membership functions to represent subregions, which reads

min
c,b,{Ωk}Lk=1

λ

2

L∑
k=1

∫
Ωk

rkdx+µ

∫
Ω

|∇b|2dx+
L∑
k=1

|∂Ωk|, (7)

where rk = (I−bck)2 +ω(I−ck)2 with ω > 0 being a tuning
parameter. Li et al. [21] modified the PC Mumford-Shah
model with a local intensity clustering property to segment
images with intensity inhomogeneity. Zhang et al. [24] rewrote
the Mumford-Shah model by modeling the inhomogeneous
regions as Gaussian distributions of different means and vari-
ances in a level set formulation.

The relationship between the piecewise constant function
and the smooth function can be also modeled in an additive
way, i.e.,

g(x) =
L∑
k=1

ckuk(x) + b(x) + n(x). (8)

Le and Vese [15] proposed a piecewise smooth segmentation
model by expressing the true intensity as a summation of a
piecewise constant component and a smooth component, i.e.,

min
c,b,{Ωk}Lk=1

L∑
k=1

∫
Ωk

fkdx+

∫
Ω

µ1|∇b|2 +µ2|∇2b|2dx+

L∑
k=1

|∂Ωk|,

(9)
where fk = λ

2 (I − ck − b)2, ∇2b is the Hessian of b, and
µ1, µ2 are two positive parameters. Jung [27] used the `1

data fidelity to reformulate the energy functional for better
segmentation of images with low contrast or outliers. Gu et
al. [22] introduced a new piecewise smooth decomposition
model by using a constant parameter to balance the piecewise
constant and smooth component.

Until now, we focus on the discussion to guarantee a
piecewise smooth solution of the Mumford-Shah model. In
fact, how to realize the minimization of the total length
of the boundaries is also an important perspective. Since
the boundaries of the partition function u agree with the
support of its gradient, a straight-forward regularity term
for the total boundary length is the `0 quasi-norm of its
gradient [8]. Indeed, as we summarized in Table I, most PS
Mumford-Shah models are based on the total variation (TV)
regularization, which is defined as the `1 norm of the image
gradient magnitude. It is well-known that minimizing the `1

norm can not only encourage the sparsity in its arguments,
but also preserve the edges of the images and eliminate the
noises. However, the boundaries obtained by total variation
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minimization are not as sharp as the ones achieved by `0

regularization. Two exceptions are [23] and [25], which utilize
the `0 regularity term. In order to use the hard thresholding
to solve the subproblem with respect to the `0 quasi-norm,
the anisotropic TV is chosen in the modeling which leads to
obvious geometric staircasing effects on the boundaries, see
the numerical experiments in [23]. Such staircasing effects
can be improved by isotropic approximation approaches such
as [31]. On the other hand, a direct choice of the smooth
regularizer is the `2 norm of its gradient [13], [14], [17], [19],
[22], [23], [26]. As shown in Table I, Hessian operator has
also been used to encourage the smoothness of the solution
[15], [25]. Besides, several methods use the local estimation
to replace the smoother regularizer such as [21], [23], [24],
[26].

A. Our contributions

Recently, many studies have demonstrated that non-convex
models can yield better edges and contrast preservation for im-
age restoration and reconstruction [32], [33], [34], [35]. Espe-
cially, Nikolova [36] analyzed the minimization of anisotropic
TVp regularization can recover the edges of images and
signals, and Zeng and Wu [37], [38] recently showed that the
isotropic TVp can also preserve edges. In order to make use of
the power of TVp regularity, we proposed a novel Mumford-
Shah model for piecewise smooth image segmentation prob-
lems in [39]. In this work, we extend the idea both theoretically
and numerically for image labeling and segmentation. More
specifically, we approximate the piecewise smooth solution
with the additive image model and utilize the TVp regu-
larization to recover the edges of the piecewise constant
component. We also employ the Laplacian operator to enhance
the spatial smoothness of the smooth component. An efficient
algorithm with convergence verification is developed based on
the operator splitting technique and the alternating direction
method of multipliers, where all subproblems can be computed
efficiently by either the closed-form solution or fast Fourier
transform. We conduct numerous experiments to show the
efficiency and effectiveness of the proposed TVp regularized
MS model. Compared with state-of-the-art Mumford-Shah
models, our proposal presents better convergence speed and
labeling/segmentation accuracy. Fig. 1 presents an example of
piecewise smooth labeling. As shown, the PC MS model [40]
misclassifies the background into three different phases, while
the PS model [27] also segments the two small squares into
different regions. Our proposal can locate the two squares in
the image and segment the background correctly.

(a) Input (b) PC[40] (c) MSL1[27] (d) Our proposal

Fig 1. A three-phase segmentation example.

This paper is organized as follows. In Sect. II, we introduce
the notations, the minimization problem of the TVp regular-
ized Mumford-Shah model and establish the existence of the

minimizers. The numerical algorithm and solutions to the sub-
minimization problems are presented in Sect. III. We also give
the convergence analysis in Sect. III. The proposed model is
further extended to image segmentation task in Sect. IV. We
present the numerical experiments and comparisons in Sect.
V. Finally, Sect. VI concludes the paper.

II. THE TVp REGULARIZED MUMFORD-SHAH MODEL

A. Notations

Let Ω = [1, N1] × [1, N2] ⊂ RN1×N2 , denote a regular
image grid of N := |Ω| pixels. We define the following two
inner product vector spaces:

X = RN and Y = X ×X.

The spaces X and Y are equipped with inner products 〈·, ·〉X ,
〈·, ·〉Y and norms ‖ · ‖X and ‖ · ‖Y , respectively. In addition,
we mention that, q ∈ Y , at each pixel (i, j), qi,j = (q1

i,j , q
2
i,j)

and |qi,j | =
√

(q1
i,j)

2 + (q2
i,j)

2.
Motivated by [11], we use the mimetic finite difference

method by building up a staggered grid scheme as shown in
Fig. 2. To be specific, the variables in X are defined on •-
nodes, while the first and second component of variables in Y
are defined on ◦-nodes and �-nodes, respectively. The discrete

Fig 2. Definitions of the mimetic finite-dimension spaces.

gradient operator is a mapping ∇ : X → Y , defined as

(∇u)i,j =
(
(D+

x u)i,j , (D
+
y u)i,j

)
,

with

(D+
x u)i,j =

 ui+1,j − ui,j 1 ≤ i < N1,

u1,j − uN1,j i = N1.

(D+
y u)i,j =

 ui,j+1 − ui,j 1 ≤ j < N2,

ui,1 − ui,N2 j = N2.

Using the inner products of X and Y , we can find the adjoint
operator of −∇, i.e., the discrete divergence operator div :
Y → X . Given q = (q1, q2) ∈ Y , we have

(divq)i,j = q1
i,j−q1

i−1,j+q
2
i,j−q2

i,j−1 = (D−x q
1)i,j+(D−y q

2)i,j .

