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Abstract In this paper, we propose a first-order random coefficient integer-

valued autoregressive process with dependent counting series. Some moments

and stationary ergodicity of the process are established. The maximum likeli-

hood estimators of the parameters of interest are presented. We conduct some

simulation studies to assess the performance of our method. An example about

crime data is provided for practical application.
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1 Introduction

Time series of count data have been widely studied by many authors during recent years. To

describe the integer-valued structure for this kind of data, one of the most popular approach is the

thinning operator based models (Weiß, 2008; Scotto et al., 2015). For example, Al-Osh and Alzaid

(1987) proposed a first-order integer-valued autoregressive (INAR) model, which plays an important

role in the field of integer-valued time series. Ristić et al. (2009) presented a new stationary first-

order integer-valued autoregressive process with geometric marginal. Zhang et al. (2010) proposed

a p-th order INAR process with signed generalized power series thinning operator. Bakouch and

Ristić (2010) introduce a new first-order stationary integer-valued autoregressive process with zero

truncated Poisson marginal distribution. Jazi et al. (2012) proposed a first-order integer-valued AR

process with zero inflated Poisson innovations. Weiß (2015) proposed a Poisson INAR(1) model

with serially dependent innovations. Nastić et al. (2016) introduced a random environment in

integer-valued autoregressive process. Yang et al. (2018) and Wang et al. (2019) studied the

negative binomial threshold integer-valued autoregressive process models. Besides, some random
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coefficient INAR models and related results are also published in the literature. Zheng et al. (2006,

2007) and Gomes and Castro (2009) extended the INAR models to random coefficient cases, and

studied some parameter estimation topics. Zhang et al. (2011a, 2011b) studied the empirical

likelihood for random coefficient INAR models. Wang and Zhang (2011) and Zhang et al. (2012)

proposed some random coefficient INAR processes with signed thinning operator. Zhang and Wang

(2015) considered the frequency domain analysis in random coefficient INAR(1) process. Li et al.

(2018) introduced a first-order random coefficient integer-valued threshold autoregressive process.

Bakouch et al. (2018) introduced a new stationary random coefficient INAR(1) process with zero-

inflated geometric marginal distribution. Yu et al. (2018) proposed a class of observation-driven

random coefficient integer-valued autoregressive processes based on negative binomial thinning.

The above-mentioned articles are mainly based on independent counting series. Recently, there

are some articles focusing on dependent counting series for modeling integer-valued time series data.

For instance, Ristić et al. (2013) proposed a geometric integer-valued autoregressive model with

dependent Bernoulli counting series. Miletić Ilić (2016) and Nastić et al. (2017) introduced some

geometric INAR models based on generalized binomial thinning operator with dependent counting

series. Miletić Ilić et al. (2018) proposed an INAR(1) model based on a mixed dependent and

independent counting series. Towards the importance of random coefficient models, it is desirable

to develop some random coefficient INAR models based on dependent counting series. In this

article, we extend Ristić et al. (2013)’s work to a first-order random coefficient INAR process

with dependent counting series. Meanwhile, some basic statistical properties, together with the

parameter estimation are presented.

The remainder of this paper is organized as follows: In Section 2, we provide the definition and

statistical properties of our proposed model. In Section 3, the maximum likelihood estimators of

the parameters of interest are derived. We present some simulation results to check the rationality

of our method. In Section 4, we provide an application to a real data example about crime data.

Some concluding remarks are given in Section 5.

2 Definition and properties of the RCINAR-D(1) process

In the literature, Ristić et al. (2013) proposed a novel thinning operator with dependent

Bernoulli counting series as ϕ⊙θ X =
∑X

i=1 Ui, where Ui = (1− Vi)Wi + Viξ, {Vi} is a sequence of

i.i.d. random variables with Bernoulli(θ) distribution, θ ∈ (0, 1); {Wi} and {ξ} are i.i.d. random

variables with Bernoulli(ϕ) distribution. We will extend Ristić et al. (2013)’s work by proposing a

first-order random coefficient integer-valued autoregressive process with dependent counting series
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(RCINAR-D(1)). Below, we present the definition and some basic statistical properties, which

include the transition probabilities, moments, and ergodicity.

