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Abstract

Applying Zvonkin’s transform, the exponential convergence in Wasserstein dis-
tance for a class of functional SDEs with Holder continuous drift is obtained. This
combining with log-Harnack inequality implies the same convergence in the sense
of entropy, which also yields the convergence in total variation norm by Pinsker’s
inequality.
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1 Introduction

Consider the SDE on R?
(1.1) dX (t) = b(X(t))dt + dW (1),

where b : R? — R4 W is a d-dimensional Brownian motion on some complete filtration
probability space. If the dissipative condition

<b(l’) - b(y),x - y> < —/ﬂ?o‘l’ - y‘27 T,y € Rd

holds for some ko > 0, then SDE (1.1) has a unique solution and the associated semigroup
has exponential convergence in Wasserstein distance. In [1, 2], the exponential conver-
gence in the sense of Wasserstein distance and total variation norm has been obtained



for a class of functional SDEs/SPDEs with regular coefficients and additive noise, where
exponential convergence in total variation norm is proved due to the gradient-L? estimate

IVE.fI? < CPIf?, t>ro,f € ByF),

see [1, 2] for more details. Recently, using Zvonkin’s transform [16], the strong well-
posedness of SDEs is proved for SDEs with singular drifts, see [4, 9, 12, 13, 14, 15].
For the functional SDEs with singular drift, [5] proved the existence and uniqueness. In
infinite dimension, [6, 8] obtain the existence and uniqueness of the mild solution for a
class of semi-linear functional SPDEs with Dini continuous drift and establish the Harnack
inequality.

Recall that for two probability measures p, v on some measurable space (E,.%), the
entropy and total variation norm are defined as follows:

[ (log g—Z)dy, if v is absolutely continuous with respect to p,

Ent(v|p) == {

0, otherwise;

and
|t = Vllvar := sup |u(A) —v(A)].
AceF

By Pinsker’s inequality (see [3, 10]),

(1.2) = e < SEROAR), v € P(E),
here Z(FE) denotes all probability measures on (F,.%#). Indeed, these two estimates
correspond to the log-Harnack inequality for the associated semigroups, see Lemma 2.1
below for details.

When F is a Polish space, in particular, £ = % in our frame, which will be defined in
the sequel, let

Py i={pe P(€): ull- %) < oo}
It is well known that &2, is a Polish space under the Wasserstein distance

Wa(u,v) = inf ( / Hé—nHioW(dé,dn)) e,
EXE

neC(p,v)

where C(u,v) is the set of all couplings of 1 and v. Moreover, the topology induced by
Wy on 5 coincides with the weak topology.

The purpose of this paper is to establish the exponential convergence in the sense
of Wasserstein distance, the entropy and total variation norm respectively for functional
SDEs with Holder continuous drift, which is much weaker than the Lipschitz condition.

Throughout the paper, we fix ry > 0 and consider the path space € := C([—rg, 0]; R?)
equipped with the uniform norm [|€||o := supge(_,, o) [£(6)]. For any f € C([—ro, 00); R?),
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t>0,let fi(s) = f(t+s),s € [-r0,0]. Then f; € €. {fi}i>0 is called the segment process
of f. Consider the following functional SDE on R¢:

(1.3) AX (1) = AX()dt + {b(X (1)) + B(X:)}dt + odW (1),

where W (t) is a d-dimensional Brownian motion on a complete filtration probability space
(Q, {gt}tzo, 9\, IED), (S Rd X Rd, and

b:R'—>RY B: ¢ —R?
are measurable.
The remainder of the paper is organized as follows. In Section 2 we summarize the

main results of the paper; In section 3, we give precise estimate for Zvonkin’s transform
and the main results are proved in Section 4.

2 Main Results

Throughout this paper, we make the following assumptions:

(H1) o is invertible and b is bounded, i.e.
(2.1) 16|00 < 00
Moreover, there exist constants £ > 0 and « € (0,1) such that
(2.2) b(a) = b(y)] < Kle —y|*, z,y R

(H2) A is a negative definite self-adjoint operator and there exists A\; < Ay < -+ < Ay
such that Ae; = —\;e;,1 =1,2,--- ,d. Furthermore,

(2.3) Bl <00, [B(§) = Bm)| <Al —nllecs &meE
for some constant Ag > 0.

