
RATIONAL CUBIC FOURFOLDS IN HASSETT DIVISORS

SONG YANG AND XUN YU

Abstract. We prove that every Hassett’s Noether-Lefschetz divisor of special cubic

fourfolds contains a union of three subvarieties parametrizing rational cubic fourfolds,

of codimension-two in the moduli space of smooth cubic fourfolds.

1. Introduction

The rationality problem of smooth cubic fourfolds is one of the most widely open

problems in algebraic geometry; we refer to the survey [Has16] for a comprehensive

progress. It has been known that all smooth cubic surfaces are rational since the 19th

century. In 1972, Clemens–Griffiths [CG72] proved that all smooth cubic threefolds

are nonrational. For smooth cubic fourfolds, however, the situation is very mysterious.

It is expected that a very general smooth cubic fourfold should be nonrational (cf.

[Has99, Has00]). Until now, many examples of smooth rational cubic fourfolds are

known, but the existence of a smooth nonrational cubic fourfold is still unknown.

Using Hodge theory and lattice theory, Hassett [Has00] introduced the notion of

special cubic fourfolds (see Definition 2.1). Simultaneously, Hassett [Has00, Theorem

1.0.1] gave a countably infinite list of irreducible divisors Cd of special cubic fourfolds

in the moduli space C of smooth cubic fourfolds and showed that Cd is nonempty if

and only if d > 6 and d ≡ 0, 2 (mod 6). Such a nonempty Cd is called a Hassett’s

Noether-Lefschetz divisor (for short a Hassett divisor).

Currently, there exist two popular point of views toward the rationality of smooth

cubic fourfolds and both have associated K3 surfaces:

• Hassett’s Hodge-theoretic result ([Has00, Theorem 5.1.3]): a smooth cubic four-

fold X has a Hodge-theoretically associated K3 surface if and only if its moduli

point [X] ∈ Cd for some admissible value d (i.e., d > 6, d ≡ 0, 2 (mod 6), 4 - d,

9 - d and p - d for any odd prime p ≡ 2 (mod 3));

• Kuznetsov’s derived categorical conjecture ([Kuz10, Conjecture 1.1]): a smooth

cubic fourfold X is rational if and only if its Kuznetsov component Ku(X)

is derived equivalent to a K3 surface (i.e., Ku(X) is called geometric), where

Ku(X) is the right orthogonal to the exceptional collection {OX ,OX(1),OX(2)}
in the bounded derived category of coherent sheaves on X.

It is important to notice that Kuznetsov’s conjecture implies that a very general cubic

fourfold is not rational, since for a very general cubic fourfold its Kuznetsov component
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can not be geometric. Addington–Thomas [AT14, Theorem 1.1] showed that for a

smooth cubic fourfold X if Ku(X) is geometric then [X] ∈ Cd for some admissible d,

and conversely for any admissible value d, the set of cubic fourfolds [X] ∈ Cd for which

Ku(X) is geometric is a Zariski open dense subset; see also Huybrechts [Huy17] for the

twisted version and a further study. Recently, based on Bridgeland stability conditions

on Ku(X) constructed in [BLMS17, Theorem 1.2], Bayer–Lahoz–Macr̀ı–Nuer–Perry–

Stellari [BLMNPS19, Corollary 29.7] proved that for any admissible value d, Ku(X) is

geometric for every [X] ∈ Cd. So we now know that for a smooth cubic fourfold X its

Kuznetsov component Ku(X) is geometric if and only if [X] ∈ Cd for some admissible

value d. Then one can restate Kuznetsov’s conjecture as the following equivalent form.

Conjecture 1.1. A smooth cubic fourfold X is rational if and only if [X] ∈ Cd for

some admissible value d.

The first three admissible values are 14, 26, 38. Every cubic fourfold in C14 is ra-

tional [Fan43, BRS19]; see also [RS19a, Theorem 2] for a different proof. Based on

Kontsevich–Tschinkel [KT19, Theorem 1], Russo–Staglianò [RS19a, Theorems 4, 7] fi-

nally showed that every cubic fourfold in C26 and C38 is rational; see also [RS18] for the

construction of explicit birational maps. So far “if ” part of Conjecture 1.1 has been

confirmed only for the three Hassett divisors C14, C26, C38. Thus finding rational cubic

fourfolds in other Hassett divisors is of interest. The main result of this paper is the

following.

