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Abstract. For a given stratified bundle E on X, we construct an
irreducible closed subvariety N (E)S of the so called representation
space R(OXS

, ξS , P ) → S such that N (E)S(Fq) contains a dense
set of (V, β) where V is induced by a representation of πét

1 (X) and β
is a frame of V at a given point (Theorem 3.7). As an application,
we give a simple proof of the main theorem of [1] and its relative
version (Theorem 4.2).

1. Introduction

LetX be a smooth, connected projective variety over an algebraically
closed field k of characteristic p > 0, DX be the sheaf of differential
operators (in the sense of Grothendieck) and π1 = πét

1 (X, ξ) be the étale
fundamental group of X. For any representation ρ : π1 → GL(V ), one
can associate to ρ a DX-module Vρ. Thus D. Gieseker proved the
following results (see Theorem 1.10 of [4]): (i) if every DX-module on
X is trivial, then π1 is trivial; (ii) if all irreducible DX-modules are
rank 1, then [π1, π1] is a pro-p-group; (iii) if every DX-module is a
direct sum of rank 1 DX-modules, then π1 is abelian with no p-power
order quotient. Following D. Gieseker, a DX-module E will be called
a stratified bundle.

Gieseker also made the conjecture that the converses of above state-
ments might be true. The converse of statement (i) was proved in
[1], and converses of the statements (ii) and (iii) were proved in [3].
The key in these proofs is to produce a non-trivial representation of
π1 = πét

1 (X, ξ) from a non-trivial given stratified bundle E. An equiv-
alent characterization of stratified bundle is that E = (Ei)i∈N with
Ei = F ∗

XEi+1 (∀ i ∈ N) where FX : X → X is the Frobenius map.
Then it is not difficult to prove that there is an integer n0 such that
Ei (i ≥ n0) are p-semistable bundles with numerically trivial Chern
classes.
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If the set Σ = {Ei}i≥n0 of isomorphism classes of the bundles Ei is
finite, then there is an F -periodic bundle Ei0 (i.e. there is an integer
N such that (F ∗

X)
NEi0 = Ei0) which induces a representation of π1 by

a theorem of Lange-Stuhler (Lemma 3.4).
When the set Σ = {Ei}i≥n0 of isomorphism classes of the bundles

Ei is an infinite set, a theorem of Hrushovski is used to get an F -
periodic bundle on a good reduction Xs̄/Fq of X. If we have a moduli
space M parametrizing isomorphism classes of semistable bundles,
we would have a subvariety N (E) ⊂ M (by taking Zariski closure of
Σ = {Ei}i≥n0) such that Frobenius pullback F ∗

X induces a dominant
rational map F ∗

X : N (E) 99K N (E). Then, if k = Fq, we find a dense
set of F -periodic bundles (thus a dense set of representations of π1)
by Hrushovski’s theorem. Unfortunately, we have only a moduli space
M parametrizing S-equivalence classes of semistable bundles. Thus
the approach of proving Gieseker conjecture in [1] and [3] consists of
two steps: (1) prove the theorem for irreducible stratified bundles (in
this case, Σ = {Ei}i≥n0 consists of stable bundles), (2) studying the
extensions of irreducible stratified bundles.

Let X be a projective variety over a perfect field k with a point

ξ : Spec(k) → X.

We observe in this article that for any stratified bundle E = (Ei)i∈N
of rank r there is a natural way to choose frames βi : ξ∗Ei ∼= O⊕r

X

such that (Ei, βi) = F ∗
X(Ei+1, βi+1) (see Lemma 3.3). Moreover, the

set R(E)n0 = {αi = (Ei, βi)}i≥n0 is a set of k-points of a moduli space
R(OX , ξ, P ), which parametrizes isomorphism classes of (V, β) (i.e.
semistable bundles V with frames β at ξ ∈ X) and was called the
Representation Space by Simpson.

In Section 2 of this article, we generalize Simpson’s construction of
representation spaces R(OX , ξ, P ) to the case of characteristic p > 0
(see Theorem 2.3) and prove that Frobenius pullback F ∗

X induces a
rational map f : R(OX , ξ, P ) 99K R(OX , ξ, P ) (see Proposition 2.5). In
Section 3, for a stratified bundle E = (Ei)i∈N such that Σ = {Ei}i≥n0

is an infinite set, we construct a closed subvariety N (E) ⊂ R(OX , ξ, P )
such that f : R(OX , ξ, P ) 99K R(OX , ξ, P ) induces a dominant rational
map fa : N (E) 99K N (E) and N (E)(k)∩R(E)n0 is an infinite set (see
Theorem 3.7). In Section 4, we use the construction of Section 3 to give
a uniform proof (see Theorem 4.1) of the main theorem in [1], which
says that there is no nontrivial stratified bundle on X if π1 = πét

1 (X, ξ)
is trivial. For example, when k = Fq, N (E) contains a dense set of
points (V, β) such that V is induced by a representation of π1. On
the other hand, if E = (Ei)i∈N is nontrivial, we can assume that all
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bundles Ei in Σ = {Ei}i≥n0 are nontrivial, then the set

U = { (V, β) ∈ N (E) |V is nontrivial}
is a nonempty open set, which must contain a point (V, β) such that
V is induced by a representation of π1 and we get a contradiction if π1
is trivial. These arguments are easily applied to prove relative version
of this theorem (see Theorem 4.2).