Since Holder continuity is stronger than Dini continuity, according to [8, Theorem 2.1]
for H = R? under (H1) and (2.3), the SDE (1.3) has a unique non-explosive solution
denoted by X¢ with X, = ¢ and

(2.4) E sup || X5 <00, T >0.
te(0,7

Let P,(¢,dn) be the distribution of X*, and

P(E) = /% FPEdn), € By(@).

Moreover, for any v € &, let v P, = f{ P,(&,-)v(dE). Then v P, is the distribution of the
solution X; to (1.3) from initial distribution v.

The lemma below gives the estimate of Ent(FP(&, )| Pi(n, ) and || P(&, ) — Pi(n, ) || var
respectively.



Lemma 2.1. Assume (H1) and (2.3). Then the log-Harnack inequality holds, i.e.

C(t
ﬁ”f—n!ﬁo, t>ro,&neC, fe B (RY

for some function C : (rg,00) — (0,00). Thus, for any t > ro, P&, ") is equivalent to
P,(n,-). Moreover,

(2.5)  Pilog f(n) <log B f(§) +

26)  Bu(PA& IR ) = P {low ST @ < I ey,
and
27) IPE) = P e < 5l =

Proof. The log-Harnack inequality (2.5) is a known result in [8, Theorem 2.2] with H = R¢,
see also [7, Theorem 2.4] for log-Harnack inequality of the path-distribution dependent
SDEs with Dini continuous drift. Combining the definition of Ent(P;(¢, )| Pi(n,-)) and
[11, Theorem 1.4.2], we obtain (2.6). Finally, (2.7) follows from (1.2) and (2.6). O

Remark 2.2. For any v,v € Py and m € C(v,1), taking expectation on both sides of
(2.5) with respect to w, we have for any t > ro,

[, piow fnymtagan < [ o Pft@ymtag.an + o [ e~ nlr(ag an

@ (
Jensen’s inequality and the definition of Wy imply that
. C() i,
(28) (th)(lng) S lOg(VPt)(f)+ WQ(%V) ) t>7’0.

(t—r) Al

Then we have

. Ot .
(29) Ent(l/Pt’VPt) S ﬁWQ(y7 1/)2, t > To,
— 70
and
C(t
(2.10) lvP — P2, < G w52, >,

YT 2t — 1) A2
The main result in this paper is the following theorem.

Theorem 2.3. Assume (H1)-(H2), and let

-1 2
(2.11) Xo = (3Vllo bl + VOrTlo 2B + 6c)

then the following assertions hold.



(1) The following estimate holds:

E||X§ XA < inf e o exp g e o AN e) — §>\ e~ N0 ) ¢ —Hf — 1l
£€(0,1),A> N0 ’ g ! 1—¢
with
3)\+25{ )\d+ )‘B+ Tbcr)\aHB||OO}+( 165) HJHZTba)\a
ANe) - = ,
1—¢
and
(2.12)

e} _a o _ _ _ —
Toona =LA 2 oll?llo™|1° (125 + 4[[blloc + 48(lo ™" [I* + o7 B+ ATDIBI) -

(2) If there exists € € (0,1), A\ > X\ such that

~ 25
A8 < DxemFh,

then (1.3) has a unique invariant probability measure y and for any ty > ro,

max {Wa(P(§, ), 1), Ent(P(&, ) |), 1€, ) = plloar} < m1(§)e™™", £ € F, 1> 1

for some constants k1(§), ko > 0, here k(&) means it depends on €.

Remark 2.4. Since supgcq #1(§) = 0o from the proof of Theorem 2.3 below, Theorem 2.3
can not imply the strong exponential ergodicity, i.e. there exist constants ki, ke > 0 such
that

sup Wy (Bi(&, ), p) < ke ™t

=4

On the other hand, there are a lot of examples where Wy (i, po) goes to 0 as n goes to
infinity, but u, is singular with respect to po such that Ent(u,|uo) = oo and || pn— o llvar =
1. Thus, the assertion in (2) is not trivial. Finally, [1, Theorem 1.1 (2),(3))] obtained
the exponential convergence in relative entropy and L*(u) by the hyper-contractivity of P
for large enough t. However, it is difficult to establish hyper-contractivity of P, since the
coupling property

I1X5 = XP|I% < Ce 1€ = nll3,

does not hold due to the singularity of b.



