STRATIFIED BUNDLES AND REPRESENTATION SPACES

XIAOTAO SUN

ABSTRACT. For a given stratified bundle E on X, we construct an irreducible closed subvariety $\mathcal{N}(E)_S$ of the so called representation space $R(\mathcal{O}_{X_S}, \xi_S, P) \to S$ such that $\mathcal{N}(E)_S(\overline{\mathbb{F}}_q)$ contains a dense set of (V, β) where V is induced by a representation of $\pi_1^{\text{\'et}}(X)$ and β is a frame of V at a given point (Theorem 3.7). As an application, we give a simple proof of the main theorem of [1] and its relative version (Theorem 4.2).

1. Introduction

Let X be a smooth, connected projective variety over an algebraically closed field k of characteristic p > 0, \mathcal{D}_X be the sheaf of differential operators (in the sense of Grothendieck) and $\pi_1 = \pi_1^{\text{\'et}}(X, \xi)$ be the \'etale fundamental group of X. For any representation $\rho: \pi_1 \to \text{GL}(V)$, one can associate to ρ a \mathcal{D}_X -module V_ρ . Thus D. Gieseker proved the following results (see Theorem 1.10 of [4]): (i) if every \mathcal{D}_X -module on X is trivial, then π_1 is trivial; (ii) if all irreducible \mathcal{D}_X -modules are rank 1, then $[\pi_1, \pi_1]$ is a pro-p-group; (iii) if every \mathcal{D}_X -module is a direct sum of rank 1 \mathcal{D}_X -modules, then π_1 is abelian with no p-power order quotient. Following D. Gieseker, a \mathcal{D}_X -module E will be called a stratified bundle.

Gieseker also made the conjecture that the converses of above statements might be true. The converse of statement (i) was proved in [1], and converses of the statements (ii) and (iii) were proved in [3]. The key in these proofs is to produce a non-trivial representation of $\pi_1 = \pi_1^{\text{\'et}}(X,\xi)$ from a non-trivial given stratified bundle E. An equivalent characterization of stratified bundle is that $E = (E_i)_{i \in \mathbb{N}}$ with $E_i = F_X^* E_{i+1} \ (\forall i \in \mathbb{N})$ where $F_X : X \to X$ is the Frobenius map. Then it is not difficult to prove that there is an integer n_0 such that $E_i \ (i \geq n_0)$ are p-semistable bundles with numerically trivial Chern classes.

Date: July 6, 2017.

If the set $\Sigma = \{E_i\}_{i \geq n_0}$ of isomorphism classes of the bundles E_i is finite, then there is an F-periodic bundle E_{i_0} (i.e. there is an integer N such that $(F_X^*)^N E_{i_0} = E_{i_0}$) which induces a representation of π_1 by a theorem of Lange-Stuhler (Lemma 3.4).

When the set $\Sigma = \{E_i\}_{i \geq n_0}$ of isomorphism classes of the bundles E_i is an infinite set, a theorem of Hrushovski is used to get an F-periodic bundle on a good reduction $X_{\bar{s}}/\overline{\mathbb{F}}_q$ of X. If we have a moduli space M parametrizing **isomorphism classes** of semistable bundles, we would have a subvariety $\mathcal{N}(E) \subset M$ (by taking Zariski closure of $\Sigma = \{E_i\}_{i \geq n_0}$) such that Frobenius pullback F_X^* induces a dominant rational map $F_X^* : \mathcal{N}(E) \dashrightarrow \mathcal{N}(E)$. Then, if $k = \overline{\mathbb{F}}_q$, we find a dense set of F-periodic bundles (thus a dense set of representations of π_1) by Hrushovski's theorem. Unfortunately, we have only a moduli space M parametrizing S-equivalence classes of semistable bundles. Thus the approach of proving Gieseker conjecture in [1] and [3] consists of two steps: (1) prove the theorem for irreducible stratified bundles (in this case, $\Sigma = \{E_i\}_{i \geq n_0}$ consists of stable bundles), (2) studying the extensions of irreducible stratified bundles.

Let X be a projective variety over a perfect field k with a point

$$\xi: \operatorname{Spec}(k) \to X.$$

We observe in this article that for any stratified bundle $E = (E_i)_{i \in \mathbb{N}}$ of rank r there is a natural way to choose frames $\beta_i : \xi^* E_i \cong \mathcal{O}_X^{\oplus r}$ such that $(E_i, \beta_i) = F_X^*(E_{i+1}, \beta_{i+1})$ (see Lemma 3.3). Moreover, the set $R(E)_{n_0} = \{\alpha_i = (E_i, \beta_i)\}_{i \geq n_0}$ is a set of k-points of a moduli space $R(\mathcal{O}_X, \xi, P)$, which parametrizes **isomorphism classes** of (V, β) (i.e. semistable bundles V with frames β at $\xi \in X$) and was called the **Representation Space** by Simpson.

In Section 2 of this article, we generalize Simpson's construction of representation spaces $R(\mathcal{O}_X, \xi, P)$ to the case of characteristic p > 0 (see Theorem 2.3) and prove that Frobenius pullback F_X^* induces a rational map $f: R(\mathcal{O}_X, \xi, P) \dashrightarrow R(\mathcal{O}_X, \xi, P)$ (see Proposition 2.5). In Section 3, for a stratified bundle $E = (E_i)_{i \in \mathbb{N}}$ such that $\Sigma = \{E_i\}_{i \geq n_0}$ is an infinite set, we construct a closed subvariety $\mathcal{N}(E) \subset R(\mathcal{O}_X, \xi, P)$ such that $f: R(\mathcal{O}_X, \xi, P) \dashrightarrow R(\mathcal{O}_X, \xi, P)$ induces a dominant rational map $f^a: \mathcal{N}(E) \dashrightarrow \mathcal{N}(E)$ and $\mathcal{N}(E)(k) \cap R(E)_{n_0}$ is an infinite set (see Theorem 3.7). In Section 4, we use the construction of Section 3 to give a uniform proof (see Theorem 4.1) of the main theorem in [1], which says that there is no nontrivial stratified bundle on X if $\pi_1 = \pi_1^{\text{\'et}}(X, \xi)$ is trivial. For example, when $k = \overline{\mathbb{F}}_q$, $\mathcal{N}(E)$ contains a dense set of points (V, β) such that V is induced by a representation of π_1 . On the other hand, if $E = (E_i)_{i \in \mathbb{N}}$ is nontrivial, we can assume that all

bundles E_i in $\Sigma = \{E_i\}_{i \geq n_0}$ are nontrivial, then the set

$$\mathcal{U} = \{ (V, \beta) \in \mathcal{N}(E) \mid V \text{ is nontrivial} \}$$

is a nonempty open set, which must contain a point (V, β) such that V is induced by a representation of π_1 and we get a contradiction if π_1 is trivial. These arguments are easily applied to prove relative version of this theorem (see Theorem 4.2).

Acknowledegements: Theorem 4.2 (see [2] for an another proof) was a question that Hélène Esnault posed to me when I visited Berlin on 2013, where I proved immediately the irreducible case of Theorem 4.2 in a unpublished note (in fact, I proved the theorem for stratified bundles which are extensions of two irreducible stratified bundles). I thank her very much for the question and discussions. I would also like to thank the anonymous referees for their carefully reading and helpful comments, which improve the article very much.