Theorem 1.2 (=Theorem 3.3). Every Hassett divisor Cd contains a union of three

subvarieties parametrizing rational cubic fourfolds, of codimension-two in C.

The idea of the proof is simple: we first show any two Hassett divisors intersect by

Theorem 3.1, which is of independent interest (for considerations of the intersections

among Hassett divisors, see [Has99, AT14, ABBVA14, BRS19] etc.), and finally we

consider the intersections Cd ∩ C14, Cd ∩ C26 and Cd ∩ C38 for every Hassett divisor Cd.

After completing this paper, Russo–Staglianò [RS19b] announced the rationality of

every cubic fourfold in C42. We remark that our method used for the proof of Theorem

1.2 also works in this case (in particular, it can be shown that the four intersections

Cd ∩ C14, Cd ∩ C26, Cd ∩ C38, Cd ∩ C42 are mutually distinct).

Throughout this paper, we work over the complex number field C.

Acknowledgements. We would like to thank Professors Keiji Oguiso and Paolo Stel-

lari for useful conversations. We also would like to thank the referee for helpful com-

ments. This work is partially supported by the National Natural Science Foundation

of China (Grant No. 11701413, No. 11701414, No. 11831013).

2. Lattice and Hodge theory for cubic fourfolds

In this section, we collect some known results on Hodge structures and lattices asso-

ciated with smooth cubic fourfolds. We refer to [BD85, Has00, Has16, Huy18] for more
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detailed discussions, especially for the Hodge-theoretic aspect, and to [Ser73, Nik80]

for the basics of abstract lattice theory.

The cubic hypersurfaces in P5 are parametrized by P(H0(P5,O(3))) ∼= P55. Moreover,

the smooth cubic hypersurfaces form a Zariski open dense subset U ⊂ P55. Then the

moduli space of smooth cubic fourfolds is the quotient space

C := U//PGL(6,C)

which is a 20-dimensional quasi-projective variety.

Let X be a smooth cubic fourfold. Then the cohomology H∗(X,Z) is torsion-free

and the Hodge numbers for the middle cohomology of X are as follows:

0 1 21 1 0.

The Hodge-Riemann bilinear relations imply that H4(X,Z) is a unimodular lattice

under the intersection form ( . ) of signature (21, 2). Furthermore, as abstract lattices,

[Has00, Proposition 2.1.2] implies the middle cohomology and the primitive cohomology

L := E⊕28 ⊕ U
⊕2 ⊕ I3,0 ' H4(X,Z)

L0 := (h2)⊥ ' E⊕28 ⊕ U
⊕2 ⊕A2 ' H4

prim(X,Z)

where the square of the hyperplane class h is given as h2 = (1, 1, 1) ∈ I3,0 of which

the intersection form is given by the identity matrix of rank 3, A2 =

(
2 1

1 2

)
, U =(

0 1

1 0

)
the hyperbolic plane, E8 is the unimodular positive definite even lattice of

rank 8. Note that L0 is an even lattice.

Definition 2.1 (Hassett [Has00]). A smooth cubic fourfold X is called special if it

contains an algebraic surface not homologous to a complete intersection.

The integral Hodge conjecture holds for smooth cubic fourfolds ([Voi07, Theorem

18] or see also [BLMNPS19, Corollary 29.8] for a new proof). Thus, a smooth cubic

fourfold X is special if and only if the rank of the positive definite lattice

A(X) := H4(X,Z) ∩H2,2(X)

is at least 2.

Definition 2.2 (Hassett [Has00]). A labelling of a special cubic fourfold consists of a

positive definite rank two saturated (i.e. the quotient group A(X)/K is torsion free)

sublattice

K ⊂ A(X) such that h2 ∈ K,
and its discriminant d is the determinant of the intersection form on K.

In [Has00], Hassett defined Cd as the set of special cubic fourfolds X with labelling

of discriminant d. Moreover, Hassett [Has00, Theorem 1.0.1] showed that Cd ⊂ C is an

irreducible divisor and is nonempty if and only if

d > 6 and d ≡ 0, 2 (mod 6). (?)
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The following proposition is a generalization of [Has00, Theorems 1.0.1].

