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ABSTRACT. We complete our theory of weighted Lp(w1)×Lq(w2) → Lr(w
r/p
1 w

r/q
2 ) esti-

mates for bilinear bi-parameter Calderón–Zygmund operators under the assumption that
w1 ∈ Ap and w2 ∈ Aq are bi-parameter weights. This is done by lifting a previous re-
striction on the class of singular integrals by extending a classical result of Muckenhoupt
and Wheeden regarding weighted BMO spaces to the product BMO setting. We use this
extension of the Muckenhoupt-Wheeden result also to generalise some two-weight com-
mutator estimates from bi-parameter to multi-parameter. This gives a fully satisfactory
Bloom type upper estimate for [T1, [T2, . . . [b, Tk]]], where each Ti can be a completely
general multi-parameter Calderón–Zygmund operator.

1. INTRODUCTION

Singular integral operators (SIOs) are operators of the form

Tf(x) =

ˆ
Rd

K(x, y)f(y) dy.

They include many important linear transformations that arise in the analysis connect-
ing geometric measure theory, partial differential equations, harmonic analysis and func-
tional analysis. Classical one-parameter kernels are singular when x = y. Product space
theory (multi-parameter theory), on the other hand, is concerned with kernels whose
singularities are more spread out. To get an idea, for x, y ∈ C = R×R, compare the one-
parameter Beurling kernel 1/(x− y)2 with the bi-parameter kernel 1/[(x1 − y1)(x2 − y2)]
– the product of Hilbert kernels in both coordinate directions.

Multi-parameter SIOs arise naturally in applications involving a product type esti-
mate. A simple example is given by the multiplier operators. A multiplier m : R×R → C
satisfying |∂αm(ξ)| . |ξ|−|α| for all multi-indices α = (α1, α2) and ξ = (ξ1, ξ2) ∈ R2 \ {0}
gives rise to a convolution form one-parameter SIO Tm with T̂mf(ξ) = m(ξ)f̂(ξ). How-
ever, if m only satisfies the less demanding estimate |∂α1

ξ1
∂α2
ξ2
m(ξ)| . |ξ1|−|α1||ξ2|−|α|2 , we

get a bi-parameter SIO Tm. For the classical linear multi-parameter theory and some of
its original applications see e.g. Fefferman–Stein [16] and Journé [22].

On the other hand, a heuristic model of an n-linear SIO T in Rd is obtained by setting

T (f1, . . . , fn)(x) = U(f1 ⊗ · · · ⊗ fn)(x, . . . , x), x ∈ Rd, fi : Rd → C,
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where U is a linear singular integral operator in Rnd. See e.g. Grafakos–Torres [12] for
the basic theory. Multilinear SIOs arise naturally from applications to partial differential
equations, complex function theory and ergodic theory, among others. For instance, Lp

estimates for the homogeneous fractional derivative Dαf = F−1(|ξ|αf̂(ξ)) of a product
of two or more functions, often referred to as fractional Leibniz rules, are widely employed
in the study of dispersive equations. This started from the work of Kato and Ponce [23],
and such estimates descend from the multilinear Hörmander-Mihlin multiplier theorem
of Coifman-Meyer [4]. A variety of formulations may be found e.g. in Grafakos–Oh [11].

Finally, multilinear multi-parameter estimates arise naturally in applications when-
ever a multilinear phenomena, like the fractional Leibniz rules, are combined with prod-
uct type estimates, such as those that arise when we want to take different partial frac-
tional derivatives. We refer to our recent work [28] for a thorough background on the
subject, its significance and for new developments. In the product setting this multilin-
ear theory of SIOs is historically significantly more limited than in the one-parameter
setting. For example, in the one-parameter – linear or multilinear – setting, the following
Calderón–Zygmund type principle is standard: if an SIO is bounded with some expo-
nents, it is bounded with all eligible exponents. In the linear bi-parameter setting such
principles follow from [22] or [29], but they are already more involved. In [28] we fi-
nally were able to develop such general principles in the bilinear bi-parameter setting:
simpler estimates in the Banach range (r > 1), imply boundedness in the full bilinear
range Lp × Lq → Lr, 1/p + 1/q = 1/r, 1 < p, q ≤ ∞, 1/2 < r < ∞, weighted estimates,
mixed-norm estimates, and so on.

However, our weighted estimates in [28] (see Section 2 for the definition of Ap weights)
still had the restriction that we needed the cancellation T (1, 1) = 0, and the same for the
adjoints and partial adjoints. It is easy to come up with singular integrals, where this
cancellation does not hold: already a tensor product of two bilinear one-parameter SIOs
does not in general satisfy it. In this paper we remove this final restriction, which leads
to a complete and satisfactory theory for general bilinear bi-parameter SIOs.

The assumptions on objects like T (1, 1) have to do with T1 type arguments. Already
in the linear one-parameter setting the question of the boundedness of T with a generic
kernel is often best answered by so-called T1 theorems, where the action of the operator
T on the constant function 1 plays a critical role, and it is only the convolution kernels
K(x, y) = k(x − y), which are conveniently studied via formulae like T̂ f(ξ) = k̂(ξ)f̂(ξ).
While the assumption T1 = 0 is more general than T being of convolution form, it is
morally related.

The reason why we care about weighted estimates is that, beyond their significant in-
trinsic interest, they are of fundamental use in proving other (unweighted) estimates, like
obtaining the full bilinear range of exponents from a single tuple (p0, q0, r0) and proving
vector-valued and mixed-norm estimates. This is due to the very powerful bilinear ex-
trapolation results – see e.g. [8, 10, 24, 25, 31]. In the product setting this viewpoint
is particularly useful as many of the classical one-parameter tools are crudely missing.
However, extrapolation is already very convenient in the one-parameter multilinear the-
ory due to, for example, the complicated nature of multilinear interpolation.

For example, we obtained a range of mixed-norm Lp1Lp2 estimates in [28] via weighted
estimates, and, thus, they required the same restriction on the class of SIOs. See e.g. Di
Plinio–Ou [7] for some previous mixed-norm estimates. With the understanding that a
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Calderón–Zygmund operator (CZO) is an SIO satisfying natural T1 type assumptions,
our improvement of [28] now reads:

1.1. Theorem. Let T be a bilinear bi-parameter CZO as defined in [28]. Then we have the
weighted estimate

∥T (f, g)∥Lr(w) ≤ C([w1]Ap , [w2]Aq)∥f∥Lp(w1)∥g∥Lq(w2)

for all 1 < p, q < ∞ and 1/2 < r < ∞ with 1/r = 1/p+ 1/q, and for all bi-parameter weights
w1 ∈ Ap(Rn × Rm), w2 ∈ Aq(Rn × Rm) with w = w

r/p
1 w

r/q
2 . In the unweighted case we also

have the mixed-norm estimates

∥T (f, g)∥Lr1(Rn;Lr2 (Rm)) . ∥f∥Lp1 (Rn;Lp2 (Rm))∥g∥Lq1 (Rn;Lq2 (Rm))

for all 1 < pi, qi ≤ ∞ and 1/2 < ri < ∞ with 1/pi +1/qi = 1/ri, except that if r2 < 1 we have
to assume ∞ ̸∈ {p1, q1}.

