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Abstract

Applying Zvonkin’s transform, the exponential convergence in Wasserstein dis-
tance for a class of functional SDEs with Hölder continuous drift is obtained. This
combining with log-Harnack inequality implies the same convergence in the sense
of entropy, which also yields the convergence in total variation norm by Pinsker’s
inequality.
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1 Introduction

Consider the SDE on Rd

dX(t) = b(X(t))dt+ dW (t),(1.1)

where b : Rd → Rd, W is a d-dimensional Brownian motion on some complete filtration
probability space. If the dissipative condition

〈b(x)− b(y), x− y〉 ≤ −κ0|x− y|2, x, y ∈ Rd

holds for some κ0 > 0, then SDE (1.1) has a unique solution and the associated semigroup
has exponential convergence in Wasserstein distance. In [1, 2], the exponential conver-
gence in the sense of Wasserstein distance and total variation norm has been obtained
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for a class of functional SDEs/SPDEs with regular coefficients and additive noise, where
exponential convergence in total variation norm is proved due to the gradient-L2 estimate

|∇Ptf |2 ≤ CPt|f |2, t > r0, f ∈ Bb(C ),

see [1, 2] for more details. Recently, using Zvonkin’s transform [16], the strong well-
posedness of SDEs is proved for SDEs with singular drifts, see [4, 9, 12, 13, 14, 15].
For the functional SDEs with singular drift, [5] proved the existence and uniqueness. In
infinite dimension, [6, 8] obtain the existence and uniqueness of the mild solution for a
class of semi-linear functional SPDEs with Dini continuous drift and establish the Harnack
inequality.

Recall that for two probability measures µ, ν on some measurable space (E,F ), the
entropy and total variation norm are defined as follows:

Ent(ν|µ) :=

{∫
(log dν

dµ
)dν, if ν is absolutely continuous with respect to µ,

∞, otherwise;

and
‖µ− ν‖var := sup

A∈F
|µ(A)− ν(A)|.

By Pinsker’s inequality (see [3, 10]),

(1.2) ‖µ− ν‖2
var ≤

1

2
Ent(ν|µ), µ, ν ∈P(E),

here P(E) denotes all probability measures on (E,F ). Indeed, these two estimates
correspond to the log-Harnack inequality for the associated semigroups, see Lemma 2.1
below for details.

When E is a Polish space, in particular, E = C in our frame, which will be defined in
the sequel, let

P2 :=
{
µ ∈P(C ) : µ(‖ · ‖2

∞) <∞
}
.

It is well known that P2 is a Polish space under the Wasserstein distance

W2(µ, ν) := inf
π∈C(µ,ν)

(∫
C×C

‖ξ − η‖2
∞π(dξ, dη)

) 1
2

, µ, ν ∈P2,

where C(µ, ν) is the set of all couplings of µ and ν. Moreover, the topology induced by
W2 on P2 coincides with the weak topology.

The purpose of this paper is to establish the exponential convergence in the sense
of Wasserstein distance, the entropy and total variation norm respectively for functional
SDEs with Hölder continuous drift, which is much weaker than the Lipschitz condition.

Throughout the paper, we fix r0 > 0 and consider the path space C := C([−r0, 0];Rd)
equipped with the uniform norm ‖ξ‖∞ := supθ∈[−r0.0] |ξ(θ)|. For any f ∈ C([−r0,∞);Rd),
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t ≥ 0, let ft(s) = f(t+s), s ∈ [−r0, 0]. Then ft ∈ C . {ft}t≥0 is called the segment process
of f . Consider the following functional SDE on Rd:

(1.3) dX(t) = AX(t)dt+ {b(X(t)) +B(Xt)}dt+ σdW (t),

where W (t) is a d-dimensional Brownian motion on a complete filtration probability space
(Ω, {Ft}t≥0,F ,P), σ ∈ Rd ⊗ Rd, and

b : Rd → Rd, B : C → Rd

are measurable.
The remainder of the paper is organized as follows. In Section 2 we summarize the

main results of the paper; In section 3, we give precise estimate for Zvonkin’s transform
and the main results are proved in Section 4.

2 Main Results

Throughout this paper, we make the following assumptions:

(H1) σ is invertible and b is bounded, i.e.

(2.1) ‖b‖∞ <∞.

Moreover, there exist constants κ > 0 and α ∈ (0, 1) such that

|b(x)− b(y)| ≤ κ|x− y|α, x, y ∈ Rd.(2.2)

(H2) A is a negative definite self-adjoint operator and there exists λ1 ≤ λ2 ≤ · · · ≤ λd
such that Aei = −λiei, i = 1, 2, · · · , d. Furthermore,

‖B‖∞ <∞, |B(ξ)−B(η)| ≤ λB‖ξ − η‖∞, ξ, η ∈ C(2.3)

for some constant λB > 0.

