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Pulsating flows through tubular geometries are laminar provided that
velocities are moderate. This in particular also applies to cardiovas-
cular flows where inertial forces are typically too low to sustain tur-
bulence. On the other hand flow instabilities and fluctuating shear
stresses are held responsible for a variety of cardiovascular dis-
eases. Here we report a generic instability mechanism for pulsating
pipe flow that gives rise to bursts of turbulence at low flow rates.
Small geometrical distortions are found to amplify the least stable
mode during flow deceleration. The resulting helical vortex pattern
grows rapidly, breaks down into turbulence as the flow decelerates,
and eventually returns to laminar when the flow accelerates. This
scenario causes shear stress fluctuations and flow reversal during
each cycle, conditions that adversely affect blood vessels and pro-
mote endothelial dysfunction.
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B lood vessels react to hemodynamic forces and in partic-
ular the vessels inner layer, the endothelium, is highly

shear sensitive. Fluctuating flow and low wall shear stress lev-
els promote inflammation and dysfunction of the endothelium,
which in turn can lead to the development of atherosclerosis
lesions (1–3). However, the hydrodynamic instabilities respon-
sible for fluctuations and varying shear stress levels are often
unknown. Already for the simpler case of steadily driven flow
through a straight pipe it is non-trivial to predict if the fluid
motion will be smooth and laminar or highly fluctuating and
turbulent. In this case the transition is ‘subcritical’, i.e. the
laminar state is linearly stable to infinitesimal perturbations
yet turbulence can arise as a result of finite amplitude pertur-
bations provided that the Reynolds number (Re) is sufficiently
large. Moreover turbulence does not appear globally but only
at the location where the laminar flow is perturbed and here a
localized patch, a ‘puff’, of turbulence is formed (4–7). Puffs
travel downstream at approximately the bulk flow speed, while
their size (i.e. length) remains constant. Also in pulsatile flow
the transition is subcritical and again turbulence first appears
in the form of puffs. Although pulsatile flows are more com-
plex and governed by two additional control parameters, i.e.
the pulsation amplitude and frequency (Womerseley number),
the transition criterion commonly used is the same as that
for steady pipe flow (8). For Re < 2000 flows are deemed
laminar while above transition may occur (9). In large arter-
ies Reynolds numbers can reach considerably larger values,
however more recently it has been shown that (10, 11) for
high pulsation amplitudes and low frequencies the transition
to puffs is delayed. In cardiovascular flows on the other hand
instabilities are commonly observed during flow deceleration.
Furthermore it is unclear how geometrical deviations from the

generic straight pipe geometry (like bends, unevenness and
junctions) affect the flows stability.

In the following we report a hydrodynamic instability spe-
cific to pulsating flow. The instability sets in during flow
deceleration, downstream of small imperfections of the pipe,
such as bends or protrusions. Initially a helical wave arises
which subsequently breaks down into turbulence and fluctua-
tion levels rise before they abruptly drop during the acceler-
ating phase where flow relaminarization sets in. This helical
instability is observed at Re as low as 1000, values that are
commonly reached in a variety of larger vessels. As shown
the observed mechanism is generic for pulsatile flow and the
helical wave corresponds to the fastest growing mode of the
linearized equations.

Results

Initial experiments were carried out in a rigid straight pipe with
an inner diameter of 7 mm and a total length of 12 m. The fluid
was pulled through the pipe by a piston (see Fig. 1). The piston
speed was sinusoidally modulated imposing a cross–sectionally
averaged flow velocity U(t) = Um+Uo ·sin(2πft), where Um is
the mean flow speed, Uo the oscillation component of the flow
speed, f the frequency and t is the time. Unless perturbed
the flow remained laminar over the entire parameter range
investigated. In the first set of experiments turbulent puffs
were created by an impulsive injection of a small amount of
fluid through a hole in the pipe wall, located 150D downstream
of the pipe inlet. To visualize the flow structure, the water was
seeded with reflective particles (fishsilver) and a light sheet was
used to illuminate the mid cross section (radial-streamwise)
of the pipe. An example of a puff is shown in the inset of
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Fig. 1. (Color online) (a) Sketch of the pulsatile pipe flow setup, where the dash rectangular marks the location for camera recording and pressure drop. The flow is from left
to right. Perturbation methods are sketched where D is the pipe inner diameter, Lp the length of perturbation section and a the offset: (b) cosine–shaped (stiff–bending)
perturbation where Lp = 7D and offset is from 0D (natural transition) to 0.35D; (c) stenosis-like (unevenness) perturbation where Lp = 5.6D and offset is from 0.14D to
0.7D, and the right sub-panel shows the cross-section view; (c) curvature (flexi-bending) perturbation which has Lp = 25D and the offset is from 0.25D to 1.5D.