Bilinear weights pose a problem with duality: notice e.g. that if w1, w2 ∈ A4 then
w := w

1/2
1 w

1/2
2 ∈ A4, while we need to work in L2(w). This is a relevant problem and

often makes bilinear bi-parameter weighted estimates different and harder than in the
linear case. For the linear estimates see Fefferman–Stein [16] and Fefferman [13, 14],
and the much more recent Holmes–Petermichl–Wick [21] that is rooted on the modern
dyadic-probabilistic methods [29]. In particular, already some linear paraproduct esti-
mates depend on suitable H1-BMO type duality arguments, and, for this reason, we
could not previously handle weighted estimates for certain model operators. This led to
the restriction on the class of CZOs. We now remove this restriction by developing some
new theory for the product BMO space of Chang and Fefferman [2, 3]. Theorem 3.2 be-
low is an extension of a classical result of Muckenhoupt and Wheeden [30] to the product
BMO setting – it says that certain weighted product BMO spaces are actually the same as
the unweighted product BMO space. This gives a useful way to construct objects in some
genuinely weighted product BMO spaces by starting with an object in the unweighted
product BMO. We prove this result of independent interest in its full generality, and
apply its special case to prove our bilinear bi-parameter weighted estimates.

Finally, we present another application of Theorem 3.2. This concerns the recently hot
topic of two-weight estimates for commutators of SIOs. The classical result of Coifman–
Rochberg–Weiss [5] showed that

∥b∥BMO . ∥[b, T ]∥Lp→Lp . ∥b∥BMO, where [b, T ]f := bTf − T (bf),

for a class of non-degenerate one-parameter SIOs T . Commutator estimates then e.g.
yield factorizations for Hardy functions, imply div-curl lemmas relevant in compensated
compactness, and are connected to the Jacobian problem Ju = f in Lp (see Hytönen
[19]). The two-weight problem concerns estimates from Lp(µ) to Lp(λ) for two differ-
ent weights µ, λ and has attracted significant interest after the recent work by Holmes–
Lacey–Wick [21]. For the product space versions of these two-weight estimates see the
recent works [1, 21, 26, 27]. In this paper we remove the final restriction on the most
general estimate thus far, [1, Theorem 1.5], and prove a two-weight upper bound on
[T1, [T2, . . . [b, Tk]]], where each Ti can be a completely general multi-parameter CZO as
in [32]. Previously, in certain situations it was explicitly required in [1] that Ti can be at
most bi-parameter, or else it needs to satisfy some extra cancellation.
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1.2. Theorem. Let Rd =
∏m

i=1Rdi be a product space of m-parameters. Let k ≤ m be given
and I = {I1, . . . , Ik} be a partition of {1, . . . ,m}. Let ki = #Ii, and for each each i = 1, . . . , k
let Ti be a multi-parameter CZO as in [32], which is defined in the product space

∏
j∈Ii R

dj and
has ki parameters. Let b : Rd → C, p ∈ (1,∞), µ, λ ∈ Ap(Rd) be m-parameter weights and
ν = µ1/pλ−1/p be the associated Bloom weight. Then we have

∥[T1, [T2, . . . [b, Tk]]]∥Lp(µ)→Lp(λ) . ∥b∥bmoI(ν),

where in this formula every Ti is extended to act on the whole product space Rd, and bmoI(ν) is
a suitable weighted little product BMO space as in [1].

We manage this extension in Section 5 by using the full power of Theorem 3.2. For the
various definitions see Section 2 and Section 5.

1.1. In-depth discussion. In [1, Theorem 1.5] two-weight commutator estimates were
shown for

[T1, [T2, . . . [b, Tk]]],

where each Ti is a multi-parameter CZO as in Ou [32] (a multi-parameter dyadic rep-
resentation theorem generalising [29]). However, it was required that either Ti satisfies
some cancellation (is paraproduct free) or is of at most two parameters. In Theorem 1.2
we remove the restrictions completing the upper bound theory of multi-parameter two-
weight commutator bounds. We stress that this is philosophically different to what we
do in Theorem 1.1 – there we aim for complete bi-parameter theory in the strictly differ-
ent bilinear context by removing some previous cancellation restrictions present in the
bilinear bi-parameter theory [28]. In [1] no restrictions appear on the bi-parameter case
to begin with – restrictions are needed only if some of the operators Ti are m-parameter,
m ≥ 3.

The passage from bi-parameter to multi-parameter is known to be very non-trivial
in some occasions. In [1] difficulties arose as certain so-called partial paraproduct terms
(model operators appearing in the dyadic representation given by [32]) seemed to require
a sparse domination type treatment already used in [26], and this could only be done if
the paraproduct component of the partial paraproduct had only one parameter. In tri-
parameter theory (and general multi-parameter theory) it was then necessary to assume
that such partial paraproducts vanish (that is, the SIOs have some extra cancellation), as
otherwise partial paraproducts with multi-parameter paraproduct components arise.

All of this is somehow connected to the very innocent result of [28, Lemma 6.7]. This
particular one-parameter lemma is proved using sparse domination and can be extrapo-
lated to get useful vector-valued estimates, which we need in various places in [28, 26].
We now know how to prove some strong enough analogs of [28, Lemma 6.7] with-
out sparse domination and using Theorem 3.2 instead, and this is extendable to multi-
parameter. See Lemma 5.5 below. This allows us to remove the restrictions present in
[1]. The reader might still reasonably wonder would it now be easy enough to state a
multi-parameter version of Theorem 1.1 as well. The short answer is that this might still
require more work. This is because the linear two-weight theory only requires some spe-
cial versions of [28, Lemma 6.7], where averages are outside as in Lemma 5.5, but the
weighted estimates for bilinear bi-parameter partial paraproducts [28, Proposition 6.11]
use all of the symmetries of [28, Lemma 6.7].
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2. NOTATIONS AND PRELIMINARIES

Basic notation. Throughout this paper A . B means that A ≤ CB with some constant
C that we deem unimportant to track at that point. In particular, we often do not track
the dependence on the weight constants. We write A ∼ B if A . B . A.

Before Section 5 we work in the bi-parameter setting in the product space Rn+m =
Rn × Rm. We write x = (x1, x2) with x1 ∈ Rn and x2 ∈ Rm and for f : Rn+m → C and
h : Rn → C, we define

⟨f, h⟩1(x2) :=
ˆ
Rn

f(x1, x2)h(x1) dx1.

In Section 5, which is the only place in the paper where we do multi-parameter theory
(as opposed to bi-parameter), some additional notation will be introduced.

Haar functions. We denote a dyadic grid in Rn by Dn and a dyadic grid in Rm by Dm.
We often write D = Dn ×Dm for the related dyadic rectangles.

For an interval I ⊂ R we denote by Il and Ir the left and right halves of I , respectively.
We define h0I = |I|−1/21I and h1I = |I|−1/2(1Il − 1Ir). Let now Q = I1×· · ·× In ∈ Dn, and
define the Haar function hηQ, η = (η1, . . . , ηn) ∈ {0, 1}n, by setting

hηQ = hη1I1 ⊗ · · · ⊗ hηnIn .

If η ̸= 0 the Haar function is cancellative:
´
hηQ = 0. We exploit notation by suppressing

the presence of η, and write hQ for some hηQ, η ̸= 0. If R = I × J ∈ D = Dn × Dm, we
define hR = hI ⊗ hJ .

Weights. A weight w(x1, x2) (i.e. a locally integrable a.e. positive function) belongs to
the bi-parameter Ap(Rn × Rm), 1 < p < ∞, if

[w]Ap(Rn×Rm) := sup
R

1

|R|

ˆ
R
w

(
1

|R|

ˆ
R
w1−p′

)p−1

< ∞,

where the supremum is taken over R = I × J , where I ⊂ Rn and J ⊂ Rm are cubes with
sides parallel to the axes (we simply call such R rectangles). We have

[w]Ap(Rn×Rm) < ∞ iff max
(
ess sup
x1∈Rn

[w(x1, ·)]Ap(Rm), ess sup
x2∈Rm

[w(·, x2)]Ap(Rn)

)
< ∞,

and that max
(
ess supx1∈Rn [w(x1, ·)]Ap(Rm), ess supx2∈Rm [w(·, x2)]Ap(Rn)

)
≤ [w]Ap(Rn×Rm),

while the constant [w]Ap is dominated by the maximum to some power. We say w ∈
A∞(Rn × Rm) if

[w]A∞(Rn×Rm) := sup
R

1

|R|

ˆ
R
w exp

(
1

|R|

ˆ
R
log(w−1)

)
< ∞.