Besides, we also introduce the notations for vector-valued
variables

X = X ×X × · · · ×X︸ ︷︷ ︸
L

and Y = Y × Y × · · · × Y︸ ︷︷ ︸
L

.
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Hence, for u ∈ X , its gradient is ∇u = (∇u1, . . . ,∇uL) ∈
Y . The usual inner products and norms are also equipped in
X and Y as 〈·, ·〉X , 〈·, ·〉Y and norms ‖ · ‖X and ‖ · ‖Y ,
respectively (see, e.g., [41]).

B. The TVp Mumford-Shah model for image labeling
The non-convex `p quasi-norm with 0 < p < 1 has

been used for image restoration and reconstruction and gained
great success due to its superior in exploring gradient spar-
sity. We introduce the TVp regularization for multi-phase
image labeling and segmentation problems by defining the
isotropic TVp regularity term for the vector valued variable
u = (u1, . . . , uL) as

TViso
p (u) :=

L∑
k=1

( ∑
1≤i≤N1
1≤j≤N2

(√
(Dxuk)2

i,j + (Dyuk)2
i,j

)p)
, (10)

and the anisotropic TVp regularity term as

TVani
p (u) :=

L∑
k=1

( ∑
1≤i≤N1
1≤j≤N2

(
|(Dxuk)i,j |p+|(Dyuk)i,j |p

))
. (11)

Based on the additive image decomposition model (8), we
propose the novel PS Mumford-Shah model for image labeling
by minimizing the `p quasi-norm of the magnitude of the
gradient of u, which reads

min
u∈A,b

J(u, b) := 〈f ,u〉X +R(∇u) +
µ

2
‖∆b‖2X +

η

2
‖b‖2X ,

(12)

with f = (f1, . . . , fL), ∆b denoting the Laplacian of b,
R(∇u) being either isotropic TVp (10) or anisotropic TVp
(11), and λ, µ, η being positive parameters. In addition, the
admissible set of u is relaxed by allowing for its value to take
from the probability simplex, whose elements are nonnegative
and sum up to 1, i.e.,

A :=
{
u
∣∣ L∑
k=1

uk ≡ 1, uk ≥ 0, ∀ k = 1, . . . , L
}
.

Although the TVp regularized MS model is non-convex and
non-smooth, we can prove the existence of the minimizer as
follows.

Theorem 1. Assume {ck}Lk=1 > 0 and p ∈ (0, 1). Then, for
fixed parameters λ, µ, η > 0, there exists a solution (u∗, b∗),
which minimizes the proposed model (12), i.e.,

(u∗, b∗) ∈ arg min
u∈A,b

J(u, b).

Proof. Since R(∇u) is continuous and J(u, b) is coercive,
one can readily prove this theorem.

III. DESCRIPTION OF THE ADMM ALGORITHM

We use the alternating direction method of multipliers
(ADMM) to solve the proposed TVp regularized MS models,
which is an efficient algorithm for large-scale and multi-
variable optimization problems. By introducing the new vari-
ables v = (v1, . . . , vL) and q = (q1, . . . , qL), we can rewrite
(12) into a constrained optimization problem as follows

min
q,u,v,b

〈f ,u〉X +R(q) +
µ

2
‖∆b‖2X +

η

2
‖b‖2X ,

s.t., v = u, q = ∇v, u ∈ A.
(13)

Before we discuss the solution to the proposed constrained
minimization (13), let us explain how to deal with the prob-
ability simplex on the variable u. We define a characteristic
function δA(u) on A

δA(u) =

 0, if u ∈ A,

+∞, otherwise.
(14)

And the optimal solution to the following minimization prob-
lem with a given z ∈X ,

min
u

δA(u) + ‖u− z‖2X ,

can be computed by various projection methods such as
[42], [43]. Therefore, the associated augmented Lagrangian
functional for (13) is defined as

L(q,u,v, b;Λ1,Λ2) = 〈f ,u〉X +R(q) +
µ

2
‖∆b‖2X +

η

2
‖b‖2X

− 〈Λ1,v − u〉X +
1

2r1
‖v − u‖2X + δA(u)

− 〈Λ2, q −∇v〉Y +
1

2r2
‖q −∇v‖2Y ,

(15)

where r1, r2 are the positive constants, and Λ1, Λ2 are the
Lagrange multipliers. A natural choice to solve the above
saddle-point problem is to split the variables and solve them
alternatively by the ADMM algorithm as follows.

Algorithm I: ADMM for PS image labeling

1: Choose λ, µ, η, r1, r2 and let b = 0, v0 = Λ0
1 = 0,

q0 = Λ0
2 = 0, u0 = 1 in some regions, u0 = 0 otherwise

2: For n = 0, 1, . . . ,

(i) Compute qn+1 from

qn+1 = arg min
q
L(q,un,vn, bn;Λn

1 ,Λ
n
2 );

(ii) Compute un+1 from

un+1 = arg min
u
L(qn+1,u,vn, bn;Λn

1 ,Λ
n
2 );

(iii) Compute vn+1 from

vn+1 = arg min
v
L(qn+1,un+1,v, bn;Λn

1 ,Λ
n
2 );

(iv) Compute bn+1 from

bn+1 = arg min
b
L(qn+1,un+1,vn+1, b;Λn

1 ,Λ
n
2 );

(v) Update Λn+1
1 and Λn+1

2 by

Λn+1
1 = Λn

1 −
1

r1
(vn+1 − un+1);

Λn+1
2 = Λn

2 −
1

r2
(qn+1 −∇vn+1).

3: End until some stopping rules are met.
4: When convergence is achieved, we obtain the binary

solution u∗ from

u∗l =

 1, l = min{arg max
1≤k≤L

uk},

0, otherwise,
for all 1 ≤ l ≤ L.
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A. Sub-minimization with respect to q

Since both `p quasi-norm and `2 norm are separable, the
vector-valued sub-minimization problem of q can be decom-
posed onto each pixel (i, j) ∈ Ω as follows

min
q

L∑
k=1

∑
i,j

R((qk)i,j)+
1

2r2

∣∣(qk)i,j− ((∇vk)i,j +r2(Λ2,k)i,j)
∣∣2.

(16)
As one can see, the above problem is decomposable and at
each pixel (i, j), the problem takes the form as follows

min
q∈R2

R(q) +
1

2r2
|q −w|2, (17)

where w ∈ R2.
For the isotropic TVp regularity term, a geometric interpre-

tation of the minimization is provided in Fig. 3 following [44].
The dashed circle with O as the center and |q| as the radius
denotes the possible location of q. For given w, the potential
minimizer should locate in the same quadrant as w. According
to the triangle inequality of the Euclidean norm | · | in R2, we
have

|q|+ |q −w| ≥ |w| = |q∗|+ |w − q∗|.