3 Precise Estimate for Zvonkin’s Transform

Since b is singular, we need to construct a regular transform to remove b. To this end, for
any A > 0, consider the following equation

(3.1) u = / e MPYb+ Vyuldt,
0

where the semigroup (P?)~¢ is generated by (ZF);>¢ which solves the SDE
(3.2) dZ7 = AZE + odW(t), Z8 = .

The following lemma gives a precise estimate for the solution to (3.1), and it is very
important in the proof of the exponential convergence.

Lemma 3.1. Under (H1), for any A > A\ with A\ defined in (2.11),
(i) The equation (3.1) has a unique strong solution u* € C} (R%; R%);
(i) [V < &
(iii) ||V*ut||e < %pr’,\’a with T4, 10 defined in (2.12).
Proof. Firstly, it is easy to see that
vV, 28 = ey, V,V,ZF =0, t>0.
This combining the Bismut formula [12, (2.8)] implies that

v, = B(1A [ 19,22 aw)

_E<f(tZZ”)

(3.3)

t
[eternaw), 1 e m@h.eo
0
By the Cauchy-Schwartz inequality and Itd’s isometry, we obtain that

- o PP B )
— t Y

(3.4) IV, PP fI2 () f e B(RY, t>0.

(i) Let 2# = C}(R% RY)), which is a Banach space under the norm

lull = = llulloo + [Vl oo

For any A > 0, u € J2, define
() () = / M POV + b) (2)dt.
0
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Then we claim I'*# C J# for any A > 0. In fact, for any u € J#, it holds that

1T oo = sup / e MPY(Vyu + b)(x)dt’
0

z€R4

fikaMVum@+nww)A Y

< Il Pl +

< 00

By (3.4), we have

||VFAu||Oo = sup
z€RY,|n|<1

00 fAt
< Halll/ (lollsolVulloo + [[b]] 0 )d2

/ e MV, P)(Vyu + b)(x)dt‘

o0 —At

< lo ™ I (Iblloc [ Vulloo + HbHoo)/O =t

\/_
< \/7_r||0_1||(||bHO<\J/”XVU||oo+ olle) _
So, "% C A for any A > 0. Next, by the fixed-point theorem, it suffices to show that

for large enough A > 0, I'* is contractive on 2. To do this, for any u, @ € S, similarly
to the estimates of ||[ul/o and ||VI*u||o, above, we obtain that

I - Pl < o - g,

(3.5) 1
bl|so .
|’V(F>\U—P>\ﬂ)||o@ S \/_”U ||” H ||VU—VU||OO

VA

Taking A > 0 satisfying

Y]] o blloo 1
. VAl bl , 1ol _ 1

N5y X =6
then T'* is contractive on ., which implies that (3.1) has a unique solution u* €
C} (R4 RY)) by the fixed-point theorem. Thus, from (3.6), (i) holds for

2
A2 20 = (3v/Allo ™ bllse + v/ o TIPTIE + 61l -
(ii) For any A > Ay, one infers from (3.1) and (3.4) that

meusé MV + Vyu'} | dt

00 ef)\t

<o+ Vel bl [ —=dt

0o Vi
_1 _
A72VTllo [Blle (1 + [Vt flo)-

7
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This and (3.6) yield (ii).
In the sequel, we intend to verify (iii). From (3.3) and the semigroup property, we
have

Vo P (@) = VPP f)(2)

(D [y awi), 15 e

This further gives that

VeAt 2/ 0 Z:t t/2
( / 7 Z/Qf)( t/2) / <UleAT77,dW(T>>), t > O,f c %b(Rd),
0

Atf2y

1 0 B
§(Vn/VnPt Hz) = E(

where we have used V,y 2}, = ¢ . Thus, applying Cauchy-Schwartz’s inequality and
[t6’s isometry and taking (3.4) into con81derat10n, we derive that

4 o121 2P £2(2
Vo VPP ) < llo gl TR
_ Ao Pl PR )

12

(3.7)

, >0, f € B(RY.