Proposition 2.3 ([Has16, Proposition 12 and page 43]). Fix a positive definite lattice

M of rank r ≥ 2 admitting a saturated embedding

M ⊂ L such that h2 ∈M.

We denote by CM ⊂ C the smooth cubic fourfolds X admitting algebraic classes with

this lattice structure

h2 ∈M ⊂ A(X) ⊂ L.
Then CM has codimension r−1 and there exists a cubic fourfold [X] ∈ CM with A(X) =

M , provided CM is nonempty. Moreover, CM is nonempty if and only if there exists

no sublattice K ⊂ M , h2 ∈ K, with K = K2 or K6, where K2 =

(
3 1

1 1

)
and

K6 =

(
3 0

0 2

)
.

This proposition is crucial for our purpose, so we sketch a proof for the convenience

of readers.

Sketch of proof. Suppose CM is nonempty. If K6 ⊂ M is a sublattice with h2 ∈ K6,

then there is a smooth cubic fourfold X such that A(X)∩ 〈h2〉⊥ contains an element r

with (r.r) = 2 and this contradicts Voisin [Voi86, Section 4, Proposition 1]; furthermore,

Hassett [Has00, Theorem 4.4.1] excludes the case when K2 ⊂ M is a sublattice with

h2 ∈ K2.

Conversely, suppose that there exists no rank two sublattice K ⊂ M , h2 ∈ K, with

K = K2 or K6. Since the signature of L is (21, 2) and M ⊂ L is positive definite, by a

standard argument, one can always find ω ∈ L⊗Z C such that

(ω.ω) = 0, (ω.ω̄) < 0 and L ∩ ω⊥ = M.

According to the description of the image of the period map for cubic fourfolds (Laza

[Laz10, Theorem 1.1] and Looijenga [Loo09, Theorem 4.1]), one has a smooth cubic

fourfold X and an isometry φ : H4(X,Z)
'−→ L mapping the square of the hyperplane

class to h2 ∈ L and a generator of H3,1(X) to ω. Thus M = A(X) and hence CM
contains [X] and nonempty. �

In the rest of the text, we will frequently use the following lemma to check the

nonemptyness condition in the Proposition 2.3.

Lemma 2.4. Let M ⊂ L be a positive definite saturated sublattice and h2 ∈M . Then

the following three conditions are equivalent:

(i) there exists no sublattice K ⊂M , h2 ∈ K, with K = K2 or K6;

(ii) there exists no r ∈M such that (r.r) = 2 (i.e., M does not represent 2);

(iii) for any 0 6= x ∈M , (x.x) ≥ 3.

In particular, if M satisfies one of the three equivalent conditions, then ∅ 6= CM ⊂ CM ′

for any saturated sublattice M ′ ⊂M ⊂ L such that h2 ∈M ′.
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Proof. First of all, (ii)⇒ (i) is clear since both K2 and K6 represent 2.

Secondly, (i) ⇒ (ii). Suppose that there exists r ∈ M such that (r.r) = 2. We

denote by K ⊂ M the sublattice generated by h2 and r. Hence, the Gram matrix of

K with respect to the basis (h2, r) is(
(h2.h2) (h2.r)

(r.h2) (r.r)

)
=

(
3 a

a 2

)
.

Replacing r by −r if necessary, we may and will assume a ≥ 0. Since K is positive

definite, we have a2 < 6 and thus a = 0, 1, 2. If a = 0 (resp. 2) , then K is isometric to

K6 (resp. K2), contradiction. If a = 1, then h2− 3r ∈ (h2)⊥ = L0 and ((h2− 3r).(h2−
3r)) = 15, an odd number, contradicting to the fact L0 is even.

Finally, clearly (iii) implies (ii). Conversely, we show (ii) implies (iii). By hypoth-

esis, we may assume that there is r ∈ M with (r.r) = 1. Then let K ⊂ M be the

sublattice generated by h2 and r. Hence, the Gram matrix of K with respect to the

basis (h2, r) is (
3 a

a 1

)
where a = (h2.r). Replacing r by −r if necessary, we may and will assume a ≥ 0. Since

K is positive definite, we have a2 < 3 and thus a = 0, 1. If a = 0, then r ∈ (h2)⊥ = L0

and (r.r) = 1, an odd number, contradicting to the fact L0 is even. If a = 1, then K is

isometric to K2 and K represents 2, contradiction. �

3. Intersections of Hassett divisors

In this section, we prove Theorem 1.2 (=Theorem 3.3) and discuss some related

results (Theorem 3.1 and Theorem 3.7).