Fig 3. A geometric interpretation of the problem (17).

It is easy to deduce the solution of the problem (16) locates
on the line segment Ow. Denote q = βw with 0 ≤ β ≤ 1.
Thus, we can simplify (17) as the minimization of β, i.e.,

min
β
|β|p +

1

2r2
(β − 1)2|w|2−p, β ∈ [0, 1], (18)

which is a proximal function of the absolute function raised
to the pth power with the box constraint. Such `p quasi-norm
minimization problem has been well studied in [45], [46], [47],
[48]. In this work, we use the generalized soft-thresholding
(GST) [47] as the solver for the `p quasi-norm minimization
problem, after which a one-step projection of β onto [0, 1] is
performed.

Proposition 1. ([47]) Given p ∈ (0, 1) and w ∈ R. Then, the
minimizer of the following minimization problem

proxr|·|p(w) = arg min
w∈R

|q|p +
1

2r
(q − w)2,

is defined as

proxr|·|p(w) =

 0, if |w| ≤ τp(r),

sgn(w)Sp(|w|; r), if |w| > τp(r),
(19)

where τp(r) = (2r(1−p))
1

2−p +rp(2r(1−p))
p−1
2−p and Sp(w; r)

is the solution of the following equation

Sp(w; r)− w + rp
(
Sp(w; r)

)p−1
= 0. (20)

The minimizer of (20) is computed iteratively using the GST
algorithm sketched as follows.

Algorithm II: The GST Algorithm

Input: w, r, p and J .
1. τp(r) = (2r(1− p))

1
2−p + rp(2r(1− p))

p−1
2−p ;

2. if |w| ≤ τp(r)
3. proxr|·|p(w) = 0;
4. else
5. l = 0, xl = |w|;
6. Iterate on l = 0, 1, . . . , J
7. xl+1 = |w| − rp(xl)p−1;
8. l← l + 1;
9. proxr|·|p(w) = sgn(w)xl;
10. end

For the anisotropic TVp regularization, we actually intro-
duce the variables q1 = Dxv and q2 = Dyv with q1 ∈ R,
q2 ∈ R. Consequently, we are going to solve a pair of 1-
dimensional pth power minimization problem

min
q1
|q1|p + 1

2r2

(
q1 − (Dxv + r2Λ1

2)
)2
,

min
q2
|q2|p + 1

2r2

(
q2 − (Dyv + r2Λ2

2)
)2
,

(21)

both of which can be efficiently solved by the GST algorithm.

B. Sub-minimization with respect to u

The constrained minimization problem w.r.t. u is solved in
two steps, an unconstrained minimization and a projection.
That is the vector-valued minimization problem

min
u

δA(u) +
1

2r1

∥∥∥u− (v − r1Λ1 − r1f)
∥∥∥2

X
, (22)

is explicitly computed as follows

u = projA
(
z
)
, with z = v − r1Λ1 − r1f . (23)

Since A is a closed and convex set, such projection is well
defined and unique, which is realized based on sorting the
elements of the variable u as described in [42].

C. Sub-minimization with respect to v

We come up with the sub-minimization w.r.t. v, which is
also a vector-valued minimization problem and can be solved
individually as

min
v

1

2r1

∥∥v − (u + r1Λ1)
∥∥2

X
+

1

2r2

∥∥∇v − (q − r2Λ2

)∥∥2

Y
.

(24)
It is straightforward to pursue the Euler-Lagrange equation of
(24) and reach at

(r2I − r1∆)v = r2(u + r1Λ1)− r1div(q − r2Λ2). (25)
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The above Poisson equation can be efficiently solved by
the fast Fourier transform (FFT) with the periodic boundary
condition, which gives

v = F−1

(
r2F(u + r1Λ1)− r1(F(D−x )(g1) + F(D−y )F(g2))

r2I − r1F(∆)

)
,

(26)
where g := (g1, g2) = (q1 − r2Λ1

2, q
2 − r2Λ2

2) and I denotes
the identity matrix.

D. Sub-minimization with respect to b

We look into the sub-minimization problem w.r.t. b, which
is defined as

min
b

λ

2

〈
(I − c− b)2,u

〉
X

+
µ

2
‖∆b‖2X +

η

2
‖b‖2X . (27)

As the Laplacian operator is self adjoint, the first-order optimal
condition of (27) gives a linear equation as(

(λ+ η)I + µ∆2
)
b = λ〈u, I − c〉X . (28)

Similar to the subproblem of v, periodic boundary conditions
simply the efficient solution of (28) by the FFT as follows

b = F−1

(
λF
(
〈u, I − c〉X

)
(λ+ η)I + µF(∆)2

)
. (29)

E. Convergence Analysis

The convergence of ADMM for non-convex composite
problems is a difficult problem, which requires the subjec-
tiveness of the linear mapping in the composite term, or the
linear mappings in the constraints satisfies an image condition
[49]. Due to the non-subjectiveness of the gradient operator,
we can only achieve a partial convergence result for image
labeling Algorithm I.

Theorem 2. Assume un+1 − un → 0, Λn+1
1 −Λn

1 → 0 and
Λn+1

2 −Λn
2 → 0 as n→∞ in Algorithm I. Then any cluster

point of the sequence{(qn,un,vn, bn;Λn
1 ,Λ

n
2 )}, if exists, is

a KKT point of the constrained optimization problem (13).

Proof. The proof uses the same ideas as the ones of Theorem
7.7 in [50], which is given in the appendix.

IV. EXTENSION TO PS IMAGE SEGMENTATION

Another important application of Mumford-Shah model is
the image segmentation, where {ck}Lk=1 are also unknowns.
Thus, the TVp regularized Mumford-Shah model for image
segmentation can be described as

min
u∈A,b,c

〈
f ,u

〉
X

+R(∇u) +
µ

2
‖∆b‖2X +

τ

2
‖b‖2X , (30)

where c is estimated explicitly as the mean values of the
subregions according to

ck =

∫
Ω

(I − b)ukdx∫
Ω
ukdx

, k = 1, . . . , L. (31)

Simultaneously, the data term is updated via the iteration
with {ck}Lk=1. The ADMM algorithm for image segmentation
can be obtained straightforward by introducing the update of
{ck}Lk=1 as the first step in each iteration.

V. NUMERICAL EVALUATION

In this section, we present the numerical results of the
proposed TVp regularized MS (TVpMS) model on various
image labeling and segmentation applications. We first give
the following remarks regarding to the experiments:
(1) Like most existing variational approaches, our model has

parameters, including three model parameters λ, µ, η,
and two algorithm parameters r1, r2. The model is not
sensitive to the choices of η, r1 and r2, which are fixed
as r1 = 10, r2 = 20, η = 1e − 4 for labeling task and
r1 = 10, r2 = 200, η = 1e−4 for segmentation task. The
values of λ and µ vary for different images, which are
related to the image structures, noise levels and degrees
of inhomogeneity. On the other hand, the parameters of
compared algorithms are all fine-tuned and provided for
each example.