Since Hölder continuity is stronger than Dini continuity, according to [8, Theorem 2.1]
for H = Rd, under (H1) and (2.3), the SDE (1.3) has a unique non-explosive solution
denoted by Xξ

t with X0 = ξ and

E sup
t∈[0,T ]

‖Xξ
t ‖∞ <∞, T > 0.(2.4)

Let Pt(ξ, dη) be the distribution of Xξ
t , and

Ptf(ξ) :=

∫
C

f(η)Pt(ξ, dη), f ∈ Bb(C ).

Moreover, for any ν ∈P2, let νPt =
∫

C
Pt(ξ, ·)ν(dξ). Then νPt is the distribution of the

solution Xt to (1.3) from initial distribution ν.
The lemma below gives the estimate of Ent(Pt(ξ, ·)|Pt(η, ·)) and ‖Pt(ξ, ·)−Pt(η, ·)‖var

respectively.
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Lemma 2.1. Assume (H1) and (2.3). Then the log-Harnack inequality holds, i.e.

(2.5) Pt log f(η) ≤ logPtf(ξ) +
C(t)

(t− r0) ∧ 1
‖ξ − η‖2

∞, t > r0, ξ, η ∈ C , f ∈ B+
b (Rd)

for some function C : (r0,∞) → (0,∞). Thus, for any t > r0, Pt(ξ, ·) is equivalent to
Pt(η, ·). Moreover,

Ent(Pt(ξ, ·)|Pt(η, ·)) = Pt

{
log

dPt(ξ, ·)
dPt(η, ·)

}
(ξ) ≤ C(t)

(t− r0) ∧ 1
‖ξ − η‖2

∞,(2.6)

and

(2.7) ‖Pt(ξ, ·)− Pt(η, ·)‖2
var ≤

C(t)

2(t− r0) ∧ 2
‖ξ − η‖2

∞.

Proof. The log-Harnack inequality (2.5) is a known result in [8, Theorem 2.2] with H = Rd,
see also [7, Theorem 2.4] for log-Harnack inequality of the path-distribution dependent
SDEs with Dini continuous drift. Combining the definition of Ent(Pt(ξ, ·)|Pt(η, ·)) and
[11, Theorem 1.4.2], we obtain (2.6). Finally, (2.7) follows from (1.2) and (2.6).

Remark 2.2. For any ν, ν̃ ∈ P2 and π ∈ C(ν, ν̃), taking expectation on both sides of
(2.5) with respect to π, we have for any t > r0,∫

C 2

Pt log f(η)π(dξ, dη) ≤
∫

C 2

logPtf(ξ)π(dξ, dη) +
C(t)

(t− r0) ∧ 1

∫
C 2

‖ξ − η‖2
∞π(dξ, dη).

Jensen’s inequality and the definition of W2 imply that

(2.8) (ν̃Pt)(log f) ≤ log(νPt)(f) +
C(t)

(t− r0) ∧ 1
W2(ν, ν̃)2, t > r0.

Then we have

Ent(νPt|ν̃Pt) ≤
C(t)

(t− r0) ∧ 1
W2(ν, ν̃)2, t > r0,(2.9)

and

(2.10) ‖νPt − ν̃Pt‖2
var ≤

C(t)

2(t− r0) ∧ 2
W2(ν, ν̃)2, t > r0.

The main result in this paper is the following theorem.

Theorem 2.3. Assume (H1)-(H2), and let

(2.11) λ0 =
(

3
√
π‖σ−1‖‖b‖∞ +

√
9π‖σ−1‖2‖b‖2

∞ + 6‖b‖∞
)2

,

then the following assertions hold.
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(1) The following estimate holds:

E‖Xξ
t −X

η
t ‖2
∞ ≤ inf

ε∈(0,1),λ≥λ0
e

25
8
λ1r0 exp

{
e

25
8
λ1r0

(
Λ(λ, ε)− 25

8
λ1e−

25
8
λ1r0

)
t

}
‖ξ − η‖2

∞
1− ε

with

Λ(λ, ε) : =
3
4
λ+ 25

16

{
2
5
λd + 72

25
λB + 12

25
Υb,σ,λ,α‖B‖∞

}
+
(
d
16

+ 25
16ε

)
‖σ‖2Υ2

b,σ,λ,α

1− ε
,

and

Υb,σ,λ,α = Γ(
α

2
)λ−

α
2 ‖σ‖α‖σ−1‖2

(
12κ+ 4‖b‖∞ + 48(‖σ−1‖2 + ‖σ−1‖)(3 + λ−1)‖b‖2

∞
)
.

