LOCAL WELL-POSEDNESS AND SMALL DATA SCATTERING FOR
ENERGY SUPER-CRITICAL NONLINEAR WAVE EQUATIONS

YILI GAO AND JUN XUE

ABSTRACT. In this work, we consider the following nonlinear wave equations
Oy — Au+ [ufPu=0, (t,z) € R xRV,

We prove that when p > ﬁ and

N2 —4N +1—+/N*—-8N3 -~ 14N2 + 56N — 31

4N —1) ’
The Cauchy problem is locally well-posed in H*e (RN) x Hsc_l(RN) with s, = % —
Moreover, the small data theory holds under the same restriction.

3<N<K9;, or N2>10,p<

hSEIN

1. INTRODUCTION

In this paper, we consider the Cauchy problem for the following nonlinear wave equation
(NLW)

{8ttu—Au+|u]pu:0, (t,r) € R x RY, )

(u(z,0),u(z,0)) = (uo(x), w1 (x)).

Here p > 0, u : RY — R is an unknown function. This equation is invariant under the
scaling
1 r t
ey
When s, = & — 2, we have [[(u(0), du(0))]| rcscgree-s = 1r(0), 0pua(0))| s grvc-r, and thus

the Cauchy problem (1.1) is called H*® critical. When p is higher/lower than w5, we call

u(t, ) = up(t,z) =

the nonlinearity is energy super/sub-critical.

To start with, we recall some recent related for Cauchy problem (1.1). When p > 0,
this equation is called defocusing, and researchers have obtained some developments on the
related well-posedness theories. Firstly, in the energy sub-critical case, that is, p < p. = ﬁ,
Ginibre and Velo [5] proved that (NLW) has the unique solution in energy space. The authors
used a compact method established by Lions [12]. Secondly, in the energy critical case, that
is, p = p. = ﬁ, Struwe [15] proved the global existence under the radial assumption,
and then Grillakis [6] proved the global existence under the general condition, and Shatah

and Struwe [13] later proved the same result in other dimensional spaces. Thirdly, to the

2010 Mathematics Subject Classification. 35B40.
Key words and phrases. energy super-critical,nonlinear wave equations, local well-posedness, scattering,
small initial data.
The authors are partially supported by NSFC 11771325 and 11571118.
1



2 YILI GAO AND JUN XUE
4
N—2° : ;
posedness and scattering under the condition u € Cy(I; H* x H®* '), and I is the maximal
lifespan. Besides, we can see some ill-posedness results, for example, [3].

energy super-critical case, that is, p > p. = Kenig and Merle [8] proved the global well-

In this paper, we concentrate on studying the local well-posedness and scattering theory
with small initial data for nonlinear wave equations in energy super-critical situation, that
is p > ﬁ. The similar research exists in the case of nonlinear Schrédinger equations,

iug + Au — [ufPu =0, (t,z) € R x RY, (1.2)
u(z,0) = up(z). |

In the work of Killip and Visan [10], the authors proved that when

4 N—-2—/(N—-2)?2-32
N_2°P% 1 ’
the energy super-critical nonlinear Schrodinger equations is locally well-posed. The restric-
tion on p is caused by the lack of smoothness on the nonlinearity. It is equivalent to s. < p+1.
However, the Strichartz estimate on linear wave flow is much more complicated than the
Schrodinger flow. So far, to our knowledge, only some particular cases were proved, for
3

instance, N = 3,1 < s. < 5 in [8]. This paper is aimed at the more general result.

Now we state our main result.

Theorem 1.1. Let p > 25, 8. = . and (ug,up) € H*(RN) x H* Y(RN). Further,

N—2’
assume that

N? —4N +1—+/N*—8N3 —14N2 + 56N — 31
< h N > 10 1.3
P AN —1) when N 210, (L3)
then the Cauchy problem (1.1) exists unique solution with the mazimal lifespan u : [ x RN —
R, and the initial data is (ug,u).