2. Representation spaces and Frobenius map

Let X be an irreducible projective variety with a fixed ample line bundle $\mathcal{O}_X(1)$. For a torsion free sheaf \mathcal{E} of rank $r(\mathcal{E})$ on X, $P(\mathcal{E}, m) = \chi(\mathcal{E}(m))$ is a polynomial in m (the so called Hilbert polynomial of \mathcal{E}) with degree $n = \dim X$.

A torsion free sheaf \mathcal{E} on X is called p-semistable (resp. p-stable) if for any proper subsheaf $\mathcal{F} \subset \mathcal{E}$, when m is large enough, we have

$$p(\mathcal{F}, m) := \frac{P(\mathcal{F}, m)}{r(\mathcal{F})} \le \frac{P(\mathcal{E}, m)}{r(\mathcal{E})} := p(\mathcal{E}, m) \text{ (resp. <)}.$$

Lemma 2.1. Let $0 \to \mathcal{E}_1 \to \mathcal{E} \to \mathcal{E}_2 \to 0$ be an exact sequence of torsion free sheaves, if \mathcal{E}_1 and \mathcal{E}_2 are p-semistable with $p(\mathcal{E}_1, m) = p(\mathcal{E}_2, m)$ for all m, then \mathcal{E} is p-semistable with $p(\mathcal{E}, m) = p(\mathcal{E}_1, m) = p(\mathcal{E}_2, m)$ for all m.

Proof. It is easy to check and we omit the details.

Let S be an affine variety over a finite field \mathbb{F}_q , and $X_S \to S$ be a projective, flat morphism with geometrically irreducible and reduced fibers. Fix a polynomial P of degree equal to the relative dimension $d = \dim(X_S/S)$ and a relative ample line bundle $\mathcal{O}_{X_S}(1)$ on X_S . Let

$$Q := \operatorname{Quot}_P(\mathcal{O}_{X_S}(-N)^{\oplus P(N)}) \to S$$

be the relative quotient scheme together with the universal quotient

$$\mathcal{O}_{X_S \times_S \mathcal{Q}}(-N)^{\oplus P(N)} \to \mathcal{F}^{univ} \to 0$$

where \mathcal{F}^{univ} is \mathcal{Q} -flat with the fixed Hilbert polynomial P. Let

$$\pi_{\mathcal{Q}}: X_{\mathcal{Q}} := X_S \times_S \mathcal{Q} \to \mathcal{Q}$$

be the projection and $\mathcal{O}_{X_{\mathcal{Q}}}(m)$ be the pullback of $\mathcal{O}_{X_S}(m)$ (under projection $X_{\mathcal{Q}} \to X_S$). It is well-known that the determinant line bundle

$$\mathcal{L}_{m} = \bigwedge^{P(m)} (\pi_{\mathcal{Q}})_{*} (\mathcal{F}^{univ} \otimes \mathcal{O}_{X_{\mathcal{Q}}}(m))$$

of cohomology is very ample for large m, which gives a linearization of $\mathrm{SL}(P(N))$ on \mathcal{Q} (see page 64 of [11] for detail). Let $\overline{\mathcal{Q}} \subset \mathcal{Q}$ be the closure of open set of points corresponding to semistable quotients. Then the open set $\overline{\mathcal{Q}}^{ss} \subset \mathcal{Q}$ (resp. $\overline{\mathcal{Q}}^s \subset \mathcal{Q}$) of GIT semistable (resp. GIT stable) points under the action of $\mathrm{SL}(P(N))$ (respect to \mathcal{L}_m) is precisely the open set \mathcal{Q} of quotients $\mathcal{O}_{X_s}(-N)^{\oplus P(N)} \to \mathcal{F}_s \to 0$ where \mathcal{F}_s are p-semistable (resp. p-stable) torsion free sheaves on X_s (See Theorem 4.1 of [6] over a general base). Let

(2.1)
$$\varphi: Q \to M(\mathcal{O}_{X_S}, P) := Q//\mathrm{SL}(P(N))$$

be the GIT quotient over S defined in Theorem 4 of [10]. Then

$$M(\mathcal{O}_{X_S}, P) \to S$$

is a projective scheme of finite type over S, which uniformly corepresents the functor $\mathbf{M}(\mathcal{O}_{X_S}, P) : \operatorname{Sch}/S \to \operatorname{Sets}$ defined by

$$\mathbf{M}(\mathcal{O}_{X_S}, P)(S') = \left\{ \begin{array}{l} s\text{-equivalence classes of families of } p\text{-semistable} \\ \text{sheaves on the geometric fibres of } X_{S'} \to S', \\ \text{which are flat over } S' \text{ with Hilbert polynomial } P \end{array} \right\}.$$

Definition 2.2. (1) A coherent sheaf \mathcal{F} on X_S is called p-semistable with Hilbert polynomial P if it is flat over S and \mathcal{F}_s are p-semistable with Hilbert polynomial P on each geometric fiber X_s of $X_S \to S$. (2) Suppose $\xi_S : S \to X_S$ is a section of $X_S \to S$, we say that \mathcal{F} satisfies condition $LF(\xi_S)$ if $gr(\mathcal{F}_s)$ is locally free at $\xi_S(s)$ ($\forall s \in S$).

Let $Q^{\mathrm{LF}(\xi_S)} \subset Q$ be the subset of Q parametrizing quotients

$$\mathcal{O}_{X_S}(-N)^{\oplus P(N)} \to \mathcal{F} \to 0$$

where \mathcal{F} satisfies condition $LF(\xi_S)$. It was shown in [11] that there is an open set $M^{LF(\xi_S)}(\mathcal{O}_{X_S}, P) \subset M(\mathcal{O}_{X_S}, P)$ such that

$$Q^{\mathrm{LF}(\xi_S)} = \varphi^{-1}(M^{\mathrm{LF}(\xi_S)}(\mathcal{O}_{X_S}, P))$$

and $\varphi: Q^{\mathrm{LF}(\xi_S)} \to M^{\mathrm{LF}(\xi_S)}(\mathcal{O}_{X_S}, P)$ is a uniform categorical quotient.

Let \mathcal{F}^{univ} be the universal quotient on $X_S \times_S Q^{\mathrm{LF}(\xi_S)}$, which is locally free along the universal section $\xi_Q: Q^{\mathrm{LF}(\xi_S)} \to X_S \times_S Q^{\mathrm{LF}(\xi_S)}$, and let

$$\pi: T \to Q^{\mathrm{LF}(\xi_S)}$$

be the frame bundle of $\xi_Q^*(\mathcal{F}^{univ})$, which represents the functor that associates to any $S' \to S$ the set of all triples $(\mathcal{E}, \alpha, \beta)$, where \mathcal{E} is a p-semistable torsion free sheaf of Hilbert polynomial P on $X_{S'}/S'$ satisfying condition $LF(\xi_{S'})$, and α , β are isomorphisms

$$\alpha: \mathcal{O}_{S'}^{\oplus P(N)} \cong H^0(X_{S'}/S', \mathcal{E}(N)), \quad \beta: \xi_{S'}^*(\mathcal{E}) \cong \mathcal{O}_{S'}^{\oplus r}.$$

The group $\operatorname{GL}(P(N)) \times \operatorname{GL}(r)$ acts on T, compatibly with the action of $\operatorname{GL}(P(N))$ on $Q^{\operatorname{LF}(\xi_S)}$. We may choose a linearization of the action of $\operatorname{GL}(P(N))$ on \mathcal{L}_m^b such that the center $G_m \subset \operatorname{GL}(P(N))$ acts trivially. Then the line bundle \mathcal{L}_m^b on $Q^{\operatorname{LF}(\xi_S)}$ has a linearization with respect to the group $\operatorname{GL}(P(N)) \times \operatorname{GL}(r)$, where the second factor acts trivially. Let \mathbf{L} denote the pullback of the $\operatorname{GL}(P(N)) \times \operatorname{GL}(r)$ -linearized bundle \mathcal{L}_m^b to T. Then we have a characteristic p analogue of a special case $(\Lambda = \mathcal{O}_{X_S})$ of Simpson's result (see Theorem 4.10 of [11]).