(2.12)

(2) If there exists ε̃ ∈ (0, 1), λ̃ ≥ λ0 such that

Λ(λ̃, ε̃) <
25

8
λ1e−

25
8
λ1r0 ,

then (1.3) has a unique invariant probability measure µ and for any t0 > r0,

max {W2(Pt(ξ, ·), µ),Ent(Pt(ξ, ·)|µ), ‖Pt(ξ, ·)− µ‖var} ≤ κ1(ξ)e−κ2t, ξ ∈ C , t > t0

for some constants κ1(ξ), κ2 > 0, here κ1(ξ) means it depends on ξ.

Remark 2.4. Since supξ∈C κ1(ξ) =∞ from the proof of Theorem 2.3 below, Theorem 2.3
can not imply the strong exponential ergodicity, i.e. there exist constants κ1, κ2 > 0 such
that

sup
ξ∈C

W2(Pt(ξ, ·), µ) ≤ κ1e−κ2t.

On the other hand, there are a lot of examples where W2(µn, µ0) goes to 0 as n goes to
infinity, but µn is singular with respect to µ0 such that Ent(µn|µ0) =∞ and ‖µn−µ0‖var =
1. Thus, the assertion in (2) is not trivial. Finally, [1, Theorem 1.1 (2),(3))] obtained
the exponential convergence in relative entropy and L2(µ) by the hyper-contractivity of Pt
for large enough t. However, it is difficult to establish hyper-contractivity of Pt since the
coupling property

‖Xξ
t −X

η
t ‖2
∞ ≤ Ce−λt‖ξ − η‖2

∞

does not hold due to the singularity of b.
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3 Precise Estimate for Zvonkin’s Transform

Since b is singular, we need to construct a regular transform to remove b. To this end, for
any λ > 0, consider the following equation

(3.1) u =

∫ ∞
0

e−λtP 0
t {b+∇bu}dt,

where the semigroup (P 0
t )t>0 is generated by (Zx

t )t≥0 which solves the SDE

(3.2) dZx
t = AZx

t + σdW (t), Zx
0 = x.

The following lemma gives a precise estimate for the solution to (3.1), and it is very
important in the proof of the exponential convergence.

Lemma 3.1. Under (H1), for any λ ≥ λ0 with λ0 defined in (2.11),

(i) The equation (3.1) has a unique strong solution uλ ∈ C1
b (Rd;Rd);

(ii) ‖∇uλ‖∞ ≤ 1
5
;

(iii) ‖∇2uλ‖∞ ≤ 1
5
Υb,σ,λ,α with Υb,σ,λ,α defined in (2.12).

Proof. Firstly, it is easy to see that

∇ηZ
x
t = eAtη, ∇η′∇ηZ

x
t = 0, t ≥ 0.

This combining the Bismut formula [12, (2.8)] implies that

∇ηP
0
t f(x) = E

(f(Zx
t )

t

∫ t

0

〈σ−1∇ηZ
x
r , dW (r)〉

)
= E

(f(Zx
t )

t

∫ t

0

〈σ−1eArη, dW (r)〉
)
, f ∈ Bb(Rd), t > 0.

(3.3)

By the Cauchy-Schwartz inequality and Itô’s isometry, we obtain that

|∇ηP
0
t f |2(x) ≤ ‖σ

−1‖2|η|2P 0
t f

2(x)

t
, f ∈ Bb(Rd), t > 0.(3.4)

(i) Let H = C1
b (Rd;Rd)), which is a Banach space under the norm

‖u‖H : = ‖u‖∞ + ‖∇u‖∞.

For any λ > 0, u ∈H , define

(Γλu)(x) =

∫ ∞
0

e−λtP 0
t (∇bu+ b)(x)dt.
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Then we claim ΓλH ⊂H for any λ > 0. In fact, for any u ∈H , it holds that

‖Γλu‖∞ = sup
x∈Rd

∣∣∣∣∫ ∞
0

e−λtP 0
t (∇bu+ b)(x)dt

∣∣∣∣
≤ (‖b‖∞‖∇u‖∞ + ‖b‖∞)

∫ ∞
0

e−λtdt

≤ ‖b‖∞‖∇u‖∞ + ‖b‖∞
λ

<∞.

By (3.4), we have

‖∇Γλu‖∞ = sup
x∈Rd,|η|≤1

∣∣∣∣∫ ∞
0

e−λt∇ηP
0
t (∇bu+ b)(x)dt

∣∣∣∣
≤ ‖σ−1‖

∫ ∞
0

e−λt√
t

(‖b‖∞‖∇u‖∞ + ‖b‖∞)dt

≤ ‖σ−1‖(‖b‖∞‖∇u‖∞ + ‖b‖∞)

∫ ∞
0

e−λt√
t

dt

≤
√
π‖σ−1‖(‖b‖∞‖∇u‖∞ + ‖b‖∞)√

λ
<∞.