Fig. 2. (Color online) Transition Reynolds number Rem of localized puffs (in red dot-
ted line) and localized wavy turbulence (in green line) against the pulsation amplitude
A at the same Womersley number Wo = 5.6. The insets show the flow visualization:
the top (in green rim) shows wavy flow structures, and the bottom (in red rim) shows
a puff. The flow is both from left to right.

Fig. 2 where the puff has an intense upstream interface and
a gradual downstream interface, the same as in steady flow.
Just like in steady pipe flow, puffs also have finite lifetimes in
pulsatile flow. In order to determine the effect of the pulsation
amplitude (Uo/Um) on the puff transition we measured the
puff survival rate for fixed frequency (i.e. Womersley number,
Wo = 5.6) while the amplitude and the Reynolds number
were varied. The three parameters are defined as follows
Wo = 0.5D

√
2πf/ν, A = Uo/Um and Rem = UmD/ν, where

D is the pipe diameter, ν is kinematic viscosity of the fluid.
For any selected amplitude several Reynolds numbers were
investigated and for each pair of parameters (A and Rem)
lifetime statistics were based on a sample of 150 puffs. Based
on these data we determined the Reynolds number Rem at
the transition onset, taken as the point where 50% of the
puffs survived (see ref. 10 for further details about the general
methodology). In Fig. 2 we plot the dependence of Rem on the
pulsation amplitude. With increasing the amplitude the puff
transition (red curve) is delayed in accordance with ref. 10.

However once the amplitude surpasses 0.7 a new instability
appears and here instead of puffs a regular, wavy flow structure
is observed. Also unlike puffs this structure develops at a fixed
pipe location at each cycle during flow deceleration (i.e. for
0.45 . t/T . 0.75 with dimensionless period T ) and it decays
during acceleration (see Movie 1 in Supporting Information,
SI ). Upon a further increase in the amplitude the instability
threshold moves to smaller Rem. The instability branch can
also be continued to lower amplitudes (A < 0.7), in this case
we did not trigger puffs by the injection mechanism and the
Reynolds number was increased up to the point where the
wavy instability appeared.

Inspection of the pipe revealed that the pipe segment di-
rectly upstream of the location where the wavy instability
occurred, was slightly bend (with axial misalignment of approx-
imate 500 µm). When realigning the pipe the wavy instability
could be postponed to larger Rem while further misalignment
moved the instability threshold to lower Rem. To illustrate
the structural and dynamic differences between puffs and the
wavy instability we compare both at the same parameter val-
ues (Rem,Wo,A) = (2200, 5.6, 0.85). In one case the pipe
segment was carefully aligned and a puff was triggered using
the upstream injection perturbation, in the other case no puff
was injected and the flow was perturbed by the upstream
bend pipe segment. Both instances are shown for the flow
deceleration phase in Fig. 3: The puff begins to spread in the
downstream direction, while its upstream interface remains at
the same location; Over the same part of the cycle the wavy
instability gradually increases in amplitude and spreads down-
as well as upstream.