Theorem 2.3. Every point of T is stable for the action of GL(P(N)) with respect to the linearized line bundle \mathbf{L} , and the action of GL(P(N)) on T is free. The geometric quotient

$$\phi: T \to R(\mathcal{O}_{X_S}, \xi_S, P) := T//\mathrm{GL}(P(N))$$

represents a functor which associates to any $S' \to S$ the set of pairs (\mathcal{E}, β) where \mathcal{E} is a p-semistable torsion free sheaf of Hilbert polynomial P on $X_{S'}/S'$ satisfying condition $LF(\xi_{S'})$, and

$$\beta: \xi_{S'}^*(\mathcal{E}) \cong \mathcal{O}_{S'}^{\oplus r}$$

is a frame. Thus $R(\mathcal{O}_{X_S}, \xi_S, P)$ is a fine moduli space. Moreover, we have the following properties:

- (1) Every point of $R(\mathcal{O}_{X_S}, \xi_S, P)$ is GIT semistable under the action of GL(r) (respect to a \mathcal{L} obtained from \mathbf{L}) and the quotient $R(\mathcal{O}_{X_S}, \xi_S, P)//GL(r)$ is naturally equal to $M^{LF(\xi_S)}(\mathcal{O}_{X_S}, P)$;
- (2) For a geometric point $\alpha = (V, \beta) \in R(\mathcal{O}_{X_S}, \xi_S, P)$, the orbit $O(\alpha)$ of $\alpha = (V, \beta)$ under GL(r) is closed if and only if V is a direct sum of p-stable sheaves, and $\alpha = (V, \beta)$ is a stable point if and only if V is a p-stable sheaf.

Proof. The proof is the same with Simpson's proof in characteristic zero. For conveniences of readers, we repeat his proof here and indicate references so that it works in characteristic p > 0.

The projection $\pi: T \to Q^{\mathrm{LF}(\xi_S)}$ is an affine map and all points of $Q^{\mathrm{LF}(\xi_S)}$ are semistable for the action of $\mathrm{GL}(P(N))$ respect to linearized line bundle \mathcal{L}_m^b . Thus if $q \in T$ is any point, then there is an $\mathrm{GL}(P(N))$ -invariant section $\sigma \in \mathrm{H}^0(Q^{\mathrm{LF}(\xi_S)}, \mathcal{L}_m^{ab})$ such that $(Q^{\mathrm{LF}(\xi_S)})_{\sigma \neq 0}$ is affine and $\sigma(\pi(q)) \neq 0$. Then $\pi^*(\sigma) \in \mathrm{H}^0(T, \mathbf{L}^a)$ is $\mathrm{GL}(P(N))$ -invariant such that $\pi^*(\sigma)(q) \neq 0$ and $T_{\pi^*(\sigma)\neq 0} = \pi^{-1}((Q^{\mathrm{LF}(\xi_S)})_{\sigma \neq 0})$ is affine. Thus any point $q \in T$ is semistable. To prove that every point of T is stable, the key is a lemma of Simpson (Lemma 4.9 of [11]), which implies that the stabilizer of any point of T is finite and in particular orbits of all points of T have same dimension. Thus the orbit of any point of T is closed since no orbit can be contained in the closure of another orbit.

It is a general fact that there exist a geometric quotient

$$\phi: T \to R(\mathcal{O}_{X_S}, \xi_S, P) := T//\mathrm{GL}(P(N))$$

and an ample line bundle \mathcal{L} on $R(\mathcal{O}_{X_S}, \xi_S, P)$ such that

$$\phi^* \mathcal{L} = \mathbf{L}^a = \pi^* \mathcal{L}_m^{ab}$$

when a is large enough. Moreover, ϕ is submersive (i.e. $U \subset R(\mathcal{O}_{X_S}, \xi_S, P)$ is open if and only if $\phi^{-1}(U) \subset T$ is open).

To show the action of GL(P(N)) on T is free, we must show that

(2.2)
$$\operatorname{GL}(P(N)) \times T \to T \times_{R(\mathcal{O}_{X_S}, \xi_S, P)} T, \quad (g, q) \mapsto (g(q), q)$$

is a closed immersion. By a result of Mumford (Corollary 2.5 of Proposition 2.4 at page 55 of [9] where Proposition 2.4 is an application of Iwahori's theorem), the above morphism (2.2) is proper. Here we remark that Iwahori's theorem and Proposition 2.4 were proved in characteristic p > (see Appendix to Chapter 2 of [9] at page 202). By using again Lemma 4.9 of [11], Simpson was able to show that (2.2) is an inclusion of functors. A proper map which is an inclusion of functors is a closed immersion. Thus the action of GL(P(N)) on T is free, which implies that $\phi: T \to R(\mathcal{O}_{X_S}, \xi_S, P)$ is a principal GL(P(N))-bundle over $R(\mathcal{O}_{X_S}, \xi_S, P)$ by Proposition 0.9 of [9].

Let \mathcal{F}^{univ} be pullback of the universal quotient on $X_S \times_S Q^{\mathrm{LF}(\xi_S)}$ (under $X_S \times_S T \to X_S \times_S Q^{\mathrm{LF}(\xi_S)}$). Then the action of $\mathrm{GL}(P(N))$ on $X_S \times_S T$ lifts to an action on \mathcal{F}^{univ} and

$$\operatorname{id}_{X_S} \times \phi : X_S \times_S T \to X_S \times_S R(\mathcal{O}_{X_S}, \xi_S, P)$$

is a principal GL(P(N))-bundle. By Proposition 2.2 (B) of [8], the descend lemma holds in characteristic p > 0 if the scheme-theoretic stabilizers are linearly reductive. Thus \mathcal{F}^{univ} descends to a universal p-semistable sheaf \mathcal{F}^R with Hilbert polynomial P on

$$X_R := X_S \times_S R(\mathcal{O}_{X_S}, \xi_S, P) \to R := R(\mathcal{O}_{X_S}, \xi_S, P)$$

with a universal frame $\beta^R: \xi_R^* \mathcal{F}^R \cong \mathcal{O}_R^{\oplus r}$. Then, by the same arguments of Simpson, $R := R(\mathcal{O}_{X_S}, \xi_S, P)$ together with (\mathcal{F}^R, β^R) represents the required functor.