So, ΓλH ⊂H for any λ > 0. Next, by the fixed-point theorem, it suffices to show that
for large enough λ > 0, Γλ is contractive on H . To do this, for any u, ũ ∈H , similarly
to the estimates of ‖Γλu‖∞ and ‖∇Γλu‖∞ above, we obtain that

‖Γλu− Γλũ‖∞ ≤
‖b‖∞
λ
‖∇u−∇ũ‖∞,

‖∇(Γλu− Γλũ)‖∞ ≤
√
π‖σ−1‖‖b‖∞√

λ
‖∇u−∇ũ‖∞.

(3.5)

Taking λ > 0 satisfying
√
π‖σ−1‖‖b‖∞√

λ
+
‖b‖∞
λ
≤ 1

6
,(3.6)

then Γλ is contractive on H , which implies that (3.1) has a unique solution uλ ∈
C1
b (Rd;Rd)) by the fixed-point theorem. Thus, from (3.6), (i) holds for

λ ≥ λ0 =
(

3
√
π‖σ−1‖‖b‖∞ +

√
9π‖σ−1‖2‖b‖2

∞ + 6‖b‖∞
)2

.

(ii) For any λ ≥ λ0, one infers from (3.1) and (3.4) that

‖∇uλ‖∞ ≤
∫ ∞

0

e−λt‖∇P 0
t {b+∇bu

λ}‖∞dt

≤ ‖σ−1‖(1 + ‖∇uλ‖∞)‖b‖∞
∫ ∞

0

e−λt√
t

dt

≤ λ−
1
2
√
π‖σ−1‖‖b‖∞(1 + ‖∇uλ‖∞).
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This and (3.6) yield (ii).
In the sequel, we intend to verify (iii). From (3.3) and the semigroup property, we

have

∇ηP
0
t f(x) = ∇ηP

0
t/2(P 0

t/2f)(x)

= E
(

(P 0
t/2f)(Zx

t/2)

t/2

∫ t
2

0

〈σ−1eArη, dW (r)〉
)
, t > 0, f ∈ Bb(Rd).

This further gives that

1

2
(∇η′∇ηP

0
t f)(x) = E

(
(∇eAt/2η′P

0
t/2f)(Zx

t/2)

t

∫ t/2

0

〈σ−1eArη, dW (r)〉
)
, t > 0, f ∈ Bb(Rd),

where we have used ∇η′Z
x
t/2 = eAt/2η′. Thus, applying Cauchy-Schwartz’s inequality and

Itô’s isometry and taking (3.4) into consideration, we derive that

|∇η′∇ηP
0
t f |2(x) ≤ 4

t
‖σ−1‖2|η|2‖σ

−1‖2|η′|2P 0
t f

2(x)

t

=
4‖σ−1‖4|η|2|η′|2P 0

t f
2(x)

t2
, t > 0, f ∈ Bb(Rd).

(3.7)

Set h̃(·) := h(·)− h(x) for fixed x ∈ Rd and h ∈ Bb(Rd) which verifies

(3.8) |h(x)− h(y)| ≤ κ̃|x− y|α̃, x, y ∈ Rd

for some κ̃ > 0 and α̃ ∈ (0, 1). Then (3.7) implies that

|∇η′∇ηP
0
t h|2(x) = |∇η′∇ηP

0
t h̃|2(x) ≤ 4‖σ−1‖4|η|2|η′|2

t2
E|h(Zx

t )− h(x)|2

≤ 4‖σ−1‖4|η|2|η′|2

t2
κ̃2‖σ‖2α̃tα̃, t > 0.

(3.9)

where in the second display we have used that

Zx
t − x =

∫ t

0

σdW (r),

and utilized Jensen’s inequality as well as Itô’s isometry. Thus, if we can prove that

|(b+∇bu
λ)(x)− (b+∇bu

λ)(y)| ≤ κ̃|x− y|α̃, x, y ∈ Rd(3.10)

for some κ̃ > 0 and α̃ ∈ (0, 1), we get from (3.1) and (3.9) that

‖∇2uλ‖∞ ≤ 2‖σ−1‖2κ̃‖σ‖α̃
∫ ∞

0

e−λt

t
t
α̃
2 dt

= 2‖σ−1‖2κ̃‖σ‖α̃λ−
α̃
2

∫ ∞
0

e−t

t1−
α̃
2

dt

= 2‖σ−1‖2κ̃‖σ‖α̃Γ(
α̃

2
)λ−

α̃
2 .

(3.11)
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In the remaining, we intend to prove (3.10). Combining (3.4) and (3.7), we arrive at

‖∇P 0
t f(x)−∇P 0

t f(y)‖

≤
(

2‖σ−1‖2|x− y|
t

∧ 2‖σ−1‖√
t

)
‖f‖∞, f ∈ Bb(Rd), t > 0, x, y ∈ Rd.