(2) For labeling applications, our TVpMS model is terminat-
ed when either the relative dynamic error is satisfied

‖bn+1 − bn‖X ≤ ε1‖bn+1‖X ,

with ε1 = 2e − 3 or the maximum iteration number
is reached, i.e., Itermax = 800 for gray examples and
Itermax = 400 for color examples. For segmentation
applications, both our TVpMS model and MSL1 model
are terminated when either the relative error is satisfied

‖cn+1 − cn‖X ≤ ε2‖cn+1‖X ,

with ε2 = 5e − 5 or the maximum iteration number is
reached, which is the same as labeling applications.

(3) The accuracy of labeling and segmentation is measured
by the Jacard Similarity (JS), defined by

JS(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

,

where S1 is the region segmented by the algorithm and
S2 is the corresponding region in the ground truth.

(4) The initializations of u0 are depicted on the original
images, otherwise are randomly generated.

A. Image Labeling Applications

1) Comparison with PC labeling methods: At the first
place, we compare the performance of the piecewise constant
models and our piecewise smooth model on four general
images (‘Petal’, ‘Square’, ‘Building’ and ‘Shapes’), including
synthetic and real images of single and multiple objects. In
Fig. 4, we present the labeling results of the global smoothed-
dual (GSD) algorithm [11], piecewise constant MS (PCMS)
algorithm [40], global active contour (GAC) [17], nonlocal
active contour (NLAC) [51] and our TVpMS model. As shown
by both visual and quantitative results, when image intensities
are smoothly varying with the location, the PC methods,
i.e., GSD, PCMS and GAC algorithm all fail to classify the
foreground from the background. The nonlocal model takes
advantage of patch similarity, which can deal with certain
intensity inhomogeneity and noises, but loses efficiency for
images containing strong intensity inhomogeneity. As most
real-life images, especially medical images are not piecewise
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constant, the PS labeling approaches are obviously more
advantageous than PC methods in practice.

(a) GSD (b) PCMS (c) GAC (d) NLAC (e) TVpMS (f) GT

Images GSD PCMS GAC NLAC TVpMS

Petal 94.66 94.56 93.35 97.36 97.51

Square 52.49 52.12 52.29 65.72 94.01

Building 79.95 80.27 62.62 88.21 99.01

Shapes 55.35 54.85 82.55 99.91 99.97

Fig 4. The labeling results of two-phase examples, where p = 1/3 for our
TVpMS model. ‘GT’ denotes the ground truth labeling.

In this experiment, the regularization parameter of the GSD
model is set as λ = 0.01, 0.05, 0.1, 0.01 and the time
step size is fixed as δ = 0.01, 0.05, 0.05, 0.1 for the four
images, respectively. We set the regularization parameters for
the PCMS model as λ = 0.005, 0.02, 0.01, 0.01, and the
GAC model as λ = 1, and θ = 0.1 for image ‘Petal’
and ‘Building’, θ = 0.5 for image ‘Square’ and ‘Shapes’.
For the NLAC model, we set the parameters as τ = 3/n,
and (σ, ξ) = (10/n, 31/n) for image ‘Petal’ and ‘Shapes’,
(σ, ξ) = (10/n, 101/n) for image ‘Square’ and ‘Building’
with n being the width of image. The parameters of our
TVpMS model are selected as µ = 200000 for image ‘Petal’,
‘Building’ and ‘Shapes’, µ = 250000 for image ‘Square’, and
λ = 160, 40, 40, 60 for the four images, respectively.

2) Sensitivity to model parameters: There are three im-
portant model parameters p, λ and µ in our TVpMS model.
In the following, we discuss the choices and effects of these
parameters on image labeling problems.
• Performance with different p:

One important parameter in our TVp regularizer is the power
index p. We compare the labeling accuracy of the isotropic
TVpMS model for different values of p ∈ (0, 1] on ‘Petal’
image. For each p, we fine tune the parameters and use both
the standard and staggered finite difference in implementation.
As shown in Fig. 5, the TVpMS model with the staggered
grid scheme always gives better results, and higher JS values
are usually achieved by smaller p. In particular, the TVpMS
model with p ∈ (0, 1) gives much more accurate results than
the TVMS model, i.e., the case p = 1, which demonstrates
the advantages of the non-convex regularizer in dealing with

image labeling problem. According to the observation, we set
the parameter p as p = 1/3 in the following experiments.

(a) p=1/4 (b) p=1/3 (c) p=1/2 (d) p=2/3 (e) p=3/4 (f) p=1

p=1/4 p=1/3 p=1/2 p=2/3 p=3/4 p=1

TVstd
p 97.53 97.51 97.40 97.47 95.48 96.23

TVstg
p 97.56 97.51 97.55 97.53 97.53 96.47

Fig 5. Labeling results of isotropic TVpMS model with standard (1st row)
and staggered (2nd row) grid scheme for different p.

• Performance with different λ and µ:

Our TVpMS model has two regularization parameters i.e., λ
and µ. We conduct the following experiments to discuss the
choices of these two parameters. Of course too large or too
small λ and µ will affect the labeling results. More specifically,
λ is related to image structures and noise levels. If λ is too
small, the algorithm will give incomplete objects, while there
will be some outliers and noise left in the results if λ is too
large. On the other hand, µ controls the smoothness of the
solution of b. The larger µ is, the smoother the bias field is.
TABLE II records the JS values of the four images with differ-
ent combinations of λ and µ, where λ and µ are chosen from
(λ, µ) ∈ {40, 60, . . . , 200}× {2× 105, 3× 105, . . . , 1× 106}.
As shown, the JS values are relatively stable for both isotropic
and anisotropic TVpMS model such that there are reasonably
large internals for the parameters to generate good labeling
results. Thus, although we need to manually tuned these two
parameters for different images, we can start from moderate
values of λ and µ, e.g., λ = 40 and µ = 200000, to fine tune
the results according to above observations.

• Robustness with initializations:

We further evaluate the performance of our model with d-
ifferent contour initializations. Fig. 6 displays five different
initializations of u and the corresponding labeling results,
where all parameters are fixed the same during the exper-
iments. As shown, the first four initial contours are either
insides, outside or across the objects, and the last contour
is random generated. Despite the great difference of the
initializations, the labeling results are almost the same with
correct boundaries. It demonstrates that our TVpMS model is
quite robust with different initializations.

• Numerical convergence:

We also record the evolution of ‖bn+1 − bn‖2X and ‖un+1 −
un‖2X of the four different images via iteration number n
for the isotropic TVpMS model with different values of p in
Fig. 7. Although the curves vibrate at the beginning, they all
converge to zero as the iteration keep increasing. The smaller
the value of p is, the faster the convergence is.
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TABLE II
THE PERFORMANCE OF OUR TVpMS MODEL W.R.T. DIFFERENT λ AND µ. THE BOLD VALUES DENOTE THE BEST OR WORST RESULTS.