To prove (1), recall \mathcal{L} is the ample line bundle on $R(\mathcal{O}_{X_S}, \xi_S, P)$ such that $\phi^*(\mathcal{L}) = \mathbf{L}^a = \pi^* \mathcal{L}^{ab}_m$, we will prove that for any point $q \in T$ the point $\phi(q) \in R(\mathcal{O}_{X_S}, \xi_S, P)$ is GIT semistable under the action of $\mathrm{GL}(r)$ (respect to a \mathcal{L}). As above, there is an $\sigma \in \mathrm{H}^0(Q^{\mathrm{LF}(\xi_S)}, \mathcal{L}^{ab}_m)$ such that $(Q^{\mathrm{LF}(\xi_S)})_{\sigma \neq 0}$ is affine and $\sigma(\pi(q)) \neq 0$. Then $\pi^*(\sigma) \in \mathrm{H}^0(T, \mathbf{L}^a)$ is $\mathrm{GL}(P(N))$ -invariant such that $\pi^*(\sigma)(q) \neq 0$ and $T_{\pi^*(\sigma)\neq 0}$ is affine. Let $\tau \in \mathrm{H}^0(R(\mathcal{O}_{X_S}, \xi_S, P), \mathcal{L}^a)$ be the section such that $\phi^*(\tau) = \pi^*\sigma$. Then $\tau(\phi(q)) \neq 0$ and $R(\mathcal{O}_{X_S}, \xi_S, P)_{\tau \neq 0} = T_{\pi^*(\sigma)\neq 0}//\mathrm{GL}(P(N))$ is affine. On the other hand, $\pi^*(\sigma)$ is $\mathrm{GL}(r)$ -invariant since $\pi: T \to Q^{\mathrm{LF}(\xi_S)}$ is a principal $\mathrm{GL}(r)$ -bundle, which implies that τ is $\mathrm{GL}(r)$ -invariant and $\phi(q)$ is semistable under the action of $\mathrm{GL}(r)$ respect to \mathcal{L} . Let

$$\psi: R(\mathcal{O}_{X_S}, \xi_S, P) \to \mathbf{M} := R(\mathcal{O}_{X_S}, \xi_S, P) / / \mathrm{GL}(r).$$

Then both $T \xrightarrow{\phi} R(\mathcal{O}_{X_S}, \xi_S, P) \xrightarrow{\psi} \mathbf{M}$ and

$$T \xrightarrow{\pi} Q^{\mathrm{LF}(\xi_S)} \xrightarrow{\varphi} M^{\mathrm{LF}(\xi_S)}(\mathcal{O}_{X_S}, P)$$

are categorical quotients of T by $\mathrm{GL}(P(N)) \times \mathrm{GL}(r)$. Thus \mathbf{M} is naturally equal to $M^{\mathrm{LF}(\xi_S)}(\mathcal{O}_{X_S}, P)$ and we have the commutative diagram

$$T \xrightarrow{\phi} R(\mathcal{O}_{X_S}, \xi_S, P)$$

$$\downarrow^{\pi} \qquad \qquad \downarrow^{\psi} \downarrow$$

$$Q^{\mathrm{LF}(\xi_S)} \xrightarrow{\varphi} M^{\mathrm{LF}(\xi_S)}(\mathcal{O}_{X_S}, P).$$

To prove (2) of the theorem, let

$$q = (\mathcal{O}_{X_{\bar{s}}}(-N)^{\oplus P(N)} \xrightarrow{q} V \to 0, \beta) \in T$$

such that $\phi(q) = \alpha = (V, \beta) \in R(\mathcal{O}_{X_S}, \xi_S, P)$ and

$$q' := \pi(q) = (\mathcal{O}_{X_{\bar{s}}}(-N)^{\oplus P(N)} \xrightarrow{q} V \to 0) \in Q^{\mathrm{LF}(\xi_S)}.$$

Let $O_{\mathrm{GL}(r)}(\alpha) \subset R(\mathcal{O}_{X_S}, \xi_S, P)$ (resp. $O_{\mathrm{GL}(P(N))}(q') \subset Q^{\mathrm{LF}(\xi_S)}$) be the orbit of α (resp. q') under $\mathrm{GL}(r)$ (resp. $\mathrm{GL}(P(N))$). Then

$$\phi^{-1}(O_{\mathrm{GL}(r)}(\alpha)) = O_{\mathrm{GL}(P(N)) \times \mathrm{GL}(r)}(q) = \pi^{-1}(O_{\mathrm{GL}(P(N))}(q'))$$

since $T \xrightarrow{\phi} R(\mathcal{O}_{X_S}, \xi_S, P)$ (resp. $T \xrightarrow{\pi} Q^{\mathrm{LF}(\xi_S)}$) is a principal $\mathrm{GL}(P(N))$ -bundle (resp. a principal $\mathrm{GL}(r)$ -bundle), where

$$O_{\mathrm{GL}(P(N))\times\mathrm{GL}(r)}(q)\subset T$$

is the orbit of $q \in T$ under $GL(P(N)) \times GL(r)$. Thus

$$O_{\mathrm{GL}(r)}(\alpha) \subset R(\mathcal{O}_{X_S}, \xi_S, P)$$

is closed if and only if $O_{\mathrm{GL}(P(N))}(q') \subset Q^{\mathrm{LF}(\xi_S)}$ is closed. But

$$O_{\mathrm{GL}(P(N))}(q') \subset Q^{\mathrm{LF}(\xi_S)}$$

is closed if and only if V is a direct sum of p-stable sheaves. On the other hand, the group of automorphisms of determinant one of such a direct sum is finite if and only if the sum has exactly one p-stable component. Thus $\alpha = (V, \beta) \in R(\mathcal{O}_{X_S}, \xi_S, P)$ has closed orbit and finite stabilizer in SL(r) (i.e. a stable point) if and only if V is a p-stable sheaf. Here we use a fact that Aut(V) is naturally isomorphic to the stabilizer of $\alpha = (V, \beta)$.

Remarks 2.4. (1) According to Simpson, the moduli spaces

$$R(\mathcal{O}_{X_S}, \xi_S, P) \to S$$

are called **Representation spaces**.

(2) Let X be a smooth, connected projective variety over a perfect field k of characteristic p > 0 with a given point

$$\xi : \operatorname{Spec}(k) \to X$$
.

There exist an \mathbb{F}_q -algebra $A \subset k$ of finite type and a scheme

$$X_S \to S = \operatorname{Spec}(A)$$

of finite type over S such that its base change under $\operatorname{Spec}(k) \to S$ (induced by $A \subset k$) is isomorphic to $X \to \operatorname{Spec}(k)$, which is called a model of $X \to \operatorname{Spec}(k)$. We can choose S such that $X_S \to S$ is a smooth projective flat morphism and $\xi : \operatorname{Spec}(k) \to X$ extends to a section $\xi_S : S \to X_S$. Then the representation space $R(\mathcal{O}_{X_S}, \xi_S, P) \to S$, we will use in this article, is the case when $P(m) = \chi(\mathcal{O}_X(m)^{\oplus r})$.