Acknowledegements: Theorem 4.2 (see [2] for an another proof) was
a question that Hélène Esnault posed to me when I visited Berlin on
2013, where I proved immediately the irreducible case of Theorem 4.2 in
a unpublished note (in fact, I proved the theorem for stratified bundles
which are extensions of two irreducible stratified bundles). I thank
her very much for the question and discussions. I would also like to
thank the anonymous referees for their carefully reading and helpful
comments, which improve the article very much.

2. Representation spaces and Frobenius map

Let X be an irreducible projective variety with a fixed ample line
bundle OX(1). For a torsion free sheaf E of rank r(E) on X, P (E ,m) =
χ(E(m)) is a polynomial in m (the so called Hilbert polynomial of E)
with degree n = dimX.

A torsion free sheaf E on X is called p-semistable (resp. p-stable) if
for any proper subsheaf F ⊂ E , when m is large enough, we have

p(F ,m) :=
P (F ,m)

r(F)
≤ P (E ,m)

r(E)
:= p(E ,m) (resp. < ).

Lemma 2.1. Let 0 → E1 → E → E2 → 0 be an exact sequence of tor-
sion free sheaves, if E1 and E2 are p-semistable with p(E1,m) = p(E2,m)
for all m, then E is p-semistable with p(E ,m) = p(E1,m) = p(E2,m)
for all m.

Proof. It is easy to check and we omit the details.
�

Let S be an affine variety over a finite field Fq, and XS → S be a
projective, flat morphism with geometrically irreducible and reduced
fibers. Fix a polynomial P of degree equal to the relative dimension
d = dim(XS/S) and a relative ample line bundle OXS

(1) on XS. Let

Q := QuotP (OXS
(−N)⊕P (N)) → S

be the relative quotient scheme together with the universal quotient

OXS×SQ(−N)⊕P (N) → Funiv → 0
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where Funiv is Q-flat with the fixed Hilbert polynomial P . Let

πQ : XQ := XS ×S Q → Q

be the projection and OXQ(m) be the pullback of OXS
(m) (under pro-

jection XQ → XS). It is well-known that the determinant line bundle

Lm =

P (m)∧
(πQ)∗(Funiv ⊗OXQ(m))

of cohomology is very ample for large m, which gives a linearization
of SL(P (N)) on Q (see page 64 of [11] for detail). Let Q ⊂ Q be
the closure of open set of points corresponding to semistable quotients.
Then the open set Q

ss ⊂ Q (resp. Q
s ⊂ Q) of GIT semistable (resp.

GIT stable) points under the action of SL(P (N)) (respect to Lm) is
precisely the open set Q of quotients OXs(−N)⊕P (N) → Fs → 0 where
Fs are p-semistable (resp. p-stable) torsion free sheaves on Xs (See
Theorem 4.1 of [6] over a general base). Let

φ : Q→M(OXS
, P ) := Q//SL(P (N))(2.1)

be the GIT quotient over S defined in Theorem 4 of [10]. Then

M(OXS
, P ) → S

is a projective scheme of finite type over S, which uniformly corepre-
sents the functor M(OXS

, P ) : Sch/S → Sets defined by

M(OXS
, P )(S ′) =


s-equivalence classes of families of p-semistable

sheaves on the geometric fibres of XS′ → S ′,

which are flat over S ′ with Hilbert polynomial P

 .

Definition 2.2. (1) A coherent sheaf F on XS is called p-semistable
with Hilbert polynomial P if it is flat over S and Fs are p-semistable
with Hilbert polynomial P on each geometric fiber Xs of XS → S. (2)
Suppose ξS : S → XS is a section of XS → S, we say that F satisfies
condition LF(ξS) if gr(Fs) is locally free at ξS(s) (∀ s ∈ S).

Let QLF(ξS) ⊂ Q be the subset of Q parametrizing quotients

OXS
(−N)⊕P (N) → F → 0

where F satisfies condition LF(ξS). It was shown in [11] that there is
an open set MLF(ξS)(OXS

, P ) ⊂M(OXS
, P ) such that

QLF(ξS) = φ−1(MLF(ξS)(OXS
, P ))

and φ : QLF(ξS) →MLF(ξS)(OXS
, P ) is a uniform categorical quotient.
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Let Funiv be the universal quotient on XS×SQ
LF(ξS), which is locally

free along the universal section ξQ : QLF(ξS) → XS ×S Q
LF(ξS), and let

π : T → QLF(ξS)

be the frame bundle of ξ∗Q(Funiv), which represents the functor that
associates to any S ′ → S the set of all triples (E , α, β), where E is
a p-semistable torsion free sheaf of Hilbert polynomial P on XS′/S ′

satisfying condition LF(ξS′), and α, β are isomorphisms

α : O⊕P (N)
S′

∼= H0(XS′/S ′, E(N)), β : ξ∗S′(E) ∼= O⊕r
S′ .