Definition 2.1 The RCINAR-D(1) process is defined by the following recursive equation

Xt = ϕt ⊙θ Xt−1 + Zt, (2.1)

where the thinning operator ϕt⊙θ is given as

ϕt ⊙θ Xt−1 =

Xt−1∑
i=1

Uit.

Here Uit = (1 − Vi)Wit + Viξt, {Vi} is a sequence of i.i.d. random variables with Bernoulli(θ)

distribution, θ ∈ (0, 1); Given ϕt, {Wit} and {ξt} are i.i.d. random variables with Bernoulli(ϕt)

distribution. {ϕt} is an i.i.d. sequence with cumulative distribution function Pϕ(·) on (0, 1). We

assume that {Vi}, {Wit} and {ξt} are independent for all i and t. Moreover, {Zt} is an i.i.d.

nonegative integer-valued sequence with probability mass function fz(·) > 0, and Cov(Xs, Zt) = 0

for s < t. Let ϕ = E(ϕt), σ
2
ϕ = Var(ϕt), λ = E(Zt), σ

2
Z = Var(Zt), and assume that they are finite.

Remark 1. Given ϕt, {Uit} is a sequence of dependent random variables with Bernoulli(ϕt)

marginal distribution, where P (Uit = 1|ϕt) = ϕt, P (Uit = 0|ϕt) = 1 − ϕt, and Cov(Uit, Ujt|ϕt) =

θ2ϕt(1− ϕt) for i ̸= j.

Remark 2. The {Xt} is a Markov chain on N = {0, 1, 2, 3, . . .}with the following transition

probabilities

Pij = P (Xt = j|Xt−1 = i) =

min(i,j)∑
k=0

Ck
i fz(j − k)

∫ 1

0
bik(ϕt)dPϕ(ϕt), (2.2)

where bik(ϕt) = (1− ϕt)[ϕt(1− θ)]k[1− ϕt(1− θ)]i−k + ϕt[θ + ϕt(1− θ)]k[(1− ϕt)(1− θ)]i−k.

Below, we present some moment results on the {Xt}. Here we omit the proof details.

Proposition 2.1 For t ≥ 1, we have

(i) E(Xt|Xt−1, ϕt) = ϕtXt−1 + λ.

(ii) E(Xt|Xt−1) = ϕXt−1 + λ.

(iii) If E(X0) =
λ

1−ϕ , then E(Xt) = µ = λ
1−ϕ .

(iv) V ar(Xt|Xt−1, ϕt) = ϕt(1− ϕt)θ
2X2

t−1 + ϕt(1− ϕt)(1− θ2)Xt−1 + σ2
Z .

(v) V ar(Xt|Xt−1) = {[ϕ(1− ϕ)− σ2
ϕ]θ

2 + σ2
ϕ}X2

t−1 + {[ϕ(1− ϕ)− σ2
ϕ](1− θ2)}Xt−1 + σ2

Z .

(vi) If V ar(X0) =
c

1−a , then V ar(Xt) =
c

1−a , where a = ϕ2 + τθ2 + σ2
ϕ, τ = ϕ(1 − ϕ) − σ2

ϕ, and

c = (τθ2 + σ2
ϕ)(

λ
1−ϕ)

2 + τ(1− θ2) λ
1−ϕ + σ2

Z .

(vii) For k ≥ 1, γk = ϕkV ar(Xt), where γk = E{[Xt − E(Xt)][Xt+k − E(Xt+k)]}.
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Theorem 2.1 The RCINAR-D(1) process {Xt} is an ergodic Markov chain. Moreover, the

stationary distribution of {Xt} is given by
∑t−1

k=1 ϕk+1 ⊙θ . . .⊙θ ϕ2 ⊙θ Zk+1 + Z1, which converges

in L2.

Proof. Firstly, we prove the ergodicity of {Xt}. From (2.2) and the assumption fz > 0, we

can conclude that {Xt} is an irreducible and aperiodic Markov chain. So we only need to check

limn→∞ Pn
ij ̸= 0, where Pn

ij = P (Xn = j|X0 = i). For this goal, we can focus on three steps.