Firstly, we setup some notations for latter use. Let

L = E⊕28 ⊕ U1 ⊕ U2 ⊕ I3,0,

where U1 and U2 are two copies of U . The standard basis of U consists of isotropic

elements e, f with (e.f) = 1. We denote the standard basis of Ui by ei, fi, i = 1, 2, and

denote by h2 the element (1, 1, 1) ∈ I3,0 ⊂ L.

We will use the following theorem, an interesting result for itself, to prove Theorem

3.3.

Theorem 3.1. Any two Hassett divisors intersect, i.e., Cd1 ∩ Cd2 6= ∅ for any two

integers d1 and d2 satisfying (?). Moreover, there exists a smooth cubic fourfold X and

a codimension-two subvariety CA(X) ⊂ C such that [X] ∈ CA(X) ⊂ Cd1 ∩ Cd2 and A(X)

is a rank 3 lattice with discriminant d1d2/3, except if both d1 and d2 are ≡ 2 mod 6, in

which case the discriminant is (d1d2 − 1)/3.

Proof. By definition, an integer d satisfies (?) if d > 6 and d ≡ 0, 2 (mod 6). Therefore,

the proof is divided into three cases:
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Case (1): d1 ≡ 0 (mod 6) and d2 ≡ 0 (mod 6). Suppose d1 = 6n1, d2 = 6n2 and

n1, n2 ≥ 2. We consider the rank 3 lattice

M := 〈h2, α1, α2〉 ⊂ L

generated by h2, α1 := e1 + n1f1 and α2 := e2 + n2f2. Then the Gram matrix of M

with respect to the basis (h2, α1, α2) is 3 0 0

0 2n1 0

0 0 2n2

 .

Therefore, M ⊂ L is positive definite saturated sublattice such that h2 ∈ M . In

addition, for any nonzero v = xh2 + yα1 + zα2 ∈M , where x, y, z are integers, we have

(v.v) = 3x2 + 2n1y
2 + 2n2z

2 ≥ 3

since n1, n2 ≥ 2 and at least one of the integers x, y, z is nonzero. Hence, the embedding

M ⊂ L satisfies Lemma 2.4 (iii). Thus, by Lemma 2.4 and Proposition 2.3, CM ⊂ C
is nonempty and has codimension 2, and there exists a cubic fourfold [X] ∈ CM with

A(X) = M . Thus A(X) is a rank 3 lattice of discriminant disc(A(X)) = d1d2/3.

Moreover, we consider the sublattices

Kd1 := 〈h2, α1〉 ⊂M

with discriminant d1, and

Kd2 := 〈h2, α2〉 ⊂M

with discriminant d2. Clearly, both Kd1 and Kd2 are saturated sublattices of M . Ap-

plying Lemma 2.4 and Proposition 2.3 again, we obtain [X] ∈ CM ⊂ CKd1
= Cd1 and

[X] ∈ CM ⊂ CKd2
= Cd2 . Consequently, [X] ∈ CM ⊂ Cd1 ∩ Cd2 is what we want.

Case (2): d1 ≡ 0 (mod 6) and d2 ≡ 2 (mod 6). Given d1 = 6n1 and d2 = 6n2 + 2

with n1 ≥ 2, n2 ≥ 1. We consider the rank 3 sublattice

M := 〈h2, α1, α2 + (0, 0, 1)〉 ⊂ L

where (0, 0, 1) ∈ I3,0. Then the Gram matrix of M with respect to the basis (h2, α1, α2+

(0, 0, 1)) is  3 0 1

0 2n1 0

1 0 2n2 + 1


Thus, M ⊂ L is positive definite saturated sublattice with h2 ∈ M . Furthermore, for

any nonzero v = xh2 + yα1 + z(α2 + (0, 0, 1)) ∈M , we get

(v.v) = 2x2 + 2n1y
2 + 2n2z

2 + (x+ z)2 ≥ 3

since n1 ≥ 2, n2 ≥ 1 and at least one of the integers x, y, z is nonzero. Hence, by Lemma