The group GL(P (N))×GL(r) acts on T , compatibly with the action of
GL(P (N)) on QLF(ξS). We may choose a linearization of the action of
GL(P (N)) on Lbm such that the center Gm ⊂ GL(P (N)) acts trivially.
Then the line bundle Lbm on QLF(ξS) has a linearization with respect to
the group GL(P (N)) × GL(r), where the second factor acts trivially.
Let L denote the pullback of the GL(P (N))×GL(r)-linearized bundle
Lbm to T . Then we have a characteristic p analogue of a special case
(Λ = OXS

) of Simpson’s result (see Theorem 4.10 of [11]).

Theorem 2.3. Every point of T is stable for the action of GL(P (N))
with respect to the linearized line bundle L, and the action of GL(P (N))
on T is free. The geometric quotient

ϕ : T → R(OXS
, ξS, P ) := T//GL(P (N))

represents a functor which associates to any S ′ → S the set of pairs
(E , β) where E is a p-semistable torsion free sheaf of Hilbert polynomial
P on XS′/S ′ satisfying condition LF(ξS′), and

β : ξ∗S′(E) ∼= O⊕r
S′

is a frame. Thus R(OXS
, ξS, P ) is a fine moduli space. Moreover, we

have the following properties:

(1) Every point of R(OXS
, ξS, P ) is GIT semistable under the action

of GL(r) (respect to a L obtained from L) and the quotient
R(OXS

, ξS, P )//GL(r) is naturally equal to MLF(ξS)(OXS
, P );

(2) For a geometric point α = (V, β) ∈ R(OXS
, ξS, P ), the orbit

O(α) of α = (V, β) under GL(r) is closed if and only if V is a
direct sum of p-stable sheaves, and α = (V, β) is a stable point
if and only if V is a p-stable sheaf.

Proof. The proof is the same with Simpson’s proof in characteristic
zero. For conveniences of readers, we repeat his proof here and indicate
references so that it works in characteristic p > 0.
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The projection π : T → QLF(ξS) is an affine map and all points of
QLF(ξS) are semistable for the action of GL(P (N)) respect to linearized
line bundle Lbm. Thus if q ∈ T is any point, then there is an GL(P (N))-
invariant section σ ∈ H0(QLF(ξS),Labm) such that (QLF(ξS))σ ̸=0 is affine
and σ(π(q)) ̸= 0. Then π∗(σ) ∈ H0(T,La) is GL(P (N))-invariant such
that π∗(σ)(q) ̸= 0 and Tπ∗(σ)̸=0 = π−1((QLF(ξS))σ ̸=0) is affine. Thus any
point q ∈ T is semistable. To prove that every point of T is stable,
the key is a lemma of Simpson (Lemma 4.9 of [11]), which implies that
the stabilizer of any point of T is finite and in particular orbits of all
points of T have same dimension. Thus the orbit of any point of T is
closed since no orbit can be contained in the closure of another orbit.

It is a general fact that there exist a geometric quotient

ϕ : T → R(OXS
, ξS, P ) := T//GL(P (N))

and an ample line bundle L on R(OXS
, ξS, P ) such that

ϕ∗L = La = π∗Labm
when a is large enough. Moreover, ϕ is submersive (i.e. U ⊂ R(OXS

, ξS, P )
is open if and only if ϕ−1(U) ⊂ T is open).

To show the action of GL(P (N)) on T is free, we must show that

GL(P (N))× T → T ×R(OXS
,ξS ,P ) T, (g, q) 7→ (g(q), q)(2.2)

is a closed immersion. By a result of Mumford (Corollary 2.5 of Propo-
sition 2.4 at page 55 of [9] where Proposition 2.4 is an application of
Iwahori’s theorem), the above morphism (2.2) is proper. Here we re-
mark that Iwahori’s theorem and Proposition 2.4 were proved in char-
acteristic p > (see Appendix to Chapter 2 of [9] at page 202). By using
again Lemma 4.9 of [11], Simpson was able to show that (2.2) is an
inclusion of functors. A proper map which is an inclusion of functors is
a closed immersion. Thus the action of GL(P (N)) on T is free, which
implies that ϕ : T → R(OXS

, ξS, P ) is a principal GL(P (N))-bundle
over R(OXS

, ξS, P ) by Proposition 0.9 of [9].
Let Funiv be pullback of the universal quotient on XS ×S Q

LF(ξS)

(under XS ×S T → XS ×S Q
LF(ξS)). Then the action of GL(P (N)) on

XS ×S T lifts to an action on Funiv and

idXS
× ϕ : XS ×S T → XS ×S R(OXS

, ξS, P )

is a principal GL(P (N))-bundle. By Proposition 2.2 (B) of [8], the
descend lemma holds in characteristic p > 0 if the scheme-theoretic
stabilizers are linearly reductive. Thus Funiv descends to a universal
p-semistable sheaf FR with Hilbert polynomial P on