Images
PPPPPµ

λ 40 60 80 100 120 140 160 180 200

iso ani iso ani iso ani iso ani iso ani iso ani iso ani iso ani iso ani

Petal

2× 105 93.37 93.29 93.70 93.41 95.05 93.49 95.58 95.05 96.98 96.30 95.61 95.69 97.51 97.51 95.53 95.50 95.50 95.46

3× 105 93.21 93.22 93.62 93.60 94.60 93.83 93.22 93.93 94.65 97.13 96.68 97.48 97.29 97.03 97.48 97.47 95.64 95.60

4× 105 93.25 93.26 93.75 93.55 94.14 93.72 94.59 94.12 97.06 94.75 94.75 93.44 95.81 94.02 97.03 96.89 97.28 97.12

5× 105 93.30 93.22 93.69 93.44 94.08 93.91 94.23 94.15 94.38 94.17 94.82 95.35 94.56 97.06 97.04 94.33 96.92 96.49

6× 105 93.36 93.20 93.76 93.39 93.80 93.86 94.14 94.02 94.32 94.11 94.84 93.40 94.83 95.45 94.60 95.85 96.97 95.43

7× 105 93.26 93.21 93.49 93.47 94.08 93.65 94.21 94.01 94.26 94.14 94.76 94.64 94.81 94.82 94.62 94.35 97.04 97.05

8× 105 93.36 93.22 93.50 93.39 93.20 93.63 93.36 93.99 94.26 94.13 93.45 94.29 94.49 94.65 94.63 94.83 94.61 95.00

9× 105 93.32 93.21 93.51 93.43 93.87 93.68 93.98 93.82 94.15 94.14 94.24 94.24 94.86 94.24 94.62 94.39 94.33 94.62

1× 106 93.40 93.27 93.51 93.45 93.27 93.00 94.03 93.28 94.16 93.47 94.24 94.11 93.44 94.22 94.52 94.91 94.63 94.40

Square

2× 105 93.95 93.80 93.98 93.98 93.99 93.91 93.89 93.87 93.79 93.79 93.81 93.81 93.77 93.77 93.75 93.77 93.73 93.73

3× 105 93.94 93.77 93.95 93.90 93.95 93.99 93.79 93.85 93.77 93.77 93.75 93.75 93.75 93.75 93.71 93.71 93.71 93.71

4× 105 93.83 93.85 93.97 93.88 93.93 93.89 93.85 93.85 93.73 93.77 93.77 93.73 93.69 93.69 93.69 93.69 93.69 93.69

5× 105 93.94 93.99 93.89 93.86 93.87 93.89 93.73 93.73 93.73 93.75 93.73 93.71 93.71 93.71 93.65 93.65 93.67 93.67

6× 105 93.82 93.86 93.95 93.83 93.77 93.81 93.77 93.67 93.71 93.71 93.67 93.67 93.65 93.65 93.65 93.65 93.65 93.63

7× 105 93.82 93.84 93.95 93.93 93.75 93.75 93.75 93.75 93.69 93.65 93.65 93.65 93.63 93.65 93.65 93.65 93.65 93.65

8× 105 93.74 93.80 93.85 93.81 93.83 93.81 93.77 93.75 93.69 93.69 93.65 93.65 93.65 93.65 93.63 93.65 93.61 93.63

9× 105 93.70 93.68 93.93 93.91 93.77 93.75 93.69 93.69 93.67 93.65 93.69 93.67 93.65 93.65 93.61 93.61 93.61 93.63

1× 106 93.64 93.60 93.79 93.79 93.77 93.75 93.65 93.67 93.69 93.69 93.63 93.63 93.61 93.61 93.61 93.61 93.59 93.59

Building

2× 105 99.01 97.49 97.16 97.14 97.14 97.05 97.07 97.04 97.07 97.05 96.76 97.04 95.61 95.60 95.62 95.54 95.61 95.60

3× 105 97.43 99.04 97.11 97.08 97.07 97.07 96.82 96.92 97.03 96.83 97.01 96.82 95.69 95.47 95.69 95.69 95.61 95.33

4× 105 97.13 99.01 96.83 97.04 96.85 96.83 96.92 96.73 96.76 96.76 96.74 96.74 96.75 96.75 95.68 95.48 95.95 95.67

5× 105 97.09 98.99 96.82 96.83 96.84 96.84 96.82 96.75 96.74 96.80 96.75 96.74 96.73 96.73 96.75 96.74 95.70 96.20

6× 105 96.81 96.78 96.82 96.81 96.78 96.79 96.77 96.78 96.74 96.74 96.73 96.74 96.74 96.73 95.90 96.74 96.73 96.72

7× 105 96.79 96.77 96.80 96.79 96.79 96.75 96.76 96.74 96.74 96.73 96.74 96.73 96.75 96.72 96.73 96.73 95.89 95.88

8× 105 96.79 96.78 96.79 96.83 96.77 96.76 96.73 96.72 96.75 96.72 96.73 96.71 96.74 96.72 96.73 96.73 96.73 96.73

9× 105 99.03 98.99 96.78 96.83 96.75 96.75 96.75 96.74 96.74 96.70 96.72 96.71 96.72 96.73 96.73 96.73 96.72 96.73

1× 106 99.01 99.00 96.78 96.76 96.73 6.73 96.75 96.73 96.74 96.72 96.73 96.73 96.72 96.72 96.73 96.73 96.73 96.72

Shapes

2× 105 99.90 99.90 99.97 99.97 99.99 99.99 99.99 99.99 99.99 99.99 99.99 99.99 1 1 1 1 1 1

3× 105 99.92 99.92 99.97 99.97 99.99 99.99 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1

4× 105 99.89 99.89 99.97 99.97 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1 1 1

5× 105 99.86 99.86 99.97 99.97 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1 1 1

6× 105 99.83 99.83 99.94 99.94 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1 1 1

7× 105 99.85 99.85 99.97 99.97 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1 1 1

8× 105 99.83 99.83 99.96 99.96 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1 1 1

9× 105 99.83 99.83 99.95 99.95 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1 1 1

1× 106 99.81 99.81 99.95 99.95 99.99 99.99 99.99 99.99 1 1 1 1 1 1 1 1 1 1

3) Extension to color image labeling: We extend the pro-
posed model to color image labeling problem. Let us denote
a color image by I = (Ir, Ig, Ib), where Ir, Ig , Ib ∈ X . The
data fidelity term f = (f1, . . . , fL) is then defined as

fk =
λ

2

∑
i={r,g,b}

|Ii − bi − (ck)i|2, for k = 1, . . . , L,

where ck ∈ R3 represents a constant color value, and b =
(br, bg, bb) with bi : Ω → R. Thus, the TVp regularized
Mumford-Shah model (12) for color image segmentation still
looks like

min
u∈A,b

〈f ,u〉X +R(∇u)+
µ

2
‖∆b‖2X×X×X +

η

2
‖b‖2X×X×X ,

(32)
where R(∇u) can be either isotropic or anisotropic TVp reg-
ularity. Similarly, we use the splitting technique and ADMM

scheme to solve the minimization problem (32), where we
omit the implementation details.