N
2

SR

Moreover, there exists 0o > 0, and if |[uol| grse vy + w1l grec—1 @y < o, there exist func-
tions pair (us,vy) € H*(RN) x H* Y (RN), such that when t — +00,

[U(t)] _ [ cos((t — )| V1) !V\‘lsin((t—to)\vl)] |:Ui]

u(t) —|V|sin((t —to)|V]) cos((t — t0)|V]) vy -0

Frse x fse—1

Remark 1.2. The result on the restriction on dimension N and parameter p also appear
in the following energy super-critical nonlinear Schrédinger equation (1.2). In particular,

Killip and Visan[10] considered local well-posedness for Cauchy problem (1.2) in space H*

(se =% — %) under the restriction of

5. <p+1, (1.4)
that is,
2p° — (N —2)p+4 > 0. (1.5)

When 3 < N < 7, the condition (1.5) is always valid for any p > 0. That is, there is no
restriction when 3 < N < 7.

Compared with the wave equation, the condition (1.3) is equivalent to

p<p+1 (1.6)
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for some p € [s. — 1,s.) (more precisely, p = s. —1 when p > 1 and p = s, — 3 — ). It is

strictly weaker that the condition (1.4) to the nonlinear Schrédinger equation. In particular,
when 3 < N <9, the condition (1.6) is always valid for any p > 0.

The key ingredients in our proofs are presented below.

(1) Three suitable working spaces are constructed. In order to establish the uniform
estimation on time T, to the different discussing cases, we establish three related working
spaces. We shall prove that the estimation of each norm in X7 is closed. The selection of
norms plays a significant role in this paper.

(2) Applying Leibniz and chain rule for fractional derivatives particularly for Holder
continuous function.

The classic Leibniz chain rule for fractional derivatives has the requirement on the con-
tinuous property on function, that is, G € C'. However, when G(u) = |ul’, p < 1, we can
not estimate it using the classic method because G' ¢ C'. So some special chain rule like

[vrel, < |mr-z],,

L&

should be employed. Such kind of chain rule can be used to handle the situation p < 1, and
allow us to choose suitable index to apply interpolation to control the inequality so that it
can reach the closed expected estimation.

The rest of the paper is organized as follows. In Section 2, we give some basic notations
and some preliminary estimates that will be used throughout in our paper. In Section
3, we prove local well-posedness and small data scattering for Cauchy problem (1.1) in
Hee(RN) x H*(RN) by applying the fixed point argument.

2. NOTATION AND PRELIMINARY

2.1. Notation. We write X <Y or Y 2 X to indicate X < CY for some constant C' > 0.
The notation a+ denotes a+¢ for any small e, and also a—¢ for a—. Denote (-) = (14|-]?)2
and D* = (—0?)2. The Hilbert space H*(R) is a Banach space of elements such that
(§)*t € L*(R), where .# denotes the Fourier transform Zu(§) = a(§) = [, e ™ fu(x) du,
e = |[(E)*0(€)|| 2. The critical case for H® is H®, and
&*au(€) H 2+ An usual property of the Fourier transform

and equipped with the norm | ul
equipped with the norm ||ul|gs = H

is the Plancherel equality, that is, || f||z2 = || f||z2. We also have an embedding theorem that
ull g1 S ||wl|gs2 for any s1 < s9, 51,82 € R. Throughout the whole paper, the letter C' will
denote various positive constants which are of no importance in our analysis. We use the
following norms to denote the mixed spaces L{ L ([0,7] x R), that is,

T 1
1wl Lorr orxr) = (/O [ul|Zr &) dt)q

2.2. Preliminary. In this section, we state some preliminary estimates. Firstly, we recall
the well-known Strichartz estimates, see [7] for example.

Definition 2.1. A pair (q,r) of positive real numbers is said to be wave admissible if

1 N—-11 1
2<qg<o0, 2<r<oo and ag 5 (2 T).

(2.1)
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Proposition 2.2. Take two admissible pairs (q,r) and (a,b). Then for any I C R,

1(w, ) |y rotrs s rs—1y + 1ll Lns (rxmy

S PPy —
0), 00O tosios + [P @ = D) (2.2
whenever
1 N N 1 N
— _— = — — = —_— _— 2 —_— . 2.
. + . 5 5= o + T p (2.3)

The next Lemmas are the different kinds of Leibniz and chain rule for fractional deriva-
tives. One can check [2, 9, 11] for more details.