XR := XS ×S R(OXS
, ξS, P ) → R := R(OXS

, ξS, P )
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with a universal frame βR : ξ∗RFR ∼= O⊕r
R . Then, by the same argu-

ments of Simpson, R := R(OXS
, ξS, P ) together with (FR, βR) repre-

sents the required functor.
To prove (1), recall L is the ample line bundle on R(OXS

, ξS, P )
such that ϕ∗(L) = La = π∗Labm , we will prove that for any point q ∈ T
the point ϕ(q) ∈ R(OXS

, ξS, P ) is GIT semistable under the action of
GL(r) (respect to a L). As above, there is an σ ∈ H0(QLF(ξS),Labm) such
that (QLF(ξS))σ ̸=0 is affine and σ(π(q)) ̸= 0. Then π∗(σ) ∈ H0(T,La) is
GL(P (N))-invariant such that π∗(σ)(q) ̸= 0 and Tπ∗(σ) ̸=0 is affine. Let
τ ∈ H0(R(OXS

, ξS, P ),La) be the section such that ϕ∗(τ) = π∗σ. Then
τ(ϕ(q)) ̸= 0 and R(OXS

, ξS, P )τ ̸=0 = Tπ∗(σ) ̸=0//GL(P (N)) is affine. On

the other hand, π∗(σ) is GL(r)-invariant since π : T → QLF(ξS) is a
principal GL(r)-bundle, which implies that τ is GL(r)-invariant and
ϕ(q) is semistable under the action of GL(r) respect to L. Let

ψ : R(OXS
, ξS, P ) → M := R(OXS

, ξS, P )//GL(r).

Then both T
ϕ−→ R(OXS

, ξS, P )
ψ−→ M and

T
π−→ QLF(ξS) φ−→MLF(ξS)(OXS

, P )

are categorical quotients of T by GL(P (N))×GL(r). Thus M is natu-
rally equal to MLF(ξS)(OXS

, P ) and we have the commutative diagram

T
ϕ−−−→ R(OXS

, ξS, P )

π

y ψ

y
QLF(ξS)

φ−−−→ MLF(ξS)(OXS
, P ).

To prove (2) of the theorem, let

q = (OXs̄(−N)⊕P (N) q−→ V → 0, β) ∈ T

such that ϕ(q) = α = (V, β) ∈ R(OXS
, ξS, P ) and

q′ := π(q) = (OXs̄(−N)⊕P (N) q−→ V → 0) ∈ QLF(ξS).

Let OGL(r)(α) ⊂ R(OXS
, ξS, P ) (resp. OGL(P (N))(q

′) ⊂ QLF(ξS)) be the
orbit of α (resp. q′) under GL(r) (resp. GL(P (N))). Then

ϕ−1(OGL(r)(α)) = OGL(P (N))×GL(r)(q) = π−1(OGL(P (N))(q
′))

since T
ϕ−→ R(OXS

, ξS, P ) (resp. T
π−→ QLF(ξS)) is a principal GL(P (N))-

bundle (resp. a principal GL(r)-bundle), where

OGL(P (N))×GL(r)(q) ⊂ T
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is the orbit of q ∈ T under GL(P (N))×GL(r). Thus

OGL(r)(α) ⊂ R(OXS
, ξS, P )

is closed if and only if OGL(P (N))(q
′) ⊂ QLF(ξS) is closed. But

OGL(P (N))(q
′) ⊂ QLF(ξS)

is closed if and only if V is a direct sum of p-stable sheaves. On the
other hand, the group of automorphisms of determinant one of such
a direct sum is finite if and only if the sum has exactly one p-stable
component. Thus α = (V, β) ∈ R(OXS

, ξS, P ) has closed orbit and
finite stabilizer in SL(r) (i.e. a stable point) if and only if V is a p-
stable sheaf. Here we use a fact that Aut(V ) is naturally isomorphic
to the stabilizer of α = (V, β). �

Remarks 2.4. (1) According to Simpson, the moduli spaces

R(OXS
, ξS, P ) → S

are called Representation spaces.
(2) Let X be a smooth, connected projective variety over a perfect

field k of characteristic p > 0 with a given point

ξ : Spec(k) → X.

There exist an Fq-algebra A ⊂ k of finite type and a scheme

XS → S = Spec(A)

of finite type over S such that its base change under Spec(k) → S
(induced by A ⊂ k) is isomorphic to X → Spec(k), which is called a
model ofX → Spec(k). We can choose S such thatXS → S is a smooth
projective flat morphism and ξ : Spec(k) → X extends to a section
ξS : S → XS. Then the representation space R(OXS

, ξS, P ) → S, we
will use in this article, is the case when P (m) = χ(OX(m)⊕r).