Step 1. Repeated application of Xt = ϕt ⊙θ Xt−1 + Zt with t replaced by n,

Xn = ϕn ⊙θ . . .⊙θ ϕ1 ⊙θ X0 +

n−1∑
k=1

ϕn ⊙θ . . .⊙θ ϕn−k+1 ⊙θ Zn−k + Zn

d
= ϕn ⊙θ . . .⊙θ ϕ1 ⊙θ X0︸ ︷︷ ︸

(I)

+

n−1∑
k=1

ϕk+1 ⊙θ . . .⊙θ ϕ2 ⊙θ Zk+1 + Z1︸ ︷︷ ︸
Vn

= Yn, (2.3)

where
d
= denotes two random variables X and Y having the same distribution, and

E(ϕn ⊙θ . . .⊙θ ϕ1 ⊙θ X0) = E[E(ϕn ⊙θ . . .⊙θ ϕ1 ⊙θ X0|ϕn)]

= E[ϕnE(ϕn−1 ⊙θ . . .⊙θ ϕ1 ⊙θ X0)]

= ϕE(ϕn−1 ⊙θ . . .⊙θ ϕ1 ⊙θ X0)

= . . .

= ϕnE(X0) → 0, (as n → ∞).

By Markov inequality we can get that term (I) is op(1) .

Step 2. For any ϵ > 0 and m ∈ N, there exists N0 and n > N0, such that

P (|Yn − Yn+m| > ϵ)

= P

{
ϕn ⊙θ . . .⊙θ ϕ1 ⊙θ X0 − ϕn+m ⊙θ . . .⊙θ ϕ1 ⊙θ X0 +

m∑
i=1

ϕn+i ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+i > ϵ

}

≤
E(|ϕn ⊙θ . . .⊙θ ϕ1 ⊙θ X0 − ϕn+m ⊙θ . . .⊙θ ϕ1 ⊙θ X0 +

∑m
i=1 ϕn+i ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+i|)

ϵ

=
ϕn(1− ϕm)E(X0) + ϕn−1(1− ϕm−1)λ/(1− ϕ)

ϵ
−→ 0, as n → ∞.

So there exists a random variable Y , such that Yn
P−→ Y , where

P−→ denotes convergence in

probability.
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Step 3. We need to prove {Xt} is a positive recurrent Markov chain, which means that

limn→∞ Pn
ij = P{Y = j} ̸= 0, for all i and j. Let Vn =

∑n−1
k=1 ϕk+1 ⊙θ . . .⊙θ ϕ2 ⊙θ Zk+1 + Z1. By

the above Step 2

lim
n→∞

Pn
ij = lim

n→∞
P (Xn = j|X0 = i)

= lim
n→∞

P (Yn = j|X0 = i)

= lim
n→∞

P (Vn = j|X0 = i)

= lim
n→∞

P (Vn = j)

= lim
n→∞

P (Yn = j)

= P (Y = j).

Note that
∑

j∈N P{Y = j} = limn→∞
∑

j∈Ω Pn
ij = 1, which indicates limn→∞ Pn

ij ̸= 0. So the

process {Xt} is positive recurrent Markov chain. Above all, we prove that {Xt} is an irreducible

aperiodic and positive recurrent (hence ergodic) Markov chain.

Secondly, we aim to prove Vn converges in L2. Since

E(|Vn+m − Vn|2) = E

[
m∑
k=1

(ϕn+k ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+k)

]2

=

m∑
k=1

(ϕn+k ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+k)
2

+ 2
∑

1≤j<i≤m

(ϕn+i ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+i)(ϕn+j ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+j). (2.4)

Let Yt−1 = ϕt−1 ⊙θ . . .⊙θ ϕ2 ⊙θ Zt−1, then

E[(ϕt ⊙θ Yt−1)
2|ϕt] = E{E[(ϕt ⊙θ Yt−1)

2|Yt−1, ϕt]}

= E[V ar(ϕt ⊙θ Yt−1|Yt−1, ϕt)] + E[E2(ϕt ⊙θ Yt−1|Yt−1, ϕt)]

= ϕt(1− ϕt)θ
2E(Y 2

t−1) + ϕt(1− ϕt)(1− θ2)E(Yt−1) + ϕ2
tE(Y 2

t−1). (2.5)

