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CLASSIFICATION OF THE SUBLATTICES OF A LATTICE

CHUANMING ZONG

Abstract. In 1945-46, C. L. Siegel proved that an n-dimensional lattice Λ of deter-

minant det(Λ) has at most mn2

different sublattices of determinant m · det(Λ). In
1997, the exact number of the different sublattices of index m was determined by
Baake. This paper presents a systematic treatment for counting the sublattices and
deduces a formula for the number of the sublattice classes of determinant m ·det(Λ).

2010 Mathematics Subject Classification: 52C05, 52C07, 11H06.

1. Introduction

Let Z denote the set of all integers and let E
n denote the n-dimensional Euclidean space. If a1,

a2, . . ., an are n independent vectors in E
n, then the discrete set

Λ =
{

∑

ziai : zi ∈ Z

}

is called an n-dimensional lattice generated by a basis {a1, a2, . . . , an}. Assume that ai = (ai1, ai2,
. . . , ain), then the absolute value of the determinant of

A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
an1 an2 . . . ann











is called the determinant of Λ. Usually, it is written as det(Λ). In fact, we also have

det(Λ) = vol(P ),

where P is the parallelopiped defined by

P =
{

∑

λiai : 0 ≤ λi ≤ 1
}

.

A subset Λ∗ of Λ is called its sublattice if itself is an n-dimensional lattice as well. If {b1,b2, . . . ,
bn} is a basis of Λ∗, where bi = (bi1, bi2, . . . , bin), then we have

bi = di1a1 + di2a2 + . . .+ dinan, dij ∈ Z.

Let B denote the n×n matrix with elements bij and let D denote the n×n matrix with elements
dij . Then we get

B = DA

and therefore

det(Λ∗) = m · det(Λ),

where m is the absolute value of the determinant of D. Usually, we call m the index of Λ∗ in Λ.
The structures and representations of the sublattices have been studied by many authors such

as Minkowski, Siegel, Cassels, Hlawka, Rogers and Schmidt. Many results and their applications
can be found in classic references such as [4, 8, 9, 12, 16]. Particular sublattices have been studied
by [3, 5, 6, 14, 15].

Let Λ be an n-dimensional lattice, let m be a positive integer, let fn(m) denote the number
of the different sublattices of Λ with index m, and let f∗

n(m) denote the number of the different
sublattice classes of Λ with index m.

In 1945-46, C. L. Siegel gave a series of lectures on Geometry of Numbers at New York University.
His lecture notes [16] contained the first upper bound for fn(m), namely

fn(m) ≤ mn2

. (1)
1
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Since the lecture notes was published only in 1989, this result and many others were neglected.
In 1959, J. W. S. Cassels [4] presented some basic result about the structures of the bases of the
sublattices. In 1997, M. Baake [2] deduced the following formula based on a recursion in Algebra

fn(m) =
∑

d1d2...dn=m

d01d
1
2 . . . d

n−1
n . (2)

Clearly, both Cassels and Baake were unaware of Siegel’s work. Assume that

m = pα1

1 . . . pαℓ

ℓ , (3)

where pi are prime numbers. Baake’s formula was simplified by B. Gruber [7] as

fn(m) =

ℓ
∏

i=1

αℓ
∏

j=1

pj+n−1

i − 1

pji − 1
=

ℓ
∏

i=1

n−1
∏

j=1

pj+αi

i − 1

pji − 1
. (4)

In particular, when p is a prime, it is interesting to notice that

fn(p) = 1 + p+ . . .+ pn−1

and
f2(p

ℓ) = 1 + p+ . . .+ pℓ.

Let k be a positive integer and let pn(k) denote the partition number of k into n parts. In other
words, pn(k) is the number of the integer solutions for

{

x1 + x2 + . . .+ xn = k,
x1 ≥ x2 ≥ . . . ≥ xn ≥ 0.

The purpose of this paper is to present a systematic treatment on this topic, to complete both the
statement and the proof. First, we present detailed proofs for (2) and (4). Then, we prove the
following classification theorem.