Lemma 2.3. Let G € C'(R), s € (0,1), 1 <p < o0, and 1 < py, pa, p3,ps < 00,
1 1 1 1 1 1

?

p pm p2 D Pz Da

Then

1Dl o S Nl o Mgl + [l o 1 ] os- (24)

Lemma 2.4. Let G be a Holder continuous function of order 0 < p < 1. Then, for every
0<s<p, 1<qg<oo, and§<a<1 we have

lIvre@|  s|rr=s|| (o)., (2.5)

s
o
Laa2

L1

provided é =L +Land(1- =)o > 1.

q1 q2

3. PROOF OF THEOREM 1.1

In this section, we give the proof of Theorem 1.1. We only prove the result of small data
scattering, and local well-posedness can be obtained in the same manner. To this end, we
split into the following two cases:

Case 1: p>1; Case 2: p< 1.

In the first case, we restrict that s. — 1 < p + 1; while in the second case, we restrict that
p < p+1with p = s. — 1 — L= First of all, we shall prove that these conditions are
equivalent to (1.3). For this purpose, we consider the two cases separately.

2 N-1"

Case 1: p>1,s.—1 < p+1. Note that combining with the definition that s. = % - %,
the condition s, — 1 < p+ 1 is equivalent to

20 +(4—N)p+4>0.

This inequality always holds when 3 < N < 9. When N > 9, it reduces to p < Y=4=v ]\Z_SN_IG <
1. The latter is against the condition p > 1. Hence, in the case, the condition is equivalent
to

3<N<9, p>1.

Case 2: p < 1,p<p+ 1. Note that the condition p < p+ 1 is equivalent to
2(N —1)p* — (N* —4N + 1)p+4(N — 1) > 0.
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This inequality always holds when 3 < N < 8. When N > 9, it reduces to

N? — 4N +1— /N% —8N° — 14N2 + 56NV — 31
4(N - 1) '

p <

Combining with p < 1, it reduces to

N? — 4N +1— /N% —8N° — 14N2 + 56NV — 31
4(N - 1)

p<l,when N<9;, p< ,when N > 9.

Together with the cases above, we get (1.3). Now we prove Theorem 1.1 in the following
two cases.

3.1. Case 1: p>1, s —1 < p—+ 1. To consider this case, we also need to split it into the
following two subcases:

Subcase 1: N > 3; Subcase 2: N = 3.

Subcase 1: N > 3. We define our working space as

scflu

e = Nl ere + |11 0] s Tl e (3.1)

For the term [|ul| e gzc, by the Strichartz estimate (2.2), we have

P P (e (0]

||U||L;>°H;c S [luol 2973

Next, we estimate on H\V!Sc_l(|u|pu)H .- We split it info two cases.
LIL

t-

1: s, — 1< 1. By (2.4), we get

<

2N
~ N-3
xr

v

“Jupu)

ull s - |91
L3

Lir2

t
*u S Ml

%

< p
Sll?,, 2y o

2: s, — 1 > 1. Let integer part of s. — 1 equals to k, that is, [s. — 1] = k. Then we
immediately have k > 1. Set Ay, = {8;,“ ca €RY o] = k’} Note that we have the formula

Os,([ufPuw) = (p + Dlul"Oz,u, g, (Jul”) = plul”*ud;u,

then by k£ < p+ 1 and Riesz transformation, there exists C, > 0, such that

Iir2 S’ Z Ca

trw 02 ey

] [ufw)|

(0]

L}12

S X | o Ou )

057 €Ng 1<j<k

)
LiL2
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and O(|ul[P~*t1)) equals to |u[P~*1 or |u[P~*u. From (2.4), we have

\V4 sc—1 P ’
201
sc—1—k qo o - p—k+1
STD DI [ e N U JPPRRER L ert
07 €A, 1<5<k
a1 e Qg Sc—1—k p—k+1
+8aj 1§< <k‘ax u‘ LerlL;l ‘833 u Lﬁ“L;k ‘V O(|U| ) Ltpf%L;k“’ (32)
" €N, 1SS
and the index satisfy
1 N
b S = (s — 1=k o) =
p+1 pl
1 N 2 .
_—|O[]|— ) ]:2, ,If,
p+1  p
1 N 2
— = —
p+1  prp p
and
1N 2 p—k+1 N 2
p+1 ‘ Jl p p+1 Tt p( )

By interpolation, there exists 6; € (0, 1), such that

01
el g S el
Lz?’