Thus, by (2.5) we can get that

E(ϕt ⊙θ Yt−1)
2 = (ϕ− ϕ2 − σ2

ϕ)θ
2E(Y 2

t−1) + (ϕ− ϕ2 − σ2
ϕ)(1− θ2)E(Yt−1) + (ϕ2 + σ2

ϕ)E(Y 2
t−1)

= [ϕθ2 + (ϕ2 + σ2
ϕ)(1− θ2)]E(Y 2

t−1) + (ϕ− ϕ2 − σ2
ϕ)(1− θ2)E(Yt−1)

= aE(Y 2
t−1) + bE(Yt−1)

= aE(Y 2
t−1) + bt−1, (2.6)
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where a = ϕθ2 + (ϕ2 + σ2
ϕ)(1− θ2), b = (ϕ− ϕ2 − σ2

ϕ)(1− θ2), and bt−1 = bE(Yt−1) = bϕt−2λ.

By repeated application of (2.6), it is easy to conclude that

E(ϕt ⊙θ ϕt−1 ⊙θ . . . ϕ2 ⊙θ Zt)
2 = aE(Y 2

t−1) + bt−1

= a2E(Y 2
t−2) + abt−2 + bt−1

= . . .

= at−1E(Z2
1 ) + at−2b1 + at−3b2 + . . .+ abt−2 + bt−1. (2.7)

For any t ≥ 1 and s ≥ 1,

E[(ϕt ⊙θ Yt−1)(ϕs ⊙θ Ys−1)] = E[(ϕt ⊙θ Yt−1)(ϕs ⊙θ Ys−1)|ϕt, ϕs]

= E[ϕtϕsE(Yt−1Ys−1)]

= ϕ2E(Yt−1Ys−1). (2.8)

Applying (2.8) and taking repeated conditional expectation, for i > j

E[(ϕn+i ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+i)(ϕn+j ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+j)]

= ϕ2(n+j−1)λE(ϕi−j ⊙θ . . .⊙θ ϕ2 ⊙θ Zn+i)

= ϕ2n+i+j−2λ2. (2.9)

From (2.4), (2.7) and (2.9), we have

E(|Vn+m − Vn|2)

=

m∑
k=1

[
an+k−1E(Z2

1 ) + an+k−2b1 + an+k−3b2 + . . .+ abn+k−2 + bn+k−1

]
+ 2

∑
1≤j<i≤m

ϕ2n+i+j−2λ2

=
m∑
k=1

[
an+k−1E(Z2

1 ) + an+k−2bλ+ an+k−3bϕλ+ . . .+ abϕn+k−3λ+ bϕn+k−2λ
]

︸ ︷︷ ︸
(II)

+2
∑

1≤j<i≤m

ϕ2n+i+j−2λ2.

Since 0 < a < 1 and 0 < ϕ < 1, we know term (II) is o(1) as n → ∞. Moreover,∑
m≥i>j≥1

ϕ2n+i+j−2λ2 = ϕ2n−2λ2
∑

m≥i>j≥1

ϕi+j → 0, (n → ∞).

By the above arguments, for all m > 0

E(|Vn+m − Vn|2) → 0, as n → ∞.

This ends the proof. �
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3 Estimation and simulation

Assume that X1, · · · , Xn are strictly stationary and ergodic solutions from model (2.1). The

parameters of interest are ϕ, λ, θ and σ2
ϕ, respectively. In this section, we mainly focus on the

maximum likelihood method. The performances of corresponding maximum likelihood estimators

(MLE) are evaluated via numerical simulation.

3.1 Maximum likelihood estimation

Now we study the maximum likelihood (ML) estimation method for the parameters of interest.

First, we are required to specify the distribution for ϕt. In practice, a common choice for ϕt is the

Beta(α, β) distribution over (0,1), where its density function is

f(ϕ1|α, β) =
1

B(α, β)
(ϕ1)

α−1(1− ϕ1)
β−1 with B(α, β) =

∫ 1

0
xα−1(1− x)β−1dx.