2.4 and Proposition 2.3, we conclude that CM ⊂ C is nonempty and has codimension
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2, and there exists a cubic fourfold [X] ∈ CM with A(X) = M . Thus A(X) is a rank 3

lattice of discriminant disc(A(X)) = d1d2/3. Similarly, we consider the sublattices:

Kd1 := 〈h2, α1〉 ⊂M

of discriminant d1, and

Kd2 := 〈h2, α2 + (0, 0, 1)〉 ⊂M

of discriminant d2. Again Lemma 2.4 and Proposition 2.3 imply [X] ∈ CM ⊂ CKd1
= Cd1

and [X] ∈ CM ⊂ CKd2
= Cd2 . Consequently, [X] ∈ CM ⊂ Cd1 ∩ Cd2 is what we wanted.

Case (3): d1 ≡ 2 (mod 6) and d2 ≡ 2 (mod 6). Assume d1 = 6n1 + 2 and

d2 = 6n2 + 2 with n1, n2 ≥ 1. We consider the rank 3 sublattice

M := 〈h2, α1 + (0, 1, 0), α2 + (0, 0, 1)〉 ⊂ L

here (0, 1, 0) ∈ I3,0. Then the Gram matrix of M with respect to the basis (h2, α1 +

(0, 1, 0), α2 + (0, 0, 1)) is  3 1 1

1 2n1 + 1 0

1 0 2n2 + 1


Thus, M ⊂ L is positive definite saturated sublattice such that h2 ∈ M . For any

nonzero v = xh2 + y(α1 + (0, 1, 0)) + z(α2 + (0, 0, 1)) ∈M , we obtain

(v.v) = x2 + 2n1y
2 + 2n2z

2 + (x+ y)2 + (x+ z)2 ≥ 3

since n1, n2 ≥ 1 and at least one of the integers x, y, z is nonzero. Hence, Lemma 2.4

and Proposition 2.3 concludes that CM ⊂ C is nonempty and has codimension 2, and

there exists a cubic fourfold [X] ∈ CM with A(X) = M . Thus A(X) is a rank 3 lattice

of discriminant disc(A(X)) = (d1d2 − 1)/3. Moreover, we consider

Kd1 := 〈h2, α1 + (0, 1, 0)〉 ⊂M

with discriminant d1 and

Kd2 := 〈h2, α2 + (0, 0, 1)〉 ⊂M

with discriminant d1. By Lemma 2.4 and Proposition 2.3, we obtain [X] ∈ CM ⊂
CKd1

= Cd1 and [X] ∈ CM ⊂ CKd2
= Cd2 . As a consequence, [X] ∈ CM ⊂ Cd1 ∩ Cd2 is

what we wanted. This finishes the proof of Theorem 3.1. �

Remark 3.2. Note that it has been known for 20 years that C8 ∩ C14 6= ∅ (Hassett

[Has99]) and proved more recently that C8 intersects every Hassett divisor (Addington–

Thomas [AT14, Theorem 4.1]). It is also shown that C8 ∩ C14 has five irreducible

components ([ABBVA14, BRS19]). Moreover, [BRS19, page 166, paragraph 4 line 2 ]

has mentioned that C14 intersects many other divisors Cd, however, it is not obvious to

see which Hassett divisors intersect with C14.

Consequently, Theorem 3.1 not only generalizes [AT14, Theorem 4.1] but also implies

that C14 intersects all Hassett divisors. Because of the same reason, we may conclude

the main result of the current paper.
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Theorem 3.3 (=Theorem 1.2). Every Hassett divisor Cd contains a union of three

subvarieties parametrizing rational cubic fourfolds, of codimension-two in C.

Proof. Applying Theorem 3.1 to the pairs of integers (d1, d2) = (d, 14), (d, 26), (d, 38).