We present two experiments on color image labeling, where
c are fixed with the pre-defined values. We apply both isotropic
and anisotropic TVpMS model to the Parrot image and Hats
image with L = 6 and L = 10, and compare the labeling
results with the PC labeling approaches1. As visible on the
dark region in the bottom left part of Parrot and the brown
region in the top right part of Hats in Fig. 8, the anisotropic
TV regularized PC model favors horizontal and vertical struc-
tures because the Manhattan distance is minimized instead of
the Euclidean distance. Due to the mimetic finite difference
method, both the anisotropic and isotropic TVp based PS
models give very similar labeling results. In addition, the

1The codes were downloaded from http://www.gipsa-lab.grenoble-
inp.fr/ laurent.condat/publications.html.
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Fig 6. Labeling results of the isotropic TVpMS model with different contour
initializations.

comparison between the PC model and PS model demonstrates
that the PS model can achieve better labeling results, which
classifies the green plants into the same region for Parrot and
locates the boundary of green hat accurately for Hats.
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(d) Shapes

Fig 7. The evolutions of ‖bn+1− bn‖22 (top) and ‖un+1−un‖22 (bottom)
via iterations for the four images in Fig. 4.

(a) Original images and initializations

(b) TViso PC (c) TVani PC (d) TViso
p PS (e) TVani

p PS

Fig 8. Experiments on multi-phase color image labeling problems. The
parameters for the PC model are λ = 0.03, 0.09 and our TVpMS model are
µ = 1000000, λ = 20, 9 for Parrot and Hats.

B. Image Segmentation Applications

In this subsection, we apply our TVpMS model to image
segmentation problem, and compare with the well-known
piecewise smooth segmentation approaches, including the
piecewise smooth Mumford-Shah (MSL2) model [15], local
intensity clustering (LIC) model [21], the additive Mumford-
Shah (AMS) model [22], the maximum likelihood (ML) model
[24], the `0 regularized Mumford-Shah (L0MS) model [23]
and the piecewise smooth Mumford-Shah model with the L1

data fidelity (MSL1) model [27]. We omit the discussion on
the choices of parameters as it is the same as the labeling
problem.

1) Comparison with TV models: Our model has two main
differences with the existing MSL2 model and MSL1 model:
(i) we use the non-convex TVp regularizer while they used
the TV regularizer; (ii) we adopt the Laplacian operator
instead of gradient in the smooth regularizer. We conduct the
following experiments to verify the capacity of the non-convex
regularizer in smooth segmentation on image ‘Petal’ and
‘Building’. For each image, we compare our TVpMS model
with the two TV-based models on images with weak and strong
intensity inhomogeneity. We also evaluate the performance
of our TVpMS model with different p for p = 1/3, 2/3
and 1, respectively. The visual segmentation results, JS values
and parameters are displayed in Fig. 9. We can observe that
our TVpMS model can provide accurate segmentation results
when p is small such as p = 1/3, while both MSL2 model
and MSL1 model fail to identify the correct boundaries for
strong intensity inhomogeneity. The comparison between our
model with p = 1 and the two TV-based models reveals that
the Laplacian operator outperforms the gradient operator for
piecewise smooth segmentation; see the second row in Fig.
9. Obviously, the TVp regularizer for the piecewise constant
component is more important in improving the segmentation
accuracy when images are corrupted by strong intensity inho-
mogeneity; see the fourth row in Fig. 9.
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Fig 10. Performances of the MSL2, LIC, AMS, ML, L0MS, MSL1 and our TVpMS model on synthetic brain images. The parameters for the MSL2 model
are µ = 5000, λ = 1500; the LIC model are µ = 1.0, σ = 4; the AMS model are µ = 0.005, ν = 1; the ML model are ρ = 4.5; the L0MS model are
α = 0.15, µ = 1.0, σ = 4; the MSL1 model are µ = 50000, λ = 100 and our TVpMS model are µ = 200000, λ = 100.

(a) p=1/3 (b) p=2/3 (c) p=1 (d) MSL2 (e) MSL1

Images parameters p=1/3 p=2/3 p=1 MSL2 MSL1

1st row
JS 97.41 97.41 97.41 97.62 97.37

λ, µ(×105) 60, 4 60, 4 60, 4 800, 0.1 80, 1

2nd row
JS 97.39 97.39 97.39 93.54 94.54

λ, µ(×105) 60, 1 60, 1 60, 1 800, 0.1 80, 6

3rd row
JS 99.08 98.92 98.66 66.83 98.97

λ, µ(×105) 10, 8 10, 9 10, 10 1000, 0.4 70, 5

4th row
JS 99.04 96.96 90.68 58.02 82.53

λ, µ(×105) 10, 6 10, 6 10, 7 1000, 0.1 70, 9

Fig 9. Segmentation results of isotropic TVpMS, MSL2 and MSL1 model
with different degrees of inhomogeneity.

2) Comparison with PS segmentation methods: We evalu-
ate the performance of the TVpMS model on a synthetic brain
image and compare with state-of-art PS segmentation methods.
We generate 10 different images by introducing intensity
inhomogeneity of different profiles and additive Gaussian
white noise of mean 0 and variance 0.0002. Two of the
these images are displayed in Fig. 10 as examples with the
corresponding JS values of white matter (WM), gray matter
(GM), cerebrospinal fluid (CSF), iteration numbers and the
CPU times provided in TABLE III. Once again, we observe
that the proposed TVpMS model gives the best segmentation
results for all three regions, and enjoys a faster convergence
than most comparative models. Meanwhile, we plot the JS
values obtained by all methods for 10 images in Fig. 11,
which clearly show our model is more stable and robust against
intensity inhomogeneity and noises.

TABLE III
JS VALUES AND CPU TIMES (IN SECONDS) OF THE BRAIN EXPERIMENT.

Methods
1st image in Fig. 10 2nd image in Fig. 10

WM GM CSF Iter Time WM GM CSF Iter Time

MSL2 87.70 71.79 66.46 800 8.8 84.68 67.62 67.70 800 8.5

LIC 83.72 66.80 72.26 100 3.4 83.27 65.01 72.19 100 3.4

AMS 71.71 53.33 64.86 150 4.1 76.21 57.06 78.02 150 4.1

ML 83.83 67.10 64.09 8 1.56 85.71 72.61 69.31 15 2.24

L0MS 75.00 56.31 60.89 775 6.7 80.03 63.36 69.24 775 6.6

MSL1 79.98 62.18 79.83 800 15.0 84.10 75.52 79.30 800 14.8

TVpMS 93.00 83.77 83.12 104 5.9 91.17 82.03 86.01 104 5.7
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Fig 11. Comparison of the MSL2, LIC, AMS, ML, L0MS, MSL1 and our
TVpMS model in terms of JS (%).