In the remainder, we assume ϕt follows from Beta (α, β) distribution with ϕ = α
α+β and σ2

ϕ =
αβ

(α+β)2(α+β+1)
. Let ℓ(λ, θ, α, β;x1, . . . , xn) =

∑n−1
t=1 lnP (xt, xt+1;λ, θ, α, β), where P (xt, xt+1;λ, θ, α, β) =

P (Xt+1 = xt+1|Xt = xt) is the transition probability given in (2.2). The ML estimators λ̂, θ̂, α̂

and β̂ are given by solving the following equations

∂ℓ(λ,θ,α,β;x1,...,xn)
∂λ = 0,

∂ℓ(λ,θ,α,β;x1,...,xn)
∂θ = 0,

∂ℓ(λ,θ,α,β;x1,...,xn)
∂α = 0,

∂ℓ(λ,θ,α,β;x1,...,xn)
∂β = 0.

The ML estimators ϕ̂ and σ̂2
ϕ can be obtained by the “plug-in” method, where

ϕ̂ =
α̂

α̂+ β̂
, and σ̂2

ϕ =
α̂β̂

(α̂+ β̂)2(α̂+ β̂ + 1)
, (3.1)

where α̂ and β̂ are the ML estimators of α and β, respectively. From the view of practical appli-

cation, we can employ the R optimization function nlminb to get the above-mentioned MLE.

3.2 Simulation study

In this section, we conduct some simulations to verify the rationality of our method. Consider

the RCINAR-D(1) model

Xt = ϕt ⊙θ Xt−1 + Zt, t ≥ 1, (3.2)
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where {ϕt} is an i.i.d. random sequence generated from Beta (α, β) distribution, and {Zt} is an

i.i.d. Poission sequence with mean λ. We generate X1, · · · , Xn from model (3.2) with the help of R

software. For the set up of θ and λ, we consider six mechanisms: (a) λ = 2, θ = 0.3, α = 2, β = 2;

(b) λ = 2, θ = 0.6, α = 2, β = 2; (c) λ = 2, θ = 0.9, α = 2, β = 2; (d) λ = 1, θ = 0.3, α = 5, β = 2;

(e) λ = 1, θ = 0.6, α = 5, β = 2; (f) λ = 1, θ = 0.9, α = 5, β = 2. In Figure 1, we present some

sample paths of model (3.2). To evaluate the performance of parameter estimate, we report the

estimated bias (BIAS) given by the sample mean of the estimate minus the true value, and the

sampling standard error (SE) of the estimate in Tables 1 and 2. The values are showed with the

format (BIAS, SE). For example, (−0.0050, 0.0616) means that the BIAS is −0.0050, and the SE

is 0.0616. All the simulation results are based on 1000 replications with sample sizes n = 150, 300

and 500, respectively.

From the results in Tables 1-2, we can conclude that the proposed ML estimation procedure

performs well for the situations considered here. Specifically, the proposed estimator seems to be

unbiased, and the performance becomes better as the sample size increases. Finally, we conduct

the second simulation study to assess the performance of MLE for σ2
ϕ. Based on (3.1), we can give

the BIAS and SE of the ML estimator σ̂2
ϕ in Table 3. e.g. (0.009419, 0.001314) means that the

BIAS is 0.009419 and SE is 0.001314. It can be seen from the results that the MLE σ̂2
ϕ is unbiased

and its SE decreases as the sample size n becoming larger.

4 Application

We consider a real application of our proposed RCINAR-D(1) model to crime data, which

are extracted from http://www.forecastingprinciples.com/Crime/crime%20data.html. The data set

consists of 108 observations, starting in January 1990 and ending in December 1998 . Here we

denote the time series data as X1, · · · , X108. The plots of sample path, autocorrelation function

(ACF) and partial autocorrelation function (PACF) are presented in Figure 2. From which we can

see that Xt may come from an AR(1)-type process. For this crime data, the mean is 6.9813 and

variance is 32.0562 (strong overdispersion). In Figure 3, we report the histogram of these crime

data. Below, we consider four candidate models to fit this count time series data.

Model I. INAR(1) model (Al-Osh and Alzaid 1987)

Xt = ϕ ◦Xt−1 + Zt,

where ϕ ∈ (0, 1), and ϕ ◦Xt−1 =
∑Xt−1

i=1 Bi with P (Bi = 1) = 1− P (Bi = 0) = ϕ; Zt follows from

the negative binomial distribution NB(p, r) with P (Zt = k) = Cr−1
k+r−1p

r(1− p)k, k = 0, 1, 2, 3, . . ..