L2LN 3

[ P

Similar interpolation as above, there exists 6; € (0,1),7 =2,--- ,k, ;41 € (0, 1), such that

. 1 1-6; - .

o] s, 117 ol sy & Ml 5 =200
= e e W e o
LPHLLIRHL S L2LN Mg 1l oo froe ~ Xr>

‘ aa;u‘ j N |v Sc_lu 5 A |IU||1 K 2N ||u||X ) j = 17 o ak'
T Lf-s-lL;] ~ L%Lé\ps fp zsp ~ T

Next we analyse H|V|S“*1’k(|u|p*k“)‘ pr1 0 (3.2). By (2.5), we get
L7 IR
_ 2 Sc—1—k+
s.—1—k p—k+1 < p—Sc+ ) 1— c
H|v| ¢ (|u| )‘ Lipf%L;k“ ~ H LR |V| U Lf+1L;k+l,2’

and 7y 1, Tky1,2 satisty

1 N 2 1 2
— == — 4 — 14 ==
p+1 rpin po P+ TRgap P
Using interpolation again, we have
S Mlull%,

sﬁl—k(’u‘p*lwl) |

p
—kFT 7 Tk+1
LP L.

v
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Finally, we obtain

< p+1

191 (fupw)

|V[*e 1w , 2 in (3.1), choosing the parameters (a’, V') = (1,2), (s,p) =
2Ly

t Lz
(1,0) in Strichartz’s estimate (2.2), we have

To the term ‘

e S ol +

tHT

([ frems + || IV ()|

Lirz

To the term [|uf| , 2xp in (3.1), choosing the parameters (a’,b') = (1,2), (s, p) = (S¢, Se—
L,

1) in Strichartz’s estimate (2.2), we have

L2

e+ Nt s + IV ()|

full ,,, 50 5 o

We can obtain the same analyze as before. Thus we finish the proof of the first case.

Subcase 2: N = 3. In this subcase, we define our working space as below (use the

same notation but different meaning)

[ pe— (3.3)

. ) —1
Jullxy = lellgerge + 190

To the term |[uf| joc fyse, by Strichartz’s estimate (2.2), we have

P P (e (0]

el e Nl

86*1(|u|pu)HLlL2. We split it into two cases again.
1L

Next we estimate on H A%

1: s, — 1 < 1. Using (2.4), we get

sc—1 p p . se—l
[ e, < - 190
t
p —1
S e
1
Slul

2: s,—1 > 1. Suppose [s.—1] = k, then k > 1. From k < p+1 and Riesz transformation,
there exists a constant C'z > 0, such that

P> G102 ()|

dlen;,
s > [iwreEER - ol our )

ol en1<5<k

vsc—l p )
191 (uprw)|

LiL3
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By (2.4), we get

VI (JulPu ‘
]
sc—1—k 98 3 a8 p—k+1_
S Z H’v‘ axlu’ Lf+1L£1 x2u Lf"'l[/;? Haxku Lf"’lLiE” ’LerlLi’_H_l
007 enp1<j<k
B se—1—Fk k+1
U DI G Y A I [ el ] [T
ol €A, 1<5<k C Ly Ly
and the index satisfy
1 3 .
—t+t— —(se—1—k+
o 1)
1 -
— P - | = 27 7ka
1 3 2
p+1 Py P
and
1 , - —k+1 3 2,
Iﬁjl— j=1- .k F +—=(p—k+1).
P+ 1 p+1 Tig1r D

Using interpolation, there exists éj,%j €(0,1),7=1,--+,k, 9~,~€+1 € (0,1), such that

ot a2l S Bl 5
o2 ., [0 Lzmo-“ I oo S ey G =2, ks
ol s oon S . lull gt S lall e
[o2u] o, 1900l e S W =1 R
Next we analyse H|V|5°’1”~“(|u|p”;”+l)‘ pe1 . Using (2.5), we get

—k+1 7Tkl
LR R

- - se—1—k+
—1—k —k+1 p—sct2— -,
V51 (Juf? e Sl 5|9
I (™| ey e, I s 1910
and 75, 1, T, o satisfy
1 3 2 1 3 2
gt = gt =
p+ Tht11 P P Tiv1,2 p
Using interpolation again, we have
1k i k+1
[Iwr == | e S [l
Ltpfk+1 L;k+1 T
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Finally, we obtain

v

1
Y[ e

)|
t~x

scflu

To the term H|V

‘L2+L°°_ in (3.3), set (',b) = (1,2), (s,p) = (1,0) in (2.3), by

strichartz’s estimate (2.2), we have

e

S o s + || IV ()|

e + ]

LA LiL2

To the term [Jul| 20— 20+, set (a, V) = (1,2), (s, p) = (¢, 5c — 1) in (2.3), by strichartz’s
estimate (2.2), we have

Hscfl _'_ H|v

()|

[l 2o 2 < lluolljgse + [lua

Lirg’

Using the same argument as above, we get our desirable result.