Proposition 2.5. There exists a rational map

$$f: R(\mathcal{O}_{X_S}, \xi_S, P) \dashrightarrow R(\mathcal{O}_{X_S}, \xi_S, P)$$

over S satisfying the following conditions:

(1) $\forall \alpha = (E, \beta) \in R(\mathcal{O}_X, \xi, P) = R(\mathcal{O}_{X_S}, \xi_S, P) \times_S \operatorname{Spec}(k)$, f is well-defined at α if and only if F_X^*E is p-semistable, where $F_X: X \to X$ is the (absolute) Frobenius map. In this case,

$$f(\alpha) = (F_X^* E, F_k^* \beta).$$

(2) \forall geometric closed point $\alpha_{\bar{s}} = (\mathcal{E}_{\bar{s}}, \beta_{\bar{s}}) \in R(\mathcal{O}_{X_S}, \xi_S, P)$, f is well-defined at $\alpha_{\bar{s}}$ if and only if $F_{X_{\bar{s}}}^* \mathcal{E}_{\bar{s}}$ is p-semistable, where $X_{\bar{s}}$ is a geometric closed fiber of $X_S \to S$. In this case,

$$f(\alpha_{\bar{s}}) = (F_{X_{\bar{s}}}^* \mathcal{E}_{\bar{s}}, F_{k(\bar{s})}^* \beta_{\bar{s}}).$$

Proof. Let (\mathcal{F}^R, β^R) be the universal object on $X_R := X_S \times_S R(\mathcal{O}_{X_S}, \xi_S, P)$ where $\beta^R : \xi_R^* \mathcal{F}^R \cong \mathcal{O}_{R(\mathcal{O}_{X_S}, \xi_S, P)}^{\oplus r}$ is the universal frame of $\xi_R^* \mathcal{F}^R$. Let

$$F: X_R \to X_R'$$

denote the relative Frobenius over $R := R(\mathcal{O}_{X_S}, \xi_S, P)$. Consider

(2.3)
$$X_{R} \xrightarrow{F} X'_{R} \longrightarrow X_{R}$$

$$\downarrow^{p_{R}} \qquad \downarrow^{p_{R}} \qquad \downarrow^{p_$$

Then the pullback $(F_{X_R}^* \mathcal{F}^R, F_R^* \beta^R)$ of (\mathcal{F}^R, β^R) , where

$$F_R^*\beta^R: \xi_R^*(F_{X_R}^*\mathcal{F}^R) = F_R^*(\xi_R^*\mathcal{F}^R) \xrightarrow{F_R^*(\beta^R)} F_R^*(\mathcal{O}_R^{\oplus r}) = \mathcal{O}_R^{\oplus r},$$

defines the rational map

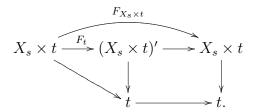
$$(2.4) f: R(\mathcal{O}_{X_S}, \xi_S, P) \dashrightarrow R(\mathcal{O}_{X_S}, \xi_S, P).$$

It is well-defined on an open subscheme $R_0 \subset R(\mathcal{O}_{X_S}, \xi_S, P)$ such that

$$F_{X_R}^* \mathcal{F}^R$$

is a family of p-semistable sheaves on $X_S \times_S R_0$.

To see that the rational map (2.4) satisfies the requirements (1) and (2) in the proposition, it is enough to make the following remak. For any point $t \to R$, let $s \to S$ be its image under $R \to S$, and X_s be the fiber of $X_S \to S$ at $s \to S$. Then the diagram (2.3) specializes to



3. Stratified bundles and Representation spaces

Let k be a perfect field of characteristic p > 0, and X a smooth connected projective variety over k. A stratified bundle (or \mathcal{D} -module) on X is by definition a coherent \mathcal{O}_X -module \mathcal{E} with a homomorphism

$$\nabla: \mathcal{D}_X \to \mathcal{E}nd_k(\mathcal{E})$$

of \mathcal{O}_X -algebras, where \mathcal{D}_X is the sheaf of differential operators acting on the structure sheaf of X. By a theorem of Katz (cf. [4, Theorem 1.3]), it is equivalent to the following definition.

Definition 3.1. A stratified bundle on X is a sequence of bundles

$$E = \{E_0, E_1, E_2, \cdots, \sigma_0, \sigma_1, \ldots\} = \{E_i, \sigma_i\}_{i \in \mathbb{N}}$$

where $\sigma_i: F_X^*E_{i+1} \to E_i$ is a \mathcal{O}_X -linear isomorphism, and $F_X: X \to X$ is the absolute Frobenius.

A morphism $\alpha = \{\alpha_i\} : \{E_i, \sigma_i\} \to \{F_i, \tau_i\}$ between two stratified bundles is a sequence of morphisms $\alpha_i : E_i \to F_i$ of \mathcal{O}_X -modules such that

$$F_X^* E_{i+1} \xrightarrow{F_X^* \alpha_{i+1}} F_X^* F_{i+1}$$

$$\sigma_i \downarrow \qquad \qquad \downarrow \tau_i$$

$$E_i \xrightarrow{\alpha_i} F_i$$

is commutative. The category $\mathbf{str}(X)$ of stratified bundles is abelian, rigid, monoidal. We will drop the isomorphisms σ_i and will use the notation $E = (E_i)_{i \in \mathbb{N}}$ and in particular $E(n_0) = (E_i)_{i \geq n_0}$ is also a stratified bundle.

Lemma 3.2. Let $E = (E_i)_{i \in \mathbb{N}}$ be a stratified bundle. Then there is an n_0 such that E_i are p-semistable of $p(E_i, m) = p(\mathcal{O}_X, m)$ for all $i \geq n_0$.

Proof. It is known that $p(E_i, m) = p(\mathcal{O}_X, m)$ for all $i \geq 0$ (see Corollary 2.2 of [1]). By Proposition 2.3 of [1], there is an $n_0 > 0$ such that the stratified bundle $E(n_0) = (E_i)_{i \geq n_0}$ is a successive extension of stratified bundles $U = (U_i)_{i \in \mathbb{N}}$ with the property that all U_i for $i \in \mathbb{N}$ are p-stable bundles with $p(U_i, m) = p(\mathcal{O}_X, m)$. Then, by Lemma 2.1, all E_i for $i \geq n_0$ are p-semistable of $p(E_i, m) = p(\mathcal{O}_X, m)$.

Lemma 3.3. Let X be a smooth projective variety over a perfect field k of characteristic p > 0 with a fixed rational point $\xi : \operatorname{Spec}(k) \to X$. Let $F_X : X \to X$ be the Frobenius map, and V, V' be vector bundles satisfying $V = F_X^*(V')$. Then, for any frame $\beta : \xi^*V \cong \mathcal{O}^{\oplus r}_{\operatorname{Spec}(k)}$, there

is a unique frame $\beta': \xi^*V' \cong \mathcal{O}^{\oplus r}_{\operatorname{Spec}(k)}$ such that $\beta = F_k^*(\beta')$ where $F_k: \operatorname{Spec}(k) \to \operatorname{Spec}(k)$ is the Frobenius morphism and

$$F_k^*(\beta'): \xi^*V = F_k^*(\xi^*V') \xrightarrow{F_k^*(\beta')} F_k^*(\mathcal{O}_{\operatorname{Spec}(k)}^{\oplus r}) = \mathcal{O}_{\operatorname{Spec}(k)}^{\oplus r}.$$

Proof. It is clearly a local question and we can assume $X = \operatorname{Spec}(A)$, $\xi^*V = V \otimes_A k = V/mV$, $\xi^*V' = V' \otimes_A k = V'/mV'$ (where k = A/m, $m \subset A$ is a maximal ideal) and $\xi^*V = F_k^*\xi^*V' = \xi^*V' \otimes_{k^p} k$. The frame β is uniquely determined by a base $\beta_1, \dots, \beta_r \in \xi^*V$ of ξ^*V . Since k is perfect, there are uniquely $\beta'_1, \dots, \beta'_r \in \xi^*V'$ such that $\beta_i = \beta'_i \otimes_{k^p} 1$ $(1 \leq i \leq r)$. Then $\beta'_1, \dots, \beta'_r \in \xi^*V'$ are clearly linear independent (thus it is a base of ξ^*V'), which defines a frame $\beta' : \xi^*V' \cong \mathcal{O}^{\oplus r}_{\operatorname{Spec}(k)}$ satisfying $F_k^*(\beta') = \beta$.