It should be noted that the misalignment considered above
is only a fraction of a pipe diameter and in the cardiovascular
context virtually all blood vessels show deviations from the
idealized straight pipe case which are of that order or larger.
To trigger the wavy mode in a more controlled manner we
inserted a short pipe segment with a chosen moderate curva-
ture (as sketched in Fig. 1b, see Materials and Methods
for details), while kept the rest of pipe as straight and well
aligned. A more strongly curved pipe segment the instability
occurs at considerably lower Rem (see green curves in Fig. 6)
and again the transition threshold decreases with A. These
findings suggest that the wavy mode, just like the instability
to turbulent puffs, results from a perturbation of finite ampli-
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Fig. 3. Visualization of transition to turbulence in space-time diagram in pulsatile pipe flow at (Rem,Wo,A) = (2200, 5.6, 0.85): (a) Evolution of a puff with downstream
interface propagating towards the downstream direction whereas the upstream interface approximately stops advection. (b) Evolution of localized helical turbulence with
interfaces advecting in both downstream and upstream direction. For both panels, neighboring snapshots have an equal time interval of approximate 7 D/Um while the
pulsation period is approximately 113 D/Um.

tude. While the puff transition is characterized by a double
threshold (12), i.e. both the amplitude of the perturbation
and the Reynolds numbers have to be large enough, the wavy
instability has a triple threshold. Here in addition to the
perturbation amplitude and the Reynolds number also the
pulsation amplitude has to be sufficiently large. Moreover the
type of perturbations that trigger the wavy mode appears to
differ from those for puffs.

To elucidate the origins of the wavy mode we carried out
numerical simulations of the Navier–Stokes equations. Albeit
the laminar flow is linearly stable over the parameter range
studied in the experiments, this does not exclude the possibility
that modes can grow over part of the pulsation cycle, as long as
they decay over the full cycle. In the simulations we tested this
possibility by performing a multi-parametric optimization to
determine the modes with large transient growth during a cycle.
As shown in Fig. 4a initial linear perturbations can indeed
considerably grow during part of the cycle and amplification
factors exceed four orders in magnitude (see Materials and
Methods for details). Enveloped by the green curve in Fig. 4a,
there are sub-optimal modes which give fast energy growth in
wavelength differing to the optimal mode in the wavelength of
3D. We carried out direct numerical simulation with a sub-
optimal perturbation which has the same wavelength as in the
experiments. This fast growing mode corresponds to a helical
mode, the same as other modes (k 6= 0,m = 1 for the axial
and azimuthal wavenumber, respectively, see Materials and
Methods) beneath the green line in Fig. 4a, and it resembles
the experimental scenario that the instability grows from a
small amplitude perturbation during the deceleration of the
cycle and vanishes in the flow acceleration. To allow for efficient
energy transfer among modes and to more closely approach the
experimental conditions, a small amount of random noise was
added to the flow field. In this case after the initial growth of
the wave, indeed a break down into turbulence was found. The
peak in turbulent kinetic energy is reached at t/T ≈ 0.75, as
shown in Fig. 4b, in close agreement with experiments. Again
like in experiments the fluctuations rapidly decay during the
acceleration phase and the flow returns to laminar (see solid
line in Fig. 4b). Featured flow in the experiments, i.e. wavy
structures in radial-streamwise cross section and spiral motions
in radial-radial pipe cross section, can be well reproduced from
the simulation, as shown in Fig. 5 (see also Movie 2 & 3 in SI ).
The transient energy growth (i.e. the black line in Fig. 4a)
that takes place during flow deceleration, provides a generic
mechanism that gives rise to helical vortices and a subsequent
break down into turbulence.

Since the cross sections of blood vessels frequently devi-
ate from the idealized circular case. To probe if also other

geometrical factors destabilize pulsatile flow we replaced the
curved segment by a straight section that includes a local
constriction in form of a spherical cap (up to D/4 in height
and a base cap diameter of 2D, see Fig. 1c). Non–circular
cross sections and constrictions are commonly found in blood
vessels and may for example appear during wound healing etc.
When increasing the Reynolds number at the fixed Womersley
number and the pulsation amplitude, also in this case we ob-
served helical vortices and the identical instability mechanism
during the flow deceleration (see Movie 4 in SI ). The wavy
structure in this case was observed 20D downstream of the
protrusion. At its maximum amplitude the turbulent patch
stretches approximately from 15D to 35D downstream from
the spherical cap.