3.2. Case 2: p< 1, p<p+ 1. Note that in this case, it should be N > 6. We also use the
same notation below to define our working space

— . P
lullxey = llull e grze + [|IV] uHLij%V?’l) + HUHL%LE%Q- (3.4)

2N(N-1)
N(N-3)+(4—p)(N-1

To the term [|ul| oo gyse, let P = 7. and by Strichartz’s estimate (2.2), we

have
Jelzgsrze S Tollee + nleces + 1V CePa) |
Next we estimate on H ’V‘p<|“’p“)HLf~%Lg' We split it into two cases again.
1: p < 1. Using (2.4), we get

lIwrtur)| 2 s

LPttrp

el o, - [[ 1917
Li-r

2(N—1)

N—3 2,
£ P
Ly

< p+1
e L

V[Pu

Slull” o,
L2077

2: p > 1. Suppose [p] =, then | > 1. From [ < p+ 1 and Riesz transformation, there
exists a constant C, > 0, such that

D] NS Dt

8; eN

p=lagy P
(] [

2 .
P
LPtre

S X [Ivr@ree - ara oury)

~

07 ey 1<4<1
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By (2.4), we get

P(|y,|P
[t
-1 p—Il+1
S Z H|V|p ({Elu‘ 2Ly & 212 ‘ L2qu [l 3L
0l e, 1<j<I ! !
Y. Y p—l p—I+1
LD DR (v IR (137 N (] S
ol e, 1<5<I ! ’
and the index satisfy
1 N 2
—+——(p—1+ -
2w ( |’Yl|) p
1 N 2
o+ — = Yil = = j = 27 7l7
1 N 2
2 @ p
and
L, N 2 p—Il+1 N 2
a ) ]:Laka + :_p_l+1
h_y |7]| p 2 hl+1 p( )

Using interpolation, there exists 9~j, 7:Ej €(0,1),5=1,---,1, 0141 € (0,1), such that

i PO [ e S ™ g 5 e
[ou],, . <[ 17w " e el Py S ol 5=
Jul s ][IV fj:;w ol S ol
[ T e Iy $ Bl =1k

Next we analyse H]V\”‘l(]u\p_l“) n (3.5). By (2.5), we have

H—1+1 , P
Ltp I+1 Lxl+1

1 1 p—p+1— _ e
g ] P 1 £ e 1 (O
and hl+171, hl+1,2 satisfy
1N 2 1 N o2
2 hgin p 20 Mg P

Using interpolation again, we get

191t

<l
LP- z+1 hz+1 ~ ’
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Finally, we get
p p < ptl
[Iraure)| sz, < el
To the term H|V|pu‘ Lsz(N y in (3.4), set (a',V) = (%,P), (s,p) = (ngtll),—%]yvtll))
n (2.3). By Strichartz’s estimate (2.2), we have
p < . : P(|q/|P
[iorall, 2gmp S ol + Werllees + 9P Gub)| e -
To the term Hu|| o2 set (a/,b) = ( +17P) (s,p) = (S5 8c — %) in (2.3). By
Strichartz’s estimate (2 2) we have
Jull 25 S Mool + Nulees + 191 (P e, -

Then we obtain the same analyze as above and finish the proof of this section.

Combining the three cases above, we get

frve F luanllgoe—s + lull

[ullxr < lluol

uniformly on 7. Therefore, we have ||ul|x.. < ||uoll gse + ||u1]

H5971~
In particular, we prove the Strichartz estimates below.

When p>1,3< N <9,

191t |, ax, + lul < o0

2Ly~ L2pL

when p > 1, N = 3,

|19 2o < 0o
when p < 1,p<p+1,

H|V‘pu ‘ o(N-1) + ||u|| anp < OQ.
LngiN—3 L?L;lfp

So we choose scattering state as

-] e

From the Strichartz estimate above (the standard process can be found in [1]), we have that

when t — o0,

[u(t)] B [ cos((t —to)| V) V|~ sin ((t—to)\VD} {ui]
u(t) —|V|sin((t —to)|V]) cos((t — t0)|V]) vy
This finishes the proof of Theorem 1.1.

— 0.
HSC XHscfl
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