Proposition 2.5. There exists a rational map

f : R(OXS
, ξS, P ) 99K R(OXS

, ξS, P )

over S satisfying the following conditions:

(1) ∀α = (E, β) ∈ R(OX , ξ, P ) = R(OXS
, ξS, P ) ×S Spec(k), f

is well-defined at α if and only if F ∗
XE is p-semistable, where

FX : X → X is the (absolute) Frobenius map. In this case,

f(α) = (F ∗
XE,F

∗
kβ).
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(2) ∀ geometric closed point αs̄ = (Es̄, βs̄) ∈ R(OXS
, ξS, P ), f is

well-defined at αs̄ if and only if F ∗
Xs̄
Es̄ is p-semistable, where

Xs̄ is a geometric closed fiber of XS → S. In this case,

f(αs̄) = (F ∗
Xs̄
Es̄, F ∗

k(s̄)βs̄).

Proof. Let (FR, βR) be the universal object onXR := XS×SR(OXS
, ξS, P )

where βR : ξ∗RFR ∼= O⊕r
R(OXS

,ξS ,P ) is the universal frame of ξ∗RFR. Let

F : XR → X ′
R

denote the relative Frobenius over R := R(OXS
, ξS, P ). Consider

XR

FXR

%%
F //

pR !!D
DD

DD
DD

D
X ′
R

//

p′R
��

XR

pR
��

R
FR // R.

(2.3)

Then the pullback (F ∗
XR

FR, F ∗
Rβ

R) of (FR, βR), where

F ∗
Rβ

R : ξ∗R(F
∗
XR

FR) = F ∗
R(ξ

∗
RFR)

F ∗
R(βR)

−−−−→ F ∗
R(O⊕r

R ) = O⊕r
R ,

defines the rational map

f : R(OXS
, ξS, P ) 99K R(OXS

, ξS, P ).(2.4)

It is well-defined on an open subscheme R0 ⊂ R(OXS
, ξS, P ) such that

F ∗
XR

FR

is a family of p-semistable sheaves on XS ×S R0.
To see that the rational map (2.4) satisfies the requirements (1) and

(2) in the proposition, it is enough to make the following remak. For
any point t→ R, let s→ S be its image under R → S, and Xs be the
fiber of XS → S at s→ S. Then the diagram (2.3) specializes to

Xs × t

FXs×t

((
Ft //

&&LL
LLL

LLL
LLL

L
(Xs × t)′ //

��

Xs × t

��
t // t.

�
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3. Stratified bundles and Representation spaces

Let k be a perfect field of characteristic p > 0, and X a smooth
connected projective variety over k. A stratified bundle (or D-module)
on X is by definition a coherent OX-module E with a homomorphism

∇ : DX → Endk(E)

of OX-algebras, where DX is the sheaf of differential operators acting
on the structure sheaf of X. By a theorem of Katz (cf. [4, Theorem
1.3]), it is equivalent to the following definition.

Definition 3.1. A stratified bundle on X is a sequence of bundles

E = {E0, E1, E2, · · · , σ0, σ1, . . .} = {Ei, σi}i∈N
where σi : F

∗
XEi+1 → Ei is a OX-linear isomorphism, and FX : X → X

is the absolute Frobenius.

A morphism α = {αi} : {Ei, σi} → {Fi, τi} between two stratified
bundles is a sequence of morphisms αi : Ei → Fi of OX-modules such
that

F ∗
XEi+1

σi
��

F ∗
Xαi+1// F ∗

XFi+1

τi
��

Ei
αi // Fi

is commutative. The category str(X) of stratified bundles is abelian,
rigid, monoidal. We will drop the isomorphisms σi and will use the
notation E = (Ei)i∈N and in particular E(n0) = (Ei)i≥n0 is also a
stratified bundle.

Lemma 3.2. Let E = (Ei)i∈N be a stratified bundle. Then there is an
n0 such that Ei are p-semistable of p(Ei,m) = p(OX ,m) for all i ≥ n0.

Proof. It is known that p(Ei,m) = p(OX ,m) for all i ≥ 0 (see Corollary
2.2 of [1]). By Proposition 2.3 of [1], there is an n0 > 0 such that the
stratified bundle E(n0) = (Ei)i≥n0 is a successive extension of stratified
bundles U = (Ui)i∈N with the property that all Ui for i ∈ N are p-stable
bundles with p(Ui,m) = p(OX ,m). Then, by Lemma 2.1, all Ei for
i ≥ n0 are p-semistable of p(Ei,m) = p(OX ,m). �

Lemma 3.3. Let X be a smooth projective variety over a perfect field
k of characteristic p > 0 with a fixed rational point ξ : Spec(k) → X.
Let FX : X → X be the Frobenius map, and V , V ′ be vector bundles
satisfying V = F ∗

X(V
′). Then, for any frame β : ξ∗V ∼= O⊕r

Spec(k), there
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is a unique frame β′ : ξ∗V ′ ∼= O⊕r
Spec(k) such that β = F ∗

k (β
′) where

Fk : Spec(k) → Spec(k) is the Frobenius morphism and

F ∗
k (β

′) : ξ∗V = F ∗
k (ξ

∗V ′)
F ∗
k (β

′)
−−−→ F ∗

k (O⊕r
Spec(k)) = O⊕r

Spec(k).