Finally we also tested if fluid properties may influence the
occurrence of the instability. While the experiments reported
so far were carried out in water we next used blood as the
working fluid. Blood has non-Newtonian properties and is a
dense suspension of blood cells (e.g., red blood cells take up
approximately 40% of the volume fraction). Experiments were
carried out in a scaled down set–up with a pipe diameter of
4 mm which was otherwise followed the same working principle
as the larger diameter pipe. To perturb the flow a curved
section (sketched in Fig. 1d) was introduced 185D from the
pipe inlet. Since blood is opaque and the flow structure can
not be observed directly we monitored the differential pres-
sure downstream of the curved section (see Fig. 4c). Flows
were deemed unsteady if deviations in pressure were larger
than 4% (i.e. over twice of the maximum standard deviation
in laminar signal) when compared to the laminar pulsating
flow. Like in the Newtonian flow also the pulsatile blood flow
became unstable during flow deceleration and a considerable
drag increase was detected approximate 20D downstream of
the curved pipe segment. During the acceleration the flow
stabilized and returned to the laminar friction value. The
instability threshold for blood flow is shown by the orange
symbols in Fig. 6. In this case the transition occurs at lower
Rem than for the water flows, however for the blood flow a
more strongly curved segment was used to perturb the flow
and we would hence expect an earlier onset. For pulsation
levels typical for the Aorta i.e. A ≈ 0.94, the Reynolds number
threshold was as low as 800 and hence much lower than the
commonly assumed value of 2000. Repeating the measurement
under the same condition using a transparent Newtonian fluid
(water), where the pressure drop and the visualization mea-
surements were taken in the meantime for double-validation
of instability identification criteria. The onset of instability
(blue line in Fig. 6) and its dependence on the pulsation am-
plitude agrees with the other measurements. In addition, to
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Fig. 4. (Color online) (a) The envelop of the energy growth G(t) at
(Rem,Wo,A) = (2200, 5.6, 0.85) for (k,m) = (0, 1) (red) and (2π/3, 1)
(green) regardless of the initialized time and the duration of the perturbation. The
black line shows the envelop of these two most prominent modes. (See Materials and
Methods for details.) (b) The time series of kinetic energy for the perturbation with
the noise, where E00 is the energy averaged axially and azimuthally, Eop the energy
of the perturbation mode, Enoise the total energy except E00 and Eop, and E3D the
energy of three-dimensional turbulence. (c) Pressure of turbulence normalized by
the laminar signal after removal of laminar flow, where the lines of blood and water
flow were obtained at (Rem,Wo,A) = (1140, 4.0, 0.5) and (1700, 5.9, 0.76),
respectively. The measured pressure drop (black, referring left axis) and the corre-
sponding instantaneous Reynolds number (blue, referring right axis) of the green dot
line is shown in the inset.

further our study towards the cardiovascular relevance, we
tested the flow of water through the visualization method in
the cardiovascular flow rate as given in ref. 13. The same wavy
instability was again observed during the flow deceleration
followed by relaminarization as the flow was accelerated.

Fig. 5. (Color online) The vorticity in the cross section (radial-radial) of the pipe is
contoured for experiment (a) and numerical simulation (b). In the streamwise-radial
cross section the contour of the vorticity is shown for the experiment (c) and the
numerical simulation (d).

Discussion and Conclusion

In summary, we report a generic instability for pulsatile pipe
flow that occurs for large pulsation amplitudes and precedes
the normal turbulence transition. The helical vortex mode
characteristic for this instability sets in at unusually low
Reynolds numbers. While finite amplitude perturbations are
required to destabilize the laminar flow, weak curvature and
modest pipe constrictions are sufficient. It is interesting to
note that the geometrical perturbations that appear to be
most efficient, are inefficient in the context of steady pipe
flow. Curvature in fact has a stabilizing effect under steady
conditions (14) and can even lead to relaminarization (15) at
not too large Re. Constrictions on the other hand need to
be very severe (16) in order to trigger puffs in steady flow.
Our study hence shows that pulsatile flows are susceptible
to qualitatively different and more subtle perturbations than
steady pipe flows. Another unusual characteristic of the iden-
tified mechanism is that the instability only occurs during
part of the pulsation cycle, i.e. the deceleration, while the
acceleration relaminarizes the flow. The destabilizing property
of the flow deceleration has often been observed, however to
our knowledge the underlying instability mechanism has never
been identified. Above findings hence suggest that pulsatile
flows at large amplitudes, such as cardiovascular flows in large
blood vessels, are less stable than previous studies suggested,
and that at downstream of bends and constrictions, flow fluc-
tuation levels and wall shear stresses (see SI ) increase during
part of each cycle.