For a given stratified bundle $E = (E_i)_{i \in \mathbb{N}}$ on X, we can fix a frame

$$\beta_1: \xi^* E_1 \cong \mathcal{O}^{\oplus r}_{\operatorname{Spec}(k)}.$$

By Lemma 3.2 and Lemma 3.3, we get a set of k-points

(3.1)
$$R(E)_{n_0} := \{\alpha_i = (E_i, \beta_i)\}_{i > n_0} \subset R(\mathcal{O}_X, \xi, P)(k)$$

with $F_X^*(\alpha_{i+1}) = \alpha_i$. To produce a representation of $\pi_1 = \pi_1^{\text{\'et}}(X, a)$ from the stratified bundle E, the following two results are important.

Lemma 3.4 (Lange-Stuhler, [7]). Let X be a smooth projective variety over k of $\operatorname{char}(k) = p > 0$, $F_X : X \to X$ be the Frobenius map. If there is a vector bundle \mathcal{E} on X and an integer m > 0 such that

$$(F_X^m)^*\mathcal{E} \cong \mathcal{E}$$

then there exists a geometrically connected étale finite cover

$$\sigma: Z \to X$$

such that $\sigma^*\mathcal{E} \cong \mathcal{O}_Z^{\oplus \mathrm{rk}(\mathcal{E})}$. This gives a representation

$$\pi_1^{\acute{e}t}(X \otimes_k \bar{k}, a) \to GL(V)$$

whose associated bundle is $\mathcal{E} \otimes_k \bar{k}$ on $X \otimes_k \bar{k}$.

To find Frobenius periodic bundles from a given stratified bundle, the key tool is a theorem of Hrushovski. In fact, we only need a special case of his theorem [5, Corollary 1.2] (see also [13] for a proof in algebraic geometry).

Theorem 3.5 (Corollary of twisted Lang-Weil estimate, [5, Corollary 1.2]). Let Y be an affine variety over \mathbb{F}_q , and let

$$\Gamma \subset (Y \times_{\mathbb{F}_q} Y) \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$$

be an irreducible subvariety over $\overline{\mathbb{F}}_q$. Assume the two projections $\Gamma \to Y$ are dominant. Then, for any closed subvariety $W \subsetneq Y$, there exists $x \in Y(\overline{\mathbb{F}}_q)$ such that $(x, x^{q^m}) \in \Gamma$ and $x \notin W$ for large enough natural number m.

However, we will use Hrushovski's theorem in following formulation.

Lemma 3.6 (Corollary of Hrushovski's theorem). Let Y be a variety over $\bar{\mathbb{F}}_p$ and $f: Y \dashrightarrow Y$ a dominant rational map. Then the subset $\{x \in Y(\bar{\mathbb{F}}_p) \mid \exists b, f^b(x) = x\} \subset Y(\bar{\mathbb{F}}_p)$ is dense in Y.

Proof. We prove that any nontrivial affine open set of Y contains a periodic point of f. Replace Y by the affine open set, we can assume that $Y \subset \mathbb{A}^n_{\mathbb{F}_q}$ is an affine variety over \mathbb{F}_q and $f: Y \dashrightarrow Y$ is also defined over \mathbb{F}_q . Let $\Gamma = \overline{graph(f)} \subset Y \times Y$ and $W \subset Y$ where f is not well-defined. Let $f = (f_1, ..., f_n)$ be defined by the rational functions $f_i \in \mathbb{F}_q(Y)$ on Y. Then, by Theorem 3.5, there is a point $x = (x_1, ..., x_n) \in Y(\overline{\mathbb{F}}_q)$ such that $x \notin W$ and $(x, x^{q^m}) \in \Gamma$ where

$$x^{q^m} := (x_1^{q^m}, x_2^{q^m}, ..., x_n^{q^m}),$$

which implies that $f(x) = (x_1^{q^m}, ..., x_n^{q^m}) = x^{q^m}$. On the other hand, since f is defined by rational functions $f_i \in \mathbb{F}_q(Y)$, we have

$$f(x^{q^a}) = (f_1(x^{q^a}), ..., f_n(x^{q^a})) = (f_1(x)^{q^a}, ..., f_n(x)^{q^a}) := f(x)^{q^a}$$

for any integer a > 0. Thus

$$f^{b}(x) = f^{b-1}(x^{q^{m}}) = f^{b-2}(x^{q^{2m}}) = \dots = x^{q^{bm}} = x$$

when b is large enough since $x = (x_1, ..., x_n) \in Y(\overline{\mathbb{F}}_q)$.

Theorem 3.7. Let X be a smooth projective variety over a perfect field k of characteristic p > 0 with a fixed point $\xi : \operatorname{Spec}(k) \to X$. Let $E = (E_i)_{i \in \mathbb{N}}$ be a stratified bundle on X such that

$$\Sigma = \{ E_i \}_{i \in \mathbb{N}}$$

is an infinite set. Then there exist a choice of S and an irreducible closed subset $\mathcal{N}(E)_S \subset R(\mathcal{O}_{X_S}, \xi_S, P)$ such that

- (1) $\{V \in \Sigma \mid (V, \beta) \in \mathcal{N}(E)_S(k)\} \subset \Sigma$ is an infinite subset, where $\mathcal{N}(E)_S(k)$ denote the set of k-points of $\mathcal{N}(E)_S$.
- (2) $\mathcal{N}(E)_S$ contains a dense subset of points $\alpha_{\bar{s}} = (V_{\bar{s}}, \beta_{\bar{s}})$, where $V_{\bar{s}}$ are vector bundles on geometric fibers $X_{\bar{s}}$ associated to representations $\rho_{\bar{s}} : \pi_1^{\acute{e}t}(X_{\bar{s}}, \xi_{\bar{s}}) \to GL(r, k(\bar{s}))$.

Proof. For the given stratified bundle $E = (E_i)_{i \in \mathbb{N}}$, without loss of generality, we assume that all bundles E_i ($\in \mathbb{N}$) are p-semistable. Fix

a frame $\beta_1: \xi^* E_1 \cong \mathcal{O}^{\oplus r}_{\operatorname{Spec}(k)}$, by Lemma 3.3, the stratified bundle $E = (E_i)_{i \in \mathbb{N}}$ gives an infinite set of points

$$R(E) = \{ Q_i = (E_i, \beta_i) \in R(\mathcal{O}_X, \xi, P) \mid F_X^*(Q_{i+1}) = Q_i \}$$

and subsets $R(E)_n := \{ Q_i \in R(E) \}_{i \ge n} \ (n \in \mathbb{N}), \text{ which satisfy}$

$$(3.2) R(E) = R(E)_1 \supseteq R(E)_2 \supseteq \cdots \supseteq R(E)_n \supseteq R(E)_{n+1} \supseteq \cdots$$

and $F_X^*(R(E)_{n+1}) = R(E)_n$. Let $\mathcal{Z}_n = \overline{R(E)_n} \subset R(\mathcal{O}_X, \xi, P)$ be the Zariski closure of $R(E)_n$. Then, by (3.2), we have

$$\mathcal{Z}_1 \supseteq \mathcal{Z}_2 \supseteq \cdots \supseteq \mathcal{Z}_n \supseteq \mathcal{Z}_{n+1} \supseteq \cdots$$

which implies that there is $n_0 > 0$ such that $\mathcal{Z}_n = \mathcal{Z}_{n_0}$ $(n \geq n_0)$. Let

$$\mathcal{Z} = \bigcap_{i=1}^{\infty} \mathcal{Z}_i \subset R(\mathcal{O}_X, \xi, P).$$