It is well-known (see e.g. [9, Section 7]) that

A∞(Rn × Rm) =
∪

1<p<∞
Ap(Rn × Rm).

We do not have any explicit use for the A∞ constant. The w ∈ A∞ assumption can always
be replaced with the explicit assumption w ∈ As for some s ∈ (1,∞), and then estimating
everything with a dependence on [w]As .



6 E. AIRTA, K. LI, H. MARTIKAINEN, AND E. VUORINEN

Of course, Ap(Rn) is defined similarly as Ap(Rn × Rm) – just take the supremum over
cubes Q. A modern reference for the basic theory of bi-parameter weights is e.g. [21].

Square functions and maximal functions. Given f : Rn+m → C and g : Rn → C we
denote the dyadic maximal functions by

MDng := sup
I∈Dn

1I
⟨
|g|
⟩
I

and MDf := sup
R∈D

1R
⟨
|f |
⟩
R
,

where
⟨
f
⟩
A

= |A|−1
´
A f . We can e.g. write

⟨
f
⟩1
I

if I ⊂ Rn and we average only over
the first parameter. We also set M1

Dnf(x1, x2) = MDn(f(·, x2))(x1). The operator M2
Dm is

defined similarly. The weighted maximal function is defined by

Mw
Df := sup

R∈D
1R
⟨
|f |
⟩w
R
,

where
⟨
|f |
⟩w
R
= w(R)−1

´
R |f |w. We require the following very nice result of Fefferman

[15]. For a modern reference see [26, Proposition B.1]. Notice that in the bi-parameter
setting this result is very non-trivial as w is not of tensor form.

2.1. Lemma. Let w ∈ A∞(Rn × Rm). Then for all 1 < p ≤ ∞ we have

∥Mw
Df∥Lp(w) . ∥f∥Lp(w).

Now define the square functions

SDf =

(∑
R∈D

∣∣⟨f, hR⟩∣∣2 1R|R|

)1/2

, S1
Dnf =

( ∑
I∈Dn

1I
|I|

⊗
∣∣⟨f, hI⟩1∣∣2

)1/2

and define S2
Dmf analogously. Define also

S1
D,Mf =

( ∑
I∈Dn

1I
|I|

⊗
[
MDm

⟨
f, hI

⟩
1

]2)1/2

, S2
D,Mf =

( ∑
J∈Dm

[
MDn

⟨
f, hJ

⟩
2

]2 ⊗ 1J
|J |

)1/2

.

We record the following basic weighted estimates, which are used repeatedly below.

2.2. Lemma. For p ∈ (1,∞) and w ∈ Ap = Ap(Rn×Rm) we have the weighted square function
estimates

∥f∥Lp(w) ∼ ∥SDf∥Lp(w) ∼ ∥S1
Dnf∥Lp(w) ∼ ∥S2

Dmf∥Lp(w).

Moreover, for p, s ∈ (1,∞) we have the Fefferman–Stein inequality∥∥∥∥∥
(∑

j

|Mfj |s
)1/s∥∥∥∥∥

Lp(w)

.
∥∥∥∥∥
(∑

j

|fj |s
)1/s∥∥∥∥∥

Lp(w)

.

Here M can e.g. be M1
Dn or MD. Finally, we have

∥S1
D,Mf∥Lp(w) + ∥S2

D,Mf∥Lp(w) . ∥f∥Lp(w).

See [26, Lemma 2.1] for an indication on how to prove this standard result. Of key
importance to us is the following lower square function estimate valid for A∞ weights.
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2.3. Lemma. There holds
∥f∥Lp(w) . ∥S1

Dnf∥Lp(w)

and
∥f∥Lp(w) . ∥SDf∥Lp(w)

for all p ∈ (0,∞) and bi-parameter weights w ∈ A∞.

See [28, Section 6] for an explanation of this well-known inequality. This is important
to us as the weight w = w

r/p
1 w

r/q
2 in Theorem 1.1 is at least A∞ – it is in fact A2r.

Singular integrals. A kernel K : Rd × Rd \ {(x, y) ∈ Rd × Rd : x = y} → C is a standard
Calderón-Zygmund kernel on Rd if we have

|K(x, y)| ≤ C

|x− y|d

and, for some α ∈ (0, 1],

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
|x− x′|α

|x− y|d+α

whenever |x− x′| ≤ |x− y|/2.
A singular integral operator (SIO) is a linear operator T (initially defined, for example,

on bounded and compactly supported functions) so that there is a standard kernel K for
which

⟨Tf, g⟩ =
¨

Rd×Rd

K(x, y)f(y)g(x) dy dx

whenever the functions f and g are nice and have disjoint supports. A Calderón–Zygmund
operator (CZO) is an SIO T , which satisfies the T1 conditionˆ

I
|T1I |+

ˆ
I
|T ∗1I | . |I|

for all cubes I ⊂ Rd. Here T ∗ is the linear adjoint of T . A T1 theorem says that an SIO is a
CZO if and only if it is bounded from Lp → Lp for all (equivalently for some) p ∈ (1,∞).
We know a lot about the structure of a CZO T . Indeed, we can represent T with certain
dyadic model operators (DMOs) – see [17, 18]. The DMOs take the concrete form of so-
called dyadic shifts and paraproducts. Moreover, the T1 theorem is a consequence of the
representation theorem. We will indicate how a representation theorem looks soon.

A model of a bi-parameter singular integral operator in Rn × Rm is T1 ⊗ T2, where T1

and T2 are usual singular integrals in Rn and Rm, respectively. The general definition of
a bi-parameter singular integral T requires that ⟨Tf1, f2⟩, fi = f1

i ⊗ f2
i , can be written

using different kernel representations depending on whether
(1) spt f1

1 ∩ spt f1
2 = ∅ and spt f2

1 ∩ spt f2
2 = ∅,

(2) spt f1
1 ∩ spt f1

2 = ∅ or
(3) spt f2

1 ∩ spt f2
2 = ∅.

In the first case we have a so-called full kernel representation, while in cases 2 and 3
a partial kernel representations holds in Rn or Rm, respectively. The T1 conditions are
more complicated than in one-parameter – for the complete definitions see [29, Section
2]. As in the one-parameter case, we can represent a bi-parameter CZO – a bi-parameter
SIO satisfying the bi-parameter T1 conditions – using bi-parameter DMOs. We will only
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need these model operators in this paper, and they are defined when they are needed.
Everything in Theorem 1.1 and Theorem 1.2 is reduced, via representation theorems, to
estimates of model operators.

The analogous multi-parameter theory is presented in [32]. An inherent complica-
tion of these bi-parameter and multi-parameter representations is the presence not only
of “pure” paraproducts and cancellative shifts, but also of their hybrid combinations –
partial paraproducts – that are completely new compared to the one-parameter case.

For Theorem 1.1 we still need to discuss the bilinear theory. A heuristic model of a
bilinear one-parameter SIO T in Rd is T (f1, f2)(x) := U(f1 ⊗ f2)(x, x), where x ∈ Rd,
fi : Rd → C, (f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2) and U is a linear SIO in R2d. In detail,
a bilinear SIO T has a kernel K satisfying estimates that are obtained from the above
heuristic via the linear estimates, and if spt fi ∩ spt fj = ∅ for some i, j then

⟨T (f1, f2), f3⟩ =
˚

R3d

K(x, y, z)f1(y)f2(z)f3(x) dy dz dx.