Materials and Methods

Experimental Methods. Experiments were carried out in straight,
rigid pipes of circular cross section: (1) a 12 m-long acrylic pipe
(inner diameter D = 7.18±0.02 mm) gives a measurement length of
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Fig. 6. (Color online) The transition Reynolds number against the pulsation amplitude
for the water (Newtonian) and the blood (non-Newtonian). The transition thresholds of
two perturbation methods (i.e. stiff-bending and flexi-bending) in different magnitudes
are shown. Note that the data of the puff instability (red circle) and the wavy instability
(green triangles) are from Wo = 5.6, while the data of the wavy instability (blue
square) and (orange diamond) are from Wo = 5.9 and 4.0, respectively.

1300D for visualization and measurement of puff survival probability;
(2) a glass pipe (in diameter D = 20 ± 0.01 mm) was used for
PIV measurement (see below); (3) another glass pipe (in diameter
D = 4± 0.01 mm) was used for experiments of non-Newtonian fluid
(blood) and Newtonian fluid (water). This excludes the origin of
turbulence with pipe properties, e.g. diameter tolerance, materials
and etc. Pipe segments are joined by Perspex connectors for seamless
fits. The pipe segments are positioned and carefully aligned on a long
aluminum profile. The pipe is connected through a trumpet shaped
convergence section to a reservoir (see the nozzle in Fig. 1a). The
rear end of the pipe is connected to a piston system driven by a motor
through a gearbox. The speed of the motor is precisely controlled
by a PC with a National Instrumentation card. This produces the
cross–section averaged flow speed U(t) = Um +Uo · sin(2πf · t). For
the entire parameter regime under investigation the pipe flow is
laminar unless employing perturbations. The temperature of the
fluid was measured before the experiments for accurate kinematic
viscosity of the fluid and so as the Reynolds number. For non-
Newtonian fluid, unit milliliter of fresh pig blood was stabilized
with 40 units anticoagulant agent (Sigma-Aldrich). The kinematic
viscosity of the blood (at laboratory room temperature 20◦C) was
measured to be ν = 8± 2 mm2/s.

In experiments of the puffs, to ensure generating a single local-
ized puff, a tiny volume of fluid was injected in volume flow rate
approximate 2% of the pipe flow through a 1 mm hole in the pipe
wall, which was 150D downstream from the nozzle for sufficient pipe
entry length. The duration of the injection was adjusted through
an electronically controlled valve to cover the same phase for exper-
imental runs. A light sheet was used to illuminate the mid-plane
(radial-streamwise) of the pipe. The fluid was seeded with fishsil-
ver flakes for flow visualization. A digital camera (MatrixVision
BlueFox 121G) was placed at about 1300D downstream from the
injection point to record whether puffs decayed or survived. In each
individual run, only one puff was generated in the pipe. The 150
runs for a fixed Reynolds number and a fixed pulsation amplitude
at Wo = 5.6 give approximately the converged survival probability
of the puffs.