Proof. It is clearly a local question and we can assume X = Spec(A),
ξ∗V = V ⊗A k = V/mV , ξ∗V ′ = V ′ ⊗A k = V ′/mV ′ (where k = A/m,
m ⊂ A is a maximal ideal) and ξ∗V = F ∗

k ξ
∗V ′ = ξ∗V ′⊗kp k. The frame

β is uniquely determined by a base β1, · · · , βr ∈ ξ∗V of ξ∗V . Since k
is perfect, there are uniquely β′

1, · · · , β′
r ∈ ξ∗V ′ such that βi = β′

i⊗kp 1
(1 ≤ i ≤ r). Then β′

1, · · · , β′
r ∈ ξ∗V ′ are clearly linear independent

(thus it is a base of ξ∗V ′), which defines a frame β′ : ξ∗V ′ ∼= O⊕r
Spec(k)

satisfying F ∗
k (β

′) = β. �
For a given stratified bundle E = (Ei)i∈N on X, we can fix a frame

β1 : ξ
∗E1

∼= O⊕r
Spec(k).

By Lemma 3.2 and Lemma 3.3, we get a set of k-points

R(E)n0 := {αi = (Ei, βi)}i≥n0 ⊂ R(OX , ξ, P )(k)(3.1)

with F ∗
X(αi+1) = αi. To produce a representation of π1 = πét

1 (X, a)
from the stratified bundle E, the following two results are important.

Lemma 3.4 (Lange-Stuhler, [7]). Let X be a smooth projective variety
over k of char(k) = p > 0, FX : X → X be the Frobenius map. If there
is a vector bundle E on X and an integer m > 0 such that

(Fm
X )∗E ∼= E

then there exists a geometrically connected étale finite cover

σ : Z → X

such that σ∗E ∼= O⊕rk(E)
Z . This gives a representation

πét
1 (X ⊗k k̄, a) → GL(V )

whose associated bundle is E ⊗k k̄ on X ⊗k k̄.

To find Frobenius periodic bundles from a given stratified bundle, the
key tool is a theorem of Hrushovski. In fact, we only need a special case
of his theorem [5, Corollary 1.2] (see also [13] for a proof in algebraic
geometry).

Theorem 3.5 (Corollary of twisted Lang-Weil estimate, [5, Corol-
lary 1.2]). Let Y be an affine variety over Fq, and let

Γ ⊂ (Y ×Fq Y )⊗Fq F̄q
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be an irreducible subvariety over Fq. Assume the two projections Γ → Y
are dominant. Then, for any closed subvariety W  Y , there exists
x ∈ Y (Fq) such that (x, xq

m
) ∈ Γ and x /∈ W for large enough natural

number m.

However, we will use Hrushovski’s theorem in following formulation.

Lemma 3.6 (Corollary of Hrushovski’s theorem). Let Y be a variety
over F̄p and f : Y 99K Y a dominant rational map. Then the subset
{x ∈ Y (F̄p) | ∃ b, f b(x) = x } ⊂ Y (F̄p) is dense in Y .

Proof. We prove that any nontrivial affine open set of Y contains a
periodic point of f . Replace Y by the affine open set, we can assume
that Y ⊂ AnFq is an affine variety over Fq and f : Y 99K Y is also

defined over Fq. Let Γ = graph(f) ⊂ Y × Y and W ⊂ Y where
f is not well-defined. Let f = (f1, ..., fn) be defined by the rational
functions fi ∈ Fq(Y ) on Y . Then, by Theorem 3.5, there is a point

x = (x1, ..., xn) ∈ Y (Fq) such that x /∈ W and (x, xq
m
) ∈ Γ where

xq
m

:= (xq
m

1 , xq
m

2 , ..., xq
m

n ),

which implies that f(x) = (xq
m

1 , ..., xq
m

n ) = xq
m
. On the other hand,

since f is defined by rational functions fi ∈ Fq(Y ), we have

f(xq
a

) = (f1(x
qa), ..., fn(x

qa)) = (f1(x)
qa , ..., fn(x)

qa) := f(x)q
a

for any integer a > 0. Thus

f b(x) = f b−1(xq
m

) = f b−2(xq
2m

) = · · · = xq
bm

= x

when b is large enough since x = (x1, ..., xn) ∈ Y (Fq). �
Theorem 3.7. Let X be a smooth projective variety over a perfect
field k of characteristic p > 0 with a fixed point ξ : Spec(k) → X. Let
E = (Ei)i∈N be a stratified bundle on X such that

Σ = {Ei }i∈N
is an infinite set. Then there exist a choice of S and an irreducible
closed subset N (E)S ⊂ R(OXS

, ξS, P ) such that

(1) {V ∈ Σ | (V, β) ∈ N (E)S(k)} ⊂ Σ is an infinite subset, where
N (E)S(k) denote the set of k-points of N (E)S.