(3.12)

Thus, for any f ∈ Bb(Rd), λ > 0, x, y ∈ Rd, it holds that∥∥∥∥∫ ∞
0

e−λt
(
∇P 0

t f(x)−∇P 0
t f(y)

)
dt

∥∥∥∥
≤ (2‖σ−1‖2 + 2‖σ−1‖)‖f‖∞

∫ ∞
0

e−λt
(
|x− y|
t
∧ 1√

t

)
dt

≤ (2‖σ−1‖2 + 2‖σ−1‖)‖f‖∞

(∫ |x−y|2∧e−1

0

1√
t
dt

+ |x− y|
∫ 1

|x−y|2∧e−1

1

t
dt+ |x− y|

∫ ∞
1

e−λtdt

)
≤ (2‖σ−1‖2 + 2‖σ−1‖)‖f‖∞

(
(2 + λ−1)|x− y|+ |x− y| log(|x− y|−2 ∨ e)

)
≤ (2‖σ−1‖2 + 2‖σ−1‖)‖f‖∞(3 + λ−1)|x− y| log(|x− y|−2 + e).

(3.13)

For any λ ≥ λ0, note from (2.2), (ii), (3.1), (3.4), (3.7) and (3.13) that

|(b+∇bu
λ)(x)− (b+∇bu

λ)(y)|
≤ (1 + ‖∇uλ‖∞)κ|x− y|α + ‖b‖∞‖∇uλ(x)−∇uλ(y)‖1{|x−y|≥1}

+ ‖b‖∞‖∇uλ(x)−∇uλ(y)‖1{|x−y|≤1}

≤ 6

5
κ|x− y|α +

2

5
‖b‖∞|x− y|α1{|x−y|≥1}

+
6

5
(2‖σ−1‖2 + 2‖σ−1‖)(3 + λ−1)‖b‖2

∞|x− y|α

× |x− y|1−α log
(

e +
1

|x− y|2
)
1{|x−y|≤1}

≤
(

6

5
κ+

2

5
‖b‖∞ +

24

5
(‖σ−1‖2 + ‖σ−1‖)(3 + λ−1)‖b‖2

∞

)
|x− y|α,

where in the third inequality we have used the fact that the function [0, 1] 3 x 7→
x1−α log(e + 1

x2
) is non-decreasing. Thus, (3.10) holds for κ̃ = 6

5
κ+ 2

5
‖b‖∞ + 24

5
(‖σ−1‖2 +

‖σ−1‖)(3 + λ−1)‖b‖2
∞ and α̃ = α. From (3.11), we finish the proof.

Remark 3.2. In the multiplicative noise case, ∇ηZ
x
t is a random variable, precise es-

timate for the solution of (3.1), especially ‖∇2uλ‖∞, is so sophisticated that we only
consider the additive noise case in this paper.
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4 Proof of Theorem 2.3

Lemma 4.1. Assume (H1)-(H2)and

λB < λ1e−2λ1r0 ,

then

sup
t≥0

E‖Xξ
t ‖2
∞ <∞(4.1)

Proof. For simplicity, we denote Xξ(t) by X(t). Itô’s formula implies that

d|X(t)|2 =2 〈X(t), AX(t))〉 dt+ 2 〈X(t), b(X(t))〉 dt+ 2 〈X(t), σ dW (t)〉
+ 2 〈X(t), B(Xt)〉 dt+ ‖σ‖2

HS dt.

Let ξ0(s) = 0, s ∈ [−r0, 0]. It follows from (2.3) that

〈X(t), B(Xt)〉 ≤ |X(t)||B(Xt)| ≤ λB‖Xt‖2
∞ + |B(ξ0)||X(t)|

Since λB < λ1e−2λ1r0 , we can take small enough ε ∈ (0, 1) and ε ∈ (0, 2λ1) such that

2λB
1− ε

< (2λ1 − ε)e−(2λ1−ε)r0 .

This together with Young’s inequality and (H2) yields that

d|X(t)|2 ≤ −2λ1|X(t)|2dt+ {2(‖b‖∞ + |B(ξ0)|)|X(t)|+ ‖σ‖2
HS}dt

+ 2λB‖Xt‖2
∞dt+ 2 〈X(t), σ dW (t)〉

≤ (−2λ1 + ε)|X(t)|2dt+

{
1

ε
(‖b‖∞ + |B(ξ0)|)2 + ‖σ‖2

HS

}
dt

+ 2λB‖Xt‖2
∞dt+ 2 〈X(t), σ dW (t)〉 .

(4.2)

Thus it is not difficult to see that

de(2λ1−ε)t|X(t)|2dt ≤ 2λBe(2λ1−ε)t‖Xt‖2
∞dt

+ e(2λ1−ε)t
{

1

ε
(‖b‖∞ + |B(ξ0)|)2 + ‖σ‖2

HS

}
dt

+ 2e(2λ1−ε)t 〈X(t), σ dW (t)〉 .