In experiments of wavy/helical instability, three perturbations
methods as sketched in Fig. 1(b–d) were used, the first two of which
were produced through a three-dimensional printer. The ends of
the perturbation section was further finished in a milling machine
for smooth connecting with the pipe segments. The ‘stiff-bending’
perturbation (see Fig. 1b) preserves the cosinusoidal shape, the
inner diameter of which at the cross section is D the same as the
pipe. This perturbation mimics the non-straight nature of vessels.
The ‘stenosis-like’ perturbation (see Fig. 1c) is straight except that
a protrusion in form of a spherical cap that the base has a diameter
of 2D and the height ranges from 0 to D/4. This perturbation
mimics the physiological condition that the diameters of vessels are
not perfectly constant and that practical vessel constriction exists.
The third perturbation segment (‘flexi-bending’) is composed of a
semi-flexible tube that has the same inner diameter as the pipe. The
ends of the tube and of the pipe segments were specially finished to
minimize the unsmoothness of the connection. The perturbation
level, i.e. the axis offset, was produced accurately by the gauge
screw. This perturbation looses constrains of shape preserved and
partially considers the flexibility nature of blood vessels. In the same
configuration of visualization in the puff experiments, a Phantom
high-speed camera (in resolution of 2400× 1800 pixels2) was placed
at approximate 20D downstream of the perturbation section to
record the flow, at sampling rates up to 30 frames per second. At
the same position, the pressure drop of the instability across 40D
streamwise distance at a sampling rate of 50 Hz was measured
through a high-sensitivity differential pressure sensor (HSC series,
Honeywell).

To obtain the spatial velocity field of the wavy instability, particle
image velocimetry (PIV) measurements were carried out in the glass
pipe with the diameter of D = 20 mm. Here the perturbation of
shape-preserved stiff-bending or the spherical cap protrusion, as
sketched in Fig. 1(b,c), were used. Two-dimensional planar PIV
measurements were carried out in the mid cross section (radial-
streamwise) of the pipe, while stereo-PIV measurements were carried
out in the cross section (radial-radial) to provide three-component
velocity fields. The measurements were performed at approximate
20D downstream from the perturbation section, the field-of-view of
which approximately centered at the streamwise origin of the wavy
instability. The fluid (i.e. water) was seeded homogeneously with
hollow-glass spheres which have diameters of approximate 10 µm.
The laser sheet in thickness of approximate 1 mm was formed from a
continuous wave laser (center wavelength of 532 nm, FC 532N-5W)
through a group of lenses to illuminate the field-of-view. A prism
was used to minimize the imaging distortion from the curvature of
the pipe wall. The Phantom camera was used to capture tracer
images with the frame rates optimized for fulfilling the requirements
of time intervals in PIV. Commercial software DaVis (LaVision) was
used to retrieve the velocity vectors through a multi-step algorithm,
and 32× 32 pixels2 in window size with 50% overlap was set for the
final step for both sets of the PIV measurements.

Numerical Methods. We considered an incompressible Newtonian
fluid driven through a circular straight pipe at a pulsatile flow
rate. The lengths and velocities are normalized also with the
pipe diameter D and the mean velocity Um, and consequently the
time is rendered dimensionless with the advection time unit D/Um
and the non-dimensional pulsation period is T = πRem/(2Wo2).
The instantaneous Reynolds number reads Re(t) = Rem · [1 +
A · sin(2πt/T )], while the mean Reynolds number is also Rem =
UmD/ν with kinematic viscosity of the fluid ν.

For linear stability analysis, considering the time-dependence
of the base flow, we employed the adjoint-based method (17) to
calculate the optimal growth for our system. According to ref. 17,
the linearized Navier–Stokes equations read
∂u′

∂t
+ u′ ·∇Ub + Ub ·∇u′ = −∇p′ +

1
Rem

∇2u′, ∇ · u′ = 0 [1]

and the adjoint system reads
∂u∗

∂t
−u∗ ·(∇Ub)Tr+Ub ·∇u∗ = ∇p∗−

1
Rem

∇2u∗, ∇·u∗ = 0. [2]

Here u′ is the tiny velocity fluctuation with respect to the base flow
Ub(t), p′ the pressure fluctuation, the starred quantities are the
adjoints of the primed variables and Tr denotes matrix transpose.
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No-slip boundary condition is imposed for both u′ and u∗. The
maximum possible growth of the kinetic energy at time τ , E(τ), of
an initial perturbation u′(0) given at Ub(0), i.e.,

G(0, τ) = max
‖u′(0)‖2 6=0

E(τ)
E(0)