Set h(-) := h(-) — h(z) for fixed z € R? and h € B,(R%) which verifies
(3.8) n(z) = h(y)| < &z —y|*,  wz,y R
for some & > 0 and & € (0,1). Then (3.7) implies that

V.,V P0h2 v V Poh ||O-_1H ’77‘ |?7‘2]Eh 7% _ h 2
Vo Ny B[ (z) = | () < v |h(Z]) — h(z)]
& Ao WP oy o
< T 2o e
where in the second display we have used that

t
Z5 —x = / adW (r),
0
and utilized Jensen’s inequality as well as It6’s isometry. Thus, if we can prove that

(3.10) |(b+ Vyut)(z) — (b+ Vyut)(y)| < |z —y|®, z,y€R?
for some £ > 0 and & € (0, 1), we get from (3.1) and (3.9) that

t> 0.

00 —At _

IV < 2o PR [ St
0 t
- 0 Lt
@.11) — 2o PRlo| X [Tt
o t'2

a

12 ta Oy &
= 2[le 7 |I?R ] o] L(5)A™=.



In the remaining, we intend to prove (3.10). Combining (3.4) and (3.7), we arrive at
IVP f(z) = VP f(y)]

(3.12) < (2||0'_1||j|50—y| A 2H<\7/;H

Thus, for any f € %,(R?), A > 0,2,y € R?, it holds that

\ [ e R - v ) dtH
0
< @lo™ P+ 2o DI [ e (ﬂ A i) dat

) [ flloe, f € Bp(RY),t > 0,2,y R

t \/Z
12 . |xfy|2/\e_1 1
13) < @I+ 20 DIl / i
1 1 00
+ ]z —y) —dt+|a:—y|/ oM
|z—y|2Ae~1 t 1

< @lleH P+ 200 DI Nl (2 + A7 Dlz =yl + |z — yllog(le — y|7* Ve))
< @le M P+ 200 DI Nl (3 + A7) |z — yllog(Jz — y[ 7% +e).
For any A > \g, note from (2.2), (ii), (3.1), (3.4), (3.7) and (3.13) that
[(b+ Vou*)(z) = (b + Vou*)(y)]
< (L +[[Vutfloo)rlz = y|* + bl | VU (2) = VO () [ 10—y
+ D]l [Vut (@) = Vur (@)L ga—yi<1y

6 (0% 2 (0%
< g’flx —y|* + EHbHOO‘x — L{jz—yi>1y
6 _ _ - o
+ =@l P 2007 DB+ ATl — yl
)1{|z—y\§1}
24

6 2 _ _ _ o
< (5ot 2000+ 5 U0 2+ o D+ AR ) o = o

X |z —y[**log (e + P

where in the third inequality we have used the fact that the function [0,1] > =
2!~ log(e 4 =) is non-decreasing. Thus, (3.10) holds for & = 2k + 2||b]| + 2 ([0 ||* +
o= N3 + A™H|b]|2, and @ = . From (3.11), we finish the proof. O

Remark 3.2. In the multiplicative noise case, V,ZF is a random variable, precise es-

timate for the solution of (3.1), especially |[V?u*||w, is so sophisticated that we only
consider the additive noise case in this paper.



4 Proof of Theorem 2.3

Lemma 4.1. Assume (H1)-(H2)and
Ap < Ae 20,
then

(4.1) sup B[| X7|[3, < oo
>0

Proof. For simplicity, we denote X¢(t) by X (¢). It6’s formula implies that
d| X (1)]* =2 (X (t), AX (1)) dt + 2 (X (t),b(X (t))) dt +2 (X (t), 0 dW (1))
+2(X(¢), B(Xy)) dt + [|o||75 dt.
Let &o(s) =0, s € [—70,0]. It follows from (2.3) that
(X (1), B(Xy)) < [X(OIB(X0)] < Apl|Xell5 + 1B (&)1 X (1)l
Since Ap < A\je”2M70 we can take small enough ¢ € (0,1) and € € (0,2);) such that
2\p
1—c¢
This together with Young’s inequality and (H2) yields that
AX ()] < —2M| X (6)Fdt + {2(|[bllo + [BENIX (D] + [0 75}t
+ 22| X120t + 2 (X (1), 0 AW (1))
1
< (=20 + )| X (1)]Pdt + {E(HbHoo +]B(&)))* + HUHizs} d

4+ 20| Xy |2 dt + 2 (X (t), 0 AW (1)) .
Thus it is not difficult to see that
de®M =9 X (1) ]2dt < 2A5ePM 9| X, |2 dt

1
43) 6 Lo+ 1B + oy |

+ 20PN =X (1), o AW (1)) .