3) Color image segmentation examples: In Fig. 12, we
apply the two-phase segmentation model to real color images
of size 161 × 241 × 3 from Berkeley segmentation dataset2.
As shown by the solution g, both the MSL1 and our TVpMS
models are able to achieve piecewise smooth segmentation
results. Indeed, due to the merit of the nonconvex regularity
in preserving edges, the proposed TVpMS model gives better
results with less outliers. For instance, in the fourth example,
the proposed method can isolate the elephant from the back-
ground, while the MSL1 classify some grass on the bottom
into the foreground. From our experiments, we find that the
TVpMS model is relatively less sensitive to the parameters,
where the same parameters are used for all four test images
and different parameters are required for the MSL1 model to
achieve reasonable results.

(a) Original images and initial contours

(b) MSL1: g and final curve (c) TVpMS: g and final curve

1st image 2nd image 3rd image 4th image

iter time iter time iter time iter time

MSL1 400 18.7 224 10.9 150 7.1 400 18.6

TVpMS 73 3.3 84 3.7 128 5.5 95 4.1

Fig 12. Experiments on two-phase color image segmentation. The parameters
for the MSL1 model are r = 10 (the 1st and 2nd row), r = 1 (the 3rd
and 4th row), µ = 12500 (the 1st-3rd row), µ = 20000 (the 4th row),
λ = 3, 20, 10, 20, and our TVpMS model are µ = 200000, λ = 2.2.

2The image data were downloaded from https://www2.eecs.berkeley.edu/
Research/Projects/CS/vision/bsds/.

As shown by the table in Fig. 12, our model is terminated
with fewer iterations and saves much computational time. In
addition, we track and compare the evolution of the contours
along with the iterations of the MSL1 and TVpMS model
for the first and second image in Fig. 12. The intermediate
contours and the final contours obtained by two approaches
are provided in Fig. 13, which demonstrate that our TVpMS
model converges faster than the MSL1 model under the same
stopping criterion.

(a) MSL1: n=100 n=200 n=300 n=400

(b) TVpMS: n=20 n=40 n=60 n=73

(c) MSL1: n=60 n=120 n=180 n=224

(d) TVpMS: n=20 n=40 n=60 n=84

Fig 13. The contour evolutions of the MSL1 and our TVpMS model along
with iterations.

Fig. 14 depicts the multi-phase color image segmentation
results obtained by the MSL1 model and our TVpMS model,
where the phase number is L = 3 and L = 4 for the Moon
image and Flowers image, respectively. As shown by the
magnified portions of the segmentation, our proposal yields
better results for both images. For example, the MSL1 model
segments the flower stem into the petal, while our model can
accurately locate the boundaries between the stem and petal.

(a) Original images and initial contours

(b) MSL1 (c) TVpMS (d) MSL1 (e) TVpMS
Fig 14. Experiments on multi-phase color image segmentation. The param-
eters for the MSL1 model are r = 2, 1, µ = 100000, 55000, λ = 1.6, 25
and our TVpMS model are µ = 200000, 50000, λ = 80, 0.8.
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C. Evaluation on segmentation dataset

In this subsection, we evaluate our TVpMS model on two
public dataset: Weizmann segmentation dataset (100 images)
[52] and 4.7 T anatomy dataset (30 volumes) [53].

The Weizmann dataset contains 100 gray images with
objects that differ from their surroundings by either intensity,
texture or other low level cues [52]. Because our TVpMS
model is a typical intensity based segmentation approach, we
integrate our model with priori given supervision constraints.
More specifically, we labelled some image pixels as fore-
ground seeds (i.e., Ωf ) and background seeds (i.e., Ωb) in
advance, and reformulate our segmentation model (30) into a
constrained minimization as follows

min
u∈A,b,c

〈
f ,u

〉
X

+R(∇u) +
µ

2
‖∆b‖2X +

τ

2
‖b‖2X ,

s.t., u(Ωf ) = 1, u(Ωb) = 0.

Six representative test images and the corresponding seg-
mentation results are displayed in Fig. 15, where two images
are without priori, two images are with only foreground or
background priori and two images are with both foreground
and background priori. We use the same supervision con-
straints, random initialization and fixe the parameters for
the LIC, MSL1 and our TVpMS model in evaluating the
Weizmann dataset. As shown, our TVpMS method gives the
best overall performance among these three intensity based
approaches.

LIC MSL1 TVpMS % of known

JS 63.25±3.8e-2 57.26±4.4e-2 80.66±6.7e-3 17.67±1.1

Fig 15. Comparison of segmentation results on Weizmann dataset. 1st row:
Selected images from Weizmann dataset with pixels marked as foreground
(red) and background (blue). 2nd row: Ground truth of segmentation. 3rd
row-5th row: Segmentation results of LIC, MSL1 and TVpMS method,
respectively. The parameters for the LIC model are µ = 1.0, σ = 4; the MSL1
model are µ = 200000, λ = 500 and our TVpMS model are µ = 400000,
λ = 5.

On the anatomy dataset, we use the TVpMS model for brain
extraction task, which is an important preprocessing step for
further analysis of brain MR images. We regard brain extrac-
tion as a three phase segmentation problem, which classifies
the image domain into the brain region, the surrounding non-
brain region and the background outside the body. We not only
compare our proposal with the variational approach L0MS

method, but also two brain extraction softwares, BSE3 and
3D-PCNN4. We fix the parameters of the comparative algo-
rithms for all volumes and perform the same morphological
operations on the resultant brain masks of 3D-PCNN, L0MS
and our proposal including erosion, dilation and filling holes.
More implementation details can be referred to [54].

Fig. 16 shows examples of the brain boundaries identified by
all comparative methods on three slices of a 3D volume. Visual
results demonstrate that our TVpMS method can locate the
boundary quite accurately, and the estimated boundaries are
much smoother than the `0 regularized model. Simultaneously,
our TVpMS method achieves the best JS values among the four
methods, which is significantly higher than values obtained
by the L0MS method. Both the qualitative and quantitative
comparison demonstrate that TVp regularization can well
preserve edges for image segmentation problems.

(a) BSE (b) 3D-PCNN (c) L0MS (d) TVpMS

BSE (3D) 3D-PCNN L0MS TVpMS

JS 82.02±2.6e-4 92.07±1.3e-3 80.16±4.3e-3 93.25±2.1e-4

Fig 16. Comparison of brain masks (axial view) and JS values, where
red curves denote the manual gold standard and yellow curves denote the
automatic method. The parameters for the L0MS model are α = 0.2, µ = 1.0,
σ = 4 and our TVpMS model are µ = 250000, λ = 8.