Then the rational map $F_X^*: R(\mathcal{O}_X, \xi, P) \dashrightarrow R(\mathcal{O}_X, \xi, P)$ induce a dominant rational map $F_X^*: \mathcal{Z} \dashrightarrow \mathcal{Z}$. Thus there is an irreducible component $\mathcal{N}(E) \subset \mathcal{Z} \subset R(\mathcal{O}_X, \xi, P)$ such that

- $\{V \in \Sigma \mid (V, \beta) \in \mathcal{N}(E)(k)\} \subset \Sigma$ is an infinite subset;
- there is an integer a > 0 such that $(F_X^*)^a : \mathcal{Z} \dashrightarrow \mathcal{Z}$ induces a dominant rational map $(F_X^*)^a : \mathcal{N}(E) \dashrightarrow \mathcal{N}(E)$.

Choose a smooth, geometrically irreducible affine variety S over a finite field \mathbb{F}_q with rational function field $\mathbb{F}_q(S) \subset k$ such that $\mathcal{N}(E)$, $(F_X^*)^a$ are defined over S and there exist a smooth model $X_S \to S$ of $X \to \operatorname{Spec}(k)$ and a section $\xi_S : S \to X_S$ extending $\xi \in X(k)$. Let

$$R(\mathcal{O}_{X_S}, \xi_S, P) \to S$$

be the representation space constructed in Theorem 2.3. Then

$$R(\mathcal{O}_X, \xi, P) = R(\mathcal{O}_{X_S}, \xi_S, P) \times_S \operatorname{Spec}(k)$$

and the subvariety $\mathcal{N}(E) \subset R(\mathcal{O}_{X_S}, \xi_S, P) \times_S \operatorname{Spec}(k)$ is defined over S by the choice of S. Thus there exists a closed subvariety

(3.3)
$$\mathcal{N}(E)_S \subset R(\mathcal{O}_{X_S}, \xi_S, P)$$

such that $\mathcal{N}(E) = \mathcal{N}(E)_S \times_S \operatorname{Spec}(k)$, which implies that

$$\mathcal{N}(E)_S(k) = \mathcal{N}(E)(k).$$

This proves (1) of the theorem.

To show statement (2) of the theorem, recall the rational map

$$f: R(\mathcal{O}_{X_S}, \xi_S, P) \dashrightarrow R(\mathcal{O}_{X_S}, \xi_S, P)$$

constructed in Proposition 2.5 and $F_X^* = f \otimes k$ is induced by

$$f: R(\mathcal{O}_{X_S}, \xi_S, P) \dashrightarrow R(\mathcal{O}_{X_S}, \xi_S, P)$$

under the base change

$$R(\mathcal{O}_{X_S}, \xi_S, P) \times_S \operatorname{Spec}(k) \xrightarrow{f \otimes k} R(\mathcal{O}_{X_S}, \xi_S, P) \times_S \operatorname{Spec}(k).$$

Then $f^a \otimes k : \mathcal{N}(E)_S \times_S \operatorname{Spec}(k) \dashrightarrow \mathcal{N}(E)_S \times_S \operatorname{Spec}(k)$ is a dominant rational map, which implies (by shrinking S if necessary) that

$$f^a: \mathcal{N}(E)_S \dashrightarrow \mathcal{N}(E)_S$$

is a dominant rational map over \mathbb{F}_q . By Lemma 3.6, the subset

$$\Gamma = \{ \alpha_{\bar{s}} \in \mathcal{N}(E)_S(\bar{\mathbb{F}}_q) \mid \exists m, \ f^m(\alpha_{\bar{s}}) = \alpha_{\bar{s}} \}$$

of f^a -periodic points is dense in $\mathcal{N}(E)_S$. By Lemma 3.4, if a point $\alpha_{\bar{s}} = (V_{\bar{s}}, \beta_{\bar{s}}) \in \Gamma$, $V_{\bar{s}}$ is a vector bundle on geometric fiber $X_{\bar{s}}$ associated to a representation $\rho_{\bar{s}} : \pi_1^{\text{\'et}}(X_{\bar{s}}, \xi_{\bar{s}}) \to GL(r, k(\bar{s}))$.

4. An application of Representation spaces

In this section, we present an application of our Theorem 3.7 by giving a proof of relative version of Gieseker's problem. To warm up, we prove firstly the main theorem of [1] via representation spaces.

Theorem 4.1 (Esnault-Mehta, [1, Theorem 3.15]). Let X be a smooth connected projective variety defined over a perfect field k of characteristic p > 0 with a k-rational point $\xi \in X(k)$. If $\pi_1^{\acute{e}t}(X_{\bar{k}}, \xi) = \{1\}$, there is no nontrivial stratified bundle on X.

Proof. We prove it by contradiction. If there is a nontrivial stratified bundle $E = (E_i)_{i \in \mathbb{N}}$ on X, without loss of generality, we assume that all $E_i \in \Sigma = \{E_i\}_{i \in \mathbb{N}}$ are nontrivial bundles. In fact, the subset

$$C = \{ j \in \mathbb{N} \mid E_j \cong \mathcal{O}_X^{\oplus r} \}$$

must be a finite set (otherwise, for any $i \in \mathbb{N}$, there is an $j \in C$ such that i < j, which implies that $E_i \cong F^{(j-i)*}E_j$ is trivial and we obtain a contradiction since $E = (E_i)_{i \in \mathbb{N}}$ is a nontrivial stratified bundle). Drop a finite number of E_j , we can assume that all E_i are nontrivial.

If Σ is a finite set, there is an $E_{i_0} \in \Sigma$ such that $(F_X^*)^a E_{i_0} = E_{i_0}$ for some integer a > 0. By Lemma 3.4, there is a nontrivial geometrically connected étale finite cover $\sigma : Z \to X$ such that $\sigma^* E_{i_0} \cong \mathcal{O}_Z^{\oplus r}$, which is a contradiction with $\pi_1^{\text{\'et}}(X_{\bar{k}}, \xi) = \{1\}$.

If $\Sigma = \{E_i\}_{i \in \mathbb{N}}$ is an infinite set, let $\mathcal{N}(E)_S \subset R(\mathcal{O}_{X_S}, \xi_S, P)$ be the closed subset constructed in Theorem 3.7 and

$$\mathbf{B} = \{ (V, \beta) \in \mathcal{N}(E)_S \mid V \text{ is trivial } \} \subset R(\mathcal{O}_{X_S}, \xi_S, P).$$

By (2) of Theorem 2.3, **B** is a closed subset. By the assumption that $E = (E_i)_{i \in \mathbb{N}}$ is a nontrivial stratified bundle, the open set

$$U = \mathcal{N}(E)_S \setminus \mathbf{B}$$

is non-empty. Then, by (2) of Theorem 3.7, there is a point

$$\alpha_{\bar{s}} = (V_{\bar{s}}, \beta_{\bar{s}}) \in U$$

such that $V_{\bar{s}}$ is a vector bundle on geometric fiber $X_{\bar{s}}$ associated to a representation $\rho_{\bar{s}}: \pi_1^{\text{\'et}}(X_{\bar{s}}, \xi_{\bar{s}}) \to GL(r, k(\bar{s}))$, which must be nontrivial by definition of U. This is a contradiction with $\pi_1^{\text{\'et}}(X_{\bar{k}}, \xi) = \{1\}$ since the specialization homomorphism $\pi_1^{\text{\'et}}(X_{\bar{k}}, \xi) \to \pi_1^{\text{\'et}}(X_{\bar{s}}, \xi_{\bar{s}})$ is surjective ([12, Exposé X, Théorème 3.8]).