Theorem Z. If m = pα1

1 . . . pαℓ

ℓ , where pi are prime numbers, then we have

f∗
n(m) =

ℓ
∏

i=1

pn(αi).

Remark 1. When m = p1p2 . . . pℓ, where p1, p2, . . ., pℓ are pairwise distinct primes, we have

fn(m) =

ℓ
∏

i=1

n−1
∑

j=0

pji

and

f∗
n(m) = 1.

Then, all the sublattices of index m are equivalent to each others under unimodular transformations.

2. C. L. Siegel’s Upper Bound

Siegel’s upper bound (1) was obtained in 1945-46. However, it was published only in 1989 in his
lecture notes by Chandrasekharan [16]. So, this beautiful result has been neglected by almost all
authors on related topics. For this reason, we reproduce it here. First of all, let us introduce a
well-known basic lemma which can be found in every book on lattices.

Lemma 1. Let {a1, a2, . . . , an} be a basis of an n-dimensional lattice Λ. Assume that u1, u2, . . .,
un are n linear independent vectors in E

n with

ui = ui1a1 + ui2a2 + . . .+ uinan, i = 1, 2, . . . , n.

Then, {u1,u2, . . . ,un} is also a basis of Λ if and only if U = (uij) is an n×n unimodular matrix.

Theorem 1 (Siegel [16]). Assume that Λ is an n-dimensional lattice and m is a positive integer.

Then Λ has at most mn2

different sublattices of index m. In other words, we have

fn(m) ≤ mn2

.
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Proof. Assume that {a1, a2, . . . , an} is a basis of Λ. If Λ∗ is a sublattice of Λ of index m with a
basis {u1,u2, . . . ,un}, then we have

ui = ui1a1 + ui2a2 + . . .+ uinan, i = 1, 2, . . . , n, (5)

where all uij are integers and det(uij) = ±m. For convenience, we denote the n × n matrix (uij)
by U . If Λ• is another sublattice of Λ of index m with a basis {v1,v2, . . . ,vn}, then we have

vi = vi1a1 + vi2a2 + . . .+ vinan, i = 1, 2, . . . , n, (6)

where all vij are integers and det(vij) = ±m. We denote the n× n matrix (vij) by V .
Clearly, it follows by (5) and (6) that the matrix that transforms {v1,v2, . . . ,vn} into {u1,u2, . . . ,

un} is UV −1. In other words, if W = UV −1 = (wij), we have

ui = wi1v1 + wi2v2 + . . .+ winvn, i = 1, 2, . . . , n. (7)

Now, we proceed to show that if

uij ≡ vij (mod m)

hold for all i, j = 1, 2, . . . , n, then Λ∗ is identical with Λ•. Clearly mV −1 is an integer matrix.
Then, since U ≡ V (mod m), we have

mW = mUV −1 ≡ mV V −1 ≡ mE ≡ O (mod m), (8)

where E is the n× n unit matrix and O is the n× n zero matrix. This means that all elements of
mW are divisible by m and therefore all elements of W are integers. On the other hand, we have

det(W ) = det(UV −1) = ±
m

m
= ±1. (9)

Thus, W must be a unimodular matrix. Then it follows by Lemma 1 that Λ∗ is identical with Λ•.
This shows that there are at most m possible values for any element of U , such that the corre-

sponding sublattices of Λ are different. Since U has n2 elements, the total number of possibilities

for U is mn2

. In other words,

fn(m) ≤ mn2

.

The theorem is proved. �

3. The Sublattices of Given Index

In 1907, Minkowski [12] studied the relation between the bases of a three-dimensional lattice and
its sublattices. Afterwards, his result was generalized into arbitrary dimensions (see [4] or [8]) as
following. Assume that Λ∗ is a sublattice of an n-dimensional Λ. If {u1,u2, . . . ,un} is a basis of
Λ∗, then Λ has a basis {a1, a2, . . . , an} satisfying

ui = ui1a1 + ui2a2 + . . .+ uiiai, i = 1, 2, . . . , n, (10)

where uii > 0 and 0 ≤ uij < uii for all j < i.
It is rather unexpected that the following inverse of this result is also true. It can be found in

both [4] and [8], neither of them indicated further reference.