Finally, a model of a bilinear bi-parameter singular integral in Rn × Rm is

(Tn ⊗ Tm)(f1 ⊗ f2, g1 ⊗ g2)(x) := Tn(f1, g1)(x1)Tm(f2, g2)(x2),

where f1, g1 : Rn → C, f2, g2 : Rm → C, x = (x1, x2) ∈ Rn+m and Tn, Tm are bilinear SIOs
defined in Rn and Rm, respectively. See [28, Section 3] for the rather long definition in
the full generality. We reiterate that we will only meet the DMOs in this paper. This is
because by [28, Theorem 1.3] we have that if T is a bilinear bi-parameter CZO, then

⟨T (f1, f2), f3⟩ = CTEω

∑
k=(k1,k2,k3)∈Z3

+

v=(v1,v2,v3)∈Z3
+

αk,v

⟨
Uk,v
ω (f1, f2), f3

⟩
,

where ω = (ω1, ω2) is associated to random dyadic grids Dω = Dn
ω1

× Dm
ω2

, CT . 1,
the numbers αk,v > 0 decay exponentially in complexity (k, v), and Uk,v

ω denotes some
bilinear bi-parameter dyadic model operator of complexity (k, v) defined in the lattice
Dω. Crucially, we have shown the desired weighted estimates in [28] for all but one type
of model operators – the remaining model operators are defined carefully in Section 4
and the weighted estimate is proved for them. This shows Theorem 1.1.

3. WEIGHTED BMO SPACES

Let D = Dn × Dm be a lattice of dyadic rectangles, A = (aR)R∈D be a sequence of
scalars and Ω ⊂ Rn+m. We define

SA(x) =

(∑
R∈D

|aR|2
1R(x)

|R|

)1/2

and SA,Ω(x) =

(∑
R∈D
R⊂Ω

|aR|2
1R(x)

|R|

)1/2

.

Let p ∈ (0,∞). Define

∥A∥BMOprod(p) = sup
Ω

1

|Ω|1/p
∥SA,Ω∥Lp ,

where Ω is open and 0 < |Ω| < ∞. There are many possibilities how to define a weighted
version. The following is not the ‘correct’ definition for many things. Nonetheless, it will
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be of key use to us. Thus, let w ∈ A∞ and set

∥A∥BMOprod,w(p) = sup
Ω

1

w(Ω)1/p
∥SA,Ω∥Lp(w).

We set ∥A∥BMOprod = ∥A∥BMOprod(2) and ∥A∥BMOprod,w = ∥A∥BMOprod,w(2). The weight
turns out not to play a role here – that is, we have ∥A∥BMOprod = ∥A∥BMOprod,w for all
bi-parameter weights w ∈ A∞. To prove this we need the bi-parameter John-Nirenberg.
The unweighted version ∥A∥BMOprod ∼ ∥A∥BMOprod(p) is well-known. However, we need
to know it in the following form, which is a priori stronger. The proof is similar, though,
but requires the very non-trivial Lemma 2.1.

3.1. Proposition. For all bi-parameter weights w ∈ A∞ we have

∥A∥BMOprod,w ∼ ∥A∥BMOprod,w(p), 0 < p < ∞.

Proof. By Hölder’s inequality we only need to prove ∥A∥BMOprod,w(q) . ∥A∥BMOprod,w(p)

for p < q and q > 2. We may assume aR ̸= 0 for only finitely many R ∈ D. We fix Ω and,
for a large enough N > 0, denote E := {SA,Ω > N∥A∥BMOprod,w(p)}. We now have

w(E) ≤ (N∥A∥BMOprod,w(p))
−p∥SA,Ω∥pLp(w) ≤ N−pw(Ω).

Split D = R1 ∪R2, where

R1 := {R : w(E ∩R) > w(R)/2}, R2 := {R : w(E ∩R) ≤ w(R)/2}.
Notice that clearly for all R ∈ R1 we have

R ⊂ {Mw
D (1E) > 1/2} =: Ẽ.

Since w ∈ A∞, by Lemma 2.1 we have

w(Ẽ) . ∥Mw
D (1E)∥2L2(w) . w(E).

We now fix N so that we always have w(Ẽ) ≤ w(Ω)/2q, and then notice that∥∥∥∥∥
( ∑

R∈R1
R⊂Ω

|aR|2
1R
|R|

) 1
2
∥∥∥∥∥
Lq(w)

≤ ∥SA,Ẽ∥Lq(w)

≤ ∥A∥BMOprod,w(q)w(Ẽ)
1
q ≤ 1

2
∥A∥BMOprod,w(q)w(Ω)

1
q .

This is absorbable, so we now move on to consider the sum, where R ∈ R2. As q > 2 we
may calculate∥∥∥∥∥

( ∑
R∈R2
R⊂Ω

|aR|2
1R
|R|

) 1
2
∥∥∥∥∥
2

Lq(w)

= sup
∥g∥

L(q/2)′ (w)
=1

∣∣∣∣∣ ∑
R∈R2
R⊂Ω

|aR|2
⟨
gw
⟩
R

∣∣∣∣∣
≤ 2 sup

∥g∥
L(q/2)′ (w)

=1
∥1EcS2

A,ΩM
w
Dg∥L1(w)

≤ 2 sup
∥g∥

L(q/2)′ (w)
=1

∥1EcSA,Ω∥2Lq(w)∥M
w
Dg∥L(q/2)′ (w)

. ∥A∥2BMOprod,w(p)w(Ω)
2/q,
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where we used Lemma 2.1 in the last step. The proof is done as we have shown that

∥A∥BMOprod,w(q) ≤
1

2
∥A∥BMOprod,w(q) + C∥A∥BMOprod,w(p).

�

3.2. Theorem. For all bi-parameter weights w ∈ A∞ we have

∥A∥BMOprod ∼ ∥A∥BMOprod,w .

Proof. Fix w ∈ A∞. Then there exists s > 2 so that w ∈ As. We first prove ∥A∥BMOprod,w .
∥A∥BMOprod . Define the linear bi-parameter paraproduct

Πf = ΠAf =
∑
R∈D

aR
⟨
f
⟩
R
hR.

It is well-known (see e.g. [21]) that

∥Πf∥Ls(w) . ∥A∥BMOprod∥f∥Ls(w).

Then by Lemma 2.2 we have∥∥∥∥∥
(∑

R∈D
|aR|2

∣∣⟨f⟩
R

∣∣2 1R
|R|

) 1
2
∥∥∥∥∥
Ls(w)

= ∥SD(Πf)∥Ls(w) . ∥A∥BMOprod∥f∥Ls(w).

Testing with f = 1Ω we get

∥SA,Ω∥Ls(w) ≤

∥∥∥∥∥
(∑

R∈D
|aR|2

∣∣⟨1Ω⟩R∣∣2 1R|R|

) 1
2
∥∥∥∥∥
Ls(w)

. ∥A∥BMOprodw(Ω)
1
s .

This means that ∥A∥BMOprod,w(s) . ∥A∥BMOprod . By Proposition 3.1 we conclude that
∥A∥BMOprod,w . ∥A∥BMOprod .