(2) N (E)S contains a dense subset of points αs̄ = (Vs̄, βs̄), where
Vs̄ are vector bundles on geometric fibers Xs̄ associated to rep-
resentations ρs̄ : π

ét
1 (Xs̄, ξs̄) → GL(r, k(s̄)).

Proof. For the given stratified bundle E = (Ei)i∈N, without loss of
generality, we assume that all bundles Ei (∈ N) are p-semistable. Fix
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a frame β1 : ξ∗E1
∼= O⊕r

Spec(k), by Lemma 3.3, the stratified bundle

E = (Ei)i∈N gives an infinite set of points

R(E) = {Qi = (Ei, βi) ∈ R(OX , ξ, P ) |F ∗
X(Qi+1) = Qi }

and subsets R(E)n := {Qi ∈ R(E) }i≥n (n ∈ N), which satisfy

R(E) = R(E)1 ⊇ R(E)2 ⊇ · · · ⊇ R(E)n ⊇ R(E)n+1 ⊇ · · ·(3.2)

and F ∗
X(R(E)n+1) = R(E)n. Let Zn = R(E)n ⊂ R(OX , ξ, P ) be the

Zariski closure of R(E)n. Then, by (3.2), we have

Z1 ⊇ Z2 ⊇ · · · ⊇ Zn ⊇ Zn+1 ⊇ · · ·
which implies that there is n0 > 0 such that Zn = Zn0 (n ≥ n0). Let

Z =
∞∩
i=1

Zi ⊂ R(OX , ξ, P ).

Then the rational map F ∗
X : R(OX , ξ, P ) 99K R(OX , ξ, P ) induce a

dominant rational map F ∗
X : Z 99K Z. Thus there is an irreducible

component N (E) ⊂ Z ⊂ R(OX , ξ, P ) such that

• {V ∈ Σ | (V, β) ∈ N (E)(k)} ⊂ Σ is an infinite subset;
• there is an integer a > 0 such that (F ∗

X)
a : Z 99K Z induces a

dominant rational map (F ∗
X)

a : N (E) 99K N (E).

Choose a smooth, geometrically irreducible affine variety S over a
finite field Fq with rational function field Fq(S) ⊂ k such that N (E),
(F ∗

X)
a are defined over S and there exist a smooth model XS → S of

X → Spec(k) and a section ξS : S → XS extending ξ ∈ X(k). Let

R(OXS
, ξS, P ) → S

be the representation space constructed in Theorem 2.3. Then

R(OX , ξ, P ) = R(OXS
, ξS, P )×S Spec(k)

and the subvariety N (E) ⊂ R(OXS
, ξS, P ) ×S Spec(k) is defined over

S by the choice of S. Thus there exists a closed subvariety

N (E)S ⊂ R(OXS
, ξS, P )(3.3)

such that N (E) = N (E)S ×S Spec(k), which implies that

N (E)S(k) = N (E)(k).

This proves (1) of the theorem.
To show statement (2) of the theorem, recall the rational map

f : R(OXS
, ξS, P ) 99K R(OXS

, ξS, P )

constructed in Proposition 2.5 and F ∗
X = f ⊗ k is induced by

f : R(OXS
, ξS, P ) 99K R(OXS

, ξS, P )
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under the base change

R(OXS
, ξS, P )×S Spec(k)

f⊗k−−→ R(OXS
, ξS, P )×S Spec(k).

Then fa⊗ k : N (E)S ×S Spec(k) 99K N (E)S ×S Spec(k) is a dominant
rational map, which implies (by shrinking S if necessary) that

fa : N (E)S 99K N (E)S

is a dominant rational map over Fq. By Lemma 3.6, the subset

Γ = {αs̄ ∈ N (E)S(F̄q) | ∃m, fm(αs̄) = αs̄ }

of fa-periodic points is dense in N (E)S. By Lemma 3.4, if a point
αs̄ = (Vs̄, βs̄) ∈ Γ, Vs̄ is a vector bundle on geometric fiberXs̄ associated
to a representation ρs̄ : π

ét
1 (Xs̄, ξs̄) → GL(r, k(s̄)).

�

4. An application of Representation spaces

In this section, we present an application of our Theorem 3.7 by
giving a proof of relative version of Gieseker’s problem. To warm up,
we prove firstly the main theorem of [1] via representation spaces.

Theorem 4.1 (Esnault-Mehta, [1, Theorem 3.15]). Let X be a smooth
connected projective variety defined over a perfect field k of character-
istic p > 0 with a k-rational point ξ ∈ X(k). If πét

1 (Xk̄, ξ) = {1}, there
is no nontrivial stratified bundle on X.

Proof. We prove it by contradiction. If there is a nontrivial stratified
bundle E = (Ei)i∈N on X, without loss of generality, we assume that
all Ei ∈ Σ = {Ei}i∈N are nontrivial bundles. In fact, the subset

C = { j ∈ N |Ej ∼= O⊕r
X }

must be a finite set (otherwise, for any i ∈ N, there is an j ∈ C such
that i < j, which implies that Ei ∼= F (j−i)∗Ej is trivial and we obtain a
contradiction since E = (Ei)i∈N is a nontrivial stratified bundle). Drop
a finite number of Ej, we can assume that all Ei are nontrivial.