Then there exist three smooth cubic fourfolds X1, X2 and X3 such that

[X1] ∈ CA(X1) ⊂ Cd ∩ C14 ⊂ Cd,

[X2] ∈ CA(X2) ⊂ Cd ∩ C26 ⊂ Cd,
[X3] ∈ CA(X3) ⊂ Cd ∩ C38 ⊂ Cd,

where CA(X1), CA(X2), and CA(X3) are subvarieties of codimension-two in C. Here A(X1),

A(X2) and A(X3) are three different rank 3 lattices of discriminants:

• if d ≡ 0 (mod 6), then disc(A(X1)) = 14d/3, disc(A(X2)) = 26d/3 and

disc(A(X3)) = 38d/3;

• if d ≡ 2 (mod 6), then disc(A(X1)) = (14d − 1)/3, disc(A(X2)) = (26d − 1)/3

and disc(A(X3)) = (38d− 1)/3.

By definition of CA(Xi) (see Proposition 2.3), a smooth cubic fourfold [X] ∈ CA(Xi)

only if there exists a saturated embedding A(Xi) ⊂ A(X). Since A(X1), A(X2) and

A(X3) are rank 3 lattices of different discriminants, it follows that there is no saturated

embedding A(Xi) ⊂ A(Xj) if i 6= j. Therefore, [Xi] /∈ CA(Xj) if i 6= j and CA(X1),

CA(X2), and CA(X3) are three different subvarieties of codimension-two in C.
Moreover, since every smooth cubic fourfold in C14, C26 and C38 is rational ([BRS19,

RS19a]), so every smooth cubic fourfold in CA(X1), CA(X2) and CA(X3) is rational. There-

fore, CA(X1), CA(X2) and CA(X3) are three different codimension-two subvarieties which

parametrize rational cubic fourfolds. This completes the proof of Theorem 3.3. �

Our main result also motivates the following natural question:

Question 3.4. Suppose that d satisfies (?) and d is not an admissible value. Does the

Hassett divisor Cd contain a union of countably infinite codimension-two subvarieties

in C parametrizing rational cubic fourfolds?

The answer to Question 3.4 has already been known for C8 and C18 ([Has99, AHTVA16]).

Corollary 3.5. The answer to Question 3.4 is yes if the “if” part of Conjecture 1.1

holds.

Returning to Conjecture 1.1, as a by-product of Theorem 3.3 (=Theorem 1.2), we

have the following.

Corollary 3.6. For every admissible value d, the Hassett divisor Cd contains a union

of three subvarieties parametrizing rational cubic fourfolds, of codimension-two in C.

To obtain more information about the Hassett divisors, it is of importance to notice

that Addington–Thomas [AT14, Theorem 4.1] showed that for any d satisfying (?) there

exists a cubic fourfold [X] ∈ C8 ∩ Cd such that [X] ∈ Cd′ for some admissible value d′.

Even if it is conjectured to be rational, however, it is still unknown whether such a X
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is rational or not. Using the idea of the proof of Theorem 3.1 and Theorem 3.3, we

obtain a generalization of [AT14, Theorem 4.1].

Theorem 3.7. If d1 and d2 satisfy (?), then C14∩Cd1∩Cd2 contains a codimension-three

subvariety in C parametrizing rational cubic fourfolds.

Proof. Analogously to the proof of Theorem 3.1, we only need to consider three cases:

Case (1): Given d1 = 6n1 and d2 = 6n2 with n1, n2 ≥ 2. We consider the rank 4

sublattice

M := 〈h2, ν, α1, α2〉 ⊂ L

where ν = (3, 1, 0) ∈ I3,0 ⊂ L, α1 := e1 + n1f1 and α2 := e2 + n2f2. Then the Gram

matrix of M with respect to the basis (h2, ν, α1, α2) is
3 4 0 0

4 10 0 0

0 0 2n1 0

0 0 0 2n2


Thus, M ⊂ L is positive definite saturated sublattice with h2 ∈ M . For any nonzero

v = x1h
2 + x2ν + x3α1 + x4α2 ∈M , we have

(v.v) = 2(x1 + 2x2)
2 + x21 + 2x22 + 2n1x

2
3 + 2n2x

2
4 ≥ 3

since n1, n2 ≥ 2 and at least one of the integers xi is nonzero (i = 1, 2, 3, 4). Hence,

Lemma 2.4 and Proposition 2.3 conclude that CM is nonempty and has codimension

3. In addition, we consider the lattices K14 = 〈h2, ν〉 and Kdi := 〈h2, αi〉 ⊂ M with

discriminant di. By Lemma 2.4 and Proposition 2.3, we obtain CM ⊂ CKd1
= Cd1 and

also CM ⊂ CKd2
= Cd2 . Consequently, ∅ 6= CM ⊂ C14 ∩ Cd1 ∩ Cd2 is what we wanted,

since every cubic fourfold in C14 is rational.