VI. CONCLUSION

In this paper, we presented a novel piecewise smooth
Mumford-Shah model by regarding the solution as a linear
combination of a piecewise constant function and a smooth
function. Unlike most existing methods, which rely on the
minimization of total variation, we utilized the non-convex
and non-smooth TVp regularization for the piecewise constant
component and the Lapacian operator for the smooth compo-
nent. The optimization algorithm with implementation details
and convergence verification was given. Both segmentation
and labeling experiments on gray and color images, including
medical and natural images, demonstrated the good perfor-
mance of the proposed model in terms of accuracy and the
computational efficiency.

3http://brainsuite.org/
4http://www.sbic. astar.edu.sg/research/lmi/PCNN3D%20binary.zip
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APPENDIX A
PROOF OF THEOREM 2

Proof. By Algorithm I, we have

∂R(qn+1)−Λn
2 +

1

r2
(qn+1 −∇vn) 3 0,

un+1 ∈ arg min
u
δA(u) + 〈f ,u〉X + 〈Λn

1 ,u〉X +
1

2r1
‖u− vn‖22,

(r2I − r14)vn+1 = r2(un+1 + r1Λ
n
1 )− r1div(qn+1 − r2Λ

n
2 ),(

(λ+ η)I + µ∆2
)
bn+1 = λ〈un+1, I − c〉X ,

Λn+1
1 = Λn

1 −
1

r1
(vn+1 − un+1),

Λn+1
2 = Λn

2 −
1

r2
(qn+1 −∇vn+1).

(33)

The assumption Λn+1
1 −Λn

1 → 0 as n → ∞ gives imme-
diately lim

n→∞
(vn − un) = 0. Together with un+1 − un → 0,

we can express vn+1 − vn = vn+1 − un+1 + un+1 −
un + un − vn and deduce that lim

n→∞
(vn+1 − vn) = 0.

Let A := (λ + η)I + µ∆2. Due to the invertibility of A
and the assumption un+1 − un → 0 as n → ∞, there is
lim
n→∞

(bn+1 − bn) = 0. The assumption Λn+1
2 − Λn

2 → 0

as n → ∞ gives immediately lim
n→∞

(qn − ∇vn) = 0. As

qn+1 − qn = qn+1 −∇vn+1 +∇vn+1 −∇vn +∇vn − qn,
we further deduce that lim

n→∞
(qn+1 − qn) = 0.

Assume (q∗,u∗,v∗, b∗;Λ∗1,Λ
∗
2) be a cluster point of the se-

quence {(qn,un,vn, bn;Λn
1,Λ

n
2 )}. Thus, there is a subsequence

{(qni,uni,vni,bni;Λni
1 ,Λ

ni
2 )} converging to (q∗,u∗,v∗,b∗;Λ∗1,Λ

∗
2).

The asymptotic regularity of {(qn,un,vn,bn;Λn
1,Λ

n
2 )} leads to

lim
i→∞

(qni+1,uni+1,vni+1,bni+1;Λni+1
1 ,Λni+1

2 )=(q∗,u∗,v∗,b∗;Λ∗1,Λ
∗
2).

Let n be ni in (33) and sending i to ∞ except for the first
formula, we get

∂R(qni+1)−Λni
2 +

1

r2
(qni+1 −∇vni+1) 3 0, (34)

and 

∂δA(u∗) + Λ∗1 +
λ

2
(I − b∗ − c)2 3 0,

Λ∗1 + divΛ∗2 = 0,(
(λ+ η)I + µ∆2

)
b∗ = λ〈u∗, I − c〉X ,

v∗ = u∗,

q∗ = ∇u∗,

(35)

As lim
i→∞

Λni
2 = Λ∗2, lim

i→∞
qni = q∗, and lim

i→∞
(qni+1−∇vni+1) =

0, we have
Λ∗2 ∈ ∂R(q∗) (36)

provided that lim
i→∞

R(qni+1) = R(q∗).

We now show lim
i→∞

R(qni+1) = R(q∗). On one hand, by

taking (qni+1,uni+1,vni+1,bni+1;Λni+1
1 ,Λni+1

2 ) into (15) and
the lower semi-continuity of R, as well as (35), it holds that

lim inf
i→∞

L(qni+1,uni+1,vni+1, bni+1;Λni+1
1 ,Λni+1

2 )

≥ λ

2

L∑
k=1

〈|I − b∗ − ck|2, u∗k〉X +R(q∗) +
µ

2
‖4b∗‖2X +

η

2
‖b∗‖2X .

On the other hand, we have

L(qn+1,un,vn,bn;Λn
1,Λ

n
2 )≤L(q∗,un,vn, bn;Λn

1,Λ
n
2 ),

L(qn+1,un+1,vn,bn;Λn
1,Λ

n
2 )≤L(qn+1,un,vn,bn;Λn

1,Λ
n
2 ),

L(qn+1,un+1,vn+1,bn;Λn
1,Λ

n
2 )≤L(qn+1,un+1,vn,bn;Λn

1,Λ
n
2 ),

L(qn+1,un+1,vn+1,bn+1;Λn
1,Λ

n
2 )≤L(qn+1,un+1,vn+1,bn;Λn

1,Λ
n
2 ),

L(qn+1,un+1,vn+1,bn+1;Λn+1
1 ,Λn

2 )

=L(qn+1,un+1,vn+1,bn+1;Λn
1,Λ

n
2 ) + r1

∥∥Λn+1
1 −Λn

1

∥∥2

X
,

L(qn+1,un+1,vn+1,bn+1;Λn+1
1 ,Λn+1

2 )

=L(qn+1,un+1,vn+1,bn+1;Λn+1
1 ,Λn

2 ) + r2

∥∥Λn+1
2 −Λn

2

∥∥2

Y
,

which yields

L(qn+1,un+1,vn+1, bn+1;Λn+1
1 ,Λn+1

2 )≤L(q∗,un,vn, bn;Λn
1,Λ

n
2 )

+ r1

∥∥Λn+1
1 −Λn

1

∥∥2

X
+ r2

∥∥Λn+1
2 −Λn

2

∥∥2

Y
.

Letting n = ni in the above and passing to the limit, we obtain

lim sup
i→∞

L(qni+1,uni+1,vni+1, bni+1;Λni+1
1 ,Λni+1

2 )

≤ λ

2

L∑
k=1

〈|I − b∗ − ck|2, u∗k〉X +R(q∗) +
µ

2
‖4b∗‖2X +

η

2
‖b∗‖2X .

Then we have lim
i→∞

R(qni+1) = R(q∗). And (36) holds. (35)
and (36) shows that (q∗,u∗,v∗, b∗;Λ∗1,Λ

∗
2) is a KKT point

of the constrained optimization problem (13).
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