Lemma 2 (Cassels [4]). Assume that Λ is an n-dimensional lattice with a basis {a1, a2, . . . , an}.
If Λ∗ is a sublattice of Λ of index m, then Λ∗ has a basis {u1,u2, . . . ,un} satisfying

ui = ui1a1 + ui2a2 + . . .+ uiiai, i = 1, 2, . . . , n

and

m = u11u22 . . . unn,

where uii > 0 and 0 ≤ uij < ujj for all j < i.

Clearly, this lemma provides a mean to count the number of the different sublattices of given
index m. To do the explicit counting, we need another simple result.

Lemma 3. Assume that Λ is an n-dimensional lattice with a basis {a1, a2, . . . , an} and m is a

positive integer. Let u1,u2, . . . ,un be n linearly independent vectors satisfying

ui = ui1a1 + ui2a2 + . . .+ uiiai, i = 1, 2, . . . , n
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and

m = u11u22 . . . unn,

where all uij are integers, uii > 0 and 0 ≤ uij < ujj for all j < i, let v1,v2, . . . ,vn be n linearly

independent vectors satisfying

vi = vi1a1 + vi2a2 + . . .+ viiai, i = 1, 2, . . . , n

and

m = v11v22 . . . vnn,

where all vij are integers, vii > 0 and 0 ≤ vij < vjj for all j < i, let Λ∗ be the sublattice of Λ
generated by {u1,u2, . . . ,un}, and let Λ• be the sublattice of Λ generated by {v1,v2, . . . ,vn}. Then
the two sublattices Λ∗ and Λ• are identical if and only if

uij = vij , 1 ≤ j ≤ i ≤ n.

Proof. The if part is obvious. Now, let us prove the only if part.
Let U denote the n× n matrix with elements uij , i, j = 1, 2, . . . , n, where uij = 0 for all j > i,

let V denote the n× n matrix with elements vij , i, j = 1, 2, . . . , n, where vij = 0 for all j > i, and
define

W = UV −1 = (wij) . (11)

It is easy to see that Λ∗ = Λ• if and only if W is a unimodular matrix.
By (11) we have

WV = U. (12)

Then, by comparing both sides of (12) for u1n, u1,n−1, . . ., u11, we get














w11v1n + w12v2n + . . .+ w1nvnn = 0,
w11v1,n−1 + w12v2,n−1 + . . .+ w1nvn,n−1 = 0,

. . . ,
w11v11 + w12v21 + . . .+ w1nvn1 = u11

and thus
{

w1n = w1,n−1 = . . . = w12 = 0,
w11v11 = u11.

(13)

Repeating this process for u2i, u3i, . . . , uni successively, we get
{

wij = 0, i < j ≤ n,
wiivii = uii, i = 1, 2, . . . , n.

(14)

If W is a unimodular matrix, all its elements are integers, it follows by (14) and the assumption

m = u11u22 . . . unn = v11v22 . . . vnn

that
w11 = w22 = . . . = wnn = 1. (15)

Then, by comparing both sides of (12) for u21, u32, . . . , un,n−1, we get

wi+1,ivii + vi+1,i = ui+1,i, i = 1, 2, . . . , n− 1. (16)

If wi+1,i 6= 0, by (16) we get
wi+1,ivii = ui+1,i − vi+1,i,

which contradicts the assumptions that 0 ≤ ui+1,i < uii = vii and 0 ≤ vi+1,i < vii. Thus, we must
have

{

wi+1,i = 0,
ui+1,i = vi+1,i

(17)

for all i = 1, 2, . . . , n− 1.
Inductively, assume that

wi+j,i = 0 (18)

holds for all 1 ≤ j ≤ k − 1 < n − 1 and i = 1, 2, . . . , n − j, by comparing both sides of (12) for
ui+k,i, i = 1, 2, . . . , n− k, similar to (16) we can get

wi+k,i = 0, i = 1, 2, . . . , n− k. (19)
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As a conclusion, we obtain that, if W is a unimodular matrix, it must be the n×n unit matrix.
In other words, if Λ∗ = Λ•, then U = V. The theorem is proved. �

Clearly, an n-dimensional lattice is a free module of rank n over Z. By studying the algebraic
structures of the submodules it was shown (see [13]) that

fn(m) =
∑

d|m

d · fn−1(d). (20)

In 1997, it was deduced from (20) by Baake [2] that

fn(m) =
∑

d1d2...dn=m

d01d
1
2 . . . d

n−1
n . (21)

In fact, Baake’s formula can be easily deduced from Lemma 2 and Lemma 3. Gruber [7] did
realize this possible connection and simplified (21). However, he neglected the necessity of Lemma
3.

Theorem 2 (Baake [2], Gruber [7]). If m = pα1

1 pα2

2 . . . pαℓ

ℓ , where pi are prime numbers and αi

are positive integers, then

fn(m) =
∑

d1d2...dn=m

d01d
1
2 . . . d

n−1
n =

ℓ
∏

i=1

αi
∏

j=1

pj+n−1

i − 1

pji − 1
=

ℓ
∏

i=1

n−1
∏

j=1

pj+αi

i − 1

pji − 1
.

Remark 2. Noticing that
(

pj+n−1

i − 1
)

/
(

pji − 1
)

≤ pni
and

(

pj+αi

i − 1
)

/
(

pji − 1
)

≥ pαi

i ,

one can easily deduce that
mn−1 ≤ fn(m) ≤ mn.

Comparing with Theorem 1, it is interesting to see that Siegel’s upper bound is far away from the
exact values of fn(m).

4. Classification of the Sublattices of Given Index

Let Λ be an n-dimensional lattice in E
n, and let Λ∗ and Λ• be two sublattices of Λ. We say that

Λ∗ and Λ• are equivalent if there is a linear transformation σ satisfying both

σ(Λ) = Λ (22)

and
σ(Λ∗) = Λ•. (23)

Then, for convenience, we write Λ∗ ∼ Λ•. Clearly, a linear transformation satisfying σ(Λ) = Λ if
and only if σ is corresponding to a unimodular matrix.

Example 1. Let Λ = Z
2 with e1 = (1, 0) and e2 = (0, 1), let Λ∗ be the sublattice generated

by u1 = e1 and u2 = 2e2, and let Λ• be the sublattice generated by u1 = 2e1 and u2 = e2. It
is obvious that Λ∗ 6= Λ•. Let σ denote the linear transformation determined by σ(e1) = e2 and
σ(e2) = e1, it can be verified that σ(Λ) = Λ and σ(Λ∗) = Λ•. Thus, we have Λ∗ ∼ Λ•.

It is shown in Gruber [8] that, if Λ∗ is a sublattice of Λ, then Λ has a basis {a1, a2, . . . , an} and
Λ∗ has a basis {u1,u2, . . . ,un} such that

ui = uiiai, i = 1, 2, . . . , n, (24)

where uii are suitable positive integers.
On page 26 of [11], Martinet wrote “Let M be an R-module and let M ′ be a submodule of M ,

both having the same rank n. (When R = Z, this amounts to saying that [M : M ′] < ∞.) There
then exists a basis B = {e1, e2, . . . , en} for M and nonzero elements a1, a2, . . ., an of R such that
B′ = {a1e1, a2e2, . . . , anen} is a basis for M ′, and ai divides ai−1 for 2 ≤ i ≤ n.” This implies that
uii divides ui−1,i−1 in (24).
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For the completeness, we restate this result as Lemma 4 in the following and give a detailed
proof.

Lemma 4. If Λ∗ is a sublattice of Λ, then Λ has a basis {a1, a2, . . . , an} and Λ∗ has a basis

{u1,u2, . . . ,un} such that

ui = uiiai, i = 1, 2, . . . , n,

where all uii are positive integers satisfying uii | ui−1,i−1 for all 2 ≤ i ≤ n.