< (2)\1 — 6)6_(2)\1_€)T0.

(4.2)

Let n, = sup,._, ;€2 =957 X (5)|2, then
s€[—ro,r]

B < Nl + 22 [
0

(1.4 [ e Lo+ B + ol

+E sup / 26N (X (1), o AWV (£))
0

s€[0,r]
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On the other hand, BDG inequality and Young’s inequality imply that

E sup / 2ePM=N (X (1), o AW (1))

selo,r] Jo
1
(4.5) <E {/ 162720 IX(t)’2dt}
0
T 2
< gEnr—i_/ 6(2)\176)75 % 4||O-|| dt.
0 €
1 - 4fo|? o
Let = f(”b”"OHB(go)ll)_tr” st 2 Combining (4.4) and (4.5), we have
2 2)\ (2/\1—6)7“() T T
(4.6) En, < 1] 4 2ABC IE/ ntdt+ﬁ/ o=ty
1—c¢ 1—¢ 0 0

By (2.4), Gronwall’s inequality implies that

2\ (2A1—€)ro 2
En < exp{ e t} el
1—¢ 1—¢

t 2\ (2A1—€)ro
—i—ﬁ/ exp{Bf—E(t—s)—i—(Q)\l—e)s}ds.
o _

(4.7)

Noting that En, > et=0)CM=9IE|| X,||2,, we obtain that

2)\ (2)\1—6)7‘0 2
EHXtHgo < or0(2A—¢) exp { (Be— _ (2)\1 o 6)) t} H£|’oo

1—¢ 1—e¢
(48) t 2)\Be(2>\1—e)m
+ er0(2’\1_6)5/ exp { (— — (2M\ — e)) (t— 3)} ds.
Since 22 < (2); — e)e” 7970 we conclude that (4.1) holds. O

Proof of Theorem 2.3. (1) Let X and X be solutions to (1.3) with X, = ¢, Xy = 7, then

" AX (1) = {AX () + (X (1) + BX)}t + odW (D), Xo=E.
dX(t) = {AX () +b(X(t)) + B(Xy) ydt + odW (1), Xo=n.

For any A > ), let 0*(z) = x + u*(z). Combining (3.1) and Lemma 3.1, we have
(4.10) %Tr(o—a*v%ﬁ) + Vyut +b+ Vaout = At

By (4.9), (4.10) and It6’s formula, we have

doM(X (1)) = {AX(t) + 2N X (1)) + VONX (1)) B(X,)}dt + VONX (1))o dW (1),

11



Ao (X (1)) = {AX (1) + M (X () + VO (X () B(Xo) bt + VO (X (t))o dV (1)
0%

So, letting £(t) = 0N X (1)) —
dlg(t)]* =2(AX (t) — AX
(

X (t)), we arrive at

t),0M(X (1) — 0*(X (1))

X(
2A<<> (1)) = wM(X (1)) dt
(4.11) +2(&(1), VO (X (1) B(X,) — VO (X (D) B(X,)]) dt
+2(&(t), [VOMX (1)) — VO (X (0)]od W (1))

I H[VQ)‘ ( )) — VQA(X(t))]UHZS d

Firstly, it is easy to see that
2(AX(t) —
=2(AX(t) —

(1), 02 (X (1)) — 0*(X(1)))
1), X (t) — X (1) + u (X (1)) — u*(X (1))

< oM|X(H) — X + —|X< ) — X(0)

AX
AX

By Lemma 3.1 and (H2), it holds that
2 <§ ), [VONX()B(X,) — VO (X (1) B(X.)])
< ng( ) = X(OIIVO(X (1) — VO X (1)1 B(X0)|

F2IX() - XUV (XO)IBX) ~ B,

72
<= S E— —
< 25Tboxa||B|| [X(8) = XOF + 528X = Xills
and
_ 12 _
(4.12) 2MEO - [ (X (1) — A (X(0)] < 52X [X (1) = X (1)
Moreover,
(4.13) 1[V6*(x (1) = VX (@)]o ||y < Tl?a)\aHO-H%{S’X(t) - X"
25
et 3 25 (2 72 12
M) = P 32 {0 et 2 Tl Bl + g5 Thonalolis -
Since ||[V0*(x)|| > 3 for any = € R?, we have
25
diX(1) = X(OF < =Ml X () — X (0)dt
(4.14) +A1< JIX: — Kl