It remains to prove ∥A∥BMOprod . ∥A∥BMOprod,w . For 0 ≤ f ∈ Ls(w) and 0 ≤ g ∈
L(s/2)′(w) , we have∑

R∈D
|aR|2

⟨
w
⟩
R

⟨
f
⟩2
R

⟨
g
⟩w
R
=

ˆ ∞

0

∑
R∈D

⟨f⟩2R⟨g⟩wR>t

|aR|2
⟨
w
⟩
R
dt

≤
ˆ ∞

0

∑
R∈D

R⊂{(MDf)2Mw
Dg>t}

|aR|2
⟨
w
⟩
R
dt

≤ ∥A∥2BMOprod,w

ˆ ∞

0
w({(MDf)

2Mw
Dg > t}) dt

= ∥A∥2BMOprod,w
∥(MDf)

2Mw
Dg∥L1(w)

≤ ∥A∥2BMOprod,w
∥MDf∥2Ls(w)∥M

w
Dg∥L(s/2)′ (w)

. ∥A∥2BMOprod,w
∥f∥2Ls(w)∥g∥L(s/2)′ (w),
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where we have used Lemma 2.1 in the last step. Testing the above inequality with f =

w− 1
s 1Ω, g = w

− 1
(s/2)′ 1Ω we get∑

R∈D
R⊂Ω

|aR|2
⟨
w− 1

s
⟩2
R

⟨
w

2
s
⟩
R
. ∥A∥2BMOprod,w

|Ω|.

We conclude the proof by noticing that 1 ≤
⟨
w− 1

s

⟩2
R

⟨
w

2
s

⟩
R
. �

3.3. Remark. In the one-parameter case, the equivalence between BMO and BMOw, where
w ∈ A∞, is due to Muckenhoupt and Wheeden [30].

Finally, we define the actual weighted product BMO by setting

∥A∥BMOprod(w) = sup
Ω

1

w(Ω)1/2

∥∥∥∥∥
( ∑

R∈D
R⊂Ω

|aR|2
1R(x)

w(R)

)1/2∥∥∥∥∥
L2( dx)

= sup
Ω

(
1

w(Ω)

∑
R∈D
R⊂Ω

|aR|2⟨
w
⟩
R

) 1
2

.

The previous theorem is of independent interest, but also yields the following key lemma.

3.4. Lemma. If A ∈ BMOprod define Aw = (aR⟨w⟩R)R∈D for w ∈ A∞. Then we have

∥Aw∥BMOprod(w) ∼ ∥A∥BMOprod .

Proof. Notice that

∥Aw∥BMOprod(w) = ∥A∥BMOprod,w ∼ ∥A∥BMOprod .

Here the first equality is obvious and the second estimate is Theorem 3.2. �
3.5. Corollary. For sequences of scalars A = (aR) and B = (bR) we have∑

R∈D
|aR|⟨w⟩R|bR| . ∥A∥BMOprod∥SB∥L1(w)

whenever w ∈ A∞.

Proof. Follows from the known, see e.g. [21, Proposition 4.1], weighted H1-BMO duality

(3.6)
∑
R∈D

|aR||bR| . ∥A∥BMOprod(w)∥SB∥L1(w)

and Lemma 3.4. �

4. PROOF OF THEOREM 1.1

A bilinear bi-parameter full paraproduct on a grid D = Dn ×Dm has the form

(4.1) ΠA(f1, f2) = Π(f1, f2) =
∑

R=I×J∈D
aR

⟨
f1, hI ⊗

1J
|J |

⟩⟨
f2
⟩
R

1I
|I|

⊗ hJ ,

where ∥A∥BMOprod ≤ 1. What is important is that there are actually nine different types

of full paraproducts – the full paraproduct above corresponds to the tuples
(
hI ,

1I
|I| ,

1I
|I|

)
and

(
1J
|J | ,

1J
|J | , hJ

)
, but the hI can be in any of the three slots and so can the hJ .

It follows from [28] that to prove Theorem 1.1 it suffices to prove the following weighted
estimate for the full paraproducts.
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4.2. Proposition. Let 1 < p, q < ∞ and 1/2 < r < ∞ satisfy 1/p+ 1/q = 1/r, w1 ∈ Ap and
w2 ∈ Aq be bi-parameter weights, and set w := w

r/p
1 w

r/q
2 . Then we have

∥Π(f1, f2)∥Lr(w) . ∥f1∥Lp(w1)∥f2∥Lq(w2).

Proof. Case 1. Suppose that there is a full average over R = I × J at least in f1 or f2. In
such cases the bilinear paraproduct estimate decouples reducing to linear estimates. For
example, suppose Π has the form (4.1). Then using the weighted lower square function
estimate, Lemma 2.3, and the basic Lemma 2.2 we have

∥∥Π(f1, f2)∥∥Lr(w)
.
∥∥∥∥∥
(∑

J

∣∣∣∣∣∑
I

|aR|
⟨
f1, hI ⊗

1J
|J |

⟩⟨
f2
⟩
I×J

1I
|I|

∣∣∣∣∣
2
1J
|J |

) 1
2
∥∥∥∥∥
Lr(w)

.
∥∥∥∥∥MDf2

(∑
J

(∑
I

|aR|
∣∣∣⟨f1, hI ⊗ 1J

|J |

⟩∣∣∣ 1I|I|
)2

1J
|J |

) 1
2
∥∥∥∥∥
Lr(w)

≤ ∥MDf2∥Lq(w2)

∥∥∥∥∥
(∑

J

(∑
I

|aR|
∣∣∣⟨f1, hI ⊗ 1J

|J |

⟩∣∣∣ 1I|I|
)2

1J
|J |

) 1
2
∥∥∥∥∥
Lp(w1)

. ∥f2∥Lq(w2)∥S
2
Dmh∥Lp(w1),

where
h =

∑
R=I×J

|aR|
∣∣∣⟨f1, hI ⊗ 1J

|J |

⟩∣∣∣ 1I|I| ⊗ hJ .

This is just a standard linear bi-parameter paraproduct, and thus satisfies the weighted
estimate ∥h∥Lp(w1) . ∥f1∥Lp(w1) (see e.g. [21]). Thus, we are done by Lemma 2.2.

Case 2. Out of the remaining cases we choose the symmetry

Π(f1, f2) =
∑

R=I×J

aR

⟨
f1, hI ⊗

1J
|J |

⟩⟨
f2,

1I
|I|

⊗ hJ

⟩ 1R
|R|

.

Equipped with our current tools we can prove the desired estimate directly for any
p0, q0 ∈ (1,∞) and r0 ∈ [1,∞) satisfying 1/r0 = 1/p0 + 1/q0. By bilinear extrapolation
[8, 10] it is enough to prove the estimate with only one fixed tuple, so this is certainly
enough to get the claimed full range. For example, in the case r0 = 1 we get

∥Π(f1, f2)∥L1(w) ≤
∑

R=I×J

|aR|
⟨
w
⟩
R

∣∣∣⟨f1, hI ⊗ 1J
|J |

⟩∣∣∣∣∣∣⟨f2, 1I|I| ⊗ hJ

⟩∣∣∣
.
∥∥∥∥∥
( ∑

R=I×J

∣∣∣⟨f1, hI ⊗ 1J
|J |

⟩∣∣∣2∣∣∣⟨f2, 1I|I| ⊗ hJ

⟩∣∣∣2 1R|R|

)1/2∥∥∥∥∥
L1(w)

≤ ∥S1
D,Mf1∥Lp0(w1)∥S

2
D,Mf2∥Lq0 (w2) . ∥f1∥Lp0 (w1)∥f2∥Lq0 (w2),

where we have used Corollary 3.5 in the second estimate and Lemma 2.2 in the last
step. �
4.3. Remark. The advantage of the case r0 = 1 in Case 2 above is that then w ∈ A2, so
that proving the required estimate ∥A∥BMOprod,w . ∥A∥BMOprod does not require the John-
Nirenberg inequality and thus not even Lemma 2.1. However, we still note that the case
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r0 > 1 could be done with a similar calculation, but it requires bounding |⟨Π(f1, f2), f3w⟩|
for f3 ∈ Lr′0(w) with∑

R=I×J

|aR|
⟨
w
⟩
R

∣∣∣⟨f1, hI ⊗ 1J
|J |

⟩∣∣∣∣∣∣⟨f2, 1I|I| ⊗ hJ

⟩∣∣∣⟨|f3|⟩wR,
using the fuller strength of Corollary 3.5 and also Lemma 2.1.