E(Zt) = λ = r(1− p)/p, for p ∈ (0, 1) and r = 1, 2, 3, . . ..
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Model II. RCINAR(1) model (Zheng et al. 2007)

Xt = ϕt ◦Xt−1 + Zt,

where {ϕt} is from Beta(α, β) distribution; ϕt ◦Xt−1 =
∑Xt−1

i=1 Bit with P (Bit = 1) = 1− P (Bit =

0) = ϕt; Zt follows from the negative binomial distribution NB(p, r).

Model III. INAR-D(1) model (Ristić et al. 2013)

Xt = ϕ ◦θ Xt−1 + Zt,

where ϕ ⊙θ Xt−1 =
∑Xt−1

i=1 Ui, and Ui = (1 − Vi)Wi + Viξ; {Vi} is a sequence of i.i.d. random

variables with Bernoulli(θ) distribution, θ ∈ (0, 1); {Wi} and {ξ} are i.i.d. random variables with

Bernoulli(ϕ) distribution; Zt follows from the negative binomial distribution NB(p, r).

Model IV. RCINAR-D(1) model (2.1)

Xt = ϕt ⊙θ Xt−1 + Zt,

where {ϕt} is from Beta(α, β) distribution, and Zt follows from the negative binomial distribution

NB(p, r).

In Table 4, we report the MLE of model parameters, the standard error (SE) of MLE, the AIC

(Akaike information criteria). The Pearson residuals (PR; Harvey and Fernandes, 1989) are defined

as Rt = Xt−Ê(Xt|Xt−1)√
ˆV ar(Xt|Xt−1)

, where Ê(Xt|Xt−1) = ϕ̂Xt−1 + λ̂, ˆV ar(Xt|Xt−1) = {[ϕ̂(1 − ϕ̂) − σ̂2
ϕ]θ̂

2 +

σ̂2
ϕ}X2

t−1+ {[ϕ̂(1− ϕ̂)− σ̂2
ϕ](1− θ̂2)}Xt−1+ σ̂2

Z , and σ̂2
Z = r̂(1−p̂)

p̂2
. We also give the mean of Pearson

residuals (MPR) in Table 4. It can be seen from the results that our proposed RCINAR-D(1)

model has the smallest AIC and absolute MPR. Specifically, the mean and variance of PR for our

model are −0.0583 and 0.9651, respectively. To further check the model adequacy, we report the

ACF of PR with the RCINAR-D(1) model in Figure 4. In a word, it may be reasonable to use the

proposed RCINAR-D(1) model for the analysis of this crime data in practice.

5 Concluding remarks

In this article, we have proposed a first-order random coefficient integer-valued autoregressive

process with dependent counting series. Some moments and stationary ergodicity of the proposed

process were provided. For the parameter estimation, we used the ML method to estimate the

parameters of interest. Some simulations and a real data application were provided to illustrate

the usefulness of our method.
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There exist several topics for future research by extending our proposed RCINAR-D(1) pro-

cess. First, we can introduce a p-th random coefficient integer-valued autoregressive process with

dependent counting series by extending our model to high-order case. Second, we can propose a

RCINAR-D(1) model with zero-inflated innovations (Jazi et al. 2012). Third, the construction of

bivariate INAR model has attracted much interest recently (Jowaheer et al. 2018), it is an inter-

esting direction to study a bivariate random coefficient integer-valued autoregressive process with

dependent counting series.
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Figure 1. Sample path for (a) λ = 2, θ = 0.3, α = 5, β = 2; (b) λ = 2, θ = 0.6, α = 5, β = 2; (c)

λ = 2, θ = 0.9, α = 5, β = 2; (d) λ = 1, θ = 0.3, α = 2, β = 2; (e) λ = 1, θ = 0.6, α = 2, β = 2; (f)

λ = 1, θ = 0.9, α = 2, β = 2.
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Figure 2. (a) Sample path for the crime data; (b) The ACF of crime data ; (c) The PACF of

crime data.
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Table 1. Bias and SE of the MLE with α = 2 and β = 2.