Since Case (2) and Case (3) are the same as Case (1), we just give the main

ingredients and left the details to the interested readers.

Case (2): Given d1 = 6n1 and d2 = 6n2 + 2 with n1 ≥ 2, n2 ≥ 1. We consider the

rank 4 sublattice

M := 〈h2, ν, α1, α2 + (0, 0, 1)〉 ⊂ L

and its sublattices K14 = 〈h2, ν〉, Kd1 := 〈h2, α1〉 ⊂M and Kd2 := 〈h2, α2 + (0, 0, 1)〉 ⊂
M .

Case (3): Given d1 = 6n1 + 2 and d2 = 6n2 + 2 with n1, n2 ≥ 1. We consider the

rank 4 sublattice

M := 〈h2, ν, α1 + (0, 1, 0), α2 + (0, 0, 1)〉 ⊂ L

and its sublattices K14 = 〈h2, ν〉, Kd1 := 〈h2, α1 + (0, 1, 0)〉 ⊂M and Kd2 := 〈h2, α2 +

(0, 0, 1)〉 ⊂M . �



10 SONG YANG AND XUN YU

References

[AHTVA16] N. Addington, B. Hassett, Y. Tschinkel, A. Várilly-Alvarado, Cubic fourfolds fibered in

sextic del Pezzo surfaces, Amer. J. Math. 141 (2019) 1479–1500.

[AT14] N. Addington, R. Thomas, Hodge theory and derived categories of cubic fourfolds, Duke

Math. J. 163 (2014) 1885–1927.

[ABBVA14] A. Auel, M. Bernardara, M. Bolognesi, A. Várilly-Alvarado, Cubic fourfolds containing a

plane and a quintic del Pezzo surface, Algebr. Geom. 1 (2014) 181–193.

[BLMS17] A. Bayer, M. Lahoz, E. Macr̀ı, P. Stellari, Stability conditions on Kuznetsov components,

arXiv:1703.10839.

[BLMNPS19] A. Bayer, M. Lahoz, E. Macr̀ı, H. Nuer, A. Perry, P. Stellari, Stability conditions in

families, arxiv:1902.08184.
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[BRS19] M. Bolognesi, F. Russo, G. Staglianò, Some loci of rational cubic fourfolds, Math. Ann.

373 (2019) 165–190.

[CG72] H. Clemens, P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. Math. 95

(1972) 281–356.

[Fan43] G. Fano, Sulle forme cubiche dello spazio a cinque dimensioni contenenti rigate razionali

del 40 ordine, Comment. Math. Helv. 15 (1943) 71–80.

[Has99] B. Hassett, Some rational cubic fourfolds, J. Algebraic Geom. 8 (1999) 103–114.

[Has00] B. Hassett, Special cubic fourfolds, Compositio Math. 120 (2000) 1–23.

[Has16] B. Hassett, Cubic fourfolds, K3 surfaces, and rationality questions, Rationality problems

in algebraic geometry, 29–66, Lecture Notes in Math., 2172, Fond. CIME/CIME Found.

Subser., Springer, Cham, 2016.

[Huy17] D. Huybrechts, The K3 category of a cubic fourfold, Compositio Math. 153 (2017) 586–620.

[Huy18] D. Huybrechts, Hodge theory of cubic fourfolds, their Fano varieties, and associated K3

categories, in Birational Geometry of Hypersurfaces, 165-198, Lecture Notes of the Unione

Matematica Italiana 26, Springer, 2019.

[KT19] M. Kontsevich, Y. Tschinkel, Specialization of birational types, Invent. Math. 217 (2019)

415–432.

[Kuz10] A. Kuznetsov, Derived categories of cubic fourfolds, in Cohomological and Geometric Ap-

proaches to Rationality Problems. Progr. Math., vol. 282 (Birkhäuser, Boston, 2010), pp.
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[RS18] F. Russo, G. Staglianò, Explicit rationality of some cubic fourfolds, arxiv:1811.03502.
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