5. PROOF OF THEOREM 1.2

We now move on to Theorem 1.2 – this directly forces us to deal with m-parameters,
m ≥ 3. Indeed, recall that [1, Theorem 1.5] has no restrictions as long as the appearing
singular integral operators are at most bi-parameter. Notice that it is obvious how m-
parameter weights in the product space Rd1 × · · · × Rdm are defined – simply work with
rectangles R = I1×· · ·× Im. Notice also that if we set D =

∏m
i=1Di, where Di is a dyadic

grid on Rdi , and if we have a sequence A = (aR)R∈D, the various product BMO norms of
A have a completely analogous definition in m-parameters.

We begin by noticing that a multi-parameter version of Theorem 3.2 is true – the proof
is exactly the same.

5.1. Theorem. For all m-parameter weights w ∈ A∞ on Rd1 × · · · × Rdm we have

∥A∥BMOprod ∼ ∥A∥BMOprod,w .

To communicate the main idea regarding Theorem 1.2, including the definition of
the space bmoI(ν) appearing in the theorem, we now restrict the discussion to the tri-
parameter space Rd = Rd1 × Rd2 × Rd3 . Let Di be a dyadic grid in Rdi and set D =
D1 × D2 × D3. We denote cubes in Di by Ii, Ji,Ki, etc. It is obvious how to define,
just like in the bi-parameter setting, the square functions S1

D1 , S1,2
D1×D2 , SD, and so on.

We now consider b : Rd → C and a tri-parameter Bloom weight ν = µ1/pλ−1/p, where
p ∈ (1,∞) and µ, λ ∈ Ap(Rd) are tri-parameter Ap weights. In Section 3 we had a se-
quence A = (aR), but if we would have been talking about a function b there, we would
have simply considered the sequence

(⟨
b, hR

⟩)
. For the commuting function b we prefer

to understand various BMO spaces directly via the dualised forms (3.6). This is because it
makes various relationships between the BMO spaces much more transparent. Here we
follow [1, Section 2], where the facts used in the following explanation are also proved.

Theorem 1.2 is not dyadic – thus, we need the following inequalities to hold uniformly
for all dyadic grids Di. If for i ∈ {1, 2, 3} we have

|⟨b, f⟩| ≤ C∥Si
Dif∥L1(ν),

we denote the optimal constant C by ∥b∥BMOi(ν). Moreover, e.g. the norm ∥b∥
BMO1,2

prod(ν)
=

∥b∥BMO1,2(ν) has the obvious dual definition as the best constant in the inequality

|⟨b, f⟩| ≤ ∥b∥
BMO1,2

prod(ν)
∥S1,2

D1×D2f∥L1(ν),

or could be defined as in Section 3. Similarly, it is obvious how to e.g. define ∥b∥
BMO1,3

prod(ν)
=

∥b∥BMO1,3(ν) and ∥b∥
BMO1,2,3

prod (ν)
= ∥b∥BMO1,2,3(ν).
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We can always estimate up by adding more parameters to square functions so that e.g.

∥Si
Dif∥L1(ν) . ∥Si,j

Di×Djf∥L1(ν).

This explains the convenience of using the dual formulations here directly, as from such
estimates we can immediately see that e.g. BMO1(ν) ⊂ BMO1,2

prod(ν). Another thing is
that, for instance, the BMO1(ν) condition implies that

(5.2) |⟨b(·, x2, x3), g⟩| ≤ ∥b∥BMO1(ν)∥SD1g∥L1(ν(·,x2,x3))

uniformly on (almost every) x2, x3, which is sometimes useful.
Given a partition I = {I1, . . . , Ik}, k ≤ 3, of the parameter space {1, 2, 3}, we define

∥b∥bmoI(ν) = sup
ū

∥b∥BMOū(ν),

where ū = (ui)
k
i=1 is such that ui ∈ Ii. We illustrate this with examples. If k = 3 we look

at [T1, [T2, [T3, b]]], where each Ti is a one-parameter CZO on Rdi , and the related condi-
tion is ∥b∥bmo{{1},{2},{3}}(ν) = ∥b∥BMO1,2,3(ν) = ∥b∥

BMO1,2,3
prod (ν)

. If k = 2 we may e.g have

I = {{1, 2}, {3}} and look at [T1, [T2, b]], where T1 is a bi-parameter CZO on Rd1 × Rd2

and T2 is a one-parameter CZO on Rd3 , and the related condition is ∥b∥bmo{{1,2},{3}}(ν) =

sup{∥b∥BMO1,3(ν), ∥b∥BMO2,3(ν)}. Both the cases k = 3 and k = 2 are already covered by
[1, Theorem 1.5], since all the CZOs are at most bi-parameter. The remaining case k = 1
deals with the commutator [b, T ], where T is a tri-parameter CZO on Rd, and the related
condition is ∥b∥bmo{1,2,3}(ν) = supi ∥b∥BMOi(ν).

The top-level strategy is always to first use the dyadic representation theorems [17, 18,
29, 32] and reduce to commutators of dyadic model operators in some fixed dyadic grids
Di. The difficulty levels of the different cases k ∈ {1, 2, 3} are not strictly comparable.
If k = 3 we have the triple commutator [T1, [T2, [T3, b]]], where the commutator struc-
ture – and the related decomposition of the commutator – is most complicated, but the
operators themselves are one-parameter and the model operator decomposition [18] of
each of them is the simplest. The remaining difficulty in [1, Theorem 1.5] was not that it
was not known how to efficiently decompose arbitrary commutators [T1, [T2, . . . [b, Tk]]]

or to use the complicated BMO spaces bmoI(ν). The problem was that if one Ti is of
ki-parameters, ki ≥ 3, then the model operator decomposition [32] produces a very com-
plicated model operator – a multi-parameter partial paraproduct with a k-parameter,
k ≥ 2, paraproduct component.

This is the problem we address in Theorem 1.2. In the proof we deal with the k = 1 case
in the tri-parameter situation. Moreover, we do not go through all the cases [b, U ], where
U is a tri-parameter model operator [32]. Rather, we only focus on the new problem that
U = P for a tri-parameter partial paraproduct with a bi-parameter paraproduct com-
ponent. It is then possible to take a completely general commutator [T1, [T2, . . . [b, Tk]]],
follow the decomposition strategy of [1] and handle the main new difficulty similarly as
we do here. See also Section 1.1 to understand the role of Lemma 5.5 and, thus, how
everything depends on Theorem 3.2. One more point: the main Lemma 5.5 is applied to
the unweighted product BMO coefficients appearing in the dyadic model operators, and
it is not related to the commuting function b. If we would e.g. deal with a 4-parameter
partial paraproduct with a tri-parameter paraproduct component, we would need the
full generality of Theorem 5.1 stated above.
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Due to the above discussion, we will now only control [b, P ], where P is a tri-parameter
partial paraproduct with a bi-parameter paraproduct component. We will now fix a ’little
BMO’ function b ∈

∩3
i=1 BMOi(ν) with the normalisation

sup
i

∥b∥BMOi(ν) ≤ 1.