(4.3)

Let ηr = sups∈[−r0,r] e(2λ1−ε)s+ |X(s)|2, then

Eηr ≤ ‖ξ‖2
∞ + 2λBe(2λ1−ε)r0E

∫ r

0

ηtdt

+

∫ r

0

e(2λ1−ε)t
{

1

ε
(‖b‖∞ + |B(ξ0)|)2 + ‖σ‖2

HS

}
dt

+ E sup
s∈[0,r]

∫ s

0

2e(2λ1−ε)t 〈X(t), σ dW (t)〉

(4.4)
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On the other hand, BDG inequality and Young’s inequality imply that

E sup
s∈[0,r]

∫ s

0

2e(2λ1−ε)t 〈X(t), σ dW (t)〉

≤ E
{∫ r

0

16e(4λ1−2ε)t‖σ‖2 |X(t)|2 dt

} 1
2

≤ εEηr +

∫ r

0

e(2λ1−ε)t × 4‖σ‖2

ε
dt.

(4.5)

Let β :=
1
ε
(‖b‖∞+|B(ξ0)|)2+‖σ‖2HS+

4‖σ‖2
ε

1−ε . Combining (4.4) and (4.5), we have

Eηr ≤
‖ξ‖2

∞
1− ε

+
2λBe(2λ1−ε)r0

1− ε
E
∫ r

0

ηtdt+ β

∫ r

0

e(2λ1−ε)tdt.(4.6)

By (2.4), Gronwall’s inequality implies that

Eηt ≤ exp

{
2λBe(2λ1−ε)r0

1− ε
t

}
‖ξ‖2

∞
1− ε

+ β

∫ t

0

exp

{
2λBe(2λ1−ε)r0

1− ε
(t− s) + (2λ1 − ε)s

}
ds.

(4.7)

Noting that Eηt ≥ e(t−r0)(2λ1−ε)E‖Xt‖2
∞, we obtain that

E‖Xt‖2
∞ ≤ er0(2λ1−ε) exp

{(
2λBe(2λ1−ε)r0

1− ε
− (2λ1 − ε)

)
t

}
‖ξ‖2

∞
1− ε

+ er0(2λ1−ε)β

∫ t

0

exp

{(
2λBe(2λ1−ε)r0

1− ε
− (2λ1 − ε)

)
(t− s)

}
ds.

(4.8)

Since 2λB
1−ε < (2λ1 − ε)e−(2λ1−ε)r0 , we conclude that (4.1) holds.

Proof of Theorem 2.3. (1) Let X and X̄ be solutions to (1.3) with X0 = ξ, X̄0 = η, then

dX(t) = {AX(t) + b(X(t)) +B(Xt)}dt+ σdW (t), X0 = ξ,

dX̄(t) = {AX(t) + b(X̄(t)) +B(X̄t)}dt+ σdW (t), X̄0 = η.
(4.9)

For any λ ≥ λ0, let θλ(x) = x+ uλ(x). Combining (3.1) and Lemma 3.1, we have

(4.10)
1

2
Tr(σσ∗∇2uλ) +∇bu

λ + b+∇A·u
λ = λuλ.

By (4.9), (4.10) and Itô’s formula, we have

dθλ(X(t)) = {AX(t) + λuλ(X(t)) +∇θλ(X(t))B(Xt)}dt+∇θλ(X(t))σ dW (t),
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dθλ(X̄(t)) = {AX̄(t) + λuλ(X̄(t)) +∇θλ(X̄(t))B(X̄t)}dt+∇θλ(X̄(t))σ dW (t).

So, letting ξ(t) = θλ(X(t))− θλ(X̄(t)), we arrive at

d|ξ(t)|2 =2〈AX(t)− AX̄(t), θλ(X(t))− θλ(X̄(t))〉
2λ
〈
ξ(t),uλ(X(t))− uλ(X̄(t))

〉
dt

+ 2
〈
ξ(t), [∇θλ(X(t))B(Xt)−∇θλ(X̄(t))B(X̄t)]

〉
dt

+ 2
〈
ξ(t), [∇θλ(X(t))−∇θλ(X̄(t))]σdW (t)

〉
+
∥∥[∇θλ(X(t))−∇θλ(X̄(t))]σ

∥∥2

HS
dt

(4.11)

Firstly, it is easy to see that

2〈AX(t)− AX̄(t), θλ(X(t))− θλ(X̄(t))〉
=2〈AX(t)− AX̄(t), X(t)− X̄(t) + uλ(X(t))− uλ(X̄(t))〉

≤ − 2λ1|X(t)− X̄(t)|2 +
2λd
5
|X(t)− X̄(t)|2

By Lemma 3.1 and (H2), it holds that

2
〈
ξ(t), [∇θλ(X(t))B(Xt)−∇θλ(X̄(t))B(X̄t)]

〉
≤ 12

5
|X(t)− X̄(t)|‖∇θλ(X(t))−∇θλ(X̄(t))‖|B(Xt)|

+
12

5
|X(t)− X̄(t)|‖∇θλ(X̄(t))‖|B(Xt)−B(X̄t)|

≤ 12

25
Υb,σ,λ,α‖B‖∞|X(t)− X̄(t)|2 +

72

25
λB‖Xt − X̄t‖2

∞,

and

(4.12) 2λ|ξ(t)| · |uλ(X(t))− uλ(X̄(t))| ≤ 12

25
λ |X(t)− X̄(t)|2.