LB <5 ), [VONX (1)) = VONX (£)]odW (1))

12



Similarly to (4.3), it holds that

de SN X (1) — X ()2t < A(\)e M| X, — X2

I%

25 _
+ e N (E), [VONX () = VONX (O)adW (1))
Set v, = sup e¥M5T X (5) — X (s)[2 and we get
SE[—T0,r]

Evy, < [I€ — n)l% + Ai(A)eSV7E /r Yedt
(4.15) -
+E sup / 2D BNt (g(1), [VONX (1) — VO X (0)]odIV (1))

s€[0,r]

Again, BDG inequality and Young’s inequality yield that for any € € (0, 1),

B sup [ BN (€(0), (76X (1) — VO (0))od (1)

s€l0,r] JO

< 9K
= {/0 "t

< 21E\/ paalol? [ X - X0
0

N |=

o [VON(X (1)) — VO ()]0 dt}
(4.16)

< eRry, + L boday em [ gy
< B+ 12 ol PE [

Substituting (4.16) into (4.15), we obtain

2 A170 ba')\oz 2 r

+

(4.17) o < ”5 nll% A (A )es 16e lo| / Yedt.
1—-¢ 1—c¢ 0

Again by (2.4), Gronwall’s inequality implies that

AaNeFrr + Ehiase ol | e — g,
(4.18) Ev; < exp - t T
Noting that Ev, > e~ F¥ME|| X, — X,||2., we obtain
E|lX: — X%
119 _ o e (20 ool 25 N Ll
1—¢ 8 1—¢

13



Thus, letting
25Tl27,a,A,a

M) + =222 |o|?
l1—¢ ’
combining the definition of A;(\) and noting ||o]|3;¢ < d||o[]?, we prove (1).
(2) Now, if there exists £ € (0,1), A > Ao such that

AN e) =

. 25 s
AN E) < g)\le_?f)’\”"o,

then there exists constants kg, ko > 0 such that
(4.20) Wo(P(&, -, Po(n,-)* < E[[X; — Xill5 < woe™ (1€ — ]|

This yields that for any 0 <t < s,

2
3
(4.21) E|X¢ - X§|2 =E fo X < ke E)E — XE |2,
FAs

~ and
—€

Noting that A(X, &) > &) >

1
1-¢€

—

- 25
AN E) < g)\le_%’\m’,

we conclude that

A\g < A\je 2o,

According to Lemma 4.1, it holds that

sup E[| X¢[[3, < oc.
r>0

Thus,
(4.22) Wy(Pi(€,-), Po(€,))° < E|XF — XS|% < ma(€)e

holds for some positive constant x;(§) depending on £. So, there exists a probability
measure [t such that

(4.23) Wy (P&, '),,ug)2 < Ky(€)e ™.
It remains to prove that pe does not depend on §. For any §,n € €,

Walpe, pn)® < Wa(Pi(E, ), pe)® + Wa P&, ), Bi(n,-)* + Wa( P, -), i)’

4.24
(4.24) < R (€)™ + roe= € — |2 + s (m)e"2

14



Letting ¢ — oo, we obtain ue = p,,.
Next, for any ¢ty > ry and t > tg, by the semigroup property, (2.9) and (4.22), we have

Ent(ljt(g’ ')|Pt<777 )) = Ent(Pt—to (6’ ')Ptoujt—to(na ')Pto)

C
< %WQ(Pt—to (éa '): Pt—to (77’ ))2
C(t
~ (to —(7“0)>/\ 1”0652t0€_ﬁ2t”5 — 7|2

Thus (1.2) implies that for any ¢ > o,

Koe™Pe 2 |€ — n]|Z..
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Combining (2.9), (2.10), (4.23) and the semigroup property, since y is the invariant prob-
ability measure, we have

Ent(Pt( )|:u) Ent(Pt to( )‘Pt()|ILL‘PtO)

C(to) 5
< — 2t Wo(P,_ .
= (to-?“())/\l 2( t t0(£> ),/L)
C<t0) Koty ,—Kat
- (to—’f‘o)/\lﬁl(g)e ¢ ’
and
C(t(J) to —kat
P Kr210 K2 .
|| t(gﬂ ) /“LHUar = Q(t . TO) /\2'%1(5)6 €
Thus, we complete the proof. O
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