Further, we will fix a tri-parameter partial paraproduct

Pf =
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

a(Kj),I1,J1

⟨
f, hI1 ⊗ hK2 ⊗

1K3

|K3|

⟩
hJ1 ⊗

1K2

|K2|
⊗ hK3 ,

where for all K1, I1, J1 like above we have∥∥(a(Kj),I1,J1)K2,K3

∥∥
BMO2,3

prod
≤ |I1|1/2|J1|1/2

|K1|
.

We will show the tri-parameter Bloom estimate

(5.3) ∥[b, P ]f∥Lp(λ) . ∥f∥Lp(µ),

where the implicit constant depends on the norms [µ]Ap and [λ]Ap , and we have polyno-
mial dependency on the complexity, but this is not emphasised.

To show this, we will need some particular paraproducts. For i ∈ {1, 2, 3} we define

Ai
1(b, f) =

∑
Ii∈Di

∆i
Iib∆

i
Iif, Ai

2(b, f) =
∑
Ii∈Di

∆i
IibE

i
Iif and Ai

3(b, f) =
∑
Ii∈Di

Ei
Iib∆

i
Iif.

In one-parameter ∆Ig = ⟨g, hI⟩hI and EIg = 1I⟨g⟩I are the usual martingale difference
and averaging operators, and then e.g. ∆1

I1
f(x) = (∆I1f(·, x2, x3))(x1). For i1, i2 ∈

{1, 2, 3} and j1, j2 ∈ {1, 2, 3} define formally

Ai1,i2
j1,j2

(b, f) = Ai1
j1
Ai2

j2
(b, f)

so that e.g.

A1,3
1,2(b, f) =

∑
I3∈D3

A1
1(∆

3
I3b, E

3
I3f) =

∑
I1∈D1

I3∈D3

∆1
I1∆

3
I3b∆

1
I1E

3
I3f.

What we need now is that according to [1, Lemma 3.1] we have

∥Ai1,i2
j1,j2

(b, f)∥Lp(λ) . ∥f∥Lp(µ)

as long as (j1, j2) ̸= (3, 3). Indeed, for j1 ̸= 3 and j2 ̸= 3 we have

∥Ai1,i2
j1,j2

(b, f)∥Lp(λ) . ∥b∥
BMO

i1,i2
prod (ν)

∥f∥Lp(µ) . ∥f∥Lp(µ),

and if e.g. j1 = 3 and j2 ̸= 3 we have

∥Ai1,i2
3,j2

(b, f)∥Lp(λ) . ∥b∥BMOi2 (ν)∥f∥Lp(µ) ≤ ∥f∥Lp(µ).

We now decompose the commutator [b, P ] using the paraproducts. In [b, P ]f = bPf −
P (bf) we decompose

bPf =
3∑

j1,j2=1

A1,3
j1,j2

(b, Pf) and bf =
3∑

j1,j2=1

A1,2
j1,j2

(b, f).
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Because of the above paraproduct estimates and the weighted boundedness of P (see e.g.
[21, Proposition 7.6]), to control ∥[b, P ]f∥Lp(λ) we only need to control the Lp(λ) norm of

A1,3
3,3(b, Pf)− P (A1,2

3,3(b, f))

=
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

a(Kj),I1,J1

⟨
f, hI1 ⊗ hK2 ⊗

1K3

|K3|

⟩
hJ1 ⊗

⟨
b
⟩1,3
J1×K3

1K2

|K2|
⊗ hK3

−
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

a(Kj),I1,J1

⟨⟨
b
⟩1,2
I1×K2

⟨
f, hI1 ⊗ hK2

⟩
1,2

⟩
K3

hJ1 ⊗
1K2

|K2|
⊗ hK3 .

In the first term we write
⟨
b
⟩1,3
J1×K3

=
[⟨
b
⟩1,3
J1×K3

−
⟨
b
⟩
J1×K2×K3

]
+
⟨
b
⟩
J1×K2×K3

and

in the second term we write
⟨
b
⟩1,2
I1×K2

=
[⟨
b
⟩1,2
I1×K2

−
⟨
b
⟩
I1×K2×K3

]
+
⟨
b
⟩
I1×K2×K3

. We
then combine the last two terms and further add and subtract

⟨
b
⟩
K1×K2×K3

. We begin by
dealing with one of the resulting terms

E1 :=
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

γ(Kj),I1,J1

⟨
f, hI1 ⊗ hK2 ⊗

1K3

|K3|

⟩
hJ1 ⊗

1K2

|K2|
⊗ hK3 ,

where γ(Kj),I1,J1 = a(Kj),I1,J1

[⟨
b
⟩
I1×K2×K3

−
⟨
b
⟩
K1×K2×K3

]
. We write

⟨
b
⟩
I1×K2×K3

−
⟨
b
⟩
K1×K2×K3

=

i1∑
l=1

¨
Rd2×Rd3

⟨
b, h

I
(l)
1

⟩
1

⟨
h
I
(l)
1

⟩
I1

1K2

|K2|
1K3

|K3|
.

Allowing a polynomial dependency on the complexity, we can fix l and study the du-
alised form¨

Rd2×Rd3

∑
K1

L
(i1−l)
1 =K1

∑
I
(l)
1 =L1

J
(j1)
1 =K1

∑
K2,K3

|a(Kj),I1,J1 ||L1|−1/2
∣∣⟨b, hL1

⟩
1

∣∣∣∣∣⟨f, hI1 ⊗ hK2 ⊗
1K3

|K3|

⟩∣∣∣
∣∣∣⟨g, hJ1 ⊗ 1K2

|K2|
⊗ hK3

⟩∣∣∣ 1K2

|K2|
1K3

|K3|
.

Using (5.2) we reduce to
ˆ
Rd

( ∑
K1

L
(i1−l)
1 =K1

1L1

|L1|2
⊗

[ ∑
I
(l)
1 =L1

J
(j1)
1 =K1

∑
K2,K3

|a(Kj),I1,J1 |
∣∣∣⟨f, hI1 ⊗ hK2 ⊗

1K3

|K3|

⟩∣∣∣
∣∣∣⟨g, hJ1 ⊗ 1K2

|K2|
⊗ hK3

⟩∣∣∣ 1K2

|K2|
1K3

|K3|

]2)1/2

ν.

(5.4)

A certain vector-valued inequality will now be derived using A∞ extrapolation, and the
base case estimate for the extrapolation will rely on Corollary 3.5.
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5.5. Lemma. Suppose 0 < p, q < ∞ and w ∈ A∞(Rd2 × Rd3) is a bi-parameter A∞ weight.
Suppose for all k, j ∈ N we are given a sequence (ak,jK2,K3

)K2,K3 satisfying∥∥(ak,jK2,K3
)K2,K3

∥∥
BMO2,3

prod
≤ 1.

Then for all locally integrable fj,k, gj,k : Rd2 × Rd3 → C we have

¨ (∑
j

[∑
k

∑
K2,K3

|ak,jK2,K3
|
∣∣∣⟨fj,k, hK2 ⊗

1K3

|K3|

⟩∣∣∣∣∣∣⟨gj,k, 1K2

|K2|
⊗ hK3

⟩∣∣∣ 1K2

|K2|
1K3

|K3|

]p)q/p

w

.
¨ (∑

j

[∑
k

( ∑
K2,K3

⟨∣∣⟨fj,k, hK2

⟩
2

∣∣⟩2
K3

⟨∣∣⟨gj,k, hK3

⟩
3

∣∣⟩2
K2

1K2

|K2|
1K3

|K3|

)1/2]p)q/p

w.