Moreover, ∥∥[∇θλ(X(t))−∇θλ(X̄(t))]σ
∥∥2

HS
≤ 1

25
Υ2
b,σ,λ,α‖σ‖2

HS|X(t)− X̄(t)|2.(4.13)

Let

Λ1(λ) :=
3

4
λ+

25

16

{
2

5
λd +

72

25
λB +

12

25
Υb,σ,λ,α‖B‖∞ +

1

25
Υ2
b,σ,λ,α‖σ‖2

HS

}
.

Since ‖∇θλ(x)‖ ≥ 4
5

for any x ∈ Rd, we have

d|X(t)− X̄(t)|2 ≤ −25

8
λ1|X(t)− X̄(t)|2dt

+ Λ1(λ)‖Xt − X̄t‖2
∞dt

+
25

8

〈
ξ(t), [∇θλ(X(t))−∇θλ(X̄(t))]σdW (t)

〉
.

(4.14)
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Similarly to (4.3), it holds that

de
25
8
λ1t|X(t)− X̄(t)|2dt ≤ Λ1(λ)e

25
8
λ1t‖Xt − X̄t‖2

∞

+
25

8
e

25
8
λ1t
〈
ξ(t), [∇θλ(X(t))−∇θλ(X̄(t))]σdW (t)

〉
.

Set γr = sups∈[−r0,r] e
25
8
λ1s+|X(s)− X̄(s)|2 and we get

Eγr ≤ ‖ξ − η‖2
∞ + Λ1(λ)e

25
8
λ1r0E

∫ r

0

γtdt

+ E sup
s∈[0,r]

∫ s

0

25

8
e

25
8
λ1t
〈
ξ(t), [∇θλ(X(t))−∇θλ(X̄(t))]σdW (t)

〉
.

(4.15)

Again, BDG inequality and Young’s inequality yield that for any ε ∈ (0, 1),

E sup
s∈[0,r]

∫ s

0

25

8
e

25
8
λ1t
〈
ξ(t), [∇θλ(X(t))−∇θλ(X̄(t))]σdW (t)

〉
≤ 2E

{∫ r

0

625

64
e

25
4
λ1t
∣∣σ∗[∇θλ(X(t))−∇θλ(X̄(t))]∗ξ(t)

∣∣2 dt

} 1
2

≤ 2E

√
25

16
Υ2
b,σ,λ,α‖σ‖2

∫ r

0

e
25
4
λ1t|X(t)− X̄(t)|4dt

≤ εEγr +
25Υ2

b,σ,λ,α

16ε
‖σ‖2E

∫ r

0

γtdt.

(4.16)

Substituting (4.16) into (4.15), we obtain

Eγr ≤
‖ξ − η‖2

∞
1− ε

+
Λ1(λ)e

25
8
λ1r0 +

25Υ2
b,σ,λ,α

16ε
‖σ‖2

1− ε
E
∫ r

0

γtdt.(4.17)

Again by (2.4), Gronwall’s inequality implies that

Eγt ≤ exp

Λ1(λ)e
25
8
λ1r0 +

25Υ2
b,σ,λ,α

16ε
‖σ‖2

1− ε
t

 ‖ξ − η‖2
∞

1− ε
.(4.18)

Noting that Eγt ≥ e(t−r0) 25
8
λ1E‖Xt − X̄t‖2

∞, we obtain

E‖Xt − X̄t‖2
∞

≤ e
25
8
λ1r0 exp

e
25
8
λ1r0

Λ1(λ) +
25Υ2

b,σ,λ,α

16ε
‖σ‖2

1− ε
− 25

8
λ1e−

25
8
λ1r0

 t

 ‖ξ − η‖2
∞

1− ε
.

(4.19)
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Thus, letting

Λ(λ, ε) :=
Λ1(λ) +

25Υ2
b,σ,λ,α

16ε
‖σ‖2

1− ε
,

combining the definition of Λ1(λ) and noting ‖σ‖2
HS ≤ d‖σ‖2, we prove (1).