Proof. Assume that {e1, e2, . . . , en} is a basis for Λ and {v1,v2, . . . ,vn} is a basis for Λ∗. Then,
we have

vi = vi1e1 + vi2e2 + . . .+ vinen, i = 1, 2, . . . , n. (25)

For convenience, let X denote the n× 1 matrix with elements x1, x2, . . ., xn and let X denote the
n× n matrix with elements xij . Then, one can rewrite (25) as

V = VE. (26)

If {u1,u2, . . . ,un} is another basis for Λ∗ such that

V = U1U, (27)

where U1 is an n× n unimodular matrix, and {a1, a2, . . . , an} is another basis for Λ such that

E = U2A, (28)

where U2 is an n× n unimodular matrix. Then, it follows by (26), (27) and (28) that

U = U−1

1 V U2A. (29)

It is known in Algebra (see Chapter 14 of Hua [10]) that, for a given integer matrix V there are
two suitable unimodular matrices U1 and U2 such that

U−1
1 V U2 =











u11 0 . . . 0
0 u22 . . . 0
...

...
. . .

...
0 0 . . . unn











,

where uii | ui−1,i−1 for all 2 ≤ i ≤ n. Then, by (29) we have

ui = uiiai, i = 1, 2, . . . , n.

The lemma is proved. �

Lemma 5. Assume that Λ∗ and Λ• are two sublattices of an n-dimensional lattice Λ. If {u1,u2, . . . ,
un} is a basis of Λ∗ and {a1, a2, . . . , an} is a basis of Λ such that

ui = uiiai, i = 1, 2, . . . , n,

where uii are positive integers satisfying uii | ui−1,i−1 for all 2 ≤ i ≤ n, and {v1,v2, . . . ,vn} is a

basis of Λ• and {b1,b2, . . . ,bn} is a basis of Λ such that

vi = viibi, i = 1, 2, . . . , n,

where vii are positive integers satisfying vii | vi−1,i−1 for all 2 ≤ i ≤ n. Then, Λ∗ ∼ Λ• if and only

if

uii = vii, i = 1, 2, . . . , n.

Proof. If uii = vii hold for all i = 1, 2, . . . , n. Let σ be the linear transformation defined by

σ(ai) = bi, i = 1, 2, . . . , n,

then we have
σ(ui) = σ(uiiai) = uiibi = vi

for all i = 1, 2, . . . , n and thus
σ(Λ∗) = Λ•.

On the other hand, if Λ∗ ∼ Λ• with a suitable σ, then we have

U = UA, (30)
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V = VB, (31)

σ
(

U
)

= WV (32)

and

σ
(

A
)

= TB, (33)

where uij = 0 for all i 6= j, vij = 0 for all i 6= j, both W and T are suitable unimodular matrices.
It follows by σ(Λ∗) = Λ•, (30), (31), (32) and (33) that

σ
(

U
)

= Uσ
(

A
)

,

WV = UTB,

V = W−1UTB = VB

and thus

V = W−1UT. (34)

It is known in Algebra (see Chapter 14 of Hua [10]) that (34) implies

V = U.

Lemma 5 is proved. �

Proof of Theorem Z. Recall that

m = pα1

1 pα2

2 . . . pαℓ

ℓ ,

where pi are prime numbers. It follows by Lemma 4 and Lemma 5 that f∗
n(m) is the number of

the factorizations

m = d1d2 . . . dn (35)

satisfying dj | dj−1 for all 2 ≤ j ≤ n. If

dj = p
β1j

1 p
β2j

2 . . . p
βℓj

ℓ , (36)

then we have
{ ∑n

j=1
βij = αi,

βi1 ≥ βi2 ≥ . . . ≥ βin ≥ 0
(37)

for all i = 1, 2, . . . , ℓ. Clearly (37) has pn(αi) solutions and each solution corresponds to one
factorization of (35). Thus, we have

f∗
n(m) =

ℓ
∏

i=1

pn(αi).

Theorem Z is proved. �

Remark 3. The partition function pn(k) has been studied by many authors. See Andrews and
Eriksson [1] for references.
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