Proof. By repeated use of A∞ extrapolation [6, Theorem 2.1], it is enough to prove that
¨ ( ∑

K2,K3

|aK2,K3 |
∣∣∣⟨f, hK2 ⊗

1K3

|K3|

⟩∣∣∣∣∣∣⟨g, 1K2

|K2|
⊗ hK3

⟩∣∣∣ 1K2

|K2|
1K3

|K3|

)
w

.
¨ ( ∑

K2,K3

⟨∣∣⟨f, hK2

⟩
2

∣∣⟩2
K3

⟨∣∣⟨g, hK3

⟩
3

∣∣⟩2
K2

1K2

|K2|
1K3

|K3|

)1/2

w.

We note that the used extrapolation results are stated for the so-called Muckenhoupt
bases and directly cover multi-parameter situations. The remaining estimate now fol-
lows from Corollary 3.5 almost immediately. �

Applying the p = 2 and q = 1 case of the previous lemma with a fixed x1 and ν(x1, ·) ∈
A∞(Rd2 × Rd3) to (5.4) we reduce to
ˆ
Rd

( ∑
K1

L
(i1−l)
1 =K1

1L1

|L1|2|K1|2
⊗

[ ∑
I
(l)
1 =L1

J
(j1)
1 =K1

|I1|1/2|J1|1/2

( ∑
K2,K3

⟨∣∣⟨f, hI1 ⊗ hK2

⟩
1,2

∣∣⟩2
K3

⟨∣∣⟨g, hJ1 ⊗ hK3

⟩
1,3

∣∣⟩2
K2

1K2

|K2|
1K3

|K3|

)1/2]2)1/2

ν.

We now estimate( ∑
K2,K3

⟨∣∣⟨f, hI1 ⊗ hK2

⟩
1,2

∣∣⟩2
K3

⟨∣∣⟨g, hJ1 ⊗ hK3

⟩
1,3

∣∣⟩2
K2

1K2

|K2|
1K3

|K3|

)1/2

≤ |I1|1/2|J1|1/2
( ∑

K2,K3

⟨∣∣⟨f, hK2

⟩
2

∣∣⟩2
I1×K3

⟨∣∣⟨∆1
K1,j1g, hK3

⟩
3

∣∣⟩2
J1×K2

1K2

|K2|
1K3

|K3|

)1/2

.

Here ∆1
K1,j1

g =
∑

J
(j1)
1 =K1

∆1
J1
g is a martingale block, and we essentially threw away

the cancellation in the hI1 , which we can do as the nature of our argument produces one
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extra cancellation. Using this we reduce to estimating
ˆ
Rd

M1
D1

(∑
K2

1K2

|K2|
⊗
[
MD1×D3

⟨
f, hK2

⟩
2

]2)1/2

(∑
K1

[
M1

D1

(∑
K3

[
MD1×D2

⟨
∆1

K1,j1g, hK3

⟩
3

]2 ⊗ 1K3

|K3|

)1/2]2)1/2

ν.

Using Hölder’s inequality and the standard estimates of Lemma 2.2, together with some
vector-valued improvements of Lemma 2.2, which can be obtained by extrapolating the
estimates of the same lemma, we derive the desired upper bound ∥f∥Lp(µ)∥g∥Lp′ (λ1−p′ ).
We have shown that

|E1| . ∥f∥Lp(µ).

The error term with
⟨
b
⟩
J1×K2×K3

−
⟨
b
⟩
K1×K2×K3

is handled similarly.
To complete the proof, we now deal with the error term

E2 =
∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

a(Kj),I1,J1

⟨
f, hI1 ⊗ hK2 ⊗

1K3

|K3|

⟩

hJ1 ⊗
[⟨
b
⟩1,3
J1×K3

−
⟨
b
⟩
J1×K2×K3

] 1K2

|K2|
⊗ hK3 ,

which is in some sense simpler than the error term E1 and does not require the new
techniques of this paper. This is essentially because in the following expansion of the
function b we do not get a sum over the cubes in the shift parameter as above, but rather
over J2 ∈ D2. So we expand(⟨

b
⟩1,3
J1×K3

−
⟨
b
⟩
J1×K2×K3

)
1K2 =

∑
J2⊂K2

⟨
b,

1J1
|J1|

⊗ hJ2 ⊗
1K3

|K3|

⟩
hJ2

and dualise, and use this to reduce to¨
Rd1×Rd3

∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

∑
J2⊂K2

|a(Kj),I1,J1 |
∣∣⟨b, hJ2⟩2∣∣

|K2|

∣∣∣⟨f, hI1 ⊗ hK2 ⊗
1K3

|K3|

⟩∣∣∣∣∣⟨g, hJ1 ⊗ hJ2 ⊗ hK3

⟩∣∣ 1J1
|J1|

1K3

|K3|
.

Using an estimate like (5.2) we get∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

|a(Kj),I1,J1 |
∣∣∣⟨f, hI1⊗hK2 ⊗

1K3

|K3|

⟩∣∣∣
⟨(
SD2

⟨
g, hJ1 ⊗ hK3

⟩
1,3

)⟨
ν
⟩1,3
J1×K3

⟩
K2

.

(5.6)

We now define the auxiliary operator

Ug =
∑
V1,V3

hV1 ⊗
(
SD2

⟨
g, hV1 ⊗ hV3

⟩
1,3

)⟨
ν
⟩1,3
V1×V3

⊗ hV3 ,
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and notice that the term in (5.6) equals∑
K1

I
(i1)
1 =J

(j1)
1 =K1

∑
K2,K3

|a(Kj),I1,J1 |
∣∣∣⟨f, hI1 ⊗ hK2 ⊗

1K3

|K3|

⟩∣∣∣∣∣∣⟨Ug, hJ1 ⊗
1K2

|K2|
⊗ hK3

⟩∣∣∣.
That is, using the original partial paraproduct P , we can see this as the pairing ⟨Pf, Ug⟩
with absolute values in (which is of no significance). Thus, using the known weighted
boundedness of P , we can simply dominate things by ∥f∥Lp(µ)∥Ug∥Lp′ (µ1−p′ ).

It remains to show that ∥Ug∥Lp′ (µ1−p′ ) . ∥g∥Lp′ (λ1−p′ ). We will show this now. Using
again variants of the standard estimates of Lemma 2.2 we get

∥Ug∥Lp′ (µ1−p′ ) ∼

∥∥∥∥∥
( ∑

V1,V3

1V1

|V1|
⊗
[(
SD2

⟨
g, hV1 ⊗ hV3

⟩
1,3

)⟨
ν
⟩1,3
V1×V3

]2 ⊗ 1V3

|V3|

)1/2∥∥∥∥∥
Lp′ (µ1−p′ )

.
∥∥∥∥∥
( ∑

V1,V3

1V1

|V1|
⊗
(
SD2

⟨
g, hV1 ⊗ hV3

⟩
1,3

)2 ⊗ 1V3

|V3|

)1/2

ν

∥∥∥∥∥
Lp′ (µ1−p′ )

=

∥∥∥∥∥
( ∑

V1,V3

1V1

|V1|
⊗
(
SD2

⟨
g, hV1 ⊗ hV3

⟩
1,3

)2 ⊗ 1V3

|V3|

)1/2∥∥∥∥∥
Lp′ (λ1−p′ )

. ∥g∥Lp′ (λ1−p′ ).

We have shown that |E2| . ∥f∥Lp(µ). The error term with
⟨
b
⟩1,2
I1×K2

−
⟨
b
⟩
I1×K2×K3

is
handled similarly. This ends our proof of the tri-parameter Bloom estimate (5.3).
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