Theorem 4.2. Let $f: Y \to X$ be a morphism of smooth projective varieties over a perfect field k of characteristic p > 0, $\xi' \in Y(k)$ and $\xi \in X(k)$ be k-points such that $f(\xi') = \xi$. If the homomorphism

$$f_*: \pi_1^{\text{\'et}}(Y_{\bar{k}}, \xi') \to \pi_1^{\text{\'et}}(X_{\bar{k}}, \xi)$$

is trivial, then for any stratified bundle E on X, f^*E is trivial.

Proof. We prove the theorem by contradiction. If there is a stratified bundle $E=(E_i)_{i\in\mathbb{N}}$ on X such that f^*E is nontrivial, without loss of generality, we assume that all $f^*E_i\in\Sigma(f^*E)=\{f^*E_i\}_{i\in\mathbb{N}}$ are nontrivial bundles.

If $\Sigma = \{E_i\}_{i \in \mathbb{N}}$ is a finite set, there is an $E_{i_0} \in \Sigma(E)$ such that for any $j > i_0$ there is a $1 \le j_0 \le i_0$ such that $E_j = E_{j_0}$ that implies

$$(F_X^*)^{j-j_0} E_j = E_{j_0} = E_j.$$

Thus E_j is induced by a representation of $\pi_1^{\text{\'et}}(X_{\bar{k}}, \xi)$ by Lemma 3.4. Then f^*E_j is trivial, which implies that all f^*E_i are trivial, a contradiction with our assumption.

If $\Sigma = \{E_i\}_{i \in \mathbb{N}}$ is an infinite set, without loss of generality, we assume that all $f^*E_i \in \Sigma(f^*E) = \{f^*E_i\}_{i \in \mathbb{N}}$ are p-semistable bundles on Y of Hilbert polynomial P'. Let $\mathcal{N}(E)_S \subset R(\mathcal{O}_{X_S}, \xi_S, P)$ be the closed subset constructed in Theorem 3.7 and

$$f_S^*: R(\mathcal{O}_{X_S}, \xi_S, P) \dashrightarrow R(\mathcal{O}_{Y_S}, \xi_S', P')$$

be the rational map that sends a point $\alpha_{\bar{s}} = (V_{\bar{s}}, \beta_{\bar{s}}) \in R(\mathcal{O}_{X_S}, \xi_S, P)$ to a point $f_S^*(\alpha_{\bar{s}}) = (f_{\bar{s}}^*(V_{\bar{s}}), f_{\bar{s}}^*(\beta_{\bar{s}})) \in R(\mathcal{O}_{Y_S}, \xi_S', P')$ when $f_{\bar{s}}^*(V_{\bar{s}})$ is p-semistable on $Y_{\bar{s}}$, where $f_S: Y_S \to X_S$ is a model of $f: Y \to X$ and $f_{\bar{s}} = f_S \otimes k(\bar{s}): Y_{\bar{s}} = Y_S \otimes k(\bar{s}) \to X_S \otimes k(\bar{s}) = X_{\bar{s}}$ is the induced morphism on geometric fibers. Consider the open set

$$\mathcal{U} = \{ (V, \beta) \in R(\mathcal{O}_{Y_S}, \xi'_S, P') \mid V \text{ is not trivial } \} \subset R(\mathcal{O}_{Y_S}, \xi'_S, P'),$$

which is open by (2) of Theorem 2.3, we have a rational map

$$(4.1) f_S^* : \mathcal{N}(E)_S \dashrightarrow \mathcal{U}.$$

Let $W \subset \mathcal{N}(E)_S$ be the open set where the rational map (4.1) is well defined. Then $\{V \in \Sigma \mid (V, \beta) \in W\} \subset \Sigma$ is an infinite set since all $f^*E_i \ (\forall E_i \in \Sigma)$ are nontrivial p-semistable bundles on Y. But, by (2) of Theorem 3.7, W contains a point $\alpha_{\bar{s}} = (V_{\bar{s}}, \beta_{\bar{s}})$ where $V_{\bar{s}}$ is a vector bundle on geometric fiber $X_{\bar{s}}$ associated to a representation

$$\rho_{\bar{s}}: \pi_1^{\text{\'et}}(X_{\bar{s}}, \xi_{\bar{s}}) \to GL(r, k(\bar{s})).$$

Then $f_{\bar{s}}^*(V_{\bar{s}})$ must be trivial by the condition of the theorem. Thus the rational map (4.1) is not well-defined at $\alpha_{\bar{s}} = (V_{\bar{s}}, \beta_{\bar{s}}) \in W$, which is a contradiction.

References

- [1] H. Esnault and V. Mehta: Simply connected projective manifolds in characteristic p>0 have no nontrivial stratified bundles, Invent. math. 181 (2010), 449–465.
- [2] H. Esnault and V. Srinivas: A relative version of Gieseker's problem on stratifications in characteristic p>0, Int. Math. Res. Not., https://doi.org/10.1093/imrn/rnx281.
- [3] H. Esnault and X. Sun: Stratified bundles and étale fundamental group, Ann. Sc. Norm. Super. Pisa Cl. Sci. 5 Vol. XIII (2014), 795-812.
- [4] D. Gieseker: Flat vector bundles and the fundamental group in non-zero characteristics, Ann. Sc. Norm. Super. Pisa, 4 Ser. 2 (1), (1975), 1-31.
- [5] E. Hrushovski: The Elementary Theory of the Frobenius Automorphism, arXiv: math/0406514v1 [math.LO], 2004.
- [6] A. Langer: Moduli spaces of sheaves in mixed characteristic, Duke Math., vol 124 (2004), 571–586.
- [7] H. Lange and U. Stuhler: Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z., **156**, (1977), 73-83.
- [8] V. B. Mehta and T. R. Ramadas: Moduli of vector bundles, Frobenius splitting, and invariant theory, Ann. of Math. 144 (1996), 269–313.
- [9] D. Mumford, J. Fogarty and F. Kirwan: Geometric Invariant Theory, Third Enlarged Edition. Ergebniss der Mathematik und ihrer Grenzgebiete, 34 (1994).
- [10] C.S.Seshadri: Geometric reductivity over arbitrary base, Adv. Math. 26 (1977), 225-274.
- [11] C.-T. Simpson: Moduli of representations of the fundamental groups of a smooth projective variety I, Publ. Math. I. H. E. S. 79, (1994), 47–129.
- [12] SGA1.: Revêtements étales et groupe fondamental, SGA 1.
- [13] Y. Varshavsky: Intersection of a correspondence with a graph of Frobenius, J. Algebraic Geometry, vol 27 (2018), 1–20

CENTER OF APPLIED MATHEMATICS, SCHOOL OF MATHEMATICS, TIANJIN UNIVERSITY, No.92 WEIJIN ROAD, TIANJIN 300072, P. R. CHINA *E-mail address*: xiaotaosun@tju.edu.cn