If Σ is a finite set, there is an Ei0 ∈ Σ such that (F ∗
X)

aEi0 = Ei0 for
some integer a > 0. By Lemma 3.4, there is a nontrivial geometrically
connected étale finite cover σ : Z → X such that σ∗Ei0

∼= O⊕r
Z , which

is a contradiction with πét
1 (Xk̄, ξ) = {1}.

If Σ = {Ei}i∈N is an infinite set, let N (E)S ⊂ R(OXS
, ξS, P ) be the

closed subset constructed in Theorem 3.7 and

B = { (V, β ) ∈ N (E)S |V is trivial } ⊂ R(OXS
, ξS, P ).
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By (2) of Theorem 2.3, B is a closed subset. By the assumption that
E = (Ei)i∈N is a nontrivial stratified bundle, the open set

U = N (E)S \B
is non-empty. Then, by (2) of Theorem 3.7, there is a point

αs̄ = (Vs̄, βs̄) ∈ U

such that Vs̄ is a vector bundle on geometric fiber Xs̄ associated to a
representation ρs̄ : π

ét
1 (Xs̄, ξs̄) → GL(r, k(s̄)), which must be nontrivial

by definition of U . This is a contradiction with πét
1 (Xk̄, ξ) = {1} since

the specialization homomorphism πét
1 (Xk̄, ξ) → πét

1 (Xs̄, ξs̄) is surjective
([12, Exposé X, Théorème 3.8]). �
Theorem 4.2. Let f : Y → X be a morphism of smooth projective
varieties over a perfect field k of characteristic p > 0, ξ′ ∈ Y (k) and
ξ ∈ X(k) be k-points such that f(ξ′) = ξ. If the homomorphism

f∗ : π
ét
1 (Yk̄, ξ

′) → πét
1 (Xk̄, ξ)

is trivial, then for any stratified bundle E on X, f ∗E is trivial.

Proof. We prove the theorem by contradiction. If there is a stratified
bundle E = (Ei)i∈N on X such that f ∗E is nontrivial, without loss
of generality, we assume that all f ∗Ei ∈ Σ(f ∗E) = {f ∗Ei}i∈N are
nontrivial bundles.

If Σ = {Ei}i∈N is a finite set, there is an Ei0 ∈ Σ(E) such that for
any j > i0 there is a 1 ≤ j0 ≤ i0 such that Ej = Ej0 that implies

(F ∗
X)

j−j0Ej = Ej0 = Ej.

Thus Ej is induced by a representation of πét
1 (Xk̄, ξ) by Lemma 3.4.

Then f ∗Ej is trivial, which implies that all f ∗Ei are trivial, a contra-
diction with our assumption.

If Σ = {Ei}i∈N is an infinite set, without loss of generality, we assume
that all f ∗Ei ∈ Σ(f ∗E) = {f ∗Ei}i∈N are p-semistable bundles on Y of
Hilbert polynomial P ′. Let N (E)S ⊂ R(OXS

, ξS, P ) be the closed
subset constructed in Theorem 3.7 and

f ∗
S : R(OXS

, ξS, P ) 99K R(OYS , ξ
′
S, P

′)

be the rational map that sends a point αs̄ = (Vs̄, βs̄) ∈ R(OXS
, ξS, P )

to a point f ∗
S(αs̄) = (f ∗

s̄ (Vs̄), f
∗
s̄ (βs̄)) ∈ R(OYS , ξ

′
S, P

′) when f ∗
s̄ (Vs̄) is

p-semistable on Ys̄, where fS : YS → XS is a model of f : Y → X and
fs̄ = fS ⊗ k(s̄) : Ys̄ = YS ⊗ k(s̄) → XS ⊗ k(s̄) = Xs̄ is the induced
morphism on geometric fibers. Consider the open set

U = { (V, β ) ∈ R(OYS , ξ
′
S, P

′) |V is not trivial } ⊂ R(OYS , ξ
′
S, P

′),
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which is open by (2) of Theorem 2.3, we have a rational map

f ∗
S : N (E)S 99K U .(4.1)

Let W ⊂ N (E)S be the open set where the rational map (4.1) is well
defined. Then {V ∈ Σ | (V, β) ∈ W} ⊂ Σ is an infinite set since all
f ∗Ei (∀Ei ∈ Σ) are nontrivial p-semistable bundles on Y . But, by (2)
of Theorem 3.7, W contains a point αs̄ = (Vs̄, βs̄) where Vs̄ is a vector
bundle on geometric fiber Xs̄ associated to a representation

ρs̄ : π
ét
1 (Xs̄, ξs̄) → GL(r, k(s̄)).

Then f ∗
s̄ (Vs̄) must be trivial by the condition of the theorem. Thus the

rational map (4.1) is not well-defined at αs̄ = (Vs̄, βs̄) ∈ W , which is a
contradiction. �
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