Parameters Sample size ϕ̂ λ̂ θ̂

λ = 1, θ = 0.3 n = 150 (0.0008, 0.0580) (−0.0003, 0.1296) (0.0049, 0.2200)

n = 300 (−0.0042, 0.0433) (0.0033, 0.0925) (0.0195, 0.1763)

n = 500 (−0.0009, 0.0344) (−0.0007, 0.0692) (0.0358, 0.1418)

λ = 1, θ = 0.6 n = 150 (−0.0050, 0.0616) (0.0132, 0.1194) (−0.0154, 0.1679)

n = 300 (−0.0029, 0.0449) (0.0038, 0.0865) (0.0186, 0.1064)

n = 500 (−0.0051, 0.0349) (0.0056, 0.0679) (0.0186, 0.077)

λ = 1, θ = 0.9 n = 150 (−0.0063, 0.0623) (0.0044, 0.1058) (−0.0043, 0.0887)

n = 300 (−0.0038, 0.0442) (0.0046, 0.0731) (0.0048, 0.0580)

n = 500 (−0.0002, 0.0344) (0.0004, 0.0585) (0.0050, 0.0405)
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Table 2. Bias and SE of the MLE with α = 5 and β = 2.

Parameters Sample size ϕ̂ λ̂ θ̂

λ = 2, θ = 0.3 n = 150 (−0.0097, 0.0396) (0.0532, 0.2432) (−0.0002, 0.1191)

n = 300 (−0.0048, 0.0270) (0.0314, 0.1671) (0.0183, 0.0791)

n = 500 (−0.0041, 0.0211) (0.0242, 0.1254) (0.0284, 0.0611)

λ = 2, θ = 0.6 n = 150 (−0.0035, 0.0385) (0.0246, 0.1915) (0.0105, 0.0562)

n = 300 (−0.0038, 0.0282) (0.0252, 0.1329) (0.0095, 0.0398)

n = 500 (−0.0040, 0.0211) (0.0174, 0.1018) (0.0112, 0.0298)

λ = 2, θ = 0.9 n = 150 (−0.0044, 0.0417) (0.0007, 0.1363) (0.0049, 0.0346)

n = 300 (−0.0026, 0.0309) (0.0038, 0.0993) (0.0045, 0.0230)

n = 500 (−0.0019, 0.0232) (0.0035, 0.0783) (0.0025, 0.0187)
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Table 3. Bias and SE of the MLE for σ2
ϕ with θ = 0.9, λ = 2.

Parameters n = 150 n = 300 n = 500

α = 3, β = 6 (0.009419, 0.001314) (0.009408, 0.000498) (0.009452, 0.000237)

α = 4, β = 6 (0.009850, 0.002774) (0.009784, 0.001980) (0.009683, 0.001446)

α = 2, β = 9 (−0.002754, 0.004505) (−0.003065, 0.003575) (−0.003329, 0.002952)

α = 5, β = 3 (−0.002899, 0.006084) (−0.002635, 0.005203) (−0.002581, 0.004826)

α = 3, β = 8 (−0.002066, 0.005772) (−0.002002, 0.004495) (−0.001986, 0.003364)
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Table 4. Estimation results for the crime data‡.

Model MLE SE AIC MPR

INAR(1) ϕ̂ = 0.2827 0.0057

p̂ = 0.2366 0.0049

λ̂ = 5.1657 0.0608

r̂ = 1.5028 0.0337 597.98 0.1456

RCINAR(1) α̂ = 2.6685 0.0734

β̂ = 2.6570 0.0812

p̂ = 0.2366 0.0049

r̂ = 1.1405 0.0312

λ̂ = 3.6797 0.0481

σ̂2
ϕ = 0.0395 (−) 596.48 0.1008

INAR-D(1) ϕ̂ = 0.4375 0.0066

p̂ = 0.2584 0.0054

r̂ = 1.3750 0.0405

λ̂ = 3.9453 0.0537

θ̂ = 0.5302 0.0080 586.93 0.1645

RCINAR-D(1) α̂ = 1.1305 0.0636

β̂ = 1.2202 0.0729

p̂ = 0.2746 0.0513

r̂ = 1.4032 0.0441

λ̂ = 3.7065 0.0513

θ̂ = 0.2137 0.0128

σ̂2
ϕ = 0.0745 (−) 586.25 −0.0583

‡ The notation (−) denotes corresponding term is not available.
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