(2) Now, if there exists ε̃ ∈ (0, 1), λ̃ ≥ λ0 such that

Λ(λ̃, ε̃) <
25

8
λ1e−

25
8
λ1r0 ,

then there exists constants κ0, κ2 > 0 such that

W2(Pt(ξ, ·, Pt(η, ·))2 ≤ E‖Xt − X̄t‖2
∞ ≤ κ0e−κ2t‖ξ − η‖2

∞.(4.20)

This yields that for any 0 < t < s,

E‖Xξ
t −Xξ

s‖2
∞ = E

∥∥∥∥Xξ
t −X

Xξ
s−t

t

∥∥∥∥2

∞
≤ κ0e−κ2tE‖ξ −Xξ

s−t‖2
∞,(4.21)

Noting that Λ(λ̃, ε̃) ≥ Λ1(λ)
1−ε̃ ≥

25
8
λB

1−ε̃ and

Λ(λ̃, ε̃) <
25

8
λ1e−

25
8
λ1r0 ,

we conclude that
λB < λ1e−2λ1r0 .

According to Lemma 4.1, it holds that

sup
r≥0

E‖Xξ
r‖2
∞ <∞.

Thus,

W2(Pt(ξ, ·), Ps(ξ, ·))2 ≤ E‖Xξ
t −Xξ

s‖2
∞ ≤ κ1(ξ)e−κ2t(4.22)

holds for some positive constant κ1(ξ) depending on ξ. So, there exists a probability
measure µξ such that

W2(Pt(ξ, ·), µξ)2 ≤ κ1(ξ)e−κ2t.(4.23)

It remains to prove that µξ does not depend on ξ. For any ξ, η ∈ C ,

W2(µξ, µη)
2 ≤W2(Pt(ξ, ·), µξ)2 + W2(Pt(ξ, ·), Pt(η, ·))2 + W2(Pt(η, ·), µη)2

≤ κ1(ξ)e−κ2t + κ0e−κ2t‖ξ − η‖2
∞ + κ1(η)e−κ2t.

(4.24)
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Letting t→∞, we obtain µξ = µη.
Next, for any t0 > r0 and t > t0, by the semigroup property, (2.9) and (4.22), we have

Ent(Pt(ξ, ·)|Pt(η, ·)) = Ent(Pt−t0(ξ, ·)Pt0 |Pt−t0(η, ·)Pt0)

≤ C(t0)

(t0 − r0) ∧ 1
W2(Pt−t0(ξ, ·), Pt−t0(η, ·))2

≤ C(t0)

(t0 − r0) ∧ 1
κ0eκ2t0e−κ2t‖ξ − η‖2

∞.

Thus (1.2) implies that for any t > t0,

(4.25) ‖Pt(ξ, ·)− Pt(η, ·)‖2
var ≤

C(t0)

2(t0 − r0) ∧ 2
κ0eκ2t0e−κ2t‖ξ − η‖2

∞.

Combining (2.9), (2.10), (4.23) and the semigroup property, since µ is the invariant prob-
ability measure, we have

Ent(Pt(ξ, ·)|µ) = Ent(Pt−t0(ξ, ·)Pt0|µPt0)

≤ C(t0)

(t0 − r0) ∧ 1
W2(Pt−t0(ξ, ·), µ)2

≤ C(t0)

(t0 − r0) ∧ 1
κ1(ξ)eκ2t0e−κ2t.

and

‖Pt(ξ, ·)− µ‖2
var ≤

C(t0)

2(t0 − r0) ∧ 2
κ1(ξ)eκ2t0e−κ2t.

Thus, we complete the proof.

Acknowledgement. The author would like to thank Professor Feng-Yu Wang for help-
ful comments.

References

[1] J. Bao, F.-Y. Wang, C. Yuan, Hypercontractivity for functional stochastic differential
equations, Stochastic Process. Appl. 125 (2015), 3636-3656.

[2] J. Bao, F.-Y. Wang, C. Yuan, Hypercontractivity for Functional Stochastic Partial
Differential Equations, Electron. J. Probab. 20 (2015), 1-15.

[3] I. Csiszár, J. Körne, Information Theory: Coding Theorems for Discrete Memory-
less Systems, Academic Press, New York, 1981.

15



[4] L. Gyongy, T. Martinez, On stochastic differential equations with locally unbounded
drift, Czechoslovak Math. J. 51(2001), 763-783.

[5] Xing Huang, Strong Solutions for Functional SDEs with Singular Drift, Stoch. Dyn.,
18, 1850015 (2018), 19 pages. https://doi.org/10.1142/S0219493718500156.

[6] X. Huang, F.-Y. Wang, Functional SPDE with Multiplicative Noise and Dini Drift,
Ann. Fac. Sci. Toulouse Math. 6 (2017), 519-537.

[7] X. Huang, F.-Y. Wang, Distribution Dependent SDEs with Singular Coefficients,
arXiv:1805.01682.

[8] X. Huang, S.-Q. Zhang, Mild Solutions and Harnack Inequality for Functional S-
tochastic Partial Differential Equations with Dini Drift, J Theor Probab (2018).
https://doi.org/10.1007/s10959-018-0830-4.
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