, [3]

can be calculated as the maximum eigenvalue of the operator
A∗(τ)A(τ), where A(τ) and A(τ)∗ are the action operators to
map u′(0) to u′(τ) according to Eq. 1 and u∗(0) to u∗(τ) according
to Eq. 2, respectively. Operationally, this method integrates Eq. 1
forward from t = 0 to t = τ and Eq. 2 backward from t = τ to t = 0.
Subsequently, the Krylov subspace method is used to approximate
the maximum eigenvalue of A∗(τ)A(τ). This operation is iterated
until the eigenvalue is sufficiently converged. In our problem, the
base flow Ub(t) is analytically given in ref. 18. We solved the lin-
earized equations using Chebyshev-Fourier-Fourier spectral method,
in which velocity and pressure are represented as

B(r, θ, z, t)(k,m) = B̂(k,m)(r, t)ei(kz+mθ) + cc., [4]

where k (real number) and m (integer) are the axial and azimuthal
wave numbers, respectively, B̂(k,m) is the Fourier coefficient of
the mode (k,m) and cc. represents the complex conjugate. The
integration in time was performed using a second-order-accurate
Adams-Bashforth/backward differentiation scheme and the incom-
pressibility condition is imposed using the projection method (19).
We used a time-step size ∆t = 0.025 and 96 Chebyshev-Guass-
Labatto grid points in the radial direction. The entire analysis was
performed using Matlab with adapting scripts from ref. 20.

A multi-parameter optimization process was carried out through
the adjoint analysis. The obtained optimal modes, i.e., the eigenvec-
tors associated with the maximum eigenvectors, set reasonable candi-
dates for the perturbations for the direct numerical simulations to nu-
merically reproduce the wavy instability scenario. The analysis con-
siders combinations of the axial mode k ∈ [0, 2π/3], the azimuthal
mode m ∈ [0, 2], the initial perturbation time (t − τ)/T ∈ [0, 1]
and the duration τ/T ∈ [0, 1]. Initial perturbation u′(t − τ) was
initialized at time t− τ and the maximum energy growth G(t− τ, τ)
(see Eq. 3) was explored at time t using the method described in
the previous section. For each paired (k,m), the enveloped energy
growth G(t) was obtained over all t− τ and τ . The optimal mode
(k,m) = (0, 1) as in the ordinary steady pipe flow gives peaked
G(t) ≈ 800 at t/T = 0.25 in the pulsatile pipe flow (see red dotted

line in Fig. 4c). (k 6= 0,m = 1) modes start to dominate from
t/T ≈ 0.4, which is enveloped by the mode (k,m) = (2π/3, 1) that
gives the largest G(t) of approximate 4× 104 (green dash line). The
overall envelop of the exampled two modes as depicted by the black
solid line in Fig. 4c shows that large energy growth dominates in
the deceleration phase in a pulsation period.

Accordingly, we carried out direct numerical simulations of the
Navier–Stokes equations in cylindrical coordinates (r, θ, z) through
the ‘openpipeflow’ code (21), where the linear and non-linear terms
are fully considered. The code uses primitive variables and a pressure
Poisson equation formulation with an influence-matrix technique.
In the radial direction, spatial finite-difference discretization is
employed with nine-point stencils, and points are densely clustered
close to the pipe wall for capturing of small flow structures. No-slip
boundary conditions are applied at the pipe wall. Spectral methods
are employed along the pipe axis (z) and azimuthal (θ) direction
to present periodicity, and the variables are expanded in Fourier
modes

V (r, θ, z) =
K∑

k=−K

M∑
m=−M

V̂(k,m)(r)ei(αkz+mθ) [5]

where V̂k,m is the complex Fourier coefficient of the mode (k,m), k
and m are the wavenumbers of the modes along the axial and az-
imuthal directions, respectively, and Lz = 2π/α gives the pipe
length. The simulations were carried out at (Rem,Wo,A) =
(2200, 5.6, 0.85) with ±196 and ±96 Fourier models along axial
and azimuthal direction and 96 radial points in an approximate
12D pipe. The Fourier modes (except the perturbed modes) were
initialized with small values for energy transfer among modes in fast
Fourier transforms operations in the code (see dash line in Fig. 4b),
and it imitated the background noise